Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia
Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1...
Saved in:
Published in | American journal of medical genetics. Part B, Neuropsychiatric genetics Vol. 144B; no. 3; pp. 271 - 278 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
05.04.2007
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 1552-4841 1552-485X |
DOI | 10.1002/ajmg.b.30351 |
Cover
Abstract | Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2‐SNP5 (P = 7.5 × 10−5) and SNP3‐SNP5 (P = 9.0 × 10−4) in the SLC1A6 region. The haplotype of SNP2‐SNP5 of SLC1A6 even showed marginally significant association with the disease in the full‐size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. © 2006 Wiley‐Liss, Inc. |
---|---|
AbstractList | Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P=0.007) and with haplotypes of SNP2-SNP5 (P=7.5X10-5) and SNP3-SNP5 (P=9.0X10-4) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P=0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2‐SNP5 (P = 7.5 × 10−5) and SNP3‐SNP5 (P = 9.0 × 10−4) in the SLC1A6 region. The haplotype of SNP2‐SNP5 of SLC1A6 even showed marginally significant association with the disease in the full‐size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. © 2006 Wiley‐Liss, Inc. Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1 , SLC1A3 , and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2‐SNP5 ( P = 7.5 × 10 −5 ) and SNP3‐SNP5 ( P = 9.0 × 10 −4 ) in the SLC1A6 region . The haplotype of SNP2‐SNP5 of SLC1A6 even showed marginally significant association with the disease in the full‐size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6 , whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. © 2006 Wiley‐Liss, Inc. Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2-SNP5 (P = 7.5 x 10(-5)) and SNP3-SNP5 (P = 9.0 x 10(-4)) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2-SNP5 (P = 7.5 x 10(-5)) and SNP3-SNP5 (P = 9.0 x 10(-4)) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population.Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. We report here association studies of schizophrenia with three glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 encoding the glutamate transporters EAAT3, EAAT1, and EAAT4, respectively. We initially performed the screening of the total 25 single nucleotide polymorphisms (SNPs) distributed in the three gene regions using 100 out of 400 Japanese cases and 100 out of 420 Japanese controls. After controlling the false discovery rate (FDR) at level 0.05, we observed significant associations of schizophrenia with a genotype of SNP4 (rs2097837, P = 0.007) and with haplotypes of SNP2-SNP5 (P = 7.5 x 10(-5)) and SNP3-SNP5 (P = 9.0 x 10(-4)) in the SLC1A6 region. The haplotype of SNP2-SNP5 of SLC1A6 even showed marginally significant association with the disease in the full-size sample (400 cases and 420 controls, P = 0.031). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC1A6, whereas SLC1A1 and SLC1A3 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. |
Author | Sakai, Mayumi Fukumaki, Yasuyuki Deng, Xiangdong Iwata, Nakao Ninomiya, Hideaki Ozaki, Norio Takeuchi, Naoko Shibata, Hiroki Rachi, Shinako |
Author_xml | – sequence: 1 givenname: Xiangdong surname: Deng fullname: Deng, Xiangdong organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan – sequence: 2 givenname: Hiroki surname: Shibata fullname: Shibata, Hiroki organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan – sequence: 3 givenname: Naoko surname: Takeuchi fullname: Takeuchi, Naoko organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan – sequence: 4 givenname: Shinako surname: Rachi fullname: Rachi, Shinako organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan – sequence: 5 givenname: Mayumi surname: Sakai fullname: Sakai, Mayumi organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan – sequence: 6 givenname: Hideaki surname: Ninomiya fullname: Ninomiya, Hideaki organization: Fukuoka Prefectural Dazaifu Hospital Psychiatric Center, Dazaifu, Fukuoka, Japan – sequence: 7 givenname: Nakao surname: Iwata fullname: Iwata, Nakao organization: Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan – sequence: 8 givenname: Norio surname: Ozaki fullname: Ozaki, Norio organization: Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan – sequence: 9 givenname: Yasuyuki surname: Fukumaki fullname: Fukumaki, Yasuyuki email: yfukumaki@gen.kyushu-u.ac.jp organization: Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18674692$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17221839$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctv1DAQhy1URB9w44x8gdNmseNnjtsVLKBlOVAe4mI5jrNxSeJge1WWv5602bYSEiBZmjl8v7FmvlNw1PveAvAUozlGKH-pL7vtvJwTRBh-AE4wY3lGJft6dNdTfAxOY7xEiCAmxCNwjEWeY0mKExAXMXrjdHK-hzHtqj30NRx8u-98GBoXuwhdD1Nj4bbdJd3pZGEKuo-DD8kGuLW9jfDjeokXeDZVMoO6r6aewyuXGhhN4375oQm2d_oxeFjrNtonh3oGPr1-dbF8k60_rN4uF-vMUMFxprXUdcGFsMJgzASlus6lpKXApiIMacMpQZLbCvHxGSwxliXF42aGo5qRM_BimjsE_2NnY1Kdi8a2re6t30UlEMlRIch_QVxITliORvDZAdyVna3UEFynw17d3nMEnh8AHY1u6_FQxsV7TnJBeZGP3GziTPAxBlvfI0hda1XXWlWpbrSOeP4Hbly6cTaqcO3fQmQKXbnW7v_5gVq8e7-6TWVTysVkf96ldPiuuCCCqS-blaIX55vzb583SpLfpcnDkg |
CitedBy_id | crossref_primary_10_1016_j_neuint_2021_105177 crossref_primary_10_1002_iub_536 crossref_primary_10_1016_j_bbadis_2024_167097 crossref_primary_10_1038_tp_2013_35 crossref_primary_10_1007_s11064_015_1605_2 crossref_primary_10_1097_YPG_0b013e328311875d crossref_primary_10_1016_j_bbrc_2012_03_109 crossref_primary_10_1159_000335763 crossref_primary_10_1002_ajmg_b_32268 crossref_primary_10_1016_j_neubiorev_2010_01_002 crossref_primary_10_1097_YPG_0b013e328353fbee crossref_primary_10_1159_000433567 crossref_primary_10_2478_gsr_2014_0001 crossref_primary_10_1038_ejhg_2010_115 crossref_primary_10_1586_14737175_8_9_1389 crossref_primary_10_1007_s00232_015_9863_0 crossref_primary_10_1016_j_psychres_2013_07_009 crossref_primary_10_1007_s00213_009_1621_5 crossref_primary_10_1016_j_neuint_2009_01_002 crossref_primary_10_1186_1471_244X_8_58 crossref_primary_10_1186_s12864_020_07095_8 crossref_primary_10_1016_j_neuint_2009_06_003 crossref_primary_10_1016_j_pnpbp_2011_08_012 crossref_primary_10_1016_j_neuropharm_2021_108602 crossref_primary_10_3233_JHD_170277 crossref_primary_10_1111_j_1471_4159_2010_06678_x crossref_primary_10_1016_j_psychres_2022_114658 crossref_primary_10_5498_wjp_v8_i2_51 crossref_primary_10_1002_ajmg_b_31249 crossref_primary_10_1017_S1092852916000390 crossref_primary_10_1038_npp_2008_215 crossref_primary_10_1159_000110430 crossref_primary_10_1007_s00213_011_2262_z crossref_primary_10_1007_s00406_014_0534_4 crossref_primary_10_1111_pcn_12290 crossref_primary_10_3389_fpsyt_2020_559210 crossref_primary_10_3390_ijms22105343 crossref_primary_10_1021_acs_jproteome_0c00622 |
Cites_doi | 10.1186/1471-244X-4-21 10.1046/j.1460-9568.2003.02657.x 10.1111/j.1471-4159.1992.tb09414.x 10.1016/S0893-133X(01)00370-0 10.1016/S0896-6273(00)80086-0 10.1001/archneurpsyc.1959.02340150095011 10.1176/ajp.148.10.1301 10.1038/sj.mp.4001193 10.1038/sj.mp.4001640 10.1097/01.ypg.0000056682.82896.b0 10.1073/pnas.0405077101 10.1016/0896-6273(94)90038-8 10.1073/pnas.182412499 10.1176/appi.ajp.158.9.1393 10.1016/S0361-9230(97)00417-6 10.1038/35015718 10.1016/S0168-0102(96)01148-0 10.1016/S0169-328X(00)00222-9 10.1016/j.neulet.2004.12.013 10.1046/j.1471-4159.1997.69062571.x 10.1002/ajmg.b.10041 10.1002/ana.410380114 10.1086/342734 10.1093/nar/19.19.5444 10.1046/j.1460-9568.1998.00108.x 10.1038/35075590 10.1016/j.schres.2004.07.002 10.1093/nar/25.14.2745 10.1093/bioinformatics/16.2.182 10.1002/glia.20119 10.1016/S0140-6736(95)92285-7 10.1073/pnas.94.8.4155 10.1097/00041444-200509000-00014 10.1126/science.276.5319.1699 10.1016/S0166-4328(01)00297-2 10.1016/S0092-8674(00)81972-8 10.1007/s100380170048 10.1002/ajmg.b.20108 10.1038/sj.mp.4000880 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley‐Liss, Inc. 2007 INIST-CNRS (c) 2006 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2006 Wiley‐Liss, Inc. – notice: 2007 INIST-CNRS – notice: (c) 2006 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7TM 8FD FR3 P64 RC3 7X8 |
DOI | 10.1002/ajmg.b.30351 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1552-485X |
EndPage | 278 |
ExternalDocumentID | 17221839 18674692 10_1002_ajmg_b_30351 AJMG30351 ark_67375_WNG_4TBNBZVN_8 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Health, Labor and Welfare of Japan – fundername: Naito Foundation – fundername: Ministry of Education, Culture, Sports, Science Technology |
GroupedDBID | .55 .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 4.4 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 7PT 8-1 8-4 8-5 8UM AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGYGG AHBTC AIAGR AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN BDRZF BFHJK BRXPI BSCLL BY8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF IX1 KQQ LATKE LAW LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG P2P P2W P4D QB0 QRW ROL SUPJJ UB1 V2E W99 WJL WQJ WXSBR X7M XG1 XV2 AAYXX CITATION 08R AAHHS AAUGY ABEML ABHUG ABWRO ACCFJ ACSCC ACXME ADAWD ADDAD ADZOD AEEZP AEQDE AEUQT AFPWT AFVGU AGJLS AIWBW AJBDE AMBMR C45 EBD EMOBN HF~ IQODW OVD RWI SV3 TEORI WIH WRC CGR CUY CVF ECM EIF NPM 7TK 7TM 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4761-aa8af9677e7c115744af2884b71cd350ac643086ed06d06c18118b41218c60f53 |
IEDL.DBID | DR2 |
ISSN | 1552-4841 |
IngestDate | Thu Jul 10 21:03:36 EDT 2025 Wed Oct 01 13:25:30 EDT 2025 Wed Feb 19 01:47:07 EST 2025 Sun Oct 22 16:07:00 EDT 2023 Thu Apr 24 22:54:01 EDT 2025 Wed Oct 01 05:07:13 EDT 2025 Sun Sep 21 06:26:25 EDT 2025 Tue Sep 09 05:26:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Psychosis Association Gene SNP glutamate transporter Schizophrenia Single nucleotide polymorphism Linkage equilibrium Glutamate Haplotype linkage disequilibrium |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 (c) 2006 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-aa8af9677e7c115744af2884b71cd350ac643086ed06d06c18118b41218c60f53 |
Notes | Naito Foundation ark:/67375/WNG-4TBNBZVN-8 ArticleID:AJMG30351 Please cite this article as follows: Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H, Iwata N, Ozaki N, Fukumaki Y. 2007. Association Study of Polymorphisms in the Glutamate Transporter Genes SLC1A1, SLC1A3, and SLC1A6 With Schizophrenia. Am J Med Genet Part B 144B:271-278. Ministry of Education, Culture, Sports, Science Technology Ministry of Health, Labor and Welfare of Japan istex:192343FC8B21A36F7092FBA835BC8C4D470E7A92 Please cite this article as follows: Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H, Iwata N, Ozaki N, Fukumaki Y. 2007. Association Study of Polymorphisms in the Glutamate Transporter Genes With Schizophrenia. Am J Med Genet Part B 144B:271–278. and SLC1A1 SLC1A3 , SLC1A6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17221839 |
PQID | 19863520 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_70320973 proquest_miscellaneous_19863520 pubmed_primary_17221839 pascalfrancis_primary_18674692 crossref_primary_10_1002_ajmg_b_30351 crossref_citationtrail_10_1002_ajmg_b_30351 wiley_primary_10_1002_ajmg_b_30351_AJMG30351 istex_primary_ark_67375_WNG_4TBNBZVN_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 5 April 2007 |
PublicationDateYYYYMMDD | 2007-04-05 |
PublicationDate_xml | – month: 04 year: 2007 text: 5 April 2007 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, N.J – name: United States |
PublicationTitle | American journal of medical genetics. Part B, Neuropsychiatric genetics |
PublicationTitleAlternate | Am. J. Med. Genet |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | American Psychiatric Association. 1994. DSM-IV: Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Press. McGuffin P, Owen MJ, Farmer AE. 1995. Genetic basis of schizophrenia. Lancet 346: 678-682. Kuwahara O, Mitsumoto Y, Chiba K, Mohri T. 1992. Characterization of D-aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions. J Neurochem 59: 616-621. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. 1959. Study of a new schizophrenomimetic drug, sernyl. Arch Neurol Psychiatr 81: 363-369. Gegelashvili G, Schousboe A. 1998. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45: 233-238. Abecasis GR, Cookson WO. 2000. GOLD: Graphical overview of linkage disequilibrium. Bioinformatics 16: 182-183. Rothstein JD, Kykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. 1996. Knockout of glutamate transporters reveals a majorrole for astroglial transport in excitoxicity and clearance of a glutamate. Neuron 16: 675-686. Ohashi J, Tokunaga K. 2001. The power of genome-wide association studies of complex disease genes: Statistical limitations of indirect approaches using SNP markers. J Hum Genet 46: 478-482. Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y. 2003. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GEM3) with schizophrenia. Psychiatr Genet 13: 71-76. Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A, Rothstein JD. 1997. Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69: 2571-2580. Cooper-Casey K, Mesen-Fainardi A, Galke-Rollins B, Llach M, Laprade B, Rodriguez C, Riondet S, Bertheau A, Byerley W. 2005. Suggestive linkage of schizophrenia to 5p13 in Costa Rica. Mol Psychiatry 10: 651-656. Javitt DC, Zukin SR. 1991. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiat 148: 1301-1308. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K. 1998. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10: 976-988. Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. 2001. Linkage disquilibrium in the human genome. Nature 411: 199-204. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94: 4155-4160. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13: 713-725. Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC. 2000. Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Mol Brain Res 85: 24-31. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K. 2002. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877-892. Deng X, Shibata H, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y. 2004. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry 4: 21. Nickerson DA, Tobe VO, Taylor SL. 1997. Polyphred: Substitutions using fluorescence-based resequencing. Nucleic Acids Res 25: 2745-2751. Lahiri DK, Nurnberger JI Jr. 1991. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19: 5444. Matute C, Melone M, Vallejo-Illarramendi A, Conti F. 2005. Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49: 451-455. Risch NJ. 2000. Searching for genetic determinants in the new millennium. Nature 405: 847-856. Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A, Pellegrini-Giampietro DE, Rothstein JD, Conti F. 2001. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is downregulated by the antipsychotic drug clozapine. Mol Psychiatry 6: 380-386. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Tkahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699-1702. Yamada K, Wada S, Watanabe M, Tanaka K, Wada K, Inoue Y. 1997. Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells. Neurosci Res 27: 191-198. Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A, Ninomiya H, Tashiro N, Shibata H, Fukumaki Y. 2003. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia. Am J Med Genet Part B 116B: 17-22. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR. 2004. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 24: 12604-12609. Melone M, Bragina L, Conti F. 2003. Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8: 12-13. Makino C, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2005. Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatr Genet 15: 215-221. Takaki H, Kikuta R, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2004. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet Part B 128B: 6-14. Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D. 2003. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. Eur J Neurosci 17: 2106-2118. McCullumsmith RE, Meador-Woodruff JH. 2002. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26: 368-375. Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G, Li Y, Wang L, He L. 2005. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res 73: 21-26. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D. 2002. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99: 13675-13680. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. 1999. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98: 427-436. Sham P. 1998. Statistics in human genetics. New York: Oxford University Press. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. 1995. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73-84. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. 2001. Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiat 158: 1393-1399. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279-284. Iwayama-Shigeno Y, Yamada K, Itokawa M, Toyota T, Meerabux JM, Minabe Y, Mori N, Inada T, Yoshikawa T. 2005. Extended analyses support the association of a functional (GT)n polymorphism in the GRIN2A promoter with Japanese schizophrenia. Neurosci Lett 378: 102-105. 1991; 19 2004; 128B 1959; 81 1995; 38 2005; 378 1997; 69 1997; 25 2000; 85 1997; 276 2002; 99 2004; 24 2004; 4 2003; 13 1998 1997; 27 1994 2003; 17 1992; 59 2005; 49 2001; 46 1996; 16 1998; 45 2001; 125 2002; 26 1997; 94 2000; 16 2001; 6 2003; 8 2000; 405 1993; 53 2005; 73 2005; 10 1995; 346 1999; 98 1994; 13 2002; 71 2005; 15 2003; 116B 1998; 10 1991; 148 2001; 411 2001; 158 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Fujii Y (e_1_2_6_13_1) 2003; 13 e_1_2_6_19_1 Xie X (e_1_2_6_42_1) 1993; 53 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 American Psychiatric Association (e_1_2_6_3_1) 1994 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Sham P (e_1_2_6_36_1) 1998 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR. 2004. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 24: 12604-12609. – reference: Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. 1995. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73-84. – reference: Sham P. 1998. Statistics in human genetics. New York: Oxford University Press. – reference: Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A, Rothstein JD. 1997. Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69: 2571-2580. – reference: Yamada K, Wada S, Watanabe M, Tanaka K, Wada K, Inoue Y. 1997. Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells. Neurosci Res 27: 191-198. – reference: Melone M, Bragina L, Conti F. 2003. Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8: 12-13. – reference: McCullumsmith RE, Meador-Woodruff JH. 2002. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26: 368-375. – reference: Makino C, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2005. Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatr Genet 15: 215-221. – reference: Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC. 2000. Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Mol Brain Res 85: 24-31. – reference: Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. 1959. Study of a new schizophrenomimetic drug, sernyl. Arch Neurol Psychiatr 81: 363-369. – reference: Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. 2001. Linkage disquilibrium in the human genome. Nature 411: 199-204. – reference: Deng X, Shibata H, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y. 2004. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry 4: 21. – reference: Gegelashvili G, Schousboe A. 1998. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45: 233-238. – reference: Mohn AR, Gainetdinov RR, Caron MG, Koller BH. 1999. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98: 427-436. – reference: Cooper-Casey K, Mesen-Fainardi A, Galke-Rollins B, Llach M, Laprade B, Rodriguez C, Riondet S, Bertheau A, Byerley W. 2005. Suggestive linkage of schizophrenia to 5p13 in Costa Rica. Mol Psychiatry 10: 651-656. – reference: Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107. – reference: Abecasis GR, Cookson WO. 2000. GOLD: Graphical overview of linkage disequilibrium. Bioinformatics 16: 182-183. – reference: McGuffin P, Owen MJ, Farmer AE. 1995. Genetic basis of schizophrenia. Lancet 346: 678-682. – reference: Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A, Pellegrini-Giampietro DE, Rothstein JD, Conti F. 2001. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is downregulated by the antipsychotic drug clozapine. Mol Psychiatry 6: 380-386. – reference: Javitt DC, Zukin SR. 1991. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiat 148: 1301-1308. – reference: Matute C, Melone M, Vallejo-Illarramendi A, Conti F. 2005. Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49: 451-455. – reference: Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D. 2002. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99: 13675-13680. – reference: Iwayama-Shigeno Y, Yamada K, Itokawa M, Toyota T, Meerabux JM, Minabe Y, Mori N, Inada T, Yoshikawa T. 2005. Extended analyses support the association of a functional (GT)n polymorphism in the GRIN2A promoter with Japanese schizophrenia. Neurosci Lett 378: 102-105. – reference: Rothstein JD, Kykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. 1996. Knockout of glutamate transporters reveals a majorrole for astroglial transport in excitoxicity and clearance of a glutamate. Neuron 16: 675-686. – reference: American Psychiatric Association. 1994. DSM-IV: Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Press. – reference: Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D. 2003. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. Eur J Neurosci 17: 2106-2118. – reference: Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K. 1998. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10: 976-988. – reference: Risch NJ. 2000. Searching for genetic determinants in the new millennium. Nature 405: 847-856. – reference: Kuwahara O, Mitsumoto Y, Chiba K, Mohri T. 1992. Characterization of D-aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions. J Neurochem 59: 616-621. – reference: Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K. 2002. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877-892. – reference: Nickerson DA, Tobe VO, Taylor SL. 1997. Polyphred: Substitutions using fluorescence-based resequencing. Nucleic Acids Res 25: 2745-2751. – reference: Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A, Ninomiya H, Tashiro N, Shibata H, Fukumaki Y. 2003. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia. Am J Med Genet Part B 116B: 17-22. – reference: Lahiri DK, Nurnberger JI Jr. 1991. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19: 5444. – reference: Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94: 4155-4160. – reference: Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G, Li Y, Wang L, He L. 2005. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res 73: 21-26. – reference: Takaki H, Kikuta R, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y. 2004. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet Part B 128B: 6-14. – reference: Ohashi J, Tokunaga K. 2001. The power of genome-wide association studies of complex disease genes: Statistical limitations of indirect approaches using SNP markers. J Hum Genet 46: 478-482. – reference: Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Tkahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699-1702. – reference: Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13: 713-725. – reference: Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y. 2003. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GEM3) with schizophrenia. Psychiatr Genet 13: 71-76. – reference: Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279-284. – reference: Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. 2001. Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiat 158: 1393-1399. – volume: 38 start-page: 73 year: 1995 end-page: 84 article-title: Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis publication-title: Ann Neurol – volume: 13 start-page: 71 year: 2003 end-page: 76 article-title: Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene ( ) with schizophrenia publication-title: Psychiatr Genet – volume: 346 start-page: 678 year: 1995 end-page: 682 article-title: Genetic basis of schizophrenia publication-title: Lancet – volume: 16 start-page: 182 year: 2000 end-page: 183 article-title: GOLD: Graphical overview of linkage disequilibrium publication-title: Bioinformatics – volume: 73 start-page: 21 year: 2005 end-page: 26 article-title: A case‐control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population publication-title: Schizophr Res – volume: 99 start-page: 13675 year: 2002 end-page: 13680 article-title: Genetic and physiological data implicating the new human gene G72 and the gene for D‐amino acid oxidase in schizophrenia publication-title: Proc Natl Acad Sci USA – volume: 98 start-page: 427 year: 1999 end-page: 436 article-title: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia publication-title: Cell – volume: 125 start-page: 279 year: 2001 end-page: 284 article-title: Controlling the false discovery rate in behavior genetics research publication-title: Behav Brain Res – volume: 10 start-page: 651 year: 2005 end-page: 656 article-title: Suggestive linkage of schizophrenia to 5p13 in Costa Rica publication-title: Mol Psychiatry – volume: 15 start-page: 215 year: 2005 end-page: 221 article-title: Identification of single‐nucleotide polymorphisms in the human N‐methyl‐ ‐aspartate receptor subunit NR2D gene, , and association study with schizophrenia publication-title: Psychiatr Genet – volume: 71 start-page: 877 year: 2002 end-page: 892 article-title: Neuregulin 1 and susceptibility to schizophrenia publication-title: Am J Hum Genet – volume: 16 start-page: 675 year: 1996 end-page: 686 article-title: Knockout of glutamate transporters reveals a majorrole for astroglial transport in excitoxicity and clearance of a glutamate publication-title: Neuron – volume: 24 start-page: 12604 year: 2004 end-page: 12609 article-title: Variation in affects cognition, prefrontal glutamate, and risk for schizophrenia publication-title: Proc Natl Acad Sci USA – volume: 69 start-page: 2571 year: 1997 end-page: 2580 article-title: Distribution of glutamate transporter subtypes during human brain development publication-title: J Neurochem – volume: 25 start-page: 2745 year: 1997 end-page: 2751 article-title: Polyphred: Substitutions using fluorescence‐based resequencing publication-title: Nucleic Acids Res – volume: 27 start-page: 191 year: 1997 end-page: 198 article-title: Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells publication-title: Neurosci Res – volume: 49 start-page: 451 year: 2005 end-page: 455 article-title: Increased expression of the astrocytic glutamate transporter GLT‐1 in the prefrontal cortex of schizophrenics publication-title: Glia – volume: 26 start-page: 368 year: 2002 end-page: 375 article-title: Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder publication-title: Neuropsychopharmacology – year: 1994 – volume: 6 start-page: 380 year: 2001 end-page: 386 article-title: The expression of glutamate transporter GLT‐1 in the rat cerebral cortex is downregulated by the antipsychotic drug clozapine publication-title: Mol Psychiatry – volume: 378 start-page: 102 year: 2005 end-page: 105 article-title: Extended analyses support the association of a functional (GT)n polymorphism in the promoter with Japanese schizophrenia publication-title: Neurosci Lett – volume: 4 start-page: 21 year: 2004 article-title: Association study of polymorphisms in the excitatory amino acid transporter 2 gene ( ) with schizophrenia publication-title: BMC Psychiatry – year: 1998 – volume: 276 start-page: 1699 year: 1997 end-page: 1702 article-title: Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT‐1 publication-title: Science – volume: 53 start-page: 1107 year: 1993 article-title: Testing linkage disequilibrium between a disease gene and marker loci publication-title: Am J Hum Genet – volume: 405 start-page: 847 year: 2000 end-page: 856 article-title: Searching for genetic determinants in the new millennium publication-title: Nature – volume: 85 start-page: 24 year: 2000 end-page: 31 article-title: Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus publication-title: Mol Brain Res – volume: 116B start-page: 17 year: 2003 end-page: 22 article-title: Positive association of the AMPA receptor subunit GluR4 gene ( ) haplotype with schizophrenia publication-title: Am J Med Genet Part B – volume: 128B start-page: 6 year: 2004 end-page: 14 article-title: Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene ( ) with schizophrenia publication-title: Am J Med Genet Part B – volume: 81 start-page: 363 year: 1959 end-page: 369 article-title: Study of a new schizophrenomimetic drug, sernyl publication-title: Arch Neurol Psychiatr – volume: 45 start-page: 233 year: 1998 end-page: 238 article-title: Cellular distribution and kinetic properties of high‐affinity glutamate transporters publication-title: Brain Res Bull – volume: 148 start-page: 1301 year: 1991 end-page: 1308 article-title: Recent advances in the phencyclidine model of schizophrenia publication-title: Am J Psychiat – volume: 46 start-page: 478 year: 2001 end-page: 482 article-title: The power of genome‐wide association studies of complex disease genes: Statistical limitations of indirect approaches using SNP markers publication-title: J Hum Genet – volume: 94 start-page: 4155 year: 1997 end-page: 4160 article-title: Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 12 year: 2003 end-page: 13 article-title: Clozapine‐induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1 publication-title: Mol Psychiatry – volume: 158 start-page: 1393 year: 2001 end-page: 1399 article-title: Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia publication-title: Am J Psychiat – volume: 10 start-page: 976 year: 1998 end-page: 988 article-title: Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice publication-title: Eur J Neurosci – volume: 17 start-page: 2106 year: 2003 end-page: 2118 article-title: Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins publication-title: Eur J Neurosci – volume: 13 start-page: 713 year: 1994 end-page: 725 article-title: Localization of neuronal and glial glutamate transporters publication-title: Neuron – volume: 19 start-page: 5444 year: 1991 article-title: A rapid non‐enzymatic method for the preparation of HMW DNA from blood for RFLP studies publication-title: Nucleic Acids Res – volume: 411 start-page: 199 year: 2001 end-page: 204 article-title: Linkage disquilibrium in the human genome publication-title: Nature – volume: 59 start-page: 616 year: 1992 end-page: 621 article-title: Characterization of D‐aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions publication-title: J Neurochem – ident: e_1_2_6_11_1 doi: 10.1186/1471-244X-4-21 – ident: e_1_2_6_4_1 doi: 10.1046/j.1460-9568.2003.02657.x – ident: e_1_2_6_17_1 doi: 10.1111/j.1471-4159.1992.tb09414.x – volume-title: DSM‐IV: Diagnostic and statistical manual of mental disorders year: 1994 ident: e_1_2_6_3_1 – ident: e_1_2_6_23_1 doi: 10.1016/S0893-133X(01)00370-0 – ident: e_1_2_6_35_1 doi: 10.1016/S0896-6273(00)80086-0 – ident: e_1_2_6_19_1 doi: 10.1001/archneurpsyc.1959.02340150095011 – ident: e_1_2_6_16_1 doi: 10.1176/ajp.148.10.1301 – ident: e_1_2_6_26_1 doi: 10.1038/sj.mp.4001193 – ident: e_1_2_6_10_1 doi: 10.1038/sj.mp.4001640 – volume: 13 start-page: 71 year: 2003 ident: e_1_2_6_13_1 article-title: Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GEM3) with schizophrenia publication-title: Psychiatr Genet doi: 10.1097/01.ypg.0000056682.82896.b0 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0405077101 – ident: e_1_2_6_33_1 doi: 10.1016/0896-6273(94)90038-8 – volume: 53 start-page: 1107 year: 1993 ident: e_1_2_6_42_1 article-title: Testing linkage disequilibrium between a disease gene and marker loci publication-title: Am J Hum Genet – ident: e_1_2_6_9_1 doi: 10.1073/pnas.182412499 – ident: e_1_2_6_37_1 doi: 10.1176/appi.ajp.158.9.1393 – ident: e_1_2_6_14_1 doi: 10.1016/S0361-9230(97)00417-6 – ident: e_1_2_6_32_1 doi: 10.1038/35015718 – ident: e_1_2_6_43_1 doi: 10.1016/S0168-0102(96)01148-0 – ident: e_1_2_6_30_1 doi: 10.1016/S0169-328X(00)00222-9 – ident: e_1_2_6_15_1 doi: 10.1016/j.neulet.2004.12.013 – ident: e_1_2_6_6_1 doi: 10.1046/j.1471-4159.1997.69062571.x – ident: e_1_2_6_20_1 doi: 10.1002/ajmg.b.10041 – ident: e_1_2_6_34_1 doi: 10.1002/ana.410380114 – ident: e_1_2_6_38_1 doi: 10.1086/342734 – ident: e_1_2_6_18_1 doi: 10.1093/nar/19.19.5444 – ident: e_1_2_6_41_1 doi: 10.1046/j.1460-9568.1998.00108.x – ident: e_1_2_6_31_1 doi: 10.1038/35075590 – ident: e_1_2_6_8_1 doi: 10.1016/j.schres.2004.07.002 – ident: e_1_2_6_28_1 doi: 10.1093/nar/25.14.2745 – ident: e_1_2_6_2_1 doi: 10.1093/bioinformatics/16.2.182 – ident: e_1_2_6_22_1 doi: 10.1002/glia.20119 – ident: e_1_2_6_24_1 doi: 10.1016/S0140-6736(95)92285-7 – ident: e_1_2_6_5_1 doi: 10.1073/pnas.94.8.4155 – ident: e_1_2_6_21_1 doi: 10.1097/00041444-200509000-00014 – ident: e_1_2_6_40_1 doi: 10.1126/science.276.5319.1699 – ident: e_1_2_6_7_1 doi: 10.1016/S0166-4328(01)00297-2 – ident: e_1_2_6_27_1 doi: 10.1016/S0092-8674(00)81972-8 – volume-title: Statistics in human genetics year: 1998 ident: e_1_2_6_36_1 – ident: e_1_2_6_29_1 doi: 10.1007/s100380170048 – ident: e_1_2_6_39_1 doi: 10.1002/ajmg.b.20108 – ident: e_1_2_6_25_1 doi: 10.1038/sj.mp.4000880 |
SSID | ssj0030577 |
Score | 2.0256917 |
Snippet | Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 271 |
SubjectTerms | Adult Adult and adolescent clinical studies Amino Acid Transport System X-AG - genetics Asian Continental Ancestry Group - genetics Biological and medical sciences Excitatory Amino Acid Transporter 1 - genetics Excitatory Amino Acid Transporter 3 - genetics Excitatory Amino Acid Transporter 4 - genetics Female Gene Frequency Genetic Linkage Genetic Predisposition to Disease Genotype glutamate transporter haplotype Humans linkage disequilibrium Male Medical genetics Medical sciences Middle Aged Polymorphism, Single Nucleotide Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses Schizophrenia Schizophrenia - genetics SNP |
Title | Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia |
URI | https://api.istex.fr/ark:/67375/WNG-4TBNBZVN-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajmg.b.30351 https://www.ncbi.nlm.nih.gov/pubmed/17221839 https://www.proquest.com/docview/19863520 https://www.proquest.com/docview/70320973 |
Volume | 144B |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1552-4841 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1552-485X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030577 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQJhAXBgNG-DF8AC40XZw4dnLsJrZpoj3ABhMXy3biamxNpqaVGH89z3aatoghgRQpPjxbsf38_OX5-XsIveFZobhKwPoZrULKIxkqk5Wh3YrhYSY29nLycMSOz-jJeXreOtzsXRjPD9E53OzKcPbaLnCpmr0laaj8Phn3VT-xR2FggkmSulPaTx17FGiyS7xoScZCmlHSxr1D9b3Vyms70qYd3B82QlI2MEjGZ7f4E_xcR7NuOzrcQmLRER-Fctmfz1Rf__yN4_H_e_oQPWiRKh541XqE7pTVNrrrc1febKN7w_ZU_jFqVuYYO75aXBt8XV_dTGqYxotm0uCLCgPUxGNQdAkgucSzjlV9isfW4OLPHw_IgPT8O-lhWRW-zLD1FuNmNT7wCTo7_HB6cBy2yRxCTTkjoZSZNDnjvOTaEvxQKk2cZVRxooskjaQGbAT_V2URMXg0IA-SKUoAgmgWmTR5ijaquiqfIRwpDjiGE6mLiCbKyCLXjBuwJCwpALAE6P1iQoVumc5two0r4TmaY2FHVCjhRjRAbzvpa8_wcYvcO6cbnZCcXtqoOJ6Kr6MjQU_3R_vfvoxEFqDdNeVZtpoxTlkO3_d6oU0CFrM9oZFVWc8bQXLoQhpHt0twm_A-50mAdrwaLlvnsYO7Aeo5ZfprZ8TgZHjkSs__TfwFuu-92zSM0pdoYzadl68Als3Urlt8vwB0fjBo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgE5cXLuMWLpsfgBeaLhfHTh67wVZGmwfoYOLF2E5cja3J1LQS49dzHKdpixgSQooUPxxbsX2O_eX4-DsIvWRxJpkMYfXTSrqEecKVOs5dsxXDQ3WgzeXkYUr7x-ToJDpp8pyauzCWH6J1uBnLqNdrY-DGIb27ZA0V3yfjruyG5izsOto0R3TGMt9-bPmjQJfr1IuGZswlMfGbyHeov7tae21P2jTD-8PESIoKhknb_BZ_AqDreLbekA7uom-Lrtg4lLPufCa76udvLI__0dd76E4DVnHPatd9dC0vttANm77ycgvdHDYH8w9QtTLNuKasxaXGF-X55aSEmTytJhU-LTCgTTwGXReAk3M8a4nVp3hs1lz8abDv9_yOfYcdLIrMlik2DmNcrYYIPkTHB-9G-323yefgKsKo7woRC51QxnKmDMcPIUIHcUwk81UWRp5QAI_gFyvPPAqPAvDhx5L4gEIU9XQUPkIbRVnkTxD2JAMow3yhMo-EUossUZRpWExomAFmcdCbxYxy1ZCdm5wb59zSNAfcjCiXvB5RB71qpS8syccVcq9r5WiFxPTMBMaxiH9JDzkZ7aV7Xz-nPHbQ9pr2LFuNKSM0ge_bWagTB3s2hzSiyMt5xf0EuhAF3tUSzOS8T1jooMdWD5ets6BGvA7q1Nr0187w3tHwsC49_TfxHXSrPxoO-OB9-uEZum2d3cT1oudoYzad5y8Apc3kdm2JvwBkfDSE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgExMvXMZl4bL5AXih6XJx7OSxG3RjrBGCDSZeLNuJq12aVE0rMX49x3GatoghgWQpfji2cuxj-7N9_B2EXrE4k0yGMPtpJV3CPOFKHeeuWYohUR1o8zh5kNLDU3J0Fp01B27mLYzlh2gP3MzIqOdrM8DHmd5dkIaKi9GwK7uhuQq7jdYJhQ2WAUWfW_ooMOU68qJhGXNJTPzG8R3K7y6XXlmS1k3r_jAukqKCVtI2vMWf8OcqnK3Xo_59xOeaWDeUy-5sKrvq528kj_-v6gN0r4GquGdt6yG6lReb6I4NXnm9iTYGzbX8I1QtdTKuCWtxqfG4vLoeldCP59WowucFBqyJh2DpAlByjqctrfoED82Mi78c7_s9v2O_YQeLIrN5is1xMa6WHQQfo9P--5P9Q7eJ5uAqwqjvChELnVDGcqYMww8hQgdxTCTzVRZGnlAAjmCDlWcehaQAevixJD5gEEU9HYVP0FpRFvkWwp5kAGSYL1TmkVBqkSWKMg1TCQ0zQCwOejvvUK4aqnMTceOKW5LmgJsW5ZLXLeqg16302FJ83CD3praNVkhMLo1bHIv4t_SAk5O9dO_715THDtpeMZ5FrTFlhCbwfztza-Iwms0VjSjyclZxPwEVosC7WYKZiPcJCx301JrhonYW1HjXQZ3amP6qDO8dDQ7q3LN_E99BG5_e9fnxh_Tjc3TXnnQT14teoLXpZJa_BIg2ldv1OPwFmyszMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+study+of+polymorphisms+in+the+glutamate+transporter+genes+SLC1A1+%2C+SLC1A3+%2C+and+SLC1A6+with+schizophrenia&rft.jtitle=American+journal+of+medical+genetics.+Part+B%2C+Neuropsychiatric+genetics&rft.au=Deng%2C+Xiangdong&rft.au=Shibata%2C+Hiroki&rft.au=Takeuchi%2C+Naoko&rft.au=Rachi%2C+Shinako&rft.date=2007-04-05&rft.issn=1552-4841&rft.eissn=1552-485X&rft.volume=144B&rft.issue=3&rft.spage=271&rft.epage=278&rft_id=info:doi/10.1002%2Fajmg.b.30351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ajmg_b_30351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4841&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4841&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4841&client=summon |