Neural general circulation models for weather and climate
General circulation models (GCMs) are the foundation of weather and climate prediction 1 , 2 . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models tr...
Saved in:
| Published in | Nature (London) Vol. 632; no. 8027; pp. 1060 - 1066 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
29.08.2024
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0028-0836 1476-4687 1476-4687 |
| DOI | 10.1038/s41586-024-07744-y |
Cover
| Abstract | General circulation models (GCMs) are the foundation of weather and climate prediction
1
,
2
. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting
3
,
4
. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
A hybrid model that combines a differentiable solver for atmospheric dynamics with machine-learning components is capable of weather forecasts and climate simulations on par with the best machine-learning and physics-based methods. |
|---|---|
| AbstractList | General circulation models (GCMs) are the foundation of weather and climate prediction
1,2
. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting
3,4
. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. General circulation models (GCMs) are the foundation of weather and climate prediction 1 , 2 . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting 3 , 4 . However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. A hybrid model that combines a differentiable solver for atmospheric dynamics with machine-learning components is capable of weather forecasts and climate simulations on par with the best machine-learning and physics-based methods. General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. A hybrid model that combines a differentiable solver for atmospheric dynamics with machine-learning components is capable of weather forecasts and climate simulations on par with the best machine-learning and physics-based methods. General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. General circulation models (GCMs) are the foundation of weather and climate prediction . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting . However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting3,4. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. |
| Author | Rasp, Stephan Yuval, Janni Klöwer, Milan Sanchez-Gonzalez, Alvaro Willson, Matthew Battaglia, Peter Brenner, Michael P. Hoyer, Stephan Kochkov, Dmitrii Norgaard, Peter Lottes, James Langmore, Ian Düben, Peter Smith, Jamie Hatfield, Sam Mooers, Griffin |
| Author_xml | – sequence: 1 givenname: Dmitrii orcidid: 0000-0003-3846-4911 surname: Kochkov fullname: Kochkov, Dmitrii email: dkochkov@google.com organization: Google Research – sequence: 2 givenname: Janni orcidid: 0000-0001-7519-0118 surname: Yuval fullname: Yuval, Janni email: janniyuval@google.com organization: Google Research – sequence: 3 givenname: Ian surname: Langmore fullname: Langmore, Ian organization: Google Research – sequence: 4 givenname: Peter surname: Norgaard fullname: Norgaard, Peter organization: Google Research – sequence: 5 givenname: Jamie surname: Smith fullname: Smith, Jamie organization: Google Research – sequence: 6 givenname: Griffin surname: Mooers fullname: Mooers, Griffin organization: Google Research – sequence: 7 givenname: Milan surname: Klöwer fullname: Klöwer, Milan organization: Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology – sequence: 8 givenname: James surname: Lottes fullname: Lottes, James organization: Google Research – sequence: 9 givenname: Stephan surname: Rasp fullname: Rasp, Stephan organization: Google Research – sequence: 10 givenname: Peter orcidid: 0000-0002-4610-3326 surname: Düben fullname: Düben, Peter organization: European Centre for Medium-Range Weather Forecasts – sequence: 11 givenname: Sam surname: Hatfield fullname: Hatfield, Sam organization: European Centre for Medium-Range Weather Forecasts – sequence: 12 givenname: Peter surname: Battaglia fullname: Battaglia, Peter organization: Google DeepMind – sequence: 13 givenname: Alvaro surname: Sanchez-Gonzalez fullname: Sanchez-Gonzalez, Alvaro organization: Google DeepMind – sequence: 14 givenname: Matthew orcidid: 0000-0002-8730-1927 surname: Willson fullname: Willson, Matthew organization: Google DeepMind – sequence: 15 givenname: Michael P. surname: Brenner fullname: Brenner, Michael P. organization: Google Research, School of Engineering and Applied Sciences, Harvard University – sequence: 16 givenname: Stephan orcidid: 0000-0002-5207-0380 surname: Hoyer fullname: Hoyer, Stephan email: shoyer@google.com organization: Google Research |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39039241$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFP3DAQha0KVJalf6CHKlIvvQTGsWM7J4RQW5AQXOBsOc5kCfLaWzsp2n9fL7vQwgH1NAe_N_7em0Oy54NHQj5TOKbA1EnitFaihIqXICXn5foDmVEuRcmFkntkBlCpEhQTB-QwpQcAqKnkH8kBa4A1Facz0lzjFI0rFuhxM-0Q7eTMOARfLEOHLhV9iMUjmvEeY2F8V1g3LM2IR2S_Ny7hp92ck7sf32_PL8qrm5-X52dXpeWyHkvMiLZvmVKM15xja2mPthWN6JSRBoxqK2ENAK2RMctaoTrODOu4oVAZy-aEbfdOfmXWj8Y5vYqZIK41Bb0pQm-L0LkI_VSEXmfX6da1mtoldhb9mOO9OIMZ9OsXP9zrRfitKWW1bDLtnHzbbYjh14Rp1MshWXTOeAxT0mxTrGxAbKRf30gfwhR9bkUzChmOAsis-vIv0gvL8zGyoNoKbAwpRez_L6h6Y7LD-HS_HGtw71t3zab8j19g_Iv9jusPSxK-2w |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2025_01_025 crossref_primary_10_1016_j_cpc_2025_109582 crossref_primary_10_1016_j_infgeo_2025_100001 crossref_primary_10_1029_2023MS004080 crossref_primary_10_1146_annurev_conmatphys_043024_114758 crossref_primary_10_1002_qj_4971 crossref_primary_10_1016_j_cosust_2024_101471 crossref_primary_10_1063_5_0253876 crossref_primary_10_1063_5_0260592 crossref_primary_10_1038_s41586_024_08252_9 crossref_primary_10_1088_2752_5295_ad7974 crossref_primary_10_1016_j_ocemod_2025_102500 crossref_primary_10_1126_sciadv_adt8035 crossref_primary_10_3390_atmos15091085 crossref_primary_10_1016_j_acags_2024_100201 crossref_primary_10_1038_d41586_024_02391_9 crossref_primary_10_1038_d41586_024_03957_3 crossref_primary_10_1109_TGRS_2024_3496895 crossref_primary_10_20935_AcadEnvSci7419 crossref_primary_10_3390_atmos15070837 crossref_primary_10_5194_gmd_17_7915_2024 crossref_primary_10_3390_w16192870 crossref_primary_10_3390_rs16203793 crossref_primary_10_1007_s00376_024_4372_7 crossref_primary_10_1038_s41612_025_00949_6 crossref_primary_10_1360_TB_2024_0543 crossref_primary_10_1038_d41586_024_02558_4 crossref_primary_10_3390_electronics13204032 crossref_primary_10_3390_atmos16010082 crossref_primary_10_1007_s10707_025_00542_2 crossref_primary_10_1017_eds_2024_45 crossref_primary_10_1016_j_cie_2024_110662 crossref_primary_10_1016_j_molp_2025_01_020 crossref_primary_10_3389_fclim_2024_1504475 crossref_primary_10_3390_atmos15111348 crossref_primary_10_1038_s41561_024_01527_w crossref_primary_10_1016_j_buildenv_2025_112668 crossref_primary_10_1038_s41467_025_57640_w crossref_primary_10_1016_j_tree_2024_11_013 crossref_primary_10_1088_2632_2153_ad9883 crossref_primary_10_5194_gmd_18_1917_2025 crossref_primary_10_1038_s42254_024_00776_3 crossref_primary_10_3390_e27030279 crossref_primary_10_1038_s43247_024_01885_8 crossref_primary_10_1080_13658816_2025_2479183 |
| Cites_doi | 10.1029/2020MS002109 10.1029/2019MS001711 10.1175/MWR-D-13-00132.1 10.1038/nature12829 10.1029/2023GL104174 10.1198/016214506000001437 10.5194/gmd-16-3123-2023 10.1029/2022GL102649 10.1029/2022MS002984 10.1029/2022GL099796 10.1088/1748-9326/ab9af7 10.1073/pnas.1906691116 10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2 10.1175/BAMS-D-15-00135.1 10.1175/BAMS-D-17-0246.1 10.1073/pnas.1810286115 10.1038/s41467-020-17142-3 10.1002/qj.3803 10.1038/nature14956 10.1038/s41586-019-0912-1 10.1029/RG019i003p00450 10.1175/MWR-D-18-0187.1 10.1002/2017GL076101 10.1038/s41586-023-06185-3 10.1073/pnas.2202075119 10.1029/2022MS003400 10.1126/science.adi2336 10.1186/s40645-019-0304-z 10.5194/gmd-14-5023-2021 10.1029/2022MS003508 10.1175/JHM-D-14-0008.1 10.1175/2009WAF2222269.1 10.1038/nclimate2051 10.1007/s00382-012-1336-x 10.1175/2008JCLI1929.1 10.5194/gmd-9-1937-2016 10.2151/jmsj.2013-201 10.5281/zenodo.11376143 10.1029/2005GL023851 10.5281/zenodo.11376271 10.1017/CBO9781139177245 10.1029/2023MS004019 10.1007/978-1-4419-6412-0 10.5281/zenodo.11376145 10.5194/acp-24-7041-2024 10.1029/2023GL107377 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group Aug 29, 2024 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group Aug 29, 2024 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41586-024-07744-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 1066 |
| ExternalDocumentID | 10.1038/s41586-024-07744-y PMC11357988 39039241 10_1038_s41586_024_07744_y |
| Genre | Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM 1VR 2XV 41X 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L AARCD AAYXX ABFSG ABJCF ABUWG ACSTC AEUYN AEZWR AFANA AFHIU AFKRA AFKWF AHWEU AIXLP ALPWD ATHPR AZQEC BBNVY BCU BEC BGLVJ BKEYQ BKSAR BPHCQ BVXVI CCPQU CITATION D1I D1J D1K DWQXO EMH EX3 FYUFA GNUQQ GUQSH HMCUK INR ISR K6- KB. L6V LK5 LK8 M1P M2M M2P M7R M7S NAPCQ NFIDA P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PUEGO PYCSY Q2X R05 S0X SJFOW TUS UKHRP WOW ~7V .-4 .GJ .HR 00M 08P 0WA 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 MVM N4W NEJ NPM OHT P-O PEA PM3 QS- R4F RHI SKT SV3 TH9 TUD UAO UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK ABUFD AGSTI C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM ADTOC ADXHL AGQPQ ESTFP UNPAY |
| ID | FETCH-LOGICAL-c475t-e586cfb38834544ebc1fecb696d8a7a0a8b26ca0015e33c3b68d43a3d4a102ac3 |
| IEDL.DBID | C6C |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Sun Oct 26 01:36:38 EDT 2025 Tue Sep 30 17:09:12 EDT 2025 Thu Oct 02 10:58:11 EDT 2025 Tue Oct 07 07:09:03 EDT 2025 Thu Apr 03 07:09:15 EDT 2025 Wed Oct 01 03:39:27 EDT 2025 Thu Apr 24 22:50:30 EDT 2025 Fri Feb 21 02:37:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8027 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-e586cfb38834544ebc1fecb696d8a7a0a8b26ca0015e33c3b68d43a3d4a102ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7519-0118 0000-0002-8730-1927 0000-0002-4610-3326 0000-0003-3846-4911 0000-0002-5207-0380 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41586-024-07744-y |
| PMID | 39039241 |
| PQID | 3104151007 |
| PQPubID | 40569 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1038_s41586_024_07744_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_11357988 proquest_miscellaneous_3083679068 proquest_journals_3104151007 pubmed_primary_39039241 crossref_primary_10_1038_s41586_024_07744_y crossref_citationtrail_10_1038_s41586_024_07744_y springer_journals_10_1038_s41586_024_07744_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-29 |
| PublicationDateYYYYMMDD | 2024-08-29 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Palmer, Stevens (CR9) 2019; 116 Whitaker, Kar (CR46) 2013; 141 Ruiz, Pulido, Miyoshi (CR37) 2013; 91 Wang, Yuval, O’Gorman (CR44) 2022; 14 Balaji (CR2) 2022; 119 Gneiting, Raftery (CR28) 2007; 102 CR39 Bauer, Thorpe, Brunet (CR1) 2015; 525 Sherwood, Bony, Dufresne (CR8) 2014; 505 Rasp, Lerch (CR48) 2018; 146 Arcomano, Szunyogh, Wikner, Hunt, Ott (CR25) 2023; 50 CR30 Gilleland, Ahijevych, Brown, Casati, Ebert (CR47) 2009; 24 Eyring (CR34) 2016; 9 Webb, Lambert, Gregory (CR7) 2013; 40 Fortin, Abaza, Anctil, Turcotte (CR29) 2014; 15 CR6 Bretherton (CR19) 2023; 50 CR49 Yuval, O’Gorman (CR23) 2020; 11 Daley (CR45) 1981; 19 Reichstein (CR20) 2019; 566 CR43 CR42 Zhou (CR15) 2019; 100 Kwa (CR24) 2023; 15 Gelbrecht, White, Bathiany, Boers (CR27) 2023; 16 CR40 Haimberger, Tavolato, Sperka (CR41) 2008; 21 Mitchell, Lo, Seviour, Haimberger, Polvani (CR35) 2020; 15 Lam (CR3) 2023; 382 Fischer, Beyerle, Knutti (CR10) 2013; 3 CR18 CR16 CR13 CR12 CR11 CR52 CR51 Bi (CR4) 2023; 619 Bourke (CR36) 1974; 102 CR50 Ullrich (CR33) 2021; 14 Weyn, Durran, Caruana (CR17) 2020; 12 Brenowitz, Bretherton (CR21) 2019; 11 Hersbach (CR14) 2020; 146 Schneider, Lan, Stuart, Teixeira (CR38) 2017; 44 Hourdin (CR5) 2017; 98 Stevens (CR32) 2019; 6 Han, Zhang, Wang (CR26) 2023; 15 Cheng (CR31) 2022; 49 Rasp, Pritchard, Gentine (CR22) 2018; 115 R Lam (7744_CR3) 2023; 382 L Zhou (7744_CR15) 2019; 100 T Palmer (7744_CR9) 2019; 116 T Gneiting (7744_CR28) 2007; 102 T Arcomano (7744_CR25) 2023; 50 K Bi (7744_CR4) 2023; 619 JA Weyn (7744_CR17) 2020; 12 W Bourke (7744_CR36) 1974; 102 K-Y Cheng (7744_CR31) 2022; 49 M Gelbrecht (7744_CR27) 2023; 16 V Balaji (7744_CR2) 2022; 119 P Bauer (7744_CR1) 2015; 525 7744_CR11 7744_CR12 CS Bretherton (7744_CR19) 2023; 50 R Daley (7744_CR45) 1981; 19 7744_CR51 T Schneider (7744_CR38) 2017; 44 7744_CR52 7744_CR50 ND Brenowitz (7744_CR21) 2019; 11 V Eyring (7744_CR34) 2016; 9 DM Mitchell (7744_CR35) 2020; 15 H Hersbach (7744_CR14) 2020; 146 7744_CR18 PA Ullrich (7744_CR33) 2021; 14 7744_CR16 7744_CR13 S Rasp (7744_CR48) 2018; 146 7744_CR42 MJ Webb (7744_CR7) 2013; 40 7744_CR43 7744_CR40 V Fortin (7744_CR29) 2014; 15 L Haimberger (7744_CR41) 2008; 21 E Gilleland (7744_CR47) 2009; 24 M Reichstein (7744_CR20) 2019; 566 JJ Ruiz (7744_CR37) 2013; 91 7744_CR6 EM Fischer (7744_CR10) 2013; 3 A Kwa (7744_CR24) 2023; 15 7744_CR49 Y Han (7744_CR26) 2023; 15 J Yuval (7744_CR23) 2020; 11 7744_CR30 SC Sherwood (7744_CR8) 2014; 505 S Rasp (7744_CR22) 2018; 115 P Wang (7744_CR44) 2022; 14 F Hourdin (7744_CR5) 2017; 98 JS Whitaker (7744_CR46) 2013; 141 B Stevens (7744_CR32) 2019; 6 7744_CR39 |
| References_xml | – volume: 12 start-page: e2020MS002109 year: 2020 ident: CR17 article-title: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2020MS002109 – ident: CR49 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 11 start-page: 2728 year: 2019 end-page: 2744 ident: CR21 article-title: Spatially extended tests of a neural network parametrization trained by coarse-graining publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001711 – volume: 141 start-page: 3426 year: 2013 end-page: 3434 ident: CR46 article-title: Implicit–explicit Runge–Kutta methods for fast–slow wave problems publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-13-00132.1 – volume: 505 start-page: 37 year: 2014 end-page: 42 ident: CR8 article-title: Spread in model climate sensitivity traced to atmospheric convective mixing publication-title: Nature doi: 10.1038/nature12829 – volume: 50 start-page: e2023GL104174 year: 2023 ident: CR19 article-title: Old dog, new trick: reservoir computing advances machine learning for climate modeling publication-title: Geophys. Res. Lett. doi: 10.1029/2023GL104174 – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: CR28 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001437 – volume: 16 start-page: 3123 year: 2023 end-page: 3135 ident: CR27 article-title: Differentiable programming for Earth system modeling publication-title: Geosci. Model Dev. doi: 10.5194/gmd-16-3123-2023 – volume: 50 start-page: e2022GL102649 year: 2023 ident: CR25 article-title: A hybrid atmospheric model incorporating machine learning can capture dynamical processes not captured by its physics-based component publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL102649 – volume: 14 start-page: e2022MS002984 year: 2022 ident: CR44 article-title: Non-local parameterization of atmospheric subgrid processes with neural networks publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS002984 – ident: CR42 – volume: 49 start-page: e2022GL099796 year: 2022 ident: CR31 article-title: Impact of warmer sea surface temperature on the global pattern of intense convection: insights from a global storm resolving model publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL099796 – volume: 15 start-page: 1040b4 year: 2020 ident: CR35 article-title: The vertical profile of recent tropical temperature trends: persistent model biases in the context of internal variability publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab9af7 – volume: 116 start-page: 24390 year: 2019 end-page: 24395 ident: CR9 article-title: The scientific challenge of understanding and estimating climate change publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1906691116 – volume: 102 start-page: 687 year: 1974 end-page: 701 ident: CR36 article-title: A multi-level spectral model. I. Formulation and hemispheric integrations publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2 – volume: 98 start-page: 589 year: 2017 end-page: 602 ident: CR5 article-title: The art and science of climate model tuning publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-15-00135.1 – volume: 100 start-page: 1225 year: 2019 end-page: 1243 ident: CR15 article-title: Toward convective-scale prediction within the next generation global prediction system publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-17-0246.1 – ident: CR50 – volume: 115 start-page: 9684 year: 2018 end-page: 9689 ident: CR22 article-title: Deep learning to represent subgrid processes in climate models publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1810286115 – ident: CR11 – volume: 11 year: 2020 ident: CR23 article-title: Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions publication-title: Nat. Commun. doi: 10.1038/s41467-020-17142-3 – volume: 146 start-page: 1999 year: 2020 end-page: 2049 ident: CR14 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 525 start-page: 47 year: 2015 end-page: 55 ident: CR1 article-title: The quiet revolution of numerical weather prediction publication-title: Nature doi: 10.1038/nature14956 – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: CR20 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 19 start-page: 450 year: 1981 end-page: 468 ident: CR45 article-title: Normal mode initialization publication-title: Rev. Geophys. doi: 10.1029/RG019i003p00450 – volume: 146 start-page: 3885 year: 2018 end-page: 3900 ident: CR48 article-title: Neural networks for postprocessing ensemble weather forecasts publication-title: Month. Weather Rev. doi: 10.1175/MWR-D-18-0187.1 – ident: CR18 – ident: CR43 – volume: 44 start-page: 12 year: 2017 end-page: 396 ident: CR38 article-title: Earth system modeling 2.0: a blueprint for models that learn from observations and targeted high-resolution simulations publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL076101 – volume: 619 start-page: 533 year: 2023 end-page: 538 ident: CR4 article-title: Accurate medium-range global weather forecasting with 3D neural networks publication-title: Nature doi: 10.1038/s41586-023-06185-3 – volume: 119 start-page: e2202075119 year: 2022 ident: CR2 article-title: Are general circulation models obsolete? publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2202075119 – ident: CR30 – volume: 15 start-page: e2022MS003400 year: 2023 ident: CR24 article-title: Machine-learned climate model corrections from a global storm-resolving model: performance across the annual cycle publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS003400 – ident: CR6 – ident: CR40 – volume: 382 start-page: 1416 year: 2023 end-page: 1421 ident: CR3 article-title: Learning skillful medium-range global weather forecasting publication-title: Science doi: 10.1126/science.adi2336 – volume: 6 start-page: 61 year: 2019 ident: CR32 article-title: DYAMOND: the dynamics of the atmospheric general circulation modeled on non-hydrostatic domains publication-title: Prog. Earth Planet. Sci. doi: 10.1186/s40645-019-0304-z – volume: 14 start-page: 5023 year: 2021 end-page: 5048 ident: CR33 article-title: TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets publication-title: Geosc. Model Dev. doi: 10.5194/gmd-14-5023-2021 – volume: 15 start-page: e2022MS003508 year: 2023 ident: CR26 article-title: An ensemble of neural networks for moist physics processes, its generalizability and stable integration publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS003508 – volume: 15 start-page: 1708 year: 2014 end-page: 1713 ident: CR29 article-title: Why should ensemble spread match the RMSE of the ensemble mean? publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-14-0008.1 – volume: 24 start-page: 1416 year: 2009 end-page: 1430 ident: CR47 article-title: Intercomparison of spatial forecast verification methods publication-title: Weather Forecast. doi: 10.1175/2009WAF2222269.1 – volume: 3 start-page: 1033 year: 2013 end-page: 1038 ident: CR10 article-title: Robust spatially aggregated projections of climate extremes publication-title: Nat. Clim. Change doi: 10.1038/nclimate2051 – volume: 40 start-page: 677 year: 2013 end-page: 707 ident: CR7 article-title: Origins of differences in climate sensitivity, forcing and feedback in climate models publication-title: Clim. Dyn. doi: 10.1007/s00382-012-1336-x – ident: CR52 – ident: CR13 – volume: 21 start-page: 4587 year: 2008 end-page: 4606 ident: CR41 article-title: Toward elimination of the warm bias in historic radiosonde temperature records—some new results from a comprehensive intercomparison of upper-air data publication-title: J. Clim. doi: 10.1175/2008JCLI1929.1 – volume: 9 start-page: 1937 year: 2016 end-page: 1958 ident: CR34 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 91 start-page: 79 year: 2013 end-page: 99 ident: CR37 article-title: Estimating model parameters with ensemble-based data assimilation: a review publication-title: J. Meteorol. Soc. Jpn Ser. II doi: 10.2151/jmsj.2013-201 – volume: 15 start-page: 1708 year: 2014 ident: 7744_CR29 publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-14-0008.1 – volume: 146 start-page: 1999 year: 2020 ident: 7744_CR14 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 14 start-page: 5023 year: 2021 ident: 7744_CR33 publication-title: Geosc. Model Dev. doi: 10.5194/gmd-14-5023-2021 – volume: 15 start-page: e2022MS003508 year: 2023 ident: 7744_CR26 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS003508 – ident: 7744_CR13 – volume: 116 start-page: 24390 year: 2019 ident: 7744_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1906691116 – volume: 11 year: 2020 ident: 7744_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17142-3 – volume: 49 start-page: e2022GL099796 year: 2022 ident: 7744_CR31 publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL099796 – volume: 9 start-page: 1937 year: 2016 ident: 7744_CR34 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – ident: 7744_CR51 doi: 10.5281/zenodo.11376143 – volume: 91 start-page: 79 year: 2013 ident: 7744_CR37 publication-title: J. Meteorol. Soc. Jpn Ser. II doi: 10.2151/jmsj.2013-201 – ident: 7744_CR6 doi: 10.1029/2005GL023851 – volume: 15 start-page: 1040b4 year: 2020 ident: 7744_CR35 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab9af7 – ident: 7744_CR52 doi: 10.5281/zenodo.11376271 – ident: 7744_CR42 – volume: 566 start-page: 195 year: 2019 ident: 7744_CR20 publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 24 start-page: 1416 year: 2009 ident: 7744_CR47 publication-title: Weather Forecast. doi: 10.1175/2009WAF2222269.1 – volume: 3 start-page: 1033 year: 2013 ident: 7744_CR10 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2051 – volume: 382 start-page: 1416 year: 2023 ident: 7744_CR3 publication-title: Science doi: 10.1126/science.adi2336 – ident: 7744_CR18 – volume: 15 start-page: e2022MS003400 year: 2023 ident: 7744_CR24 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS003400 – volume: 115 start-page: 9684 year: 2018 ident: 7744_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1810286115 – ident: 7744_CR49 – ident: 7744_CR11 doi: 10.1017/CBO9781139177245 – ident: 7744_CR12 doi: 10.1029/2023MS004019 – volume: 525 start-page: 47 year: 2015 ident: 7744_CR1 publication-title: Nature doi: 10.1038/nature14956 – volume: 21 start-page: 4587 year: 2008 ident: 7744_CR41 publication-title: J. Clim. doi: 10.1175/2008JCLI1929.1 – volume: 44 start-page: 12 year: 2017 ident: 7744_CR38 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL076101 – ident: 7744_CR30 – ident: 7744_CR43 doi: 10.1007/978-1-4419-6412-0 – volume: 141 start-page: 3426 year: 2013 ident: 7744_CR46 publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-13-00132.1 – ident: 7744_CR50 doi: 10.5281/zenodo.11376145 – volume: 505 start-page: 37 year: 2014 ident: 7744_CR8 publication-title: Nature doi: 10.1038/nature12829 – volume: 119 start-page: e2202075119 year: 2022 ident: 7744_CR2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2202075119 – volume: 98 start-page: 589 year: 2017 ident: 7744_CR5 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-15-00135.1 – volume: 11 start-page: 2728 year: 2019 ident: 7744_CR21 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001711 – volume: 102 start-page: 359 year: 2007 ident: 7744_CR28 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001437 – volume: 6 start-page: 61 year: 2019 ident: 7744_CR32 publication-title: Prog. Earth Planet. Sci. doi: 10.1186/s40645-019-0304-z – ident: 7744_CR40 – ident: 7744_CR39 doi: 10.5194/acp-24-7041-2024 – volume: 102 start-page: 687 year: 1974 ident: 7744_CR36 publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2 – volume: 100 start-page: 1225 year: 2019 ident: 7744_CR15 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-17-0246.1 – volume: 12 start-page: e2020MS002109 year: 2020 ident: 7744_CR17 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2020MS002109 – volume: 16 start-page: 3123 year: 2023 ident: 7744_CR27 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-16-3123-2023 – volume: 19 start-page: 450 year: 1981 ident: 7744_CR45 publication-title: Rev. Geophys. doi: 10.1029/RG019i003p00450 – volume: 619 start-page: 533 year: 2023 ident: 7744_CR4 publication-title: Nature doi: 10.1038/s41586-023-06185-3 – ident: 7744_CR16 doi: 10.1029/2023GL107377 – volume: 14 start-page: e2022MS002984 year: 2022 ident: 7744_CR44 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS002984 – volume: 40 start-page: 677 year: 2013 ident: 7744_CR7 publication-title: Clim. Dyn. doi: 10.1007/s00382-012-1336-x – volume: 50 start-page: e2022GL102649 year: 2023 ident: 7744_CR25 publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL102649 – volume: 146 start-page: 3885 year: 2018 ident: 7744_CR48 publication-title: Month. Weather Rev. doi: 10.1175/MWR-D-18-0187.1 – volume: 50 start-page: e2023GL104174 year: 2023 ident: 7744_CR19 publication-title: Geophys. Res. Lett. doi: 10.1029/2023GL104174 |
| SSID | ssj0005174 |
| Score | 2.7445397 |
| Snippet | General circulation models (GCMs) are the foundation of weather and climate prediction
1
,
2
. GCMs are physics-based simulators that combine a numerical... General circulation models (GCMs) are the foundation of weather and climate prediction 1,2 . GCMs are physics-based simulators that combine a numerical solver... General circulation models (GCMs) are the foundation of weather and climate prediction . GCMs are physics-based simulators that combine a numerical solver for... General circulation models (GCMs) are the foundation of weather and climate prediction1,2. GCMs are physics-based simulators that combine a numerical solver... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1060 |
| SubjectTerms | 639/705/1042 704/106/35/823 704/106/694/1108 Accuracy Atmospheric dynamics Bias Climate Climate and weather Climate models Climate prediction Cloud formation Cyclones Deep learning Ensemble forecasting Future climates General circulation models Humanities and Social Sciences Learning algorithms Machine learning Medium-range forecasting multidisciplinary Neural networks Performance evaluation Performance prediction Physics Precipitation Science Science (multidisciplinary) Sea surface temperature Simulators Solvers Surface temperature Tropical cyclones Variables Weather Weather forecasting |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED66lLLtYbTdL2_tUKEPG6uobZ1t-WGMdbSUwUIZK_TNSLKyBYKT1Qkl__10tuwsK4S-WpLtk-6kz7677wCOie9Du5OUp6Mo5qhyy1WmNM8wUZkodagjyh3-Pkwvr_HbTXKzBcMuF4bCKrs9sdmoy6mhf-SnDoa4s4Z8-p9nfzhVjSLvaldCQ_nSCuWnhmLsEWzHxIw1gO2z8-HVj1XQx3-8zD6NJhTytHa3lxSQizx0mAj5cv2ouoc_74dR9r7Up_B4Uc3U8k5NJv8cVxe78MzjTPalVYw92LLVPuw08Z6m3oc9b9M1e--Jpz88h5yYOtygX-0VZsa3xlf3Yk3FnJo5iMvuWtTIVFUyMxk7yGtfwPXF-c-vl9yXVuAGs2TOrRPVjLSQUmCCaLWJRtboNE9L6dYqVFLHqVGEqKwQRuhUliiUKFE5RKKMeAmDalrZ18AkGpEI1DbHEmWM0iao6bOJSCHiLA8g6maxMJ53nMpfTIrG_y1k0c584Wa-aGa-WAbwsR8za1k3NvY-6Ban8BZYFyt9CeCob3a2Qw4RVdnpwvUhFcjyMJUBvGrXsn-cyEMHHTEKQK6tct-BeLnXW6rx74afO4pEQjRwAZx0CrF6r01inPRK8wCp32yW-i08iRtdpiSbAxjMbxf20OGnuX7njeIvF9MT_g priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ7gEaM-oCBoEc2a-KCRhbY73W4fiYEQEwgPXoJPze52Ty9cCqF3Ieevd7bdq5wYgq_d2W53dybzNTPzDcAHz_dhyJNyOUpSjrpwXOfa8BwznYvKxCbxtcMnp_J4iF_Ps_NAk-NrYZbi90LtN-RglE-TRR4TUkE-fwSrMqMlBrA6PD07-H6bZrktJcolR6nyUCHz75cse6E70PJuhmQfJn0GT2b1lZ7f6Mnklic6et61NGpaAkOfgHKxN5uaPfvrL3rHh23yBawFQMoOOg1ahxVXb8DjNjHUNhuwHoy_YR8DQ_Wnl1B4Sg-a9KN7wuz42oY2YKxtrdMwwsLspoOXTNcVs5MxYWO3CcOjw29fjnnowcAt5tmUO_owOzJCKYEZojM2GTlrZCErRZcaa2VSabWHXk4IK4xUFQotKtQEXbQVWzCoL2v3GphCKzKBxhVYoUpRuQyN_7_y7BFpXkSQLO6ktIGg3PfJmJRtoFyosjunks6pbM-pnEfwuZ9z1dFz3Cu9s7jqMphqUxK-JUGfLBLB-36YjMxHTnTtLmck45UrL2KpInjVaUa_nChiwpiYRKCWdKYX8ATeyyP1-GdL5J0kIvN8cRHsLtTrz3fdt43dXgUfsOvt_xN_A0_TVhN9dc4ODKbXM_eWgNfUvAsW9xtU4h_W priority: 102 providerName: Unpaywall |
| Title | Neural general circulation models for weather and climate |
| URI | https://link.springer.com/article/10.1038/s41586-024-07744-y https://www.ncbi.nlm.nih.gov/pubmed/39039241 https://www.proquest.com/docview/3104151007 https://www.proquest.com/docview/3083679068 https://pubmed.ncbi.nlm.nih.gov/PMC11357988 https://doi.org/10.1038/s41586-024-07744-y |
| UnpaywallVersion | publishedVersion |
| Volume | 632 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: AFBBN dateStart: 20190103 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8FG dateStart: 19900104 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wVj3UNruo966oMEeNhYx2zrb8mMSmpbBQhkLZE9GkpUuENxSJ5T89zvZjtssULYXGVsn2dLdoZ_R6XcAHx3fh6aVlMfTIOSoUstVojRPMFKJyLWvA3d2-Psovhzjt0k02YHu-izMxv59Rd1d0hIjXaAscp-wCvLVLuxLMkyXr2AQDx4COv7iXG6OyFAvX7f72FyGtrDldohku0_6Ap4vi1u1ulfz-aOlaHgEhw2GZL1a6cewY4sTeFbFcpryBI4bfy3Zp4ZU-vNLSB0LBzW6rp8wM7szTeYuVmXDKRnBV3ZfI0KmipyZ-YzgrH0F4-H5z8Elb9ImcINJtOCWhmqmWkgpMEK02gRTa3ScxrkkPfhK6jA2yqElK4QROpY5CiVyVIQ2lBGvYa-4KewpMIlGRAK1TTFHGaK0EWr3S-QIH8Ik9SBYz2JmGk5xl9pinlV720Jm9cxnNPNZNfPZyoMvbZvbmlHjSemztXKyxrvKjCApCbr4Dg8-tNXkF26zQxX2ZkkyzgSS1I-lB29qXbavE6lPsBADD-SGllsBx7m9WVPMflfc20EgIkfx5kF3bRAP3_XUMLqt0fzDqN_-X-_v4CCsbNsdqDmDvcXd0r4nrLTQHdhNJgmVchC4cnjRgf3esN8f0bV_Prr60amciO7Go6verz_svA7h |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIbTxgNj4CgwwEkggZi2JL4nzgBACpo59PG1S3zLbcVmlKi1Lq6r_FH8j53yVMqniZa-Jk9jnO9_PufPvAN46vg9NnpTHgyDkqFLLVaI0TzBSici1rwN3dvj0LO5d4I9-1N-A3-1ZGJdW2a6J1UKdj437R35AMIR8jYvpf5784q5qlIuutiU0arU4tos5bdnKT0ffaH7fheHh9_OvPd5UFeAGk2jKbSRjM9BCSoERotUmGFij4zTOJXXTV1KHsVEOTFghjNCxzFEokaMiZ6yMoPfegbsoaC0h-0n6yTKl5B_W5-aQji_kQUmdly7dF7lPiAv5YtUR3kC3N5M0u0jtfdiaFRO1mKvR6C9nePgQHjQoln2p1W4HNmyxC_eqbFJT7sJOs2KU7H1Da_3hEaSOB4Qe-llfYWZ4bZraYayqx1MyAtBsXmNSpoqcmdGQALV9DBe3IuInsFmMC_sMmEQjIoHappijDFHaCLXblDnKiTBJPQhaKWamYTV3xTVGWRVdFzKrJZ-R5LNK8tnCg4_dM5Oa02Nt6712crLGvstsqY0evOluk2W6cIsq7HhGbZwKJKkfSw-e1nPZfU6kPgFTDDyQK7PcNXCs36t3iuFVxf4dBCJyJHMe7LcKsezXumHsd0rzH6N-vn7Ur2Grd356kp0cnR2_gO2w0mt3nGcPNqfXM_uSkNpUv6rMg8HlbdvjH2UbSwk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIX49IDYGZAwwEkigzVoSO4nzgBBiVBuDiQcm9S3YjguVqrQsrar-a_vrODtOSplU8bLXxE7i853vc3z3HcAry_eh0JPSdBDFlMvcUJlJRTOeyIyVKlSRzR3-epYen_PP_aS_AZdtLowNq2zXRLdQl2Nt_5EfIgxBX-PS3gY-LOLbUe_95De1FaTsSWtbTqNRkVOzmOP2rX53coRz_TqOe5--fzymvsIA1TxLptQkItUDxYRgPOHcKB0NjFZpnpYCPzmUQsWplhZYGMY0U6koOZOs5BIds9QMn3sDbmaM5TacMOtny_CSfxigfcJOyMRhjQMRNvSX0xDRF6eLVad4BeleDdjsTm3vwZ1ZNZGLuRyN_nKMvQdw3yNa8qFRwS3YMNU23HKRpbrehi2_etTkjae4fvsQcssJgp1-NleIHl5oX0eMuNo8NUEwTeYNPiWyKokeDRFcmx04vxYRP4LNalyZJ0AE1yxhXJmcl1zEXJiEK7tBs_QTcZYHELVSLLRnOLeFNkaFO2lnomgkX6DkCyf5YhHAftdn0vB7rG29105O4W29LpaaGcDL7jZaqT16kZUZz7CNVYEsD1MRwONmLrvXsTxEkMqjAMTKLHcNLAP46p1q-MsxgUcRSyzhXAAHrUIsv2vdMA46pfmPUe-uH_ULuI2WWHw5OTt9Cndjp9Y2s2cPNqcXM_MMQdtUPXfWQeDHdZvjHz5fT0w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ7gEaM-oCBoEc2a-KCRhbY73W4fiYEQEwgPXoJPze52Ty9cCqF3Ieevd7bdq5wYgq_d2W53dybzNTPzDcAHz_dhyJNyOUpSjrpwXOfa8BwznYvKxCbxtcMnp_J4iF_Ps_NAk-NrYZbi90LtN-RglE-TRR4TUkE-fwSrMqMlBrA6PD07-H6bZrktJcolR6nyUCHz75cse6E70PJuhmQfJn0GT2b1lZ7f6Mnklic6et61NGpaAkOfgHKxN5uaPfvrL3rHh23yBawFQMoOOg1ahxVXb8DjNjHUNhuwHoy_YR8DQ_Wnl1B4Sg-a9KN7wuz42oY2YKxtrdMwwsLspoOXTNcVs5MxYWO3CcOjw29fjnnowcAt5tmUO_owOzJCKYEZojM2GTlrZCErRZcaa2VSabWHXk4IK4xUFQotKtQEXbQVWzCoL2v3GphCKzKBxhVYoUpRuQyN_7_y7BFpXkSQLO6ktIGg3PfJmJRtoFyosjunks6pbM-pnEfwuZ9z1dFz3Cu9s7jqMphqUxK-JUGfLBLB-36YjMxHTnTtLmck45UrL2KpInjVaUa_nChiwpiYRKCWdKYX8ATeyyP1-GdL5J0kIvN8cRHsLtTrz3fdt43dXgUfsOvt_xN_A0_TVhN9dc4ODKbXM_eWgNfUvAsW9xtU4h_W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+general+circulation+models+for+weather+and+climate&rft.jtitle=Nature+%28London%29&rft.au=Kochkov%2C+Dmitrii&rft.au=Yuval%2C+Janni&rft.au=Langmore%2C+Ian&rft.au=Norgaard%2C+Peter&rft.date=2024-08-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=632&rft.issue=8027&rft.spage=1060&rft.epage=1066&rft_id=info:doi/10.1038%2Fs41586-024-07744-y&rft.externalDocID=10_1038_s41586_024_07744_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |