Cortical thickness modeling and variability in Alzheimer’s disease and frontotemporal dementia
Background and objective Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed...
Saved in:
Published in | Journal of neurology Vol. 271; no. 3; pp. 1428 - 1438 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0340-5354 1432-1459 1432-1459 |
DOI | 10.1007/s00415-023-12087-1 |
Cover
Abstract | Background and objective
Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.
Methods
We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14–3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.
Results
We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.
Conclusion
We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers. |
---|---|
AbstractList | Background and objectiveAlzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.MethodsWe used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14–3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.ResultsWe defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.ConclusionWe highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers. Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.BACKGROUND AND OBJECTIVEAlzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.METHODSWe used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.RESULTSWe defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.CONCLUSIONWe highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers. Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers. Background and objective Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. Methods We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14–3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. Results We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. Conclusion We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers. |
Author | Tort-Merino, Adrià Falgàs, Neus Sánchez-Valle, Raquel Borrego-Écija, Sergi Balasa, Mircea Rami, Lorena Juncà-Parella, Jordi Bosch, Beatriz Bargalló, Nuria Pérez-Millan, Agnès Antonell, Anna Sala-Llonch, Roser Lladó, Albert |
Author_xml | – sequence: 1 givenname: Agnès orcidid: 0000-0002-3006-9792 surname: Pérez-Millan fullname: Pérez-Millan, Agnès organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Institut de Neurociències, University of Barcelona, Department of Biomedicine, Faculty of Medicine, University of Barcelona – sequence: 2 givenname: Sergi orcidid: 0000-0003-2557-0010 surname: Borrego-Écija fullname: Borrego-Écija, Sergi organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS – sequence: 3 givenname: Neus orcidid: 0000-0002-3404-2765 surname: Falgàs fullname: Falgàs, Neus organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Atlantic Fellow for Equity in Brain Health, Global Brain Health Institute, University of California San Francisco – sequence: 4 givenname: Jordi orcidid: 0000-0002-4772-2647 surname: Juncà-Parella fullname: Juncà-Parella, Jordi organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS – sequence: 5 givenname: Beatriz orcidid: 0000-0002-6094-0024 surname: Bosch fullname: Bosch, Beatriz organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS – sequence: 6 givenname: Adrià orcidid: 0000-0002-5646-0482 surname: Tort-Merino fullname: Tort-Merino, Adrià organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS – sequence: 7 givenname: Anna orcidid: 0000-0002-3286-8459 surname: Antonell fullname: Antonell, Anna organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS – sequence: 8 givenname: Nuria orcidid: 0000-0001-6284-5402 surname: Bargalló fullname: Bargalló, Nuria organization: Image Diagnostic Centre, CIBER de Salud Mental, Instituto de Salud Carlos III, Magnetic Resonance Image Core Facility, IDIBAPS, Hospital Clínic de Barcelona – sequence: 9 givenname: Lorena orcidid: 0000-0002-7411-1921 surname: Rami fullname: Rami, Lorena organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS – sequence: 10 givenname: Mircea orcidid: 0000-0002-1795-4228 surname: Balasa fullname: Balasa, Mircea organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Atlantic Fellow for Equity in Brain Health, Global Brain Health Institute, University of California San Francisco – sequence: 11 givenname: Albert orcidid: 0000-0002-5066-4150 surname: Lladó fullname: Lladó, Albert organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Institut de Neurociències, University of Barcelona – sequence: 12 givenname: Roser orcidid: 0000-0003-3576-0475 surname: Sala-Llonch fullname: Sala-Llonch, Roser organization: Institut de Neurociències, University of Barcelona, Department of Biomedicine, Faculty of Medicine, University of Barcelona, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) – sequence: 13 givenname: Raquel orcidid: 0000-0001-7750-896X surname: Sánchez-Valle fullname: Sánchez-Valle, Raquel email: rsanchez@clinic.cat, sanchezdelvalle@ub.edu organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Institut de Neurociències, University of Barcelona, Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38012398$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1uFDEUhS0URDaBF6BAI9HQDPh3bVcoWvEnRaJJbzye612HGXuxvZFCxWvwejwJzm4IkCKVJfs7557rc4KOYoqA0HOCXxOM5ZuCMSeix5T1hGIle_IILQhntCdc6CO0wIzjXjDBj9FJKZcYY9UenqBjpjChTKsF-rJKuQZnp65ugvsaoZRuTiNMIa47G8fuyuZghzCFet2F2J1N3zcQZsi_fvws3RgK2AJ70OcUa6owb1NudiPMEGuwT9Fjb6cCz27PU3Tx_t3F6mN__vnDp9XZee-4FLX3g_ZSW-EHuaTWaim9kEwPygvOtZPtroGeWkIUdwMwp_1SDp5D20gzdoreHmy3u2GG0bXZLYXZ5jDbfG2SDeb_lxg2Zp2uDMFKL9Vy2Rxe3Trk9G0HpZo5FAfTZCOkXTFUaS6pIHv05T30Mu1ybOsZqlkLqLQQjXrxb6S7LH8-vwH0ALicSsng7xCCzU3D5tCwaQ2bfcOGNJG6J3Kh2hrSzVpheljKDtLS5sQ15L-xH1D9BnJZvSM |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2024_08_040 crossref_primary_10_1016_j_neurobiolaging_2024_08_008 |
Cites_doi | 10.1016/j.neurobiolaging.2013.02.013 10.1111/ene.15531 10.1016/j.dcn.2022.101173 10.1371/journal.pone.0127396 10.1212/WNL.0000000000003154 10.1007/s00415-021-10851-9 10.1016/j.jalz.2019.09.001 10.1073/pnas.200033797 10.1523/JNEUROSCI.0391-14.2014 10.3233/JAD-2010-100114 10.1016/j.arcmed.2012.11.009 10.1016/j.jns.2022.120439 10.1177/1533317507308779 10.1016/j.jalz.2011.03.005 10.1002/hbm.26205 10.1212/WNL.0b013e31821103e6 10.1016/j.neuroimage.2012.02.084 10.1093/brain/awr179 10.1017/S0033291719000084 10.1212/WNL.0000000000201292 10.1016/j.nicl.2015.08.022 10.3389/fnhum.2013.00467 10.1002/acn3.51689 10.1016/j.neurobiolaging.2009.10.012 10.1002/ana.24052 10.1093/brain/awab165 10.1016/j.jalz.2018.02.018 10.1136/jnnp.2010.212225 10.1002/hbm.24925 10.1002/acn3.421 10.1016/j.neuroimage.2019.116450 10.1038/s41596-022-00696-5 10.1212/WNL.0b013e31823efc6c 10.1038/s41598-019-39809-8 10.1016/j.neuroimage.2006.01.021 10.1016/j.bpsc.2018.11.013 10.1016/j.neurobiolaging.2010.04.029 10.1016/j.jalz.2011.03.008 10.1093/cercor/bhg087 10.1212/WNL.0000000000004088 10.1038/s41598-018-27337-w 10.1093/brain/awm016 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00415-023-12087-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1459 |
EndPage | 1438 |
ExternalDocumentID | PMC10896866 38012398 10_1007_s00415_023_12087_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Agència de Gestió d'Ajuts Universitaris i de Recerca grantid: SGR 2021- 01126 funderid: http://dx.doi.org/10.13039/501100003030 – fundername: Universitat de Barcelona – fundername: Instituto de Salud Carlos III grantid: PI20/0448; PI19/00449; PI19/00198 funderid: http://dx.doi.org/10.13039/501100004587 – fundername: Ministerio de Ciencia e Innovación grantid: PID2020-118386RA-I00; MDM-2017-0729 funderid: http://dx.doi.org/10.13039/501100004837 – fundername: Instituto de Salud Carlos III grantid: PI19/00198 – fundername: Instituto de Salud Carlos III grantid: PI20/0448 – fundername: Instituto de Salud Carlos III grantid: PI19/00449 – fundername: Agència de Gestió d'Ajuts Universitaris i de Recerca grantid: SGR 2021- 01126 – fundername: Ministerio de Ciencia e Innovación grantid: MDM-2017-0729 – fundername: Ministerio de Ciencia e Innovación grantid: PID2020-118386RA-I00 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M YLTOR Z45 Z7U Z81 Z82 Z83 Z87 Z8O Z8U Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c475t-fb9f79a5fb762aa977f5739b8f5449c72aac47f2a1184cbe3c9f67bf4e459933 |
IEDL.DBID | C6C |
ISSN | 0340-5354 1432-1459 |
IngestDate | Thu Aug 21 18:35:01 EDT 2025 Fri Sep 05 05:32:47 EDT 2025 Wed Aug 13 08:19:58 EDT 2025 Mon Jul 21 05:58:35 EDT 2025 Tue Jul 01 01:31:43 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Fri Feb 21 02:40:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Predictive modeling Cortical thickness Alzheimer’s disease Magnetic resonance imaging Frontotemporal dementia |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-fb9f79a5fb762aa977f5739b8f5449c72aac47f2a1184cbe3c9f67bf4e459933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7411-1921 0000-0002-3006-9792 0000-0002-3286-8459 0000-0002-4772-2647 0000-0002-5066-4150 0000-0002-5646-0482 0000-0003-2557-0010 0000-0002-1795-4228 0000-0001-6284-5402 0000-0002-6094-0024 0000-0001-7750-896X 0000-0003-3576-0475 0000-0002-3404-2765 |
OpenAccessLink | https://doi.org/10.1007/s00415-023-12087-1 |
PMID | 38012398 |
PQID | 2931848955 |
PQPubID | 47196 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10896866 proquest_miscellaneous_2894725166 proquest_journals_2931848955 pubmed_primary_38012398 crossref_primary_10_1007_s00415_023_12087_1 crossref_citationtrail_10_1007_s00415_023_12087_1 springer_journals_10_1007_s00415_023_12087_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Journal of neurology |
PublicationTitleAbbrev | J Neurol |
PublicationTitleAlternate | J Neurol |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Fischl, Van Der Kouwe, Destrieux (CR24) 2004; 14 Antonell, Tort-Merino, Ríos (CR10) 2019 Rabinovici, Seeley, Kim (CR32) 2008; 22 Rohrer, Woollacott, Dick (CR40) 2016; 87 Rascovsky, Hodges, Knopman (CR22) 2011; 134 Kjelkenes, Wolfers, Alnæs (CR28) 2022; 58 McFerrin, Chi, Cutter, Yacoubian (CR12) 2017; 4 Poos, Grandpierre, van der Ende (CR43) 2022; 99 Möller, Vrenken, Jiskoot (CR31) 2013; 34 Eratne, Keem, Lewis (CR42) 2022; 442 Storsve, Fjell, Tamnes (CR17) 2014; 34 Coupé, Manjón, Lanuza, Catheline (CR13) 2019; 9 Fischl, Dale (CR23) 2000; 97 Blanc, Colloby, Philippi (CR33) 2015; 10 Jack, Bennett, Blennow (CR20) 2018; 14 Wang, Qiu, Yu (CR16) 2018; 8 Wolfers, Beckmann, Hoogman (CR36) 2020; 50 Pomponio, Erus, Habes (CR15) 2020; 208 McKhann, Knopman, Chertkow (CR8) 2011; 7 Contador, Pérez-Millan, Guillén (CR19) 2022 Möller, Hafkemeijer, Pijnenburg (CR34) 2015; 9 Alcolea, Vilaplana, Suárez-Calvet (CR9) 2017; 89 Risacher, Shen, West (CR18) 2010; 31 Contador, Pérez-Millan, Guillen (CR4) 2021 Zabihi, Oldehinkel, Wolfers (CR37) 2019; 4 Scherling, Hall, Berisha (CR41) 2014; 75 Mendez (CR2) 2012; 43 Reuter, Schmansky, Rosas, Fischl (CR25) 2012; 61 Pérez-Millan, Contador, Juncà-Parella (CR14) 2023 Desikan, Ségonne, Fischl (CR26) 2006; 31 Seelaar, Rohrer, Pijnenburg (CR39) 2011; 82 Du, Schuff, Kramer (CR6) 2007; 130 Julkunen, Niskanen, Koikkalainen (CR38) 2010; 21 Verdi, Marquand, Schott, Cole (CR1) 2021; 144 Tort-Merino, Falgàs, Allen (CR3) 2022 Gorno-Tempini, Hillis, Weintraub (CR21) 2011; 76 Pedregosa, Varoquaux, Gramfort (CR27) 2011; 12 Dickerson, Wolk (CR5) 2012; 78 Rutherford, Kia, Wolfers (CR29) 2022; 17 Albert, DeKosky, Dickson (CR7) 2011; 7 Falgàs, Ruiz-Peris, Pérez-Millan (CR11) 2020 Couto, Manes, Montañés (CR35) 2013; 7 Whitwell, Clifford, Przybelski (CR30) 2011; 32 T Wang (12087_CR16) 2018; 8 T Wolfers (12087_CR36) 2020; 50 GD Rabinovici (12087_CR32) 2008; 22 M Zabihi (12087_CR37) 2019; 4 V Julkunen (12087_CR38) 2010; 21 MF Mendez (12087_CR2) 2012; 43 D Alcolea (12087_CR9) 2017; 89 A Pérez-Millan (12087_CR14) 2023 C Möller (12087_CR31) 2013; 34 AB Storsve (12087_CR17) 2014; 34 CS Scherling (12087_CR41) 2014; 75 M Reuter (12087_CR25) 2012; 61 JD Rohrer (12087_CR40) 2016; 87 F Blanc (12087_CR33) 2015; 10 B Couto (12087_CR35) 2013; 7 BC Dickerson (12087_CR5) 2012; 78 N Falgàs (12087_CR11) 2020 AT Du (12087_CR6) 2007; 130 A Antonell (12087_CR10) 2019 S Verdi (12087_CR1) 2021; 144 P Coupé (12087_CR13) 2019; 9 ML Gorno-Tempini (12087_CR21) 2011; 76 GM McKhann (12087_CR8) 2011; 7 K Rascovsky (12087_CR22) 2011; 134 RS Desikan (12087_CR26) 2006; 31 B Fischl (12087_CR24) 2004; 14 R Kjelkenes (12087_CR28) 2022; 58 C Möller (12087_CR34) 2015; 9 D Eratne (12087_CR42) 2022; 442 J Contador (12087_CR4) 2021 CR Jack (12087_CR20) 2018; 14 F Pedregosa (12087_CR27) 2011; 12 H Seelaar (12087_CR39) 2011; 82 J Contador (12087_CR19) 2022 MB McFerrin (12087_CR12) 2017; 4 SL Risacher (12087_CR18) 2010; 31 R Pomponio (12087_CR15) 2020; 208 B Fischl (12087_CR23) 2000; 97 MS Albert (12087_CR7) 2011; 7 JL Whitwell (12087_CR30) 2011; 32 A Tort-Merino (12087_CR3) 2022 JM Poos (12087_CR43) 2022; 99 S Rutherford (12087_CR29) 2022; 17 |
References_xml | – volume: 34 start-page: 2014 year: 2013 end-page: 2022 ident: CR31 article-title: Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2013.02.013 – year: 2022 ident: CR19 article-title: Sex differences in early-onset Alzheimer’s disease publication-title: European J Neurol doi: 10.1111/ene.15531 – volume: 58 year: 2022 ident: CR28 article-title: Deviations from normative brain white and gray matter structure are associated with psychopathology in youth publication-title: Dev Cogn Neurosci doi: 10.1016/j.dcn.2022.101173 – volume: 10 year: 2015 ident: CR33 article-title: Cortical thickness in dementia with Lewy bodies and Alzheimer’s disease: a comparison of prodromal and dementia stages publication-title: PLoS ONE doi: 10.1371/journal.pone.0127396 – volume: 87 start-page: 1329 year: 2016 end-page: 1336 ident: CR40 article-title: Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia publication-title: Neurology doi: 10.1212/WNL.0000000000003154 – year: 2021 ident: CR4 article-title: Baseline MRI atrophy predicts 2-year cognitive outcomes in early-onset Alzheimer’s disease publication-title: J Neurol doi: 10.1007/s00415-021-10851-9 – year: 2019 ident: CR10 article-title: Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2019.09.001 – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: CR23 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.200033797 – volume: 34 start-page: 8488 year: 2014 end-page: 8498 ident: CR17 article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0391-14.2014 – volume: 21 start-page: 1141 year: 2010 end-page: 1151 ident: CR38 article-title: Differences in cortical thickness in healthy controls, subjects with mild cognitive impairment, and Alzheimer’s disease patients: a longitudinal study publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-2010-100114 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR27 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – volume: 43 start-page: 677 year: 2012 end-page: 685 ident: CR2 article-title: Early-onset Alzheimer’s disease: nonamnestic subtypes and type 2 AD publication-title: Arch Med Res doi: 10.1016/j.arcmed.2012.11.009 – volume: 442 year: 2022 ident: CR42 article-title: Cerebrospinal fluid neurofilament light chain differentiates behavioural variant frontotemporal dementia progressors from non-progressors publication-title: J Neurol Sci doi: 10.1016/j.jns.2022.120439 – volume: 22 start-page: 474 year: 2008 end-page: 488 ident: CR32 article-title: Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration publication-title: Am J Alzheimer’s Dis Other Dementias doi: 10.1177/1533317507308779 – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: CR8 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2011.03.005 – year: 2023 ident: CR14 article-title: Classifying Alzheimer’s disease and frontotemporal dementia using machine learning with cross-sectional and longitudinal magnetic resonance imaging data publication-title: Hum Brain Mapp doi: 10.1002/hbm.26205 – volume: 76 start-page: 1006 year: 2011 end-page: 1014 ident: CR21 article-title: Classification of primary progressive aphasia and its variants publication-title: Neurology doi: 10.1212/WNL.0b013e31821103e6 – volume: 61 start-page: 1402 year: 2012 end-page: 1418 ident: CR25 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 134 start-page: 2456 year: 2011 end-page: 2477 ident: CR22 article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awr179 – volume: 50 start-page: 314 year: 2020 end-page: 323 ident: CR36 article-title: Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models publication-title: Psychol Med doi: 10.1017/S0033291719000084 – volume: 99 start-page: e2661 year: 2022 end-page: e2671 ident: CR43 article-title: Longitudinal brain atrophy rates in presymptomatic carriers of genetic frontotemporal dementia publication-title: Neurology doi: 10.1212/WNL.0000000000201292 – volume: 9 start-page: 418 year: 2015 end-page: 429 ident: CR34 article-title: Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: a two-center study publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2015.08.022 – volume: 7 start-page: 467 year: 2013 ident: CR35 article-title: Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00467 – year: 2022 ident: CR3 article-title: Early-onset Alzheimer’s disease shows a distinct neuropsychological profile and more aggressive trajectories of cognitive decline than late-onset publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.51689 – volume: 32 start-page: 1531 year: 2011 end-page: 1541 ident: CR30 article-title: Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.10.012 – volume: 75 start-page: 116 year: 2014 end-page: 126 ident: CR41 article-title: Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration publication-title: Ann Neurol doi: 10.1002/ana.24052 – volume: 144 start-page: 2946 year: 2021 end-page: 2953 ident: CR1 article-title: Beyond the average patient: how neuroimaging models can address heterogeneity in dementia publication-title: Brain doi: 10.1093/brain/awab165 – volume: 14 start-page: 535 year: 2018 end-page: 562 ident: CR20 article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2018.02.018 – volume: 82 start-page: 476 year: 2011 end-page: 486 ident: CR39 article-title: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2010.212225 – year: 2020 ident: CR11 article-title: Contribution of CSF biomarkers to early-onset Alzheimer’s disease and frontotemporal dementia neuroimaging signatures publication-title: Hum Brain Mapp doi: 10.1002/hbm.24925 – volume: 4 start-page: 466 year: 2017 end-page: 477 ident: CR12 article-title: Dysregulation of 14–3-3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.421 – volume: 208 year: 2020 ident: CR15 article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116450 – volume: 17 start-page: 1711 year: 2022 end-page: 1734 ident: CR29 article-title: The normative modeling framework for computational psychiatry publication-title: Nat Protoc doi: 10.1038/s41596-022-00696-5 – volume: 78 start-page: 84 year: 2012 end-page: 90 ident: CR5 article-title: MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults publication-title: Neurology doi: 10.1212/WNL.0b013e31823efc6c – volume: 9 start-page: 3998 year: 2019 ident: CR13 article-title: Lifespan changes of the human brain in Alzheimer’s disease publication-title: Sci Rep doi: 10.1038/s41598-019-39809-8 – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: CR26 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 4 start-page: 567 year: 2019 end-page: 578 ident: CR37 article-title: Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging doi: 10.1016/j.bpsc.2018.11.013 – volume: 31 start-page: 1401 year: 2010 end-page: 1418 ident: CR18 article-title: Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.04.029 – volume: 7 start-page: 270 year: 2011 end-page: 279 ident: CR7 article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s and Dementia doi: 10.1016/j.jalz.2011.03.008 – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: CR24 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb Cortex doi: 10.1093/cercor/bhg087 – volume: 89 start-page: 178 year: 2017 end-page: 188 ident: CR9 article-title: CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration publication-title: Neurology doi: 10.1212/WNL.0000000000004088 – volume: 8 start-page: 9161 year: 2018 ident: CR16 article-title: Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks publication-title: Sci Rep doi: 10.1038/s41598-018-27337-w – volume: 130 start-page: 1159 year: 2007 end-page: 1166 ident: CR6 article-title: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awm016 – volume: 9 start-page: 418 year: 2015 ident: 12087_CR34 publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2015.08.022 – volume: 130 start-page: 1159 year: 2007 ident: 12087_CR6 publication-title: Brain doi: 10.1093/brain/awm016 – volume: 58 year: 2022 ident: 12087_CR28 publication-title: Dev Cogn Neurosci doi: 10.1016/j.dcn.2022.101173 – volume: 14 start-page: 11 year: 2004 ident: 12087_CR24 publication-title: Cereb Cortex doi: 10.1093/cercor/bhg087 – volume: 14 start-page: 535 year: 2018 ident: 12087_CR20 publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2018.02.018 – volume: 87 start-page: 1329 year: 2016 ident: 12087_CR40 publication-title: Neurology doi: 10.1212/WNL.0000000000003154 – year: 2023 ident: 12087_CR14 publication-title: Hum Brain Mapp doi: 10.1002/hbm.26205 – volume: 12 start-page: 2825 year: 2011 ident: 12087_CR27 publication-title: J Mach Learn Res – volume: 76 start-page: 1006 year: 2011 ident: 12087_CR21 publication-title: Neurology doi: 10.1212/WNL.0b013e31821103e6 – volume: 17 start-page: 1711 year: 2022 ident: 12087_CR29 publication-title: Nat Protoc doi: 10.1038/s41596-022-00696-5 – volume: 43 start-page: 677 year: 2012 ident: 12087_CR2 publication-title: Arch Med Res doi: 10.1016/j.arcmed.2012.11.009 – volume: 7 start-page: 270 year: 2011 ident: 12087_CR7 publication-title: Alzheimer’s and Dementia doi: 10.1016/j.jalz.2011.03.008 – volume: 97 start-page: 11050 year: 2000 ident: 12087_CR23 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.200033797 – volume: 99 start-page: e2661 year: 2022 ident: 12087_CR43 publication-title: Neurology doi: 10.1212/WNL.0000000000201292 – volume: 208 year: 2020 ident: 12087_CR15 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116450 – volume: 22 start-page: 474 year: 2008 ident: 12087_CR32 publication-title: Am J Alzheimer’s Dis Other Dementias doi: 10.1177/1533317507308779 – volume: 134 start-page: 2456 year: 2011 ident: 12087_CR22 publication-title: Brain doi: 10.1093/brain/awr179 – volume: 31 start-page: 968 year: 2006 ident: 12087_CR26 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 442 year: 2022 ident: 12087_CR42 publication-title: J Neurol Sci doi: 10.1016/j.jns.2022.120439 – year: 2020 ident: 12087_CR11 publication-title: Hum Brain Mapp doi: 10.1002/hbm.24925 – volume: 10 year: 2015 ident: 12087_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0127396 – volume: 82 start-page: 476 year: 2011 ident: 12087_CR39 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2010.212225 – volume: 75 start-page: 116 year: 2014 ident: 12087_CR41 publication-title: Ann Neurol doi: 10.1002/ana.24052 – volume: 8 start-page: 9161 year: 2018 ident: 12087_CR16 publication-title: Sci Rep doi: 10.1038/s41598-018-27337-w – volume: 34 start-page: 2014 year: 2013 ident: 12087_CR31 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2013.02.013 – year: 2021 ident: 12087_CR4 publication-title: J Neurol doi: 10.1007/s00415-021-10851-9 – volume: 31 start-page: 1401 year: 2010 ident: 12087_CR18 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.04.029 – volume: 78 start-page: 84 year: 2012 ident: 12087_CR5 publication-title: Neurology doi: 10.1212/WNL.0b013e31823efc6c – volume: 61 start-page: 1402 year: 2012 ident: 12087_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 144 start-page: 2946 year: 2021 ident: 12087_CR1 publication-title: Brain doi: 10.1093/brain/awab165 – volume: 4 start-page: 567 year: 2019 ident: 12087_CR37 publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging doi: 10.1016/j.bpsc.2018.11.013 – year: 2019 ident: 12087_CR10 publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2019.09.001 – volume: 9 start-page: 3998 year: 2019 ident: 12087_CR13 publication-title: Sci Rep doi: 10.1038/s41598-019-39809-8 – year: 2022 ident: 12087_CR3 publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.51689 – volume: 7 start-page: 467 year: 2013 ident: 12087_CR35 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00467 – volume: 89 start-page: 178 year: 2017 ident: 12087_CR9 publication-title: Neurology doi: 10.1212/WNL.0000000000004088 – volume: 7 start-page: 263 year: 2011 ident: 12087_CR8 publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2011.03.005 – volume: 4 start-page: 466 year: 2017 ident: 12087_CR12 publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.421 – volume: 21 start-page: 1141 year: 2010 ident: 12087_CR38 publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-2010-100114 – volume: 32 start-page: 1531 year: 2011 ident: 12087_CR30 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.10.012 – volume: 34 start-page: 8488 year: 2014 ident: 12087_CR17 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0391-14.2014 – year: 2022 ident: 12087_CR19 publication-title: European J Neurol doi: 10.1111/ene.15531 – volume: 50 start-page: 314 year: 2020 ident: 12087_CR36 publication-title: Psychol Med doi: 10.1017/S0033291719000084 |
SSID | ssj0008459 |
Score | 2.4544032 |
Snippet | Background and objective
Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with... Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even... Background and objectiveAlzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1428 |
SubjectTerms | Alzheimer Disease - diagnosis Alzheimer's disease Biomarkers - cerebrospinal fluid Cerebrospinal fluid Cognitive ability Dementia Dementia disorders Frontotemporal dementia Frontotemporal Dementia - diagnostic imaging Humans Magnetic Resonance Imaging Male Medicine Medicine & Public Health Mental Status and Dementia Tests Neurodegenerative diseases Neurology Neuroradiology Neurosciences Original Communication Regression analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BkRAXxD-BgozEDSzitR3bJ1RVVBVSORVpb8F2bHXFNlt2t0jtidfg9XgSxo431VLRazL58Yw9_sZjfwPwViYY7xSjLnBPhRUTaky0GPMgdrBBS2PSeeejL83hV_F5KqdlwW1VtlVufGJ21N3CpzXyDzgtYTCijZQfz37QVDUqZVdLCY3bcIchEkmlG9R0DLhqLXKxtJqLmkouRTk0k4_OJaKpdDaZUzapcaCx7YnpGtq8vmnyn8xpnpAOHsD9giTJ3mD6h3Ar9I_g7lHJlT-Gb_uLZV6oJmlL-_fk0kiue4NvI7bvyE8MkweW7gsy68ne_PIkzE7D8s-v3ytSEjdZMGaSg0JiNSddXlGc2SdwfPDpeP-QlnoK1Asl1zQ6E5WxMjr0gNYi8otSceN0lEIYr_AaCsaJxaBD-GQ8ExvlogioR8P5U9jpF314DkT5ztjYdMwLLTqpjbLoOXxQzAknG1cB2-iy9YVrPJW8mLcjS3LWf4v6b7P-W1bBu_GZs4Fp40bp3Y2J2jLqVu1VH6ngzXgbx0tKgtg-LM5RRhuhENQ1TQXPBouOn-NpuuZGV6C3bD0KJC7u7Tv97CRzcrNam0anl77fdIur__p_M17c3IyXcG-CIGrY87YLO-vleXiFIGjtXuee_hfw2ASc priority: 102 providerName: ProQuest |
Title | Cortical thickness modeling and variability in Alzheimer’s disease and frontotemporal dementia |
URI | https://link.springer.com/article/10.1007/s00415-023-12087-1 https://www.ncbi.nlm.nih.gov/pubmed/38012398 https://www.proquest.com/docview/2931848955 https://www.proquest.com/docview/2894725166 https://pubmed.ncbi.nlm.nih.gov/PMC10896866 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED_BJiFepvE_26iMxBtEamI7th_bqmUCrUJok8pTsBNbqygp6jokeOJr7Ovtk3B23KBugMRLLMUXx7mLzz_77J8BXnIP443IUmNplTLN8lQpp3HMg9hBW8mV8vudT6bF8Rl7O-OzSJPj98LciN8Hss_M7yGmaZb3sUHgSGeXo-P1f_OoGHVeV7JwMFqfsn7KKWdxg8yfy9juhG4hy9sLJG9ESUPnM9mHvYgayaA18wO4Y5uHcO8kxsUfwafRchUmpYlfvv7Zuy8SzrjB0ohuavINh8QtI_d3Mm_IYPHj3M6_2NX1z6sLEoM0QdAFQoNIWLUgdZg9nOvHcDoZn46O03h2QloxwdepM8oJpbkz6O20RpTnuKDKSMcZU5XAeyjoco0DDFZ5QylXCOOYRT0qSp_ATrNs7DMgoqqVdkWdVUyymkslNHqJyorMMMMLk0C20WVZRV5xf7zFouwYkYP-S9R_GfRfZgm86p752rJq_FP6aGOiMrawixJhCtZcKs4TeNFlY9vwAQ_d2OUlykjFBAK4okjgaWvR7nXUd81UyQTklq07Ac-7vZ3TzM8D_3bWl6qQvtDXm9_id73-_hkH_yd-CPdzBFDtercj2FmvLu1zBEBr04O7YiZ6sDuYDIdTn775-G6M6XA8ff-hF9oFXs_ywS80dgO1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9NnQS8IP4TGGAkeIKIJrFj-2FCY2zq2FohVKS9BTuxtYqSjrYDjSe-Bh-GL8Mn4ew4mcrE3vbaXNP6bN_9fOf7HcAz5mC85kmsTVbGVNE0ltIqPPMgdlBGMCldvfNwlA8-0neH7HANfre1MO5aZWsTvaGuZqWLkb9Ct4SHESEZe338NXZdo1x2tW2hoUJrhWrTU4yFwo59c_odj3CLzb23ON_P03R3Z7w9iEOXgbiknC1jq6XlUjGr0S4ohXjIMp5JLSyjVJYcP0NBmyqE4rR0Q5I259pSQ3EgLh6KHmCduvhJD9bf7Izef-hcgaC-W1s_o_2YoUSo2vG1e47pyhVHZ3GS9nGnJ6ue8RzcPX9r85_UrfeIuzfgeoCyZKtZezdhzdS34MowJOtvw6ft2dxHyom7U__Z2VTiG-_g24iqK_INz-kNTfgpmdRka_rjyEy-mPmfn78WJGSOvKD1LAuBRWtKKh_SnKg7ML4MVd-FXj2rzX0gvKyksnmVlFTQignJFZqu0vBEU81yHUHS6rIoA9m567kxLTqaZq__AvVfeP0XSQQvuu8cN1QfF0pvtFNUhG2_KM4WaQRPu8e4YV0WRtVmdoIyQlKOqDLPI7jXzGj3c5nDC5kUEYiVue4EHBn46pN6cuRJwZO-kLlwL33ZLouz__X_YTy4eBhP4OpgPDwoDvZG-w_hWoqIrrmAtwG95fzEPEJEttSPw7onUFzyTvsLv89IOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRaq4IN4sFGokOIHVfdhr-4BQ1RK1lFYcipTbYu_aakTYlCRtVU78DX5K_05_ScfeRxUqeus1O9nE45nxN54XwBvuYbwRCTU2KynTLKVKOY0-D2IHbSVXytc77-3n29_Y5yEfLsF5Vwvj0yo7mxgMdTUp_R35Oh5L6IxIxfm6a9Mivm4NPh79on6ClI-0duM0GhHZtWen6L7NPuxs4V6_TdPBp4PNbdpOGKAlE3xOnVFOKM2dQZugNWIhx0WmjHScMVUK_AwJXaoRhrPSL0e5XBjHLMNF-LtQtP53RMaYnxohhr2vF0sW5rTFGYspzzhr63VC1Z7vceXLojOapDHqeLJ4Jl4DutfzNf8J2oazcHAf7rUglmw0UvcAlmz9EFb22jD9I_i-OZmGO3Lis-l_eGtKwsgdfBvRdUVO0ENvGoSfkVFNNsa_D-3op51e_Pk7I23MKBC60F-h7Z81JlW4zBzpx3BwG4x-Asv1pLbPgIiyUtrlVVIyySouldBotEorEsMMz00EScfLomzbnPtpG-Oib9Ac-F8g_4vA_yKJ4F3_naOmyceN1KvdFhWtws-KK_GM4HX_GFXVx190bSfHSCMVE4gn8zyCp82O9j-XeaSQKRmBXNjrnsC3AV98Uo8OQzvwJJYql_6l7zuxuPpf_1_G85uXsQYrqF_Fl5393RdwN0Uo12TercLyfHpsXyIUm5tXQegJFLesZJfL20XU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+thickness+modeling+and+variability+in+Alzheimer%27s+disease+and+frontotemporal+dementia&rft.jtitle=Journal+of+neurology&rft.au=P%C3%A9rez-Millan%2C+Agn%C3%A8s&rft.au=Borrego-%C3%89cija%2C+Sergi&rft.au=Falg%C3%A0s%2C+Neus&rft.au=Junc%C3%A0-Parella%2C+Jordi&rft.date=2024-03-01&rft.eissn=1432-1459&rft.volume=271&rft.issue=3&rft.spage=1428&rft_id=info:doi/10.1007%2Fs00415-023-12087-1&rft_id=info%3Apmid%2F38012398&rft.externalDocID=38012398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-5354&client=summon |