Neural general circulation models for weather and climate

General circulation models (GCMs) are the foundation of weather and climate prediction 1 , 2 . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models tr...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 632; no. 8027; pp. 1060 - 1066
Main Authors Kochkov, Dmitrii, Yuval, Janni, Langmore, Ian, Norgaard, Peter, Smith, Jamie, Mooers, Griffin, Klöwer, Milan, Lottes, James, Rasp, Stephan, Düben, Peter, Hatfield, Sam, Battaglia, Peter, Sanchez-Gonzalez, Alvaro, Willson, Matthew, Brenner, Michael P., Hoyer, Stephan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.08.2024
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-024-07744-y

Cover

Abstract General circulation models (GCMs) are the foundation of weather and climate prediction 1 , 2 . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting 3 , 4 . However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. A hybrid model that combines a differentiable solver for atmospheric dynamics with machine-learning components is capable of weather forecasts and climate simulations on par with the best machine-learning and physics-based methods.
AbstractList General circulation models (GCMs) are the foundation of weather and climate prediction 1,2 . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting 3,4 . However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
General circulation models (GCMs) are the foundation of weather and climate prediction 1 , 2 . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting 3 , 4 . However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. A hybrid model that combines a differentiable solver for atmospheric dynamics with machine-learning components is capable of weather forecasts and climate simulations on par with the best machine-learning and physics-based methods.
General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. A hybrid model that combines a differentiable solver for atmospheric dynamics with machine-learning components is capable of weather forecasts and climate simulations on par with the best machine-learning and physics-based methods.
General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
General circulation models (GCMs) are the foundation of weather and climate prediction . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting . However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
Author Rasp, Stephan
Yuval, Janni
Klöwer, Milan
Sanchez-Gonzalez, Alvaro
Willson, Matthew
Battaglia, Peter
Brenner, Michael P.
Hoyer, Stephan
Kochkov, Dmitrii
Norgaard, Peter
Lottes, James
Langmore, Ian
Düben, Peter
Smith, Jamie
Hatfield, Sam
Mooers, Griffin
Author_xml – sequence: 1
  givenname: Dmitrii
  orcidid: 0000-0003-3846-4911
  surname: Kochkov
  fullname: Kochkov, Dmitrii
  email: dkochkov@google.com
  organization: Google Research
– sequence: 2
  givenname: Janni
  orcidid: 0000-0001-7519-0118
  surname: Yuval
  fullname: Yuval, Janni
  email: janniyuval@google.com
  organization: Google Research
– sequence: 3
  givenname: Ian
  surname: Langmore
  fullname: Langmore, Ian
  organization: Google Research
– sequence: 4
  givenname: Peter
  surname: Norgaard
  fullname: Norgaard, Peter
  organization: Google Research
– sequence: 5
  givenname: Jamie
  surname: Smith
  fullname: Smith, Jamie
  organization: Google Research
– sequence: 6
  givenname: Griffin
  surname: Mooers
  fullname: Mooers, Griffin
  organization: Google Research
– sequence: 7
  givenname: Milan
  surname: Klöwer
  fullname: Klöwer, Milan
  organization: Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology
– sequence: 8
  givenname: James
  surname: Lottes
  fullname: Lottes, James
  organization: Google Research
– sequence: 9
  givenname: Stephan
  surname: Rasp
  fullname: Rasp, Stephan
  organization: Google Research
– sequence: 10
  givenname: Peter
  orcidid: 0000-0002-4610-3326
  surname: Düben
  fullname: Düben, Peter
  organization: European Centre for Medium-Range Weather Forecasts
– sequence: 11
  givenname: Sam
  surname: Hatfield
  fullname: Hatfield, Sam
  organization: European Centre for Medium-Range Weather Forecasts
– sequence: 12
  givenname: Peter
  surname: Battaglia
  fullname: Battaglia, Peter
  organization: Google DeepMind
– sequence: 13
  givenname: Alvaro
  surname: Sanchez-Gonzalez
  fullname: Sanchez-Gonzalez, Alvaro
  organization: Google DeepMind
– sequence: 14
  givenname: Matthew
  orcidid: 0000-0002-8730-1927
  surname: Willson
  fullname: Willson, Matthew
  organization: Google DeepMind
– sequence: 15
  givenname: Michael P.
  surname: Brenner
  fullname: Brenner, Michael P.
  organization: Google Research, School of Engineering and Applied Sciences, Harvard University
– sequence: 16
  givenname: Stephan
  orcidid: 0000-0002-5207-0380
  surname: Hoyer
  fullname: Hoyer, Stephan
  email: shoyer@google.com
  organization: Google Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39039241$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP3DAQha0KVJalf6CHKlIvvQTGsWM7J4RQW5AQXOBsOc5kCfLaWzsp2n9fL7vQwgH1NAe_N_7em0Oy54NHQj5TOKbA1EnitFaihIqXICXn5foDmVEuRcmFkntkBlCpEhQTB-QwpQcAqKnkH8kBa4A1Facz0lzjFI0rFuhxM-0Q7eTMOARfLEOHLhV9iMUjmvEeY2F8V1g3LM2IR2S_Ny7hp92ck7sf32_PL8qrm5-X52dXpeWyHkvMiLZvmVKM15xja2mPthWN6JSRBoxqK2ENAK2RMctaoTrODOu4oVAZy-aEbfdOfmXWj8Y5vYqZIK41Bb0pQm-L0LkI_VSEXmfX6da1mtoldhb9mOO9OIMZ9OsXP9zrRfitKWW1bDLtnHzbbYjh14Rp1MshWXTOeAxT0mxTrGxAbKRf30gfwhR9bkUzChmOAsis-vIv0gvL8zGyoNoKbAwpRez_L6h6Y7LD-HS_HGtw71t3zab8j19g_Iv9jusPSxK-2w
CitedBy_id crossref_primary_10_1016_j_camwa_2025_01_025
crossref_primary_10_1016_j_cpc_2025_109582
crossref_primary_10_1016_j_infgeo_2025_100001
crossref_primary_10_1029_2023MS004080
crossref_primary_10_1146_annurev_conmatphys_043024_114758
crossref_primary_10_1002_qj_4971
crossref_primary_10_1016_j_cosust_2024_101471
crossref_primary_10_1063_5_0253876
crossref_primary_10_1063_5_0260592
crossref_primary_10_1038_s41586_024_08252_9
crossref_primary_10_1088_2752_5295_ad7974
crossref_primary_10_1016_j_ocemod_2025_102500
crossref_primary_10_1126_sciadv_adt8035
crossref_primary_10_3390_atmos15091085
crossref_primary_10_1016_j_acags_2024_100201
crossref_primary_10_1038_d41586_024_02391_9
crossref_primary_10_1038_d41586_024_03957_3
crossref_primary_10_1109_TGRS_2024_3496895
crossref_primary_10_20935_AcadEnvSci7419
crossref_primary_10_3390_atmos15070837
crossref_primary_10_5194_gmd_17_7915_2024
crossref_primary_10_3390_w16192870
crossref_primary_10_3390_rs16203793
crossref_primary_10_1007_s00376_024_4372_7
crossref_primary_10_1038_s41612_025_00949_6
crossref_primary_10_1360_TB_2024_0543
crossref_primary_10_1038_d41586_024_02558_4
crossref_primary_10_3390_electronics13204032
crossref_primary_10_3390_atmos16010082
crossref_primary_10_1007_s10707_025_00542_2
crossref_primary_10_1017_eds_2024_45
crossref_primary_10_1016_j_cie_2024_110662
crossref_primary_10_1016_j_molp_2025_01_020
crossref_primary_10_3389_fclim_2024_1504475
crossref_primary_10_3390_atmos15111348
crossref_primary_10_1038_s41561_024_01527_w
crossref_primary_10_1016_j_buildenv_2025_112668
crossref_primary_10_1038_s41467_025_57640_w
crossref_primary_10_1016_j_tree_2024_11_013
crossref_primary_10_1088_2632_2153_ad9883
crossref_primary_10_5194_gmd_18_1917_2025
crossref_primary_10_1038_s42254_024_00776_3
crossref_primary_10_3390_e27030279
crossref_primary_10_1038_s43247_024_01885_8
crossref_primary_10_1080_13658816_2025_2479183
Cites_doi 10.1029/2020MS002109
10.1029/2019MS001711
10.1175/MWR-D-13-00132.1
10.1038/nature12829
10.1029/2023GL104174
10.1198/016214506000001437
10.5194/gmd-16-3123-2023
10.1029/2022GL102649
10.1029/2022MS002984
10.1029/2022GL099796
10.1088/1748-9326/ab9af7
10.1073/pnas.1906691116
10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2
10.1175/BAMS-D-15-00135.1
10.1175/BAMS-D-17-0246.1
10.1073/pnas.1810286115
10.1038/s41467-020-17142-3
10.1002/qj.3803
10.1038/nature14956
10.1038/s41586-019-0912-1
10.1029/RG019i003p00450
10.1175/MWR-D-18-0187.1
10.1002/2017GL076101
10.1038/s41586-023-06185-3
10.1073/pnas.2202075119
10.1029/2022MS003400
10.1126/science.adi2336
10.1186/s40645-019-0304-z
10.5194/gmd-14-5023-2021
10.1029/2022MS003508
10.1175/JHM-D-14-0008.1
10.1175/2009WAF2222269.1
10.1038/nclimate2051
10.1007/s00382-012-1336-x
10.1175/2008JCLI1929.1
10.5194/gmd-9-1937-2016
10.2151/jmsj.2013-201
10.5281/zenodo.11376143
10.1029/2005GL023851
10.5281/zenodo.11376271
10.1017/CBO9781139177245
10.1029/2023MS004019
10.1007/978-1-4419-6412-0
10.5281/zenodo.11376145
10.5194/acp-24-7041-2024
10.1029/2023GL107377
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group Aug 29, 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group Aug 29, 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41586-024-07744-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
PubMed
Agricultural Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 1066
ExternalDocumentID 10.1038/s41586-024-07744-y
PMC11357988
39039241
10_1038_s41586_024_07744_y
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PKN
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~88
~KM
1VR
2XV
41X
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
AARCD
AAYXX
ABFSG
ABJCF
ABUWG
ACSTC
AEUYN
AEZWR
AFANA
AFHIU
AFKRA
AFKWF
AHWEU
AIXLP
ALPWD
ATHPR
AZQEC
BBNVY
BCU
BEC
BGLVJ
BKEYQ
BKSAR
BPHCQ
BVXVI
CCPQU
CITATION
D1I
D1J
D1K
DWQXO
EMH
EX3
FYUFA
GNUQQ
GUQSH
HMCUK
INR
ISR
K6-
KB.
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
NAPCQ
NFIDA
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PUEGO
PYCSY
Q2X
R05
S0X
SJFOW
TUS
UKHRP
WOW
~7V
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
MVM
N4W
NEJ
NPM
OHT
P-O
PEA
PM3
QS-
R4F
RHI
SKT
SV3
TH9
TUD
UAO
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
ABUFD
AGSTI
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ADTOC
ADXHL
AGQPQ
ESTFP
UNPAY
ID FETCH-LOGICAL-c475t-e586cfb38834544ebc1fecb696d8a7a0a8b26ca0015e33c3b68d43a3d4a102ac3
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Sun Oct 26 01:36:38 EDT 2025
Tue Sep 30 17:09:12 EDT 2025
Thu Oct 02 10:58:11 EDT 2025
Tue Oct 07 07:09:03 EDT 2025
Thu Apr 03 07:09:15 EDT 2025
Wed Oct 01 03:39:27 EDT 2025
Thu Apr 24 22:50:30 EDT 2025
Fri Feb 21 02:37:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8027
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-e586cfb38834544ebc1fecb696d8a7a0a8b26ca0015e33c3b68d43a3d4a102ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7519-0118
0000-0002-8730-1927
0000-0002-4610-3326
0000-0003-3846-4911
0000-0002-5207-0380
OpenAccessLink https://doi.org/10.1038%2Fs41586-024-07744-y
PMID 39039241
PQID 3104151007
PQPubID 40569
PageCount 7
ParticipantIDs unpaywall_primary_10_1038_s41586_024_07744_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11357988
proquest_miscellaneous_3083679068
proquest_journals_3104151007
pubmed_primary_39039241
crossref_primary_10_1038_s41586_024_07744_y
crossref_citationtrail_10_1038_s41586_024_07744_y
springer_journals_10_1038_s41586_024_07744_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-29
PublicationDateYYYYMMDD 2024-08-29
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Palmer, Stevens (CR9) 2019; 116
Whitaker, Kar (CR46) 2013; 141
Ruiz, Pulido, Miyoshi (CR37) 2013; 91
Wang, Yuval, O’Gorman (CR44) 2022; 14
Balaji (CR2) 2022; 119
Gneiting, Raftery (CR28) 2007; 102
CR39
Bauer, Thorpe, Brunet (CR1) 2015; 525
Sherwood, Bony, Dufresne (CR8) 2014; 505
Rasp, Lerch (CR48) 2018; 146
Arcomano, Szunyogh, Wikner, Hunt, Ott (CR25) 2023; 50
CR30
Gilleland, Ahijevych, Brown, Casati, Ebert (CR47) 2009; 24
Eyring (CR34) 2016; 9
Webb, Lambert, Gregory (CR7) 2013; 40
Fortin, Abaza, Anctil, Turcotte (CR29) 2014; 15
CR6
Bretherton (CR19) 2023; 50
CR49
Yuval, O’Gorman (CR23) 2020; 11
Daley (CR45) 1981; 19
Reichstein (CR20) 2019; 566
CR43
CR42
Zhou (CR15) 2019; 100
Kwa (CR24) 2023; 15
Gelbrecht, White, Bathiany, Boers (CR27) 2023; 16
CR40
Haimberger, Tavolato, Sperka (CR41) 2008; 21
Mitchell, Lo, Seviour, Haimberger, Polvani (CR35) 2020; 15
Lam (CR3) 2023; 382
Fischer, Beyerle, Knutti (CR10) 2013; 3
CR18
CR16
CR13
CR12
CR11
CR52
CR51
Bi (CR4) 2023; 619
Bourke (CR36) 1974; 102
CR50
Ullrich (CR33) 2021; 14
Weyn, Durran, Caruana (CR17) 2020; 12
Brenowitz, Bretherton (CR21) 2019; 11
Hersbach (CR14) 2020; 146
Schneider, Lan, Stuart, Teixeira (CR38) 2017; 44
Hourdin (CR5) 2017; 98
Stevens (CR32) 2019; 6
Han, Zhang, Wang (CR26) 2023; 15
Cheng (CR31) 2022; 49
Rasp, Pritchard, Gentine (CR22) 2018; 115
R Lam (7744_CR3) 2023; 382
L Zhou (7744_CR15) 2019; 100
T Palmer (7744_CR9) 2019; 116
T Gneiting (7744_CR28) 2007; 102
T Arcomano (7744_CR25) 2023; 50
K Bi (7744_CR4) 2023; 619
JA Weyn (7744_CR17) 2020; 12
W Bourke (7744_CR36) 1974; 102
K-Y Cheng (7744_CR31) 2022; 49
M Gelbrecht (7744_CR27) 2023; 16
V Balaji (7744_CR2) 2022; 119
P Bauer (7744_CR1) 2015; 525
7744_CR11
7744_CR12
CS Bretherton (7744_CR19) 2023; 50
R Daley (7744_CR45) 1981; 19
7744_CR51
T Schneider (7744_CR38) 2017; 44
7744_CR52
7744_CR50
ND Brenowitz (7744_CR21) 2019; 11
V Eyring (7744_CR34) 2016; 9
DM Mitchell (7744_CR35) 2020; 15
H Hersbach (7744_CR14) 2020; 146
7744_CR18
PA Ullrich (7744_CR33) 2021; 14
7744_CR16
7744_CR13
S Rasp (7744_CR48) 2018; 146
7744_CR42
MJ Webb (7744_CR7) 2013; 40
7744_CR43
7744_CR40
V Fortin (7744_CR29) 2014; 15
L Haimberger (7744_CR41) 2008; 21
E Gilleland (7744_CR47) 2009; 24
M Reichstein (7744_CR20) 2019; 566
JJ Ruiz (7744_CR37) 2013; 91
7744_CR6
EM Fischer (7744_CR10) 2013; 3
A Kwa (7744_CR24) 2023; 15
7744_CR49
Y Han (7744_CR26) 2023; 15
J Yuval (7744_CR23) 2020; 11
7744_CR30
SC Sherwood (7744_CR8) 2014; 505
S Rasp (7744_CR22) 2018; 115
P Wang (7744_CR44) 2022; 14
F Hourdin (7744_CR5) 2017; 98
JS Whitaker (7744_CR46) 2013; 141
B Stevens (7744_CR32) 2019; 6
7744_CR39
References_xml – volume: 12
  start-page: e2020MS002109
  year: 2020
  ident: CR17
  article-title: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2020MS002109
– ident: CR49
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 11
  start-page: 2728
  year: 2019
  end-page: 2744
  ident: CR21
  article-title: Spatially extended tests of a neural network parametrization trained by coarse-graining
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001711
– volume: 141
  start-page: 3426
  year: 2013
  end-page: 3434
  ident: CR46
  article-title: Implicit–explicit Runge–Kutta methods for fast–slow wave problems
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-13-00132.1
– volume: 505
  start-page: 37
  year: 2014
  end-page: 42
  ident: CR8
  article-title: Spread in model climate sensitivity traced to atmospheric convective mixing
  publication-title: Nature
  doi: 10.1038/nature12829
– volume: 50
  start-page: e2023GL104174
  year: 2023
  ident: CR19
  article-title: Old dog, new trick: reservoir computing advances machine learning for climate modeling
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2023GL104174
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: CR28
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001437
– volume: 16
  start-page: 3123
  year: 2023
  end-page: 3135
  ident: CR27
  article-title: Differentiable programming for Earth system modeling
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-16-3123-2023
– volume: 50
  start-page: e2022GL102649
  year: 2023
  ident: CR25
  article-title: A hybrid atmospheric model incorporating machine learning can capture dynamical processes not captured by its physics-based component
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL102649
– volume: 14
  start-page: e2022MS002984
  year: 2022
  ident: CR44
  article-title: Non-local parameterization of atmospheric subgrid processes with neural networks
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS002984
– ident: CR42
– volume: 49
  start-page: e2022GL099796
  year: 2022
  ident: CR31
  article-title: Impact of warmer sea surface temperature on the global pattern of intense convection: insights from a global storm resolving model
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL099796
– volume: 15
  start-page: 1040b4
  year: 2020
  ident: CR35
  article-title: The vertical profile of recent tropical temperature trends: persistent model biases in the context of internal variability
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab9af7
– volume: 116
  start-page: 24390
  year: 2019
  end-page: 24395
  ident: CR9
  article-title: The scientific challenge of understanding and estimating climate change
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1906691116
– volume: 102
  start-page: 687
  year: 1974
  end-page: 701
  ident: CR36
  article-title: A multi-level spectral model. I. Formulation and hemispheric integrations
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2
– volume: 98
  start-page: 589
  year: 2017
  end-page: 602
  ident: CR5
  article-title: The art and science of climate model tuning
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-15-00135.1
– volume: 100
  start-page: 1225
  year: 2019
  end-page: 1243
  ident: CR15
  article-title: Toward convective-scale prediction within the next generation global prediction system
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-17-0246.1
– ident: CR50
– volume: 115
  start-page: 9684
  year: 2018
  end-page: 9689
  ident: CR22
  article-title: Deep learning to represent subgrid processes in climate models
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1810286115
– ident: CR11
– volume: 11
  year: 2020
  ident: CR23
  article-title: Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17142-3
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  ident: CR14
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 525
  start-page: 47
  year: 2015
  end-page: 55
  ident: CR1
  article-title: The quiet revolution of numerical weather prediction
  publication-title: Nature
  doi: 10.1038/nature14956
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: CR20
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 19
  start-page: 450
  year: 1981
  end-page: 468
  ident: CR45
  article-title: Normal mode initialization
  publication-title: Rev. Geophys.
  doi: 10.1029/RG019i003p00450
– volume: 146
  start-page: 3885
  year: 2018
  end-page: 3900
  ident: CR48
  article-title: Neural networks for postprocessing ensemble weather forecasts
  publication-title: Month. Weather Rev.
  doi: 10.1175/MWR-D-18-0187.1
– ident: CR18
– ident: CR43
– volume: 44
  start-page: 12
  year: 2017
  end-page: 396
  ident: CR38
  article-title: Earth system modeling 2.0: a blueprint for models that learn from observations and targeted high-resolution simulations
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL076101
– volume: 619
  start-page: 533
  year: 2023
  end-page: 538
  ident: CR4
  article-title: Accurate medium-range global weather forecasting with 3D neural networks
  publication-title: Nature
  doi: 10.1038/s41586-023-06185-3
– volume: 119
  start-page: e2202075119
  year: 2022
  ident: CR2
  article-title: Are general circulation models obsolete?
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2202075119
– ident: CR30
– volume: 15
  start-page: e2022MS003400
  year: 2023
  ident: CR24
  article-title: Machine-learned climate model corrections from a global storm-resolving model: performance across the annual cycle
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS003400
– ident: CR6
– ident: CR40
– volume: 382
  start-page: 1416
  year: 2023
  end-page: 1421
  ident: CR3
  article-title: Learning skillful medium-range global weather forecasting
  publication-title: Science
  doi: 10.1126/science.adi2336
– volume: 6
  start-page: 61
  year: 2019
  ident: CR32
  article-title: DYAMOND: the dynamics of the atmospheric general circulation modeled on non-hydrostatic domains
  publication-title: Prog. Earth Planet. Sci.
  doi: 10.1186/s40645-019-0304-z
– volume: 14
  start-page: 5023
  year: 2021
  end-page: 5048
  ident: CR33
  article-title: TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets
  publication-title: Geosc. Model Dev.
  doi: 10.5194/gmd-14-5023-2021
– volume: 15
  start-page: e2022MS003508
  year: 2023
  ident: CR26
  article-title: An ensemble of neural networks for moist physics processes, its generalizability and stable integration
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS003508
– volume: 15
  start-page: 1708
  year: 2014
  end-page: 1713
  ident: CR29
  article-title: Why should ensemble spread match the RMSE of the ensemble mean?
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-14-0008.1
– volume: 24
  start-page: 1416
  year: 2009
  end-page: 1430
  ident: CR47
  article-title: Intercomparison of spatial forecast verification methods
  publication-title: Weather Forecast.
  doi: 10.1175/2009WAF2222269.1
– volume: 3
  start-page: 1033
  year: 2013
  end-page: 1038
  ident: CR10
  article-title: Robust spatially aggregated projections of climate extremes
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2051
– volume: 40
  start-page: 677
  year: 2013
  end-page: 707
  ident: CR7
  article-title: Origins of differences in climate sensitivity, forcing and feedback in climate models
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-012-1336-x
– ident: CR52
– ident: CR13
– volume: 21
  start-page: 4587
  year: 2008
  end-page: 4606
  ident: CR41
  article-title: Toward elimination of the warm bias in historic radiosonde temperature records—some new results from a comprehensive intercomparison of upper-air data
  publication-title: J. Clim.
  doi: 10.1175/2008JCLI1929.1
– volume: 9
  start-page: 1937
  year: 2016
  end-page: 1958
  ident: CR34
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1937-2016
– volume: 91
  start-page: 79
  year: 2013
  end-page: 99
  ident: CR37
  article-title: Estimating model parameters with ensemble-based data assimilation: a review
  publication-title: J. Meteorol. Soc. Jpn Ser. II
  doi: 10.2151/jmsj.2013-201
– volume: 15
  start-page: 1708
  year: 2014
  ident: 7744_CR29
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-14-0008.1
– volume: 146
  start-page: 1999
  year: 2020
  ident: 7744_CR14
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 14
  start-page: 5023
  year: 2021
  ident: 7744_CR33
  publication-title: Geosc. Model Dev.
  doi: 10.5194/gmd-14-5023-2021
– volume: 15
  start-page: e2022MS003508
  year: 2023
  ident: 7744_CR26
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS003508
– ident: 7744_CR13
– volume: 116
  start-page: 24390
  year: 2019
  ident: 7744_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1906691116
– volume: 11
  year: 2020
  ident: 7744_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17142-3
– volume: 49
  start-page: e2022GL099796
  year: 2022
  ident: 7744_CR31
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL099796
– volume: 9
  start-page: 1937
  year: 2016
  ident: 7744_CR34
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1937-2016
– ident: 7744_CR51
  doi: 10.5281/zenodo.11376143
– volume: 91
  start-page: 79
  year: 2013
  ident: 7744_CR37
  publication-title: J. Meteorol. Soc. Jpn Ser. II
  doi: 10.2151/jmsj.2013-201
– ident: 7744_CR6
  doi: 10.1029/2005GL023851
– volume: 15
  start-page: 1040b4
  year: 2020
  ident: 7744_CR35
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab9af7
– ident: 7744_CR52
  doi: 10.5281/zenodo.11376271
– ident: 7744_CR42
– volume: 566
  start-page: 195
  year: 2019
  ident: 7744_CR20
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 24
  start-page: 1416
  year: 2009
  ident: 7744_CR47
  publication-title: Weather Forecast.
  doi: 10.1175/2009WAF2222269.1
– volume: 3
  start-page: 1033
  year: 2013
  ident: 7744_CR10
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2051
– volume: 382
  start-page: 1416
  year: 2023
  ident: 7744_CR3
  publication-title: Science
  doi: 10.1126/science.adi2336
– ident: 7744_CR18
– volume: 15
  start-page: e2022MS003400
  year: 2023
  ident: 7744_CR24
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS003400
– volume: 115
  start-page: 9684
  year: 2018
  ident: 7744_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1810286115
– ident: 7744_CR49
– ident: 7744_CR11
  doi: 10.1017/CBO9781139177245
– ident: 7744_CR12
  doi: 10.1029/2023MS004019
– volume: 525
  start-page: 47
  year: 2015
  ident: 7744_CR1
  publication-title: Nature
  doi: 10.1038/nature14956
– volume: 21
  start-page: 4587
  year: 2008
  ident: 7744_CR41
  publication-title: J. Clim.
  doi: 10.1175/2008JCLI1929.1
– volume: 44
  start-page: 12
  year: 2017
  ident: 7744_CR38
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL076101
– ident: 7744_CR30
– ident: 7744_CR43
  doi: 10.1007/978-1-4419-6412-0
– volume: 141
  start-page: 3426
  year: 2013
  ident: 7744_CR46
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-13-00132.1
– ident: 7744_CR50
  doi: 10.5281/zenodo.11376145
– volume: 505
  start-page: 37
  year: 2014
  ident: 7744_CR8
  publication-title: Nature
  doi: 10.1038/nature12829
– volume: 119
  start-page: e2202075119
  year: 2022
  ident: 7744_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2202075119
– volume: 98
  start-page: 589
  year: 2017
  ident: 7744_CR5
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-15-00135.1
– volume: 11
  start-page: 2728
  year: 2019
  ident: 7744_CR21
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001711
– volume: 102
  start-page: 359
  year: 2007
  ident: 7744_CR28
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001437
– volume: 6
  start-page: 61
  year: 2019
  ident: 7744_CR32
  publication-title: Prog. Earth Planet. Sci.
  doi: 10.1186/s40645-019-0304-z
– ident: 7744_CR40
– ident: 7744_CR39
  doi: 10.5194/acp-24-7041-2024
– volume: 102
  start-page: 687
  year: 1974
  ident: 7744_CR36
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2
– volume: 100
  start-page: 1225
  year: 2019
  ident: 7744_CR15
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-17-0246.1
– volume: 12
  start-page: e2020MS002109
  year: 2020
  ident: 7744_CR17
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2020MS002109
– volume: 16
  start-page: 3123
  year: 2023
  ident: 7744_CR27
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-16-3123-2023
– volume: 19
  start-page: 450
  year: 1981
  ident: 7744_CR45
  publication-title: Rev. Geophys.
  doi: 10.1029/RG019i003p00450
– volume: 619
  start-page: 533
  year: 2023
  ident: 7744_CR4
  publication-title: Nature
  doi: 10.1038/s41586-023-06185-3
– ident: 7744_CR16
  doi: 10.1029/2023GL107377
– volume: 14
  start-page: e2022MS002984
  year: 2022
  ident: 7744_CR44
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS002984
– volume: 40
  start-page: 677
  year: 2013
  ident: 7744_CR7
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-012-1336-x
– volume: 50
  start-page: e2022GL102649
  year: 2023
  ident: 7744_CR25
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL102649
– volume: 146
  start-page: 3885
  year: 2018
  ident: 7744_CR48
  publication-title: Month. Weather Rev.
  doi: 10.1175/MWR-D-18-0187.1
– volume: 50
  start-page: e2023GL104174
  year: 2023
  ident: 7744_CR19
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2023GL104174
SSID ssj0005174
Score 2.7445397
Snippet General circulation models (GCMs) are the foundation of weather and climate prediction 1 , 2 . GCMs are physics-based simulators that combine a numerical...
General circulation models (GCMs) are the foundation of weather and climate prediction 1,2 . GCMs are physics-based simulators that combine a numerical solver...
General circulation models (GCMs) are the foundation of weather and climate prediction . GCMs are physics-based simulators that combine a numerical solver for...
General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1060
SubjectTerms 639/705/1042
704/106/35/823
704/106/694/1108
Accuracy
Atmospheric dynamics
Bias
Climate
Climate and weather
Climate models
Climate prediction
Cloud formation
Cyclones
Deep learning
Ensemble forecasting
Future climates
General circulation models
Humanities and Social Sciences
Learning algorithms
Machine learning
Medium-range forecasting
multidisciplinary
Neural networks
Performance evaluation
Performance prediction
Physics
Precipitation
Science
Science (multidisciplinary)
Sea surface temperature
Simulators
Solvers
Surface temperature
Tropical cyclones
Variables
Weather
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED66lLLtYbTdL2_tUKEPG6uobZ1t-WGMdbSUwUIZK_TNSLKyBYKT1Qkl__10tuwsK4S-WpLtk-6kz7677wCOie9Du5OUp6Mo5qhyy1WmNM8wUZkodagjyh3-Pkwvr_HbTXKzBcMuF4bCKrs9sdmoy6mhf-SnDoa4s4Z8-p9nfzhVjSLvaldCQ_nSCuWnhmLsEWzHxIw1gO2z8-HVj1XQx3-8zD6NJhTytHa3lxSQizx0mAj5cv2ouoc_74dR9r7Up_B4Uc3U8k5NJv8cVxe78MzjTPalVYw92LLVPuw08Z6m3oc9b9M1e--Jpz88h5yYOtygX-0VZsa3xlf3Yk3FnJo5iMvuWtTIVFUyMxk7yGtfwPXF-c-vl9yXVuAGs2TOrRPVjLSQUmCCaLWJRtboNE9L6dYqVFLHqVGEqKwQRuhUliiUKFE5RKKMeAmDalrZ18AkGpEI1DbHEmWM0iao6bOJSCHiLA8g6maxMJ53nMpfTIrG_y1k0c584Wa-aGa-WAbwsR8za1k3NvY-6Ban8BZYFyt9CeCob3a2Qw4RVdnpwvUhFcjyMJUBvGrXsn-cyEMHHTEKQK6tct-BeLnXW6rx74afO4pEQjRwAZx0CrF6r01inPRK8wCp32yW-i08iRtdpiSbAxjMbxf20OGnuX7njeIvF9MT_g
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ7gEaM-oCBoEc2a-KCRhbY73W4fiYEQEwgPXoJPze52Ty9cCqF3Ieevd7bdq5wYgq_d2W53dybzNTPzDcAHz_dhyJNyOUpSjrpwXOfa8BwznYvKxCbxtcMnp_J4iF_Ps_NAk-NrYZbi90LtN-RglE-TRR4TUkE-fwSrMqMlBrA6PD07-H6bZrktJcolR6nyUCHz75cse6E70PJuhmQfJn0GT2b1lZ7f6Mnklic6et61NGpaAkOfgHKxN5uaPfvrL3rHh23yBawFQMoOOg1ahxVXb8DjNjHUNhuwHoy_YR8DQ_Wnl1B4Sg-a9KN7wuz42oY2YKxtrdMwwsLspoOXTNcVs5MxYWO3CcOjw29fjnnowcAt5tmUO_owOzJCKYEZojM2GTlrZCErRZcaa2VSabWHXk4IK4xUFQotKtQEXbQVWzCoL2v3GphCKzKBxhVYoUpRuQyN_7_y7BFpXkSQLO6ktIGg3PfJmJRtoFyosjunks6pbM-pnEfwuZ9z1dFz3Cu9s7jqMphqUxK-JUGfLBLB-36YjMxHTnTtLmck45UrL2KpInjVaUa_nChiwpiYRKCWdKYX8ATeyyP1-GdL5J0kIvN8cRHsLtTrz3fdt43dXgUfsOvt_xN_A0_TVhN9dc4ODKbXM_eWgNfUvAsW9xtU4h_W
  priority: 102
  providerName: Unpaywall
Title Neural general circulation models for weather and climate
URI https://link.springer.com/article/10.1038/s41586-024-07744-y
https://www.ncbi.nlm.nih.gov/pubmed/39039241
https://www.proquest.com/docview/3104151007
https://www.proquest.com/docview/3083679068
https://pubmed.ncbi.nlm.nih.gov/PMC11357988
https://doi.org/10.1038/s41586-024-07744-y
UnpaywallVersion publishedVersion
Volume 632
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: AFBBN
  dateStart: 20190103
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8FG
  dateStart: 19900104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wVj3UNruo966oMEeNhYx2zrb8mMSmpbBQhkLZE9GkpUuENxSJ5T89zvZjtssULYXGVsn2dLdoZ_R6XcAHx3fh6aVlMfTIOSoUstVojRPMFKJyLWvA3d2-Psovhzjt0k02YHu-izMxv59Rd1d0hIjXaAscp-wCvLVLuxLMkyXr2AQDx4COv7iXG6OyFAvX7f72FyGtrDldohku0_6Ap4vi1u1ulfz-aOlaHgEhw2GZL1a6cewY4sTeFbFcpryBI4bfy3Zp4ZU-vNLSB0LBzW6rp8wM7szTeYuVmXDKRnBV3ZfI0KmipyZ-YzgrH0F4-H5z8Elb9ImcINJtOCWhmqmWkgpMEK02gRTa3ScxrkkPfhK6jA2yqElK4QROpY5CiVyVIQ2lBGvYa-4KewpMIlGRAK1TTFHGaK0EWr3S-QIH8Ik9SBYz2JmGk5xl9pinlV720Jm9cxnNPNZNfPZyoMvbZvbmlHjSemztXKyxrvKjCApCbr4Dg8-tNXkF26zQxX2ZkkyzgSS1I-lB29qXbavE6lPsBADD-SGllsBx7m9WVPMflfc20EgIkfx5kF3bRAP3_XUMLqt0fzDqN_-X-_v4CCsbNsdqDmDvcXd0r4nrLTQHdhNJgmVchC4cnjRgf3esN8f0bV_Prr60amciO7Go6verz_svA7h
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIbTxgNj4CgwwEkggZi2JL4nzgBACpo59PG1S3zLbcVmlKi1Lq6r_FH8j53yVMqniZa-Jk9jnO9_PufPvAN46vg9NnpTHgyDkqFLLVaI0TzBSici1rwN3dvj0LO5d4I9-1N-A3-1ZGJdW2a6J1UKdj437R35AMIR8jYvpf5784q5qlIuutiU0arU4tos5bdnKT0ffaH7fheHh9_OvPd5UFeAGk2jKbSRjM9BCSoERotUmGFij4zTOJXXTV1KHsVEOTFghjNCxzFEokaMiZ6yMoPfegbsoaC0h-0n6yTKl5B_W5-aQji_kQUmdly7dF7lPiAv5YtUR3kC3N5M0u0jtfdiaFRO1mKvR6C9nePgQHjQoln2p1W4HNmyxC_eqbFJT7sJOs2KU7H1Da_3hEaSOB4Qe-llfYWZ4bZraYayqx1MyAtBsXmNSpoqcmdGQALV9DBe3IuInsFmMC_sMmEQjIoHappijDFHaCLXblDnKiTBJPQhaKWamYTV3xTVGWRVdFzKrJZ-R5LNK8tnCg4_dM5Oa02Nt6712crLGvstsqY0evOluk2W6cIsq7HhGbZwKJKkfSw-e1nPZfU6kPgFTDDyQK7PcNXCs36t3iuFVxf4dBCJyJHMe7LcKsezXumHsd0rzH6N-vn7Ur2Grd356kp0cnR2_gO2w0mt3nGcPNqfXM_uSkNpUv6rMg8HlbdvjH2UbSwk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIX49IDYGZAwwEkigzVoSO4nzgBBiVBuDiQcm9S3YjguVqrQsrar-a_vrODtOSplU8bLXxE7i853vc3z3HcAry_eh0JPSdBDFlMvcUJlJRTOeyIyVKlSRzR3-epYen_PP_aS_AZdtLowNq2zXRLdQl2Nt_5EfIgxBX-PS3gY-LOLbUe_95De1FaTsSWtbTqNRkVOzmOP2rX53coRz_TqOe5--fzymvsIA1TxLptQkItUDxYRgPOHcKB0NjFZpnpYCPzmUQsWplhZYGMY0U6koOZOs5BIds9QMn3sDbmaM5TacMOtny_CSfxigfcJOyMRhjQMRNvSX0xDRF6eLVad4BeleDdjsTm3vwZ1ZNZGLuRyN_nKMvQdw3yNa8qFRwS3YMNU23HKRpbrehi2_etTkjae4fvsQcssJgp1-NleIHl5oX0eMuNo8NUEwTeYNPiWyKokeDRFcmx04vxYRP4LNalyZJ0AE1yxhXJmcl1zEXJiEK7tBs_QTcZYHELVSLLRnOLeFNkaFO2lnomgkX6DkCyf5YhHAftdn0vB7rG29105O4W29LpaaGcDL7jZaqT16kZUZz7CNVYEsD1MRwONmLrvXsTxEkMqjAMTKLHcNLAP46p1q-MsxgUcRSyzhXAAHrUIsv2vdMA46pfmPUe-uH_ULuI2WWHw5OTt9Cndjp9Y2s2cPNqcXM_MMQdtUPXfWQeDHdZvjHz5fT0w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ7gEaM-oCBoEc2a-KCRhbY73W4fiYEQEwgPXoJPze52Ty9cCqF3Ieevd7bdq5wYgq_d2W53dybzNTPzDcAHz_dhyJNyOUpSjrpwXOfa8BwznYvKxCbxtcMnp_J4iF_Ps_NAk-NrYZbi90LtN-RglE-TRR4TUkE-fwSrMqMlBrA6PD07-H6bZrktJcolR6nyUCHz75cse6E70PJuhmQfJn0GT2b1lZ7f6Mnklic6et61NGpaAkOfgHKxN5uaPfvrL3rHh23yBawFQMoOOg1ahxVXb8DjNjHUNhuwHoy_YR8DQ_Wnl1B4Sg-a9KN7wuz42oY2YKxtrdMwwsLspoOXTNcVs5MxYWO3CcOjw29fjnnowcAt5tmUO_owOzJCKYEZojM2GTlrZCErRZcaa2VSabWHXk4IK4xUFQotKtQEXbQVWzCoL2v3GphCKzKBxhVYoUpRuQyN_7_y7BFpXkSQLO6ktIGg3PfJmJRtoFyosjunks6pbM-pnEfwuZ9z1dFz3Cu9s7jqMphqUxK-JUGfLBLB-36YjMxHTnTtLmck45UrL2KpInjVaUa_nChiwpiYRKCWdKYX8ATeyyP1-GdL5J0kIvN8cRHsLtTrz3fdt43dXgUfsOvt_xN_A0_TVhN9dc4ODKbXM_eWgNfUvAsW9xtU4h_W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+general+circulation+models+for+weather+and+climate&rft.jtitle=Nature+%28London%29&rft.au=Kochkov%2C+Dmitrii&rft.au=Yuval%2C+Janni&rft.au=Langmore%2C+Ian&rft.au=Norgaard%2C+Peter&rft.date=2024-08-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=632&rft.issue=8027&rft.spage=1060&rft.epage=1066&rft_id=info:doi/10.1038%2Fs41586-024-07744-y&rft.externalDocID=10_1038_s41586_024_07744_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon