Cortical thickness modeling and variability in Alzheimer’s disease and frontotemporal dementia

Background and objective Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurology Vol. 271; no. 3; pp. 1428 - 1438
Main Authors Pérez-Millan, Agnès, Borrego-Écija, Sergi, Falgàs, Neus, Juncà-Parella, Jordi, Bosch, Beatriz, Tort-Merino, Adrià, Antonell, Anna, Bargalló, Nuria, Rami, Lorena, Balasa, Mircea, Lladó, Albert, Sala-Llonch, Roser, Sánchez-Valle, Raquel
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0340-5354
1432-1459
1432-1459
DOI10.1007/s00415-023-12087-1

Cover

Abstract Background and objective Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. Methods We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14–3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. Results We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. Conclusion We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.
AbstractList Background and objectiveAlzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.MethodsWe used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14–3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.ResultsWe defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.ConclusionWe highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.
Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.BACKGROUND AND OBJECTIVEAlzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.METHODSWe used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.RESULTSWe defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.CONCLUSIONWe highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.
Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.
Background and objective Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. Methods We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14–3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. Results We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. Conclusion We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.
Author Tort-Merino, Adrià
Falgàs, Neus
Sánchez-Valle, Raquel
Borrego-Écija, Sergi
Balasa, Mircea
Rami, Lorena
Juncà-Parella, Jordi
Bosch, Beatriz
Bargalló, Nuria
Pérez-Millan, Agnès
Antonell, Anna
Sala-Llonch, Roser
Lladó, Albert
Author_xml – sequence: 1
  givenname: Agnès
  orcidid: 0000-0002-3006-9792
  surname: Pérez-Millan
  fullname: Pérez-Millan, Agnès
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Institut de Neurociències, University of Barcelona, Department of Biomedicine, Faculty of Medicine, University of Barcelona
– sequence: 2
  givenname: Sergi
  orcidid: 0000-0003-2557-0010
  surname: Borrego-Écija
  fullname: Borrego-Écija, Sergi
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS
– sequence: 3
  givenname: Neus
  orcidid: 0000-0002-3404-2765
  surname: Falgàs
  fullname: Falgàs, Neus
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Atlantic Fellow for Equity in Brain Health, Global Brain Health Institute, University of California San Francisco
– sequence: 4
  givenname: Jordi
  orcidid: 0000-0002-4772-2647
  surname: Juncà-Parella
  fullname: Juncà-Parella, Jordi
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS
– sequence: 5
  givenname: Beatriz
  orcidid: 0000-0002-6094-0024
  surname: Bosch
  fullname: Bosch, Beatriz
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS
– sequence: 6
  givenname: Adrià
  orcidid: 0000-0002-5646-0482
  surname: Tort-Merino
  fullname: Tort-Merino, Adrià
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS
– sequence: 7
  givenname: Anna
  orcidid: 0000-0002-3286-8459
  surname: Antonell
  fullname: Antonell, Anna
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS
– sequence: 8
  givenname: Nuria
  orcidid: 0000-0001-6284-5402
  surname: Bargalló
  fullname: Bargalló, Nuria
  organization: Image Diagnostic Centre, CIBER de Salud Mental, Instituto de Salud Carlos III, Magnetic Resonance Image Core Facility, IDIBAPS, Hospital Clínic de Barcelona
– sequence: 9
  givenname: Lorena
  orcidid: 0000-0002-7411-1921
  surname: Rami
  fullname: Rami, Lorena
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS
– sequence: 10
  givenname: Mircea
  orcidid: 0000-0002-1795-4228
  surname: Balasa
  fullname: Balasa, Mircea
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Atlantic Fellow for Equity in Brain Health, Global Brain Health Institute, University of California San Francisco
– sequence: 11
  givenname: Albert
  orcidid: 0000-0002-5066-4150
  surname: Lladó
  fullname: Lladó, Albert
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Institut de Neurociències, University of Barcelona
– sequence: 12
  givenname: Roser
  orcidid: 0000-0003-3576-0475
  surname: Sala-Llonch
  fullname: Sala-Llonch, Roser
  organization: Institut de Neurociències, University of Barcelona, Department of Biomedicine, Faculty of Medicine, University of Barcelona, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
– sequence: 13
  givenname: Raquel
  orcidid: 0000-0001-7750-896X
  surname: Sánchez-Valle
  fullname: Sánchez-Valle, Raquel
  email: rsanchez@clinic.cat, sanchezdelvalle@ub.edu
  organization: Alzheimer’s Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Institut de Neurociències, University of Barcelona, Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38012398$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uFDEUhS0URDaBF6BAI9HQDPh3bVcoWvEnRaJJbzye612HGXuxvZFCxWvwejwJzm4IkCKVJfs7557rc4KOYoqA0HOCXxOM5ZuCMSeix5T1hGIle_IILQhntCdc6CO0wIzjXjDBj9FJKZcYY9UenqBjpjChTKsF-rJKuQZnp65ugvsaoZRuTiNMIa47G8fuyuZghzCFet2F2J1N3zcQZsi_fvws3RgK2AJ70OcUa6owb1NudiPMEGuwT9Fjb6cCz27PU3Tx_t3F6mN__vnDp9XZee-4FLX3g_ZSW-EHuaTWaim9kEwPygvOtZPtroGeWkIUdwMwp_1SDp5D20gzdoreHmy3u2GG0bXZLYXZ5jDbfG2SDeb_lxg2Zp2uDMFKL9Vy2Rxe3Trk9G0HpZo5FAfTZCOkXTFUaS6pIHv05T30Mu1ybOsZqlkLqLQQjXrxb6S7LH8-vwH0ALicSsng7xCCzU3D5tCwaQ2bfcOGNJG6J3Kh2hrSzVpheljKDtLS5sQ15L-xH1D9BnJZvSM
CitedBy_id crossref_primary_10_1016_j_neuroscience_2024_08_040
crossref_primary_10_1016_j_neurobiolaging_2024_08_008
Cites_doi 10.1016/j.neurobiolaging.2013.02.013
10.1111/ene.15531
10.1016/j.dcn.2022.101173
10.1371/journal.pone.0127396
10.1212/WNL.0000000000003154
10.1007/s00415-021-10851-9
10.1016/j.jalz.2019.09.001
10.1073/pnas.200033797
10.1523/JNEUROSCI.0391-14.2014
10.3233/JAD-2010-100114
10.1016/j.arcmed.2012.11.009
10.1016/j.jns.2022.120439
10.1177/1533317507308779
10.1016/j.jalz.2011.03.005
10.1002/hbm.26205
10.1212/WNL.0b013e31821103e6
10.1016/j.neuroimage.2012.02.084
10.1093/brain/awr179
10.1017/S0033291719000084
10.1212/WNL.0000000000201292
10.1016/j.nicl.2015.08.022
10.3389/fnhum.2013.00467
10.1002/acn3.51689
10.1016/j.neurobiolaging.2009.10.012
10.1002/ana.24052
10.1093/brain/awab165
10.1016/j.jalz.2018.02.018
10.1136/jnnp.2010.212225
10.1002/hbm.24925
10.1002/acn3.421
10.1016/j.neuroimage.2019.116450
10.1038/s41596-022-00696-5
10.1212/WNL.0b013e31823efc6c
10.1038/s41598-019-39809-8
10.1016/j.neuroimage.2006.01.021
10.1016/j.bpsc.2018.11.013
10.1016/j.neurobiolaging.2010.04.029
10.1016/j.jalz.2011.03.008
10.1093/cercor/bhg087
10.1212/WNL.0000000000004088
10.1038/s41598-018-27337-w
10.1093/brain/awm016
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00415-023-12087-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1459
EndPage 1438
ExternalDocumentID PMC10896866
38012398
10_1007_s00415_023_12087_1
Genre Journal Article
GrantInformation_xml – fundername: Agència de Gestió d'Ajuts Universitaris i de Recerca
  grantid: SGR 2021- 01126
  funderid: http://dx.doi.org/10.13039/501100003030
– fundername: Universitat de Barcelona
– fundername: Instituto de Salud Carlos III
  grantid: PI20/0448; PI19/00449; PI19/00198
  funderid: http://dx.doi.org/10.13039/501100004587
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2020-118386RA-I00; MDM-2017-0729
  funderid: http://dx.doi.org/10.13039/501100004837
– fundername: Instituto de Salud Carlos III
  grantid: PI19/00198
– fundername: Instituto de Salud Carlos III
  grantid: PI20/0448
– fundername: Instituto de Salud Carlos III
  grantid: PI19/00449
– fundername: Agència de Gestió d'Ajuts Universitaris i de Recerca
  grantid: SGR 2021- 01126
– fundername: Ministerio de Ciencia e Innovación
  grantid: MDM-2017-0729
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2020-118386RA-I00
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
YLTOR
Z45
Z7U
Z81
Z82
Z83
Z87
Z8O
Z8U
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-fb9f79a5fb762aa977f5739b8f5449c72aac47f2a1184cbe3c9f67bf4e459933
IEDL.DBID C6C
ISSN 0340-5354
1432-1459
IngestDate Thu Aug 21 18:35:01 EDT 2025
Fri Sep 05 05:32:47 EDT 2025
Wed Aug 13 08:19:58 EDT 2025
Mon Jul 21 05:58:35 EDT 2025
Tue Jul 01 01:31:43 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Fri Feb 21 02:40:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Predictive modeling
Cortical thickness
Alzheimer’s disease
Magnetic resonance imaging
Frontotemporal dementia
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-fb9f79a5fb762aa977f5739b8f5449c72aac47f2a1184cbe3c9f67bf4e459933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7411-1921
0000-0002-3006-9792
0000-0002-3286-8459
0000-0002-4772-2647
0000-0002-5066-4150
0000-0002-5646-0482
0000-0003-2557-0010
0000-0002-1795-4228
0000-0001-6284-5402
0000-0002-6094-0024
0000-0001-7750-896X
0000-0003-3576-0475
0000-0002-3404-2765
OpenAccessLink https://doi.org/10.1007/s00415-023-12087-1
PMID 38012398
PQID 2931848955
PQPubID 47196
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10896866
proquest_miscellaneous_2894725166
proquest_journals_2931848955
pubmed_primary_38012398
crossref_primary_10_1007_s00415_023_12087_1
crossref_citationtrail_10_1007_s00415_023_12087_1
springer_journals_10_1007_s00415_023_12087_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of neurology
PublicationTitleAbbrev J Neurol
PublicationTitleAlternate J Neurol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Fischl, Van Der Kouwe, Destrieux (CR24) 2004; 14
Antonell, Tort-Merino, Ríos (CR10) 2019
Rabinovici, Seeley, Kim (CR32) 2008; 22
Rohrer, Woollacott, Dick (CR40) 2016; 87
Rascovsky, Hodges, Knopman (CR22) 2011; 134
Kjelkenes, Wolfers, Alnæs (CR28) 2022; 58
McFerrin, Chi, Cutter, Yacoubian (CR12) 2017; 4
Poos, Grandpierre, van der Ende (CR43) 2022; 99
Möller, Vrenken, Jiskoot (CR31) 2013; 34
Eratne, Keem, Lewis (CR42) 2022; 442
Storsve, Fjell, Tamnes (CR17) 2014; 34
Coupé, Manjón, Lanuza, Catheline (CR13) 2019; 9
Fischl, Dale (CR23) 2000; 97
Blanc, Colloby, Philippi (CR33) 2015; 10
Jack, Bennett, Blennow (CR20) 2018; 14
Wang, Qiu, Yu (CR16) 2018; 8
Wolfers, Beckmann, Hoogman (CR36) 2020; 50
Pomponio, Erus, Habes (CR15) 2020; 208
McKhann, Knopman, Chertkow (CR8) 2011; 7
Contador, Pérez-Millan, Guillén (CR19) 2022
Möller, Hafkemeijer, Pijnenburg (CR34) 2015; 9
Alcolea, Vilaplana, Suárez-Calvet (CR9) 2017; 89
Risacher, Shen, West (CR18) 2010; 31
Contador, Pérez-Millan, Guillen (CR4) 2021
Zabihi, Oldehinkel, Wolfers (CR37) 2019; 4
Scherling, Hall, Berisha (CR41) 2014; 75
Mendez (CR2) 2012; 43
Reuter, Schmansky, Rosas, Fischl (CR25) 2012; 61
Pérez-Millan, Contador, Juncà-Parella (CR14) 2023
Desikan, Ségonne, Fischl (CR26) 2006; 31
Seelaar, Rohrer, Pijnenburg (CR39) 2011; 82
Du, Schuff, Kramer (CR6) 2007; 130
Julkunen, Niskanen, Koikkalainen (CR38) 2010; 21
Verdi, Marquand, Schott, Cole (CR1) 2021; 144
Tort-Merino, Falgàs, Allen (CR3) 2022
Gorno-Tempini, Hillis, Weintraub (CR21) 2011; 76
Pedregosa, Varoquaux, Gramfort (CR27) 2011; 12
Dickerson, Wolk (CR5) 2012; 78
Rutherford, Kia, Wolfers (CR29) 2022; 17
Albert, DeKosky, Dickson (CR7) 2011; 7
Falgàs, Ruiz-Peris, Pérez-Millan (CR11) 2020
Couto, Manes, Montañés (CR35) 2013; 7
Whitwell, Clifford, Przybelski (CR30) 2011; 32
T Wang (12087_CR16) 2018; 8
T Wolfers (12087_CR36) 2020; 50
GD Rabinovici (12087_CR32) 2008; 22
M Zabihi (12087_CR37) 2019; 4
V Julkunen (12087_CR38) 2010; 21
MF Mendez (12087_CR2) 2012; 43
D Alcolea (12087_CR9) 2017; 89
A Pérez-Millan (12087_CR14) 2023
C Möller (12087_CR31) 2013; 34
AB Storsve (12087_CR17) 2014; 34
CS Scherling (12087_CR41) 2014; 75
M Reuter (12087_CR25) 2012; 61
JD Rohrer (12087_CR40) 2016; 87
F Blanc (12087_CR33) 2015; 10
B Couto (12087_CR35) 2013; 7
BC Dickerson (12087_CR5) 2012; 78
N Falgàs (12087_CR11) 2020
AT Du (12087_CR6) 2007; 130
A Antonell (12087_CR10) 2019
S Verdi (12087_CR1) 2021; 144
P Coupé (12087_CR13) 2019; 9
ML Gorno-Tempini (12087_CR21) 2011; 76
GM McKhann (12087_CR8) 2011; 7
K Rascovsky (12087_CR22) 2011; 134
RS Desikan (12087_CR26) 2006; 31
B Fischl (12087_CR24) 2004; 14
R Kjelkenes (12087_CR28) 2022; 58
C Möller (12087_CR34) 2015; 9
D Eratne (12087_CR42) 2022; 442
J Contador (12087_CR4) 2021
CR Jack (12087_CR20) 2018; 14
F Pedregosa (12087_CR27) 2011; 12
H Seelaar (12087_CR39) 2011; 82
J Contador (12087_CR19) 2022
MB McFerrin (12087_CR12) 2017; 4
SL Risacher (12087_CR18) 2010; 31
R Pomponio (12087_CR15) 2020; 208
B Fischl (12087_CR23) 2000; 97
MS Albert (12087_CR7) 2011; 7
JL Whitwell (12087_CR30) 2011; 32
A Tort-Merino (12087_CR3) 2022
JM Poos (12087_CR43) 2022; 99
S Rutherford (12087_CR29) 2022; 17
References_xml – volume: 34
  start-page: 2014
  year: 2013
  end-page: 2022
  ident: CR31
  article-title: Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.02.013
– year: 2022
  ident: CR19
  article-title: Sex differences in early-onset Alzheimer’s disease
  publication-title: European J Neurol
  doi: 10.1111/ene.15531
– volume: 58
  year: 2022
  ident: CR28
  article-title: Deviations from normative brain white and gray matter structure are associated with psychopathology in youth
  publication-title: Dev Cogn Neurosci
  doi: 10.1016/j.dcn.2022.101173
– volume: 10
  year: 2015
  ident: CR33
  article-title: Cortical thickness in dementia with Lewy bodies and Alzheimer’s disease: a comparison of prodromal and dementia stages
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127396
– volume: 87
  start-page: 1329
  year: 2016
  end-page: 1336
  ident: CR40
  article-title: Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003154
– year: 2021
  ident: CR4
  article-title: Baseline MRI atrophy predicts 2-year cognitive outcomes in early-onset Alzheimer’s disease
  publication-title: J Neurol
  doi: 10.1007/s00415-021-10851-9
– year: 2019
  ident: CR10
  article-title: Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2019.09.001
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  ident: CR23
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.200033797
– volume: 34
  start-page: 8488
  year: 2014
  end-page: 8498
  ident: CR17
  article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0391-14.2014
– volume: 21
  start-page: 1141
  year: 2010
  end-page: 1151
  ident: CR38
  article-title: Differences in cortical thickness in healthy controls, subjects with mild cognitive impairment, and Alzheimer’s disease patients: a longitudinal study
  publication-title: J Alzheimer’s Dis
  doi: 10.3233/JAD-2010-100114
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR27
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 43
  start-page: 677
  year: 2012
  end-page: 685
  ident: CR2
  article-title: Early-onset Alzheimer’s disease: nonamnestic subtypes and type 2 AD
  publication-title: Arch Med Res
  doi: 10.1016/j.arcmed.2012.11.009
– volume: 442
  year: 2022
  ident: CR42
  article-title: Cerebrospinal fluid neurofilament light chain differentiates behavioural variant frontotemporal dementia progressors from non-progressors
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2022.120439
– volume: 22
  start-page: 474
  year: 2008
  end-page: 488
  ident: CR32
  article-title: Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration
  publication-title: Am J Alzheimer’s Dis Other Dementias
  doi: 10.1177/1533317507308779
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: CR8
  article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2011.03.005
– year: 2023
  ident: CR14
  article-title: Classifying Alzheimer’s disease and frontotemporal dementia using machine learning with cross-sectional and longitudinal magnetic resonance imaging data
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.26205
– volume: 76
  start-page: 1006
  year: 2011
  end-page: 1014
  ident: CR21
  article-title: Classification of primary progressive aphasia and its variants
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821103e6
– volume: 61
  start-page: 1402
  year: 2012
  end-page: 1418
  ident: CR25
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 134
  start-page: 2456
  year: 2011
  end-page: 2477
  ident: CR22
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awr179
– volume: 50
  start-page: 314
  year: 2020
  end-page: 323
  ident: CR36
  article-title: Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models
  publication-title: Psychol Med
  doi: 10.1017/S0033291719000084
– volume: 99
  start-page: e2661
  year: 2022
  end-page: e2671
  ident: CR43
  article-title: Longitudinal brain atrophy rates in presymptomatic carriers of genetic frontotemporal dementia
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000201292
– volume: 9
  start-page: 418
  year: 2015
  end-page: 429
  ident: CR34
  article-title: Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: a two-center study
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2015.08.022
– volume: 7
  start-page: 467
  year: 2013
  ident: CR35
  article-title: Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00467
– year: 2022
  ident: CR3
  article-title: Early-onset Alzheimer’s disease shows a distinct neuropsychological profile and more aggressive trajectories of cognitive decline than late-onset
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.51689
– volume: 32
  start-page: 1531
  year: 2011
  end-page: 1541
  ident: CR30
  article-title: Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.10.012
– volume: 75
  start-page: 116
  year: 2014
  end-page: 126
  ident: CR41
  article-title: Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration
  publication-title: Ann Neurol
  doi: 10.1002/ana.24052
– volume: 144
  start-page: 2946
  year: 2021
  end-page: 2953
  ident: CR1
  article-title: Beyond the average patient: how neuroimaging models can address heterogeneity in dementia
  publication-title: Brain
  doi: 10.1093/brain/awab165
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  ident: CR20
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2018.02.018
– volume: 82
  start-page: 476
  year: 2011
  end-page: 486
  ident: CR39
  article-title: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2010.212225
– year: 2020
  ident: CR11
  article-title: Contribution of CSF biomarkers to early-onset Alzheimer’s disease and frontotemporal dementia neuroimaging signatures
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24925
– volume: 4
  start-page: 466
  year: 2017
  end-page: 477
  ident: CR12
  article-title: Dysregulation of 14–3-3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.421
– volume: 208
  year: 2020
  ident: CR15
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116450
– volume: 17
  start-page: 1711
  year: 2022
  end-page: 1734
  ident: CR29
  article-title: The normative modeling framework for computational psychiatry
  publication-title: Nat Protoc
  doi: 10.1038/s41596-022-00696-5
– volume: 78
  start-page: 84
  year: 2012
  end-page: 90
  ident: CR5
  article-title: MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31823efc6c
– volume: 9
  start-page: 3998
  year: 2019
  ident: CR13
  article-title: Lifespan changes of the human brain in Alzheimer’s disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-39809-8
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: CR26
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 4
  start-page: 567
  year: 2019
  end-page: 578
  ident: CR37
  article-title: Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
  doi: 10.1016/j.bpsc.2018.11.013
– volume: 31
  start-page: 1401
  year: 2010
  end-page: 1418
  ident: CR18
  article-title: Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.04.029
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  ident: CR7
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s and Dementia
  doi: 10.1016/j.jalz.2011.03.008
– volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  ident: CR24
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhg087
– volume: 89
  start-page: 178
  year: 2017
  end-page: 188
  ident: CR9
  article-title: CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004088
– volume: 8
  start-page: 9161
  year: 2018
  ident: CR16
  article-title: Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27337-w
– volume: 130
  start-page: 1159
  year: 2007
  end-page: 1166
  ident: CR6
  article-title: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awm016
– volume: 9
  start-page: 418
  year: 2015
  ident: 12087_CR34
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2015.08.022
– volume: 130
  start-page: 1159
  year: 2007
  ident: 12087_CR6
  publication-title: Brain
  doi: 10.1093/brain/awm016
– volume: 58
  year: 2022
  ident: 12087_CR28
  publication-title: Dev Cogn Neurosci
  doi: 10.1016/j.dcn.2022.101173
– volume: 14
  start-page: 11
  year: 2004
  ident: 12087_CR24
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhg087
– volume: 14
  start-page: 535
  year: 2018
  ident: 12087_CR20
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2018.02.018
– volume: 87
  start-page: 1329
  year: 2016
  ident: 12087_CR40
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003154
– year: 2023
  ident: 12087_CR14
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.26205
– volume: 12
  start-page: 2825
  year: 2011
  ident: 12087_CR27
  publication-title: J Mach Learn Res
– volume: 76
  start-page: 1006
  year: 2011
  ident: 12087_CR21
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821103e6
– volume: 17
  start-page: 1711
  year: 2022
  ident: 12087_CR29
  publication-title: Nat Protoc
  doi: 10.1038/s41596-022-00696-5
– volume: 43
  start-page: 677
  year: 2012
  ident: 12087_CR2
  publication-title: Arch Med Res
  doi: 10.1016/j.arcmed.2012.11.009
– volume: 7
  start-page: 270
  year: 2011
  ident: 12087_CR7
  publication-title: Alzheimer’s and Dementia
  doi: 10.1016/j.jalz.2011.03.008
– volume: 97
  start-page: 11050
  year: 2000
  ident: 12087_CR23
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.200033797
– volume: 99
  start-page: e2661
  year: 2022
  ident: 12087_CR43
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000201292
– volume: 208
  year: 2020
  ident: 12087_CR15
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116450
– volume: 22
  start-page: 474
  year: 2008
  ident: 12087_CR32
  publication-title: Am J Alzheimer’s Dis Other Dementias
  doi: 10.1177/1533317507308779
– volume: 134
  start-page: 2456
  year: 2011
  ident: 12087_CR22
  publication-title: Brain
  doi: 10.1093/brain/awr179
– volume: 31
  start-page: 968
  year: 2006
  ident: 12087_CR26
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 442
  year: 2022
  ident: 12087_CR42
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2022.120439
– year: 2020
  ident: 12087_CR11
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24925
– volume: 10
  year: 2015
  ident: 12087_CR33
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127396
– volume: 82
  start-page: 476
  year: 2011
  ident: 12087_CR39
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2010.212225
– volume: 75
  start-page: 116
  year: 2014
  ident: 12087_CR41
  publication-title: Ann Neurol
  doi: 10.1002/ana.24052
– volume: 8
  start-page: 9161
  year: 2018
  ident: 12087_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27337-w
– volume: 34
  start-page: 2014
  year: 2013
  ident: 12087_CR31
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.02.013
– year: 2021
  ident: 12087_CR4
  publication-title: J Neurol
  doi: 10.1007/s00415-021-10851-9
– volume: 31
  start-page: 1401
  year: 2010
  ident: 12087_CR18
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.04.029
– volume: 78
  start-page: 84
  year: 2012
  ident: 12087_CR5
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31823efc6c
– volume: 61
  start-page: 1402
  year: 2012
  ident: 12087_CR25
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 144
  start-page: 2946
  year: 2021
  ident: 12087_CR1
  publication-title: Brain
  doi: 10.1093/brain/awab165
– volume: 4
  start-page: 567
  year: 2019
  ident: 12087_CR37
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
  doi: 10.1016/j.bpsc.2018.11.013
– year: 2019
  ident: 12087_CR10
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2019.09.001
– volume: 9
  start-page: 3998
  year: 2019
  ident: 12087_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-39809-8
– year: 2022
  ident: 12087_CR3
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.51689
– volume: 7
  start-page: 467
  year: 2013
  ident: 12087_CR35
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00467
– volume: 89
  start-page: 178
  year: 2017
  ident: 12087_CR9
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004088
– volume: 7
  start-page: 263
  year: 2011
  ident: 12087_CR8
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2011.03.005
– volume: 4
  start-page: 466
  year: 2017
  ident: 12087_CR12
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.421
– volume: 21
  start-page: 1141
  year: 2010
  ident: 12087_CR38
  publication-title: J Alzheimer’s Dis
  doi: 10.3233/JAD-2010-100114
– volume: 32
  start-page: 1531
  year: 2011
  ident: 12087_CR30
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.10.012
– volume: 34
  start-page: 8488
  year: 2014
  ident: 12087_CR17
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0391-14.2014
– year: 2022
  ident: 12087_CR19
  publication-title: European J Neurol
  doi: 10.1111/ene.15531
– volume: 50
  start-page: 314
  year: 2020
  ident: 12087_CR36
  publication-title: Psychol Med
  doi: 10.1017/S0033291719000084
SSID ssj0008459
Score 2.4544032
Snippet Background and objective Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with...
Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even...
Background and objectiveAlzheimer’s disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1428
SubjectTerms Alzheimer Disease - diagnosis
Alzheimer's disease
Biomarkers - cerebrospinal fluid
Cerebrospinal fluid
Cognitive ability
Dementia
Dementia disorders
Frontotemporal dementia
Frontotemporal Dementia - diagnostic imaging
Humans
Magnetic Resonance Imaging
Male
Medicine
Medicine & Public Health
Mental Status and Dementia Tests
Neurodegenerative diseases
Neurology
Neuroradiology
Neurosciences
Original Communication
Regression analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BkRAXxD-BgozEDSzitR3bJ1RVVBVSORVpb8F2bHXFNlt2t0jtidfg9XgSxo431VLRazL58Yw9_sZjfwPwViYY7xSjLnBPhRUTaky0GPMgdrBBS2PSeeejL83hV_F5KqdlwW1VtlVufGJ21N3CpzXyDzgtYTCijZQfz37QVDUqZVdLCY3bcIchEkmlG9R0DLhqLXKxtJqLmkouRTk0k4_OJaKpdDaZUzapcaCx7YnpGtq8vmnyn8xpnpAOHsD9giTJ3mD6h3Ar9I_g7lHJlT-Gb_uLZV6oJmlL-_fk0kiue4NvI7bvyE8MkweW7gsy68ne_PIkzE7D8s-v3ytSEjdZMGaSg0JiNSddXlGc2SdwfPDpeP-QlnoK1Asl1zQ6E5WxMjr0gNYi8otSceN0lEIYr_AaCsaJxaBD-GQ8ExvlogioR8P5U9jpF314DkT5ztjYdMwLLTqpjbLoOXxQzAknG1cB2-iy9YVrPJW8mLcjS3LWf4v6b7P-W1bBu_GZs4Fp40bp3Y2J2jLqVu1VH6ngzXgbx0tKgtg-LM5RRhuhENQ1TQXPBouOn-NpuuZGV6C3bD0KJC7u7Tv97CRzcrNam0anl77fdIur__p_M17c3IyXcG-CIGrY87YLO-vleXiFIGjtXuee_hfw2ASc
  priority: 102
  providerName: ProQuest
Title Cortical thickness modeling and variability in Alzheimer’s disease and frontotemporal dementia
URI https://link.springer.com/article/10.1007/s00415-023-12087-1
https://www.ncbi.nlm.nih.gov/pubmed/38012398
https://www.proquest.com/docview/2931848955
https://www.proquest.com/docview/2894725166
https://pubmed.ncbi.nlm.nih.gov/PMC10896866
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED_BJiFepvE_26iMxBtEamI7th_bqmUCrUJok8pTsBNbqygp6jokeOJr7Ovtk3B23KBugMRLLMUXx7mLzz_77J8BXnIP443IUmNplTLN8lQpp3HMg9hBW8mV8vudT6bF8Rl7O-OzSJPj98LciN8Hss_M7yGmaZb3sUHgSGeXo-P1f_OoGHVeV7JwMFqfsn7KKWdxg8yfy9juhG4hy9sLJG9ESUPnM9mHvYgayaA18wO4Y5uHcO8kxsUfwafRchUmpYlfvv7Zuy8SzrjB0ohuavINh8QtI_d3Mm_IYPHj3M6_2NX1z6sLEoM0QdAFQoNIWLUgdZg9nOvHcDoZn46O03h2QloxwdepM8oJpbkz6O20RpTnuKDKSMcZU5XAeyjoco0DDFZ5QylXCOOYRT0qSp_ATrNs7DMgoqqVdkWdVUyymkslNHqJyorMMMMLk0C20WVZRV5xf7zFouwYkYP-S9R_GfRfZgm86p752rJq_FP6aGOiMrawixJhCtZcKs4TeNFlY9vwAQ_d2OUlykjFBAK4okjgaWvR7nXUd81UyQTklq07Ac-7vZ3TzM8D_3bWl6qQvtDXm9_id73-_hkH_yd-CPdzBFDtercj2FmvLu1zBEBr04O7YiZ6sDuYDIdTn775-G6M6XA8ff-hF9oFXs_ywS80dgO1
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9NnQS8IP4TGGAkeIKIJrFj-2FCY2zq2FohVKS9BTuxtYqSjrYDjSe-Bh-GL8Mn4ew4mcrE3vbaXNP6bN_9fOf7HcAz5mC85kmsTVbGVNE0ltIqPPMgdlBGMCldvfNwlA8-0neH7HANfre1MO5aZWsTvaGuZqWLkb9Ct4SHESEZe338NXZdo1x2tW2hoUJrhWrTU4yFwo59c_odj3CLzb23ON_P03R3Z7w9iEOXgbiknC1jq6XlUjGr0S4ohXjIMp5JLSyjVJYcP0NBmyqE4rR0Q5I259pSQ3EgLh6KHmCduvhJD9bf7Izef-hcgaC-W1s_o_2YoUSo2vG1e47pyhVHZ3GS9nGnJ6ue8RzcPX9r85_UrfeIuzfgeoCyZKtZezdhzdS34MowJOtvw6ft2dxHyom7U__Z2VTiG-_g24iqK_INz-kNTfgpmdRka_rjyEy-mPmfn78WJGSOvKD1LAuBRWtKKh_SnKg7ML4MVd-FXj2rzX0gvKyksnmVlFTQignJFZqu0vBEU81yHUHS6rIoA9m567kxLTqaZq__AvVfeP0XSQQvuu8cN1QfF0pvtFNUhG2_KM4WaQRPu8e4YV0WRtVmdoIyQlKOqDLPI7jXzGj3c5nDC5kUEYiVue4EHBn46pN6cuRJwZO-kLlwL33ZLouz__X_YTy4eBhP4OpgPDwoDvZG-w_hWoqIrrmAtwG95fzEPEJEttSPw7onUFzyTvsLv89IOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRaq4IN4sFGokOIHVfdhr-4BQ1RK1lFYcipTbYu_aakTYlCRtVU78DX5K_05_ScfeRxUqeus1O9nE45nxN54XwBvuYbwRCTU2KynTLKVKOY0-D2IHbSVXytc77-3n29_Y5yEfLsF5Vwvj0yo7mxgMdTUp_R35Oh5L6IxIxfm6a9Mivm4NPh79on6ClI-0duM0GhHZtWen6L7NPuxs4V6_TdPBp4PNbdpOGKAlE3xOnVFOKM2dQZugNWIhx0WmjHScMVUK_AwJXaoRhrPSL0e5XBjHLMNF-LtQtP53RMaYnxohhr2vF0sW5rTFGYspzzhr63VC1Z7vceXLojOapDHqeLJ4Jl4DutfzNf8J2oazcHAf7rUglmw0UvcAlmz9EFb22jD9I_i-OZmGO3Lis-l_eGtKwsgdfBvRdUVO0ENvGoSfkVFNNsa_D-3op51e_Pk7I23MKBC60F-h7Z81JlW4zBzpx3BwG4x-Asv1pLbPgIiyUtrlVVIyySouldBotEorEsMMz00EScfLomzbnPtpG-Oib9Ac-F8g_4vA_yKJ4F3_naOmyceN1KvdFhWtws-KK_GM4HX_GFXVx190bSfHSCMVE4gn8zyCp82O9j-XeaSQKRmBXNjrnsC3AV98Uo8OQzvwJJYql_6l7zuxuPpf_1_G85uXsQYrqF_Fl5393RdwN0Uo12TercLyfHpsXyIUm5tXQegJFLesZJfL20XU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+thickness+modeling+and+variability+in+Alzheimer%27s+disease+and+frontotemporal+dementia&rft.jtitle=Journal+of+neurology&rft.au=P%C3%A9rez-Millan%2C+Agn%C3%A8s&rft.au=Borrego-%C3%89cija%2C+Sergi&rft.au=Falg%C3%A0s%2C+Neus&rft.au=Junc%C3%A0-Parella%2C+Jordi&rft.date=2024-03-01&rft.eissn=1432-1459&rft.volume=271&rft.issue=3&rft.spage=1428&rft_id=info:doi/10.1007%2Fs00415-023-12087-1&rft_id=info%3Apmid%2F38012398&rft.externalDocID=38012398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-5354&client=summon