Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia

Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of medical genetics. Part B, Neuropsychiatric genetics Vol. 144B; no. 3; pp. 271 - 278
Main Authors Deng, Xiangdong, Shibata, Hiroki, Takeuchi, Naoko, Rachi, Shinako, Sakai, Mayumi, Ninomiya, Hideaki, Iwata, Nakao, Ozaki, Norio, Fukumaki, Yasuyuki
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 05.04.2007
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1552-4841
1552-485X
DOI10.1002/ajmg.b.30351

Cover

Abstract Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2‐SNP5 (P = 7.5 × 10−5) and SNP3‐SNP5 (P = 9.0 × 10−4) in the SLC1A6 region. The haplotype of SNP2‐SNP5 of SLC1A6 even showed marginally significant association with the disease in the full‐size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. © 2006 Wiley‐Liss, Inc.
AbstractList Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P=0.007) and with haplotypes of SNP2-SNP5 (P=7.5X10-5) and SNP3-SNP5 (P=9.0X10-4) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P=0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population.
Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2‐SNP5 (P = 7.5 × 10−5) and SNP3‐SNP5 (P = 9.0 × 10−4) in the SLC1A6 region. The haplotype of SNP2‐SNP5 of SLC1A6 even showed marginally significant association with the disease in the full‐size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. © 2006 Wiley‐Liss, Inc.
Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1 , SLC1A3 , and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P  = 0.007) and with haplotypes of SNP2‐SNP5 ( P  = 7.5 × 10 −5 ) and SNP3‐SNP5 ( P  = 9.0 × 10 −4 ) in the SLC1A6 region . The haplotype of SNP2‐SNP5 of SLC1A6 even showed marginally significant association with the disease in the full‐size sample (400 cases and 420 controls, P  = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6 , whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. © 2006 Wiley‐Liss, Inc.
Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2-SNP5 (P = 7.5 x 10(-5)) and SNP3-SNP5 (P = 9.0 x 10(-4)) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population.
Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2-SNP5 (P = 7.5 x 10(-5)) and SNP3-SNP5 (P = 9.0 x 10(-4)) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population.Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2-SNP5 (P = 7.5 x 10(-5)) and SNP3-SNP5 (P = 9.0 x 10(-4)) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population.
Author Sakai, Mayumi
Fukumaki, Yasuyuki
Deng, Xiangdong
Iwata, Nakao
Ninomiya, Hideaki
Ozaki, Norio
Takeuchi, Naoko
Shibata, Hiroki
Rachi, Shinako
Author_xml – sequence: 1
  givenname: Xiangdong
  surname: Deng
  fullname: Deng, Xiangdong
  organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
– sequence: 2
  givenname: Hiroki
  surname: Shibata
  fullname: Shibata, Hiroki
  organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
– sequence: 3
  givenname: Naoko
  surname: Takeuchi
  fullname: Takeuchi, Naoko
  organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
– sequence: 4
  givenname: Shinako
  surname: Rachi
  fullname: Rachi, Shinako
  organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
– sequence: 5
  givenname: Mayumi
  surname: Sakai
  fullname: Sakai, Mayumi
  organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
– sequence: 6
  givenname: Hideaki
  surname: Ninomiya
  fullname: Ninomiya, Hideaki
  organization: Fukuoka Prefectural Dazaifu Hospital Psychiatric Center, Dazaifu, Fukuoka, Japan
– sequence: 7
  givenname: Nakao
  surname: Iwata
  fullname: Iwata, Nakao
  organization: Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
– sequence: 8
  givenname: Norio
  surname: Ozaki
  fullname: Ozaki, Norio
  organization: Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
– sequence: 9
  givenname: Yasuyuki
  surname: Fukumaki
  fullname: Fukumaki, Yasuyuki
  email: yfukumaki@gen.kyushu-u.ac.jp
  organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18674692$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17221839$$D View this record in MEDLINE/PubMed
BookMark eNqFkctv1DAQhy1URB9w44x8gdNmseNnjtsVLKBlOVAe4mI5jrNxSeJge1WWv5602bYSEiBZmjl8v7FmvlNw1PveAvAUozlGKH-pL7vtvJwTRBh-AE4wY3lGJft6dNdTfAxOY7xEiCAmxCNwjEWeY0mKExAXMXrjdHK-hzHtqj30NRx8u-98GBoXuwhdD1Nj4bbdJd3pZGEKuo-DD8kGuLW9jfDjeokXeDZVMoO6r6aewyuXGhhN4375oQm2d_oxeFjrNtonh3oGPr1-dbF8k60_rN4uF-vMUMFxprXUdcGFsMJgzASlus6lpKXApiIMacMpQZLbCvHxGSwxliXF42aGo5qRM_BimjsE_2NnY1Kdi8a2re6t30UlEMlRIch_QVxITliORvDZAdyVna3UEFynw17d3nMEnh8AHY1u6_FQxsV7TnJBeZGP3GziTPAxBlvfI0hda1XXWlWpbrSOeP4Hbly6cTaqcO3fQmQKXbnW7v_5gVq8e7-6TWVTysVkf96ldPiuuCCCqS-blaIX55vzb583SpLfpcnDkg
CitedBy_id crossref_primary_10_1016_j_neuint_2021_105177
crossref_primary_10_1002_iub_536
crossref_primary_10_1016_j_bbadis_2024_167097
crossref_primary_10_1038_tp_2013_35
crossref_primary_10_1007_s11064_015_1605_2
crossref_primary_10_1097_YPG_0b013e328311875d
crossref_primary_10_1016_j_bbrc_2012_03_109
crossref_primary_10_1159_000335763
crossref_primary_10_1002_ajmg_b_32268
crossref_primary_10_1016_j_neubiorev_2010_01_002
crossref_primary_10_1097_YPG_0b013e328353fbee
crossref_primary_10_1159_000433567
crossref_primary_10_2478_gsr_2014_0001
crossref_primary_10_1038_ejhg_2010_115
crossref_primary_10_1586_14737175_8_9_1389
crossref_primary_10_1007_s00232_015_9863_0
crossref_primary_10_1016_j_psychres_2013_07_009
crossref_primary_10_1007_s00213_009_1621_5
crossref_primary_10_1016_j_neuint_2009_01_002
crossref_primary_10_1186_1471_244X_8_58
crossref_primary_10_1186_s12864_020_07095_8
crossref_primary_10_1016_j_neuint_2009_06_003
crossref_primary_10_1016_j_pnpbp_2011_08_012
crossref_primary_10_1016_j_neuropharm_2021_108602
crossref_primary_10_3233_JHD_170277
crossref_primary_10_1111_j_1471_4159_2010_06678_x
crossref_primary_10_1016_j_psychres_2022_114658
crossref_primary_10_5498_wjp_v8_i2_51
crossref_primary_10_1002_ajmg_b_31249
crossref_primary_10_1017_S1092852916000390
crossref_primary_10_1038_npp_2008_215
crossref_primary_10_1159_000110430
crossref_primary_10_1007_s00213_011_2262_z
crossref_primary_10_1007_s00406_014_0534_4
crossref_primary_10_1111_pcn_12290
crossref_primary_10_3389_fpsyt_2020_559210
crossref_primary_10_3390_ijms22105343
crossref_primary_10_1021_acs_jproteome_0c00622
Cites_doi 10.1186/1471-244X-4-21
10.1046/j.1460-9568.2003.02657.x
10.1111/j.1471-4159.1992.tb09414.x
10.1016/S0893-133X(01)00370-0
10.1016/S0896-6273(00)80086-0
10.1001/archneurpsyc.1959.02340150095011
10.1176/ajp.148.10.1301
10.1038/sj.mp.4001193
10.1038/sj.mp.4001640
10.1097/01.ypg.0000056682.82896.b0
10.1073/pnas.0405077101
10.1016/0896-6273(94)90038-8
10.1073/pnas.182412499
10.1176/appi.ajp.158.9.1393
10.1016/S0361-9230(97)00417-6
10.1038/35015718
10.1016/S0168-0102(96)01148-0
10.1016/S0169-328X(00)00222-9
10.1016/j.neulet.2004.12.013
10.1046/j.1471-4159.1997.69062571.x
10.1002/ajmg.b.10041
10.1002/ana.410380114
10.1086/342734
10.1093/nar/19.19.5444
10.1046/j.1460-9568.1998.00108.x
10.1038/35075590
10.1016/j.schres.2004.07.002
10.1093/nar/25.14.2745
10.1093/bioinformatics/16.2.182
10.1002/glia.20119
10.1016/S0140-6736(95)92285-7
10.1073/pnas.94.8.4155
10.1097/00041444-200509000-00014
10.1126/science.276.5319.1699
10.1016/S0166-4328(01)00297-2
10.1016/S0092-8674(00)81972-8
10.1007/s100380170048
10.1002/ajmg.b.20108
10.1038/sj.mp.4000880
ContentType Journal Article
Copyright Copyright © 2006 Wiley‐Liss, Inc.
2007 INIST-CNRS
(c) 2006 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2006 Wiley‐Liss, Inc.
– notice: 2007 INIST-CNRS
– notice: (c) 2006 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
8FD
FR3
P64
RC3
7X8
DOI 10.1002/ajmg.b.30351
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1552-485X
EndPage 278
ExternalDocumentID 17221839
18674692
10_1002_ajmg_b_30351
AJMG30351
ark_67375_WNG_4TBNBZVN_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Health, Labor and Welfare of Japan
– fundername: Naito Foundation
– fundername: Ministry of Education, Culture, Sports, Science Technology
GroupedDBID .55
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-1
8-4
8-5
8UM
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
BDRZF
BFHJK
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2W
P4D
QB0
QRW
ROL
SUPJJ
UB1
V2E
W99
WJL
WQJ
WXSBR
X7M
XG1
XV2
AAYXX
CITATION
08R
AAHHS
AAUGY
ABEML
ABHUG
ABWRO
ACCFJ
ACSCC
ACXME
ADAWD
ADDAD
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AFVGU
AGJLS
AIWBW
AJBDE
AMBMR
C45
EBD
EMOBN
HF~
IQODW
OVD
RWI
SV3
TEORI
WIH
WRC
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c4761-aa8af9677e7c115744af2884b71cd350ac643086ed06d06c18118b41218c60f53
IEDL.DBID DR2
ISSN 1552-4841
IngestDate Thu Jul 10 21:03:36 EDT 2025
Wed Oct 01 13:25:30 EDT 2025
Wed Feb 19 01:47:07 EST 2025
Sun Oct 22 16:07:00 EDT 2023
Thu Apr 24 22:54:01 EDT 2025
Wed Oct 01 05:07:13 EDT 2025
Sun Sep 21 06:26:25 EDT 2025
Tue Sep 09 05:26:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Psychosis
Association
Gene
SNP
glutamate transporter
Schizophrenia
Single nucleotide polymorphism
Linkage equilibrium
Glutamate
Haplotype
linkage disequilibrium
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
(c) 2006 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-aa8af9677e7c115744af2884b71cd350ac643086ed06d06c18118b41218c60f53
Notes Naito Foundation
ark:/67375/WNG-4TBNBZVN-8
ArticleID:AJMG30351
Please cite this article as follows: Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H, Iwata N, Ozaki N, Fukumaki Y. 2007. Association Study of Polymorphisms in the Glutamate Transporter Genes SLC1A1, SLC1A3, and SLC1A6 With Schizophrenia. Am J Med Genet Part B 144B:271-278.
Ministry of Education, Culture, Sports, Science Technology
Ministry of Health, Labor and Welfare of Japan
istex:192343FC8B21A36F7092FBA835BC8C4D470E7A92
Please cite this article as follows: Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H, Iwata N, Ozaki N, Fukumaki Y. 2007. Association Study of Polymorphisms in the Glutamate Transporter Genes
With Schizophrenia. Am J Med Genet Part B 144B:271–278.
and
SLC1A1
SLC1A3
,
SLC1A6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17221839
PQID 19863520
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_70320973
proquest_miscellaneous_19863520
pubmed_primary_17221839
pascalfrancis_primary_18674692
crossref_primary_10_1002_ajmg_b_30351
crossref_citationtrail_10_1002_ajmg_b_30351
wiley_primary_10_1002_ajmg_b_30351_AJMG30351
istex_primary_ark_67375_WNG_4TBNBZVN_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 5 April 2007
PublicationDateYYYYMMDD 2007-04-05
PublicationDate_xml – month: 04
  year: 2007
  text: 5 April 2007
  day: 05
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, N.J
– name: United States
PublicationTitle American journal of medical genetics. Part B, Neuropsychiatric genetics
PublicationTitleAlternate Am. J. Med. Genet
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References American Psychiatric Association. 1994. DSM-IV: Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Press.
McGuffin P, Owen MJ, Farmer AE. 1995. Genetic basis of schizophrenia. Lancet 346: 678-682.
Kuwahara O, Mitsumoto Y, Chiba K, Mohri T. 1992. Characterization of D-aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions. J Neurochem 59: 616-621.
Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. 1959. Study of a new schizophrenomimetic drug, sernyl. Arch Neurol Psychiatr 81: 363-369.
Gegelashvili G, Schousboe A. 1998. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45: 233-238.
Abecasis GR, Cookson WO. 2000. GOLD: Graphical overview of linkage disequilibrium. Bioinformatics 16: 182-183.
Rothstein JD, Kykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. 1996. Knockout of glutamate transporters reveals a majorrole for astroglial transport in excitoxicity and clearance of a glutamate. Neuron 16: 675-686.
Ohashi J, Tokunaga K. 2001. The power of genome-wide association studies of complex disease genes: Statistical limitations of indirect approaches using SNP markers. J Hum Genet 46: 478-482.
Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y. 2003. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GEM3) with schizophrenia. Psychiatr Genet 13: 71-76.
Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A, Rothstein JD. 1997. Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69: 2571-2580.
Cooper-Casey K, Mesen-Fainardi A, Galke-Rollins B, Llach M, Laprade B, Rodriguez C, Riondet S, Bertheau A, Byerley W. 2005. Suggestive linkage of schizophrenia to 5p13 in Costa Rica. Mol Psychiatry 10: 651-656.
Javitt DC, Zukin SR. 1991. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiat 148: 1301-1308.
Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K. 1998. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10: 976-988.
Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107.
Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. 2001. Linkage disquilibrium in the human genome. Nature 411: 199-204.
Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94: 4155-4160.
Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13: 713-725.
Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC. 2000. Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Mol Brain Res 85: 24-31.
Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K. 2002. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877-892.
Deng X, Shibata H, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y. 2004. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry 4: 21.
Nickerson DA, Tobe VO, Taylor SL. 1997. Polyphred: Substitutions using fluorescence-based resequencing. Nucleic Acids Res 25: 2745-2751.
Lahiri DK, Nurnberger JI Jr. 1991. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19: 5444.
Matute C, Melone M, Vallejo-Illarramendi A, Conti F. 2005. Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49: 451-455.
Risch NJ. 2000. Searching for genetic determinants in the new millennium. Nature 405: 847-856.
Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A, Pellegrini-Giampietro DE, Rothstein JD, Conti F. 2001. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is downregulated by the antipsychotic drug clozapine. Mol Psychiatry 6: 380-386.
Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Tkahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699-1702.
Yamada K, Wada S, Watanabe M, Tanaka K, Wada K, Inoue Y. 1997. Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells. Neurosci Res 27: 191-198.
Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A, Ninomiya H, Tashiro N, Shibata H, Fukumaki Y. 2003. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia. Am J Med Genet Part B 116B: 17-22.
Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR. 2004. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 24: 12604-12609.
Melone M, Bragina L, Conti F. 2003. Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8: 12-13.
Makino C, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2005. Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatr Genet 15: 215-221.
Takaki H, Kikuta R, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2004. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet Part B 128B: 6-14.
Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D. 2003. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. Eur J Neurosci 17: 2106-2118.
McCullumsmith RE, Meador-Woodruff JH. 2002. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26: 368-375.
Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G, Li Y, Wang L, He L. 2005. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res 73: 21-26.
Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D. 2002. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99: 13675-13680.
Mohn AR, Gainetdinov RR, Caron MG, Koller BH. 1999. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98: 427-436.
Sham P. 1998. Statistics in human genetics. New York: Oxford University Press.
Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. 1995. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73-84.
Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. 2001. Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiat 158: 1393-1399.
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279-284.
Iwayama-Shigeno Y, Yamada K, Itokawa M, Toyota T, Meerabux JM, Minabe Y, Mori N, Inada T, Yoshikawa T. 2005. Extended analyses support the association of a functional (GT)n polymorphism in the GRIN2A promoter with Japanese schizophrenia. Neurosci Lett 378: 102-105.
1991; 19
2004; 128B
1959; 81
1995; 38
2005; 378
1997; 69
1997; 25
2000; 85
1997; 276
2002; 99
2004; 24
2004; 4
2003; 13
1998
1997; 27
1994
2003; 17
1992; 59
2005; 49
2001; 46
1996; 16
1998; 45
2001; 125
2002; 26
1997; 94
2000; 16
2001; 6
2003; 8
2000; 405
1993; 53
2005; 73
2005; 10
1995; 346
1999; 98
1994; 13
2002; 71
2005; 15
2003; 116B
1998; 10
1991; 148
2001; 411
2001; 158
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Fujii Y (e_1_2_6_13_1) 2003; 13
e_1_2_6_19_1
Xie X (e_1_2_6_42_1) 1993; 53
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
American Psychiatric Association (e_1_2_6_3_1) 1994
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Sham P (e_1_2_6_36_1) 1998
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR. 2004. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 24: 12604-12609.
– reference: Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. 1995. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73-84.
– reference: Sham P. 1998. Statistics in human genetics. New York: Oxford University Press.
– reference: Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A, Rothstein JD. 1997. Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69: 2571-2580.
– reference: Yamada K, Wada S, Watanabe M, Tanaka K, Wada K, Inoue Y. 1997. Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells. Neurosci Res 27: 191-198.
– reference: Melone M, Bragina L, Conti F. 2003. Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8: 12-13.
– reference: McCullumsmith RE, Meador-Woodruff JH. 2002. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26: 368-375.
– reference: Makino C, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2005. Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatr Genet 15: 215-221.
– reference: Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC. 2000. Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Mol Brain Res 85: 24-31.
– reference: Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. 1959. Study of a new schizophrenomimetic drug, sernyl. Arch Neurol Psychiatr 81: 363-369.
– reference: Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. 2001. Linkage disquilibrium in the human genome. Nature 411: 199-204.
– reference: Deng X, Shibata H, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y. 2004. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry 4: 21.
– reference: Gegelashvili G, Schousboe A. 1998. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45: 233-238.
– reference: Mohn AR, Gainetdinov RR, Caron MG, Koller BH. 1999. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98: 427-436.
– reference: Cooper-Casey K, Mesen-Fainardi A, Galke-Rollins B, Llach M, Laprade B, Rodriguez C, Riondet S, Bertheau A, Byerley W. 2005. Suggestive linkage of schizophrenia to 5p13 in Costa Rica. Mol Psychiatry 10: 651-656.
– reference: Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107.
– reference: Abecasis GR, Cookson WO. 2000. GOLD: Graphical overview of linkage disequilibrium. Bioinformatics 16: 182-183.
– reference: McGuffin P, Owen MJ, Farmer AE. 1995. Genetic basis of schizophrenia. Lancet 346: 678-682.
– reference: Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A, Pellegrini-Giampietro DE, Rothstein JD, Conti F. 2001. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is downregulated by the antipsychotic drug clozapine. Mol Psychiatry 6: 380-386.
– reference: Javitt DC, Zukin SR. 1991. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiat 148: 1301-1308.
– reference: Matute C, Melone M, Vallejo-Illarramendi A, Conti F. 2005. Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49: 451-455.
– reference: Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D. 2002. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99: 13675-13680.
– reference: Iwayama-Shigeno Y, Yamada K, Itokawa M, Toyota T, Meerabux JM, Minabe Y, Mori N, Inada T, Yoshikawa T. 2005. Extended analyses support the association of a functional (GT)n polymorphism in the GRIN2A promoter with Japanese schizophrenia. Neurosci Lett 378: 102-105.
– reference: Rothstein JD, Kykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. 1996. Knockout of glutamate transporters reveals a majorrole for astroglial transport in excitoxicity and clearance of a glutamate. Neuron 16: 675-686.
– reference: American Psychiatric Association. 1994. DSM-IV: Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Press.
– reference: Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D. 2003. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. Eur J Neurosci 17: 2106-2118.
– reference: Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K. 1998. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10: 976-988.
– reference: Risch NJ. 2000. Searching for genetic determinants in the new millennium. Nature 405: 847-856.
– reference: Kuwahara O, Mitsumoto Y, Chiba K, Mohri T. 1992. Characterization of D-aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions. J Neurochem 59: 616-621.
– reference: Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K. 2002. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877-892.
– reference: Nickerson DA, Tobe VO, Taylor SL. 1997. Polyphred: Substitutions using fluorescence-based resequencing. Nucleic Acids Res 25: 2745-2751.
– reference: Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A, Ninomiya H, Tashiro N, Shibata H, Fukumaki Y. 2003. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia. Am J Med Genet Part B 116B: 17-22.
– reference: Lahiri DK, Nurnberger JI Jr. 1991. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19: 5444.
– reference: Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94: 4155-4160.
– reference: Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G, Li Y, Wang L, He L. 2005. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res 73: 21-26.
– reference: Takaki H, Kikuta R, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2004. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet Part B 128B: 6-14.
– reference: Ohashi J, Tokunaga K. 2001. The power of genome-wide association studies of complex disease genes: Statistical limitations of indirect approaches using SNP markers. J Hum Genet 46: 478-482.
– reference: Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Tkahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699-1702.
– reference: Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13: 713-725.
– reference: Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y. 2003. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GEM3) with schizophrenia. Psychiatr Genet 13: 71-76.
– reference: Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279-284.
– reference: Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. 2001. Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiat 158: 1393-1399.
– volume: 38
  start-page: 73
  year: 1995
  end-page: 84
  article-title: Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis
  publication-title: Ann Neurol
– volume: 13
  start-page: 71
  year: 2003
  end-page: 76
  article-title: Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene ( ) with schizophrenia
  publication-title: Psychiatr Genet
– volume: 346
  start-page: 678
  year: 1995
  end-page: 682
  article-title: Genetic basis of schizophrenia
  publication-title: Lancet
– volume: 16
  start-page: 182
  year: 2000
  end-page: 183
  article-title: GOLD: Graphical overview of linkage disequilibrium
  publication-title: Bioinformatics
– volume: 73
  start-page: 21
  year: 2005
  end-page: 26
  article-title: A case‐control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population
  publication-title: Schizophr Res
– volume: 99
  start-page: 13675
  year: 2002
  end-page: 13680
  article-title: Genetic and physiological data implicating the new human gene G72 and the gene for D‐amino acid oxidase in schizophrenia
  publication-title: Proc Natl Acad Sci USA
– volume: 98
  start-page: 427
  year: 1999
  end-page: 436
  article-title: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia
  publication-title: Cell
– volume: 125
  start-page: 279
  year: 2001
  end-page: 284
  article-title: Controlling the false discovery rate in behavior genetics research
  publication-title: Behav Brain Res
– volume: 10
  start-page: 651
  year: 2005
  end-page: 656
  article-title: Suggestive linkage of schizophrenia to 5p13 in Costa Rica
  publication-title: Mol Psychiatry
– volume: 15
  start-page: 215
  year: 2005
  end-page: 221
  article-title: Identification of single‐nucleotide polymorphisms in the human N‐methyl‐ ‐aspartate receptor subunit NR2D gene, , and association study with schizophrenia
  publication-title: Psychiatr Genet
– volume: 71
  start-page: 877
  year: 2002
  end-page: 892
  article-title: Neuregulin 1 and susceptibility to schizophrenia
  publication-title: Am J Hum Genet
– volume: 16
  start-page: 675
  year: 1996
  end-page: 686
  article-title: Knockout of glutamate transporters reveals a majorrole for astroglial transport in excitoxicity and clearance of a glutamate
  publication-title: Neuron
– volume: 24
  start-page: 12604
  year: 2004
  end-page: 12609
  article-title: Variation in affects cognition, prefrontal glutamate, and risk for schizophrenia
  publication-title: Proc Natl Acad Sci USA
– volume: 69
  start-page: 2571
  year: 1997
  end-page: 2580
  article-title: Distribution of glutamate transporter subtypes during human brain development
  publication-title: J Neurochem
– volume: 25
  start-page: 2745
  year: 1997
  end-page: 2751
  article-title: Polyphred: Substitutions using fluorescence‐based resequencing
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 191
  year: 1997
  end-page: 198
  article-title: Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells
  publication-title: Neurosci Res
– volume: 49
  start-page: 451
  year: 2005
  end-page: 455
  article-title: Increased expression of the astrocytic glutamate transporter GLT‐1 in the prefrontal cortex of schizophrenics
  publication-title: Glia
– volume: 26
  start-page: 368
  year: 2002
  end-page: 375
  article-title: Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder
  publication-title: Neuropsychopharmacology
– year: 1994
– volume: 6
  start-page: 380
  year: 2001
  end-page: 386
  article-title: The expression of glutamate transporter GLT‐1 in the rat cerebral cortex is downregulated by the antipsychotic drug clozapine
  publication-title: Mol Psychiatry
– volume: 378
  start-page: 102
  year: 2005
  end-page: 105
  article-title: Extended analyses support the association of a functional (GT)n polymorphism in the promoter with Japanese schizophrenia
  publication-title: Neurosci Lett
– volume: 4
  start-page: 21
  year: 2004
  article-title: Association study of polymorphisms in the excitatory amino acid transporter 2 gene ( ) with schizophrenia
  publication-title: BMC Psychiatry
– year: 1998
– volume: 276
  start-page: 1699
  year: 1997
  end-page: 1702
  article-title: Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT‐1
  publication-title: Science
– volume: 53
  start-page: 1107
  year: 1993
  article-title: Testing linkage disequilibrium between a disease gene and marker loci
  publication-title: Am J Hum Genet
– volume: 405
  start-page: 847
  year: 2000
  end-page: 856
  article-title: Searching for genetic determinants in the new millennium
  publication-title: Nature
– volume: 85
  start-page: 24
  year: 2000
  end-page: 31
  article-title: Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus
  publication-title: Mol Brain Res
– volume: 116B
  start-page: 17
  year: 2003
  end-page: 22
  article-title: Positive association of the AMPA receptor subunit GluR4 gene ( ) haplotype with schizophrenia
  publication-title: Am J Med Genet Part B
– volume: 128B
  start-page: 6
  year: 2004
  end-page: 14
  article-title: Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene ( ) with schizophrenia
  publication-title: Am J Med Genet Part B
– volume: 81
  start-page: 363
  year: 1959
  end-page: 369
  article-title: Study of a new schizophrenomimetic drug, sernyl
  publication-title: Arch Neurol Psychiatr
– volume: 45
  start-page: 233
  year: 1998
  end-page: 238
  article-title: Cellular distribution and kinetic properties of high‐affinity glutamate transporters
  publication-title: Brain Res Bull
– volume: 148
  start-page: 1301
  year: 1991
  end-page: 1308
  article-title: Recent advances in the phencyclidine model of schizophrenia
  publication-title: Am J Psychiat
– volume: 46
  start-page: 478
  year: 2001
  end-page: 482
  article-title: The power of genome‐wide association studies of complex disease genes: Statistical limitations of indirect approaches using SNP markers
  publication-title: J Hum Genet
– volume: 94
  start-page: 4155
  year: 1997
  end-page: 4160
  article-title: Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 12
  year: 2003
  end-page: 13
  article-title: Clozapine‐induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1
  publication-title: Mol Psychiatry
– volume: 158
  start-page: 1393
  year: 2001
  end-page: 1399
  article-title: Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia
  publication-title: Am J Psychiat
– volume: 10
  start-page: 976
  year: 1998
  end-page: 988
  article-title: Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice
  publication-title: Eur J Neurosci
– volume: 17
  start-page: 2106
  year: 2003
  end-page: 2118
  article-title: Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins
  publication-title: Eur J Neurosci
– volume: 13
  start-page: 713
  year: 1994
  end-page: 725
  article-title: Localization of neuronal and glial glutamate transporters
  publication-title: Neuron
– volume: 19
  start-page: 5444
  year: 1991
  article-title: A rapid non‐enzymatic method for the preparation of HMW DNA from blood for RFLP studies
  publication-title: Nucleic Acids Res
– volume: 411
  start-page: 199
  year: 2001
  end-page: 204
  article-title: Linkage disquilibrium in the human genome
  publication-title: Nature
– volume: 59
  start-page: 616
  year: 1992
  end-page: 621
  article-title: Characterization of D‐aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions
  publication-title: J Neurochem
– ident: e_1_2_6_11_1
  doi: 10.1186/1471-244X-4-21
– ident: e_1_2_6_4_1
  doi: 10.1046/j.1460-9568.2003.02657.x
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1471-4159.1992.tb09414.x
– volume-title: DSM‐IV: Diagnostic and statistical manual of mental disorders
  year: 1994
  ident: e_1_2_6_3_1
– ident: e_1_2_6_23_1
  doi: 10.1016/S0893-133X(01)00370-0
– ident: e_1_2_6_35_1
  doi: 10.1016/S0896-6273(00)80086-0
– ident: e_1_2_6_19_1
  doi: 10.1001/archneurpsyc.1959.02340150095011
– ident: e_1_2_6_16_1
  doi: 10.1176/ajp.148.10.1301
– ident: e_1_2_6_26_1
  doi: 10.1038/sj.mp.4001193
– ident: e_1_2_6_10_1
  doi: 10.1038/sj.mp.4001640
– volume: 13
  start-page: 71
  year: 2003
  ident: e_1_2_6_13_1
  article-title: Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GEM3) with schizophrenia
  publication-title: Psychiatr Genet
  doi: 10.1097/01.ypg.0000056682.82896.b0
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.0405077101
– ident: e_1_2_6_33_1
  doi: 10.1016/0896-6273(94)90038-8
– volume: 53
  start-page: 1107
  year: 1993
  ident: e_1_2_6_42_1
  article-title: Testing linkage disequilibrium between a disease gene and marker loci
  publication-title: Am J Hum Genet
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.182412499
– ident: e_1_2_6_37_1
  doi: 10.1176/appi.ajp.158.9.1393
– ident: e_1_2_6_14_1
  doi: 10.1016/S0361-9230(97)00417-6
– ident: e_1_2_6_32_1
  doi: 10.1038/35015718
– ident: e_1_2_6_43_1
  doi: 10.1016/S0168-0102(96)01148-0
– ident: e_1_2_6_30_1
  doi: 10.1016/S0169-328X(00)00222-9
– ident: e_1_2_6_15_1
  doi: 10.1016/j.neulet.2004.12.013
– ident: e_1_2_6_6_1
  doi: 10.1046/j.1471-4159.1997.69062571.x
– ident: e_1_2_6_20_1
  doi: 10.1002/ajmg.b.10041
– ident: e_1_2_6_34_1
  doi: 10.1002/ana.410380114
– ident: e_1_2_6_38_1
  doi: 10.1086/342734
– ident: e_1_2_6_18_1
  doi: 10.1093/nar/19.19.5444
– ident: e_1_2_6_41_1
  doi: 10.1046/j.1460-9568.1998.00108.x
– ident: e_1_2_6_31_1
  doi: 10.1038/35075590
– ident: e_1_2_6_8_1
  doi: 10.1016/j.schres.2004.07.002
– ident: e_1_2_6_28_1
  doi: 10.1093/nar/25.14.2745
– ident: e_1_2_6_2_1
  doi: 10.1093/bioinformatics/16.2.182
– ident: e_1_2_6_22_1
  doi: 10.1002/glia.20119
– ident: e_1_2_6_24_1
  doi: 10.1016/S0140-6736(95)92285-7
– ident: e_1_2_6_5_1
  doi: 10.1073/pnas.94.8.4155
– ident: e_1_2_6_21_1
  doi: 10.1097/00041444-200509000-00014
– ident: e_1_2_6_40_1
  doi: 10.1126/science.276.5319.1699
– ident: e_1_2_6_7_1
  doi: 10.1016/S0166-4328(01)00297-2
– ident: e_1_2_6_27_1
  doi: 10.1016/S0092-8674(00)81972-8
– volume-title: Statistics in human genetics
  year: 1998
  ident: e_1_2_6_36_1
– ident: e_1_2_6_29_1
  doi: 10.1007/s100380170048
– ident: e_1_2_6_39_1
  doi: 10.1002/ajmg.b.20108
– ident: e_1_2_6_25_1
  doi: 10.1038/sj.mp.4000880
SSID ssj0030577
Score 2.0256917
Snippet Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 271
SubjectTerms Adult
Adult and adolescent clinical studies
Amino Acid Transport System X-AG - genetics
Asian Continental Ancestry Group - genetics
Biological and medical sciences
Excitatory Amino Acid Transporter 1 - genetics
Excitatory Amino Acid Transporter 3 - genetics
Excitatory Amino Acid Transporter 4 - genetics
Female
Gene Frequency
Genetic Linkage
Genetic Predisposition to Disease
Genotype
glutamate transporter
haplotype
Humans
linkage disequilibrium
Male
Medical genetics
Medical sciences
Middle Aged
Polymorphism, Single Nucleotide
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Psychoses
Schizophrenia
Schizophrenia - genetics
SNP
Title Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia
URI https://api.istex.fr/ark:/67375/WNG-4TBNBZVN-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajmg.b.30351
https://www.ncbi.nlm.nih.gov/pubmed/17221839
https://www.proquest.com/docview/19863520
https://www.proquest.com/docview/70320973
Volume 144B
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1552-4841
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1552-485X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0030577
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQJhAXBgNG-DF8AC40XZw4dnLsJrZpoj3ABhMXy3biamxNpqaVGH89z3aatoghgRQpPjxbsf38_OX5-XsIveFZobhKwPoZrULKIxkqk5Wh3YrhYSY29nLycMSOz-jJeXreOtzsXRjPD9E53OzKcPbaLnCpmr0laaj8Phn3VT-xR2FggkmSulPaTx17FGiyS7xoScZCmlHSxr1D9b3Vyms70qYd3B82QlI2MEjGZ7f4E_xcR7NuOzrcQmLRER-Fctmfz1Rf__yN4_H_e_oQPWiRKh541XqE7pTVNrrrc1febKN7w_ZU_jFqVuYYO75aXBt8XV_dTGqYxotm0uCLCgPUxGNQdAkgucSzjlV9isfW4OLPHw_IgPT8O-lhWRW-zLD1FuNmNT7wCTo7_HB6cBy2yRxCTTkjoZSZNDnjvOTaEvxQKk2cZVRxooskjaQGbAT_V2URMXg0IA-SKUoAgmgWmTR5ijaquiqfIRwpDjiGE6mLiCbKyCLXjBuwJCwpALAE6P1iQoVumc5two0r4TmaY2FHVCjhRjRAbzvpa8_wcYvcO6cbnZCcXtqoOJ6Kr6MjQU_3R_vfvoxEFqDdNeVZtpoxTlkO3_d6oU0CFrM9oZFVWc8bQXLoQhpHt0twm_A-50mAdrwaLlvnsYO7Aeo5ZfprZ8TgZHjkSs__TfwFuu-92zSM0pdoYzadl68Als3Urlt8vwB0fjBo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgE5cXLuMWLpsfgBeaLhfHTh67wVZGmwfoYOLF2E5cja3J1LQS49dzHKdpixgSQooUPxxbsX2O_eX4-DsIvWRxJpkMYfXTSrqEecKVOs5dsxXDQ3WgzeXkYUr7x-ToJDpp8pyauzCWH6J1uBnLqNdrY-DGIb27ZA0V3yfjruyG5izsOto0R3TGMt9-bPmjQJfr1IuGZswlMfGbyHeov7tae21P2jTD-8PESIoKhknb_BZ_AqDreLbekA7uom-Lrtg4lLPufCa76udvLI__0dd76E4DVnHPatd9dC0vttANm77ycgvdHDYH8w9QtTLNuKasxaXGF-X55aSEmTytJhU-LTCgTTwGXReAk3M8a4nVp3hs1lz8abDv9_yOfYcdLIrMlik2DmNcrYYIPkTHB-9G-323yefgKsKo7woRC51QxnKmDMcPIUIHcUwk81UWRp5QAI_gFyvPPAqPAvDhx5L4gEIU9XQUPkIbRVnkTxD2JAMow3yhMo-EUossUZRpWExomAFmcdCbxYxy1ZCdm5wb59zSNAfcjCiXvB5RB71qpS8syccVcq9r5WiFxPTMBMaxiH9JDzkZ7aV7Xz-nPHbQ9pr2LFuNKSM0ge_bWagTB3s2hzSiyMt5xf0EuhAF3tUSzOS8T1jooMdWD5ets6BGvA7q1Nr0187w3tHwsC49_TfxHXSrPxoO-OB9-uEZum2d3cT1oudoYzad5y8Apc3kdm2JvwBkfDSE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgExMvXMZl4bL5AXih6XJx7OSxG3RjrBGCDSZeLNuJq12aVE0rMX49x3GatoghgWQpfji2cuxj-7N9_B2EXrE4k0yGMPtpJV3CPOFKHeeuWYohUR1o8zh5kNLDU3J0Fp01B27mLYzlh2gP3MzIqOdrM8DHmd5dkIaKi9GwK7uhuQq7jdYJhQ2WAUWfW_ooMOU68qJhGXNJTPzG8R3K7y6XXlmS1k3r_jAukqKCVtI2vMWf8OcqnK3Xo_59xOeaWDeUy-5sKrvq528kj_-v6gN0r4GquGdt6yG6lReb6I4NXnm9iTYGzbX8I1QtdTKuCWtxqfG4vLoeldCP59WowucFBqyJh2DpAlByjqctrfoED82Mi78c7_s9v2O_YQeLIrN5is1xMa6WHQQfo9P--5P9Q7eJ5uAqwqjvChELnVDGcqYMww8hQgdxTCTzVRZGnlAAjmCDlWcehaQAevixJD5gEEU9HYVP0FpRFvkWwp5kAGSYL1TmkVBqkSWKMg1TCQ0zQCwOejvvUK4aqnMTceOKW5LmgJsW5ZLXLeqg16302FJ83CD3praNVkhMLo1bHIv4t_SAk5O9dO_715THDtpeMZ5FrTFlhCbwfztza-Iwms0VjSjyclZxPwEVosC7WYKZiPcJCx301JrhonYW1HjXQZ3amP6qDO8dDQ7q3LN_E99BG5_e9fnxh_Tjc3TXnnQT14teoLXpZJa_BIg2ldv1OPwFmyszMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+study+of+polymorphisms+in+the+glutamate+transporter+genes+SLC1A1+%2C+SLC1A3+%2C+and+SLC1A6+with+schizophrenia&rft.jtitle=American+journal+of+medical+genetics.+Part+B%2C+Neuropsychiatric+genetics&rft.au=Deng%2C+Xiangdong&rft.au=Shibata%2C+Hiroki&rft.au=Takeuchi%2C+Naoko&rft.au=Rachi%2C+Shinako&rft.date=2007-04-05&rft.issn=1552-4841&rft.eissn=1552-485X&rft.volume=144B&rft.issue=3&rft.spage=271&rft.epage=278&rft_id=info:doi/10.1002%2Fajmg.b.30351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ajmg_b_30351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4841&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4841&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4841&client=summon