Electromyography Based Gesture Decoding Employing Few-Shot Learning, Transfer Learning, and Training From Scratch
Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands. However, the performance of EMG-based frameworks can be affected by: i) the onset of fatigue due to long data collection sessions, ii) musculos...
Saved in:
| Published in | IEEE access Vol. 11; pp. 104142 - 104154 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2023.3317956 |
Cover
| Abstract | Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands. However, the performance of EMG-based frameworks can be affected by: i) the onset of fatigue due to long data collection sessions, ii) musculoskeletal differences between individuals, and iii) sensor position drifting between different sessions with the same user. To evaluate these aspects, in this work, we compare the performance of EMG-based hand gesture decoding models developed using three approaches. This comparison allows for future works in EMG-based Human-Machine Interfaces development to make more informed ML decisions. First, we trained from scratch a Transformer-based architecture, called Temporal Multi-Channel Vision Transformer (TMC-ViT). For our second approach, we utilized a pre-trained and fine-tuned TMC-ViT model (a transfer learning approach). Finally, for our third approach, we developed a Prototypical Network (a few-shot learning approach). The models are trained in a subject-specific and subject-generic manner for eight subjects and validated employing the 10-fold cross-validation procedure. This study shows that training a deep learning decoding model from scratch in a subject-specific manner leads to higher decoding accuracies when a larger dataset is available. For smaller datasets, subject-generic models, or inter-session models, the few-shot learning approach produces more robust results with better performance, and is more suited to applications where long data collection scenarios are not possible, or where multiple users are intended for the interface. Our findings show that the few-shot learning approach can outperform training a model from scratch in different scenarios. |
|---|---|
| AbstractList | Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands. However, the performance of EMG-based frameworks can be affected by: i) the onset of fatigue due to long data collection sessions, ii) musculoskeletal differences between individuals, and iii) sensor position drifting between different sessions with the same user. To evaluate these aspects, in this work, we compare the performance of EMG-based hand gesture decoding models developed using three approaches. This comparison allows for future works in EMG-based Human-Machine Interfaces development to make more informed ML decisions. First, we trained from scratch a Transformer-based architecture, called Temporal Multi-Channel Vision Transformer (TMC-ViT). For our second approach, we utilized a pre-trained and fine-tuned TMC-ViT model (a transfer learning approach). Finally, for our third approach, we developed a Prototypical Network (a few-shot learning approach). The models are trained in a subject-specific and subject-generic manner for eight subjects and validated employing the 10-fold cross-validation procedure. This study shows that training a deep learning decoding model from scratch in a subject-specific manner leads to higher decoding accuracies when a larger dataset is available. For smaller datasets, subject-generic models, or inter-session models, the few-shot learning approach produces more robust results with better performance, and is more suited to applications where long data collection scenarios are not possible, or where multiple users are intended for the interface. Our findings show that the few-shot learning approach can outperform training a model from scratch in different scenarios. |
| Author | Guan, Bonnie Liarokapis, Minas Dwivedi, Anany Sanches, Felipe Godoy, Ricardo V. |
| Author_xml | – sequence: 1 givenname: Ricardo V. orcidid: 0000-0002-5323-9299 surname: Godoy fullname: Godoy, Ricardo V. email: rdeg264@aucklanduni.ac.nz organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand – sequence: 2 givenname: Bonnie surname: Guan fullname: Guan, Bonnie organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand – sequence: 3 givenname: Felipe surname: Sanches fullname: Sanches, Felipe organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand – sequence: 4 givenname: Anany orcidid: 0000-0003-3262-6676 surname: Dwivedi fullname: Dwivedi, Anany organization: Artificial Intelligence (AI) Institute, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand – sequence: 5 givenname: Minas orcidid: 0000-0002-6016-1477 surname: Liarokapis fullname: Liarokapis, Minas organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand |
| BookMark | eNqFkUtv2zAQhIUiBZqm-QXtQUCvlSu-JPKYOs4DMJCD0zOxpla2DJlUSBqB_n3oKCiM9BBeSAx2vgF3vmZn1lnMsu-knBFSqt9X8_litZrRkrIZY6RWovqUnVNSqYIJVp2dvL9klyHsynRkkkR9nj0tejTRu_3oNh6G7Zj_gYBNfoshHjzm12hc09lNvtgPvRuPrxt8LlZbF_MlgrdJ-ZU_erChRX8igW2OcmdfLSkgXxkP0Wy_ZZ9b6ANevt0X2d-bxeP8rlg-3N7Pr5aF4bWIBXJVc9XQkgBwBs26bgRBLnmJXFRrbgQ1pC2JMLVqCeOiUapCMChZKwkj7CK7n7iNg50efLcHP2oHnX4VnN9o8LEzPWpDKaeywrVpOSdVk2JbKQWpU6ZsUSUWn1gHO8D4DH3_D0hKfWxBgzEYgj62oN9aSLafk23w7umQNqp37uBt-rWmsqZcyIrWaYpNU8a7EDy2_7Gnht-z1TuX6SLEztmYtt5_4P0xeTtEPEmjQtKKsxcOZbRR |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102697 crossref_primary_10_1109_TIFS_2024_3396624 crossref_primary_10_1109_ACCESS_2024_3508799 crossref_primary_10_14326_abe_13_363 |
| Cites_doi | 10.1109/BIOROB.2018.8487222 10.1109/EMBC.2018.8512624 10.1007/s00422-008-0278-1 10.1002/0471678384 10.1016/j.clinbiomech.2014.04.003 10.1109/JBHI.2020.3009383 10.1109/10.914793 10.1145/1753326.1753451 10.3390/ijgi10100653 10.1103/PRXEnergy.1.033005 10.1109/LRA.2022.3192623 10.1371/journal.pone.0160817 10.1109/TSMCB.2012.2185843 10.1109/TNSRE.2022.3196622 10.1098/rspb.1938.0050 10.1109/NEWCAS52662.2022.9901391 10.1109/IROS.2011.6048503 10.1016/j.patrec.2019.07.021 10.1109/NER.2017.8008285 10.1016/j.apmr.2007.11.005 10.1302/2058-5241.5.180038 10.1109/TOH.2013.6 10.1109/TNSRE.2021.3077413 10.1109/IROS.2011.6094739 10.1109/TNSRE.2019.2896269 10.1016/j.bspc.2007.07.009 10.1109/ACCESS.2022.3206436 10.3389/fnins.2022.977328 10.1109/EMBC46164.2021.9630998 10.1109/TNSRE.2019.2936622 10.1038/s41598-022-25982-w 10.1007/s40435-021-00836-x 10.1109/AIEA53260.2021.00069 10.1103/PhysRevApplied.19.034030 10.1109/TRO.2009.2039378 10.1109/ACII.2017.8273651 10.3390/s22176319 10.3390/s22051941 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2023.3317956 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 104154 |
| ExternalDocumentID | oai_doaj_org_article_c224286ebcf4416d9d2f885177d58fe9 10.1109/access.2023.3317956 10_1109_ACCESS_2023_3317956 10258264 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-e49749d201aa43adb7d51e4840e456b4c52c1f015c79f1345d996eace83f81313 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:40 EDT 2025 Sun Oct 26 04:10:07 EDT 2025 Mon Jun 30 15:20:10 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Wed Oct 01 04:51:58 EDT 2025 Wed Aug 27 02:49:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-e49749d201aa43adb7d51e4840e456b4c52c1f015c79f1345d996eace83f81313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5323-9299 0000-0003-3262-6676 0000-0002-6016-1477 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10258264 |
| PQID | 2872458627 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c224286ebcf4416d9d2f885177d58fe9 unpaywall_primary_10_1109_access_2023_3317956 ieee_primary_10258264 proquest_journals_2872458627 crossref_citationtrail_10_1109_ACCESS_2023_3317956 crossref_primary_10_1109_ACCESS_2023_3317956 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref15 ref37 ref36 ro?ca (ref2) 2021; 12 ref30 ref11 ref33 dosovitskiy (ref14) 2020 ref10 ref32 ioffe (ref43) 2015 ref17 ref39 ref16 ref38 ref19 ref18 kingma (ref47) 2015 snell (ref46) 2017 snell (ref34) 2017 ref24 ref23 ref26 ref48 ref25 srivastava (ref45) 2014; 15 ref20 ref42 ref41 ref22 ref44 ref21 ref28 ref27 atzori (ref31) 2014; 1 ref29 vaswani (ref13) 2017 ref8 ref7 dwivedi (ref1) 2021 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref35 doi: 10.1109/BIOROB.2018.8487222 – ident: ref6 doi: 10.1109/EMBC.2018.8512624 – year: 2020 ident: ref14 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv 2010 11929 – volume: 15 start-page: 1929 year: 2014 ident: ref45 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref7 doi: 10.1007/s00422-008-0278-1 – ident: ref39 doi: 10.1002/0471678384 – year: 2021 ident: ref1 article-title: Analysis, development, and evaluation of muscle machine interfaces for the intuitive control of robotic devices – ident: ref9 doi: 10.1016/j.clinbiomech.2014.04.003 – ident: ref29 doi: 10.1109/JBHI.2020.3009383 – ident: ref42 doi: 10.1109/10.914793 – ident: ref24 doi: 10.1145/1753326.1753451 – ident: ref27 doi: 10.3390/ijgi10100653 – ident: ref15 doi: 10.1103/PRXEnergy.1.033005 – ident: ref26 doi: 10.1109/LRA.2022.3192623 – start-page: 448 year: 2015 ident: ref43 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.1371/journal.pone.0160817 – ident: ref22 doi: 10.1109/TSMCB.2012.2185843 – ident: ref20 doi: 10.1109/TNSRE.2022.3196622 – ident: ref12 doi: 10.1098/rspb.1938.0050 – year: 2017 ident: ref34 article-title: Prototypical networks for few-shot learning publication-title: arXiv 1703 05175 – ident: ref33 doi: 10.1109/NEWCAS52662.2022.9901391 – ident: ref8 doi: 10.1109/IROS.2011.6048503 – ident: ref25 doi: 10.1016/j.patrec.2019.07.021 – ident: ref44 doi: 10.1109/NER.2017.8008285 – ident: ref3 doi: 10.1016/j.apmr.2007.11.005 – ident: ref4 doi: 10.1302/2058-5241.5.180038 – ident: ref40 doi: 10.1109/TOH.2013.6 – volume: 1 start-page: 1 year: 2014 ident: ref31 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Data Science Journal – volume: 12 year: 2021 ident: ref2 article-title: Psychological consequences in patients with amputation of a limb. An interpretative-phenomenological analysis publication-title: Frontier in Psychology – ident: ref32 doi: 10.1109/TNSRE.2021.3077413 – ident: ref5 doi: 10.1109/IROS.2011.6094739 – ident: ref28 doi: 10.1109/TNSRE.2019.2896269 – ident: ref41 doi: 10.1016/j.bspc.2007.07.009 – ident: ref19 doi: 10.1109/ACCESS.2022.3206436 – ident: ref30 doi: 10.3389/fnins.2022.977328 – ident: ref37 doi: 10.1109/EMBC46164.2021.9630998 – ident: ref36 doi: 10.1109/TNSRE.2019.2936622 – ident: ref48 doi: 10.1038/s41598-022-25982-w – start-page: 1 year: 2017 ident: ref13 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.1007/s40435-021-00836-x – ident: ref18 doi: 10.1109/AIEA53260.2021.00069 – ident: ref16 doi: 10.1103/PhysRevApplied.19.034030 – start-page: 1 year: 2017 ident: ref46 article-title: Prototypical networks for few-shot learning publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2015 ident: ref47 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Represent – ident: ref21 doi: 10.1109/TRO.2009.2039378 – ident: ref11 doi: 10.1109/ACII.2017.8273651 – ident: ref10 doi: 10.3390/s22176319 – ident: ref38 doi: 10.3390/s22051941 |
| SSID | ssj0000816957 |
| Score | 2.3185456 |
| Snippet | Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands.... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104142 |
| SubjectTerms | Data collection Data models Datasets Decoding Deep learning Electromyography few-shot learning gesture decoding Gesture recognition Machine learning Man-machine interfaces Position sensing Prostheses Training Transfer learning Transformers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQF-AwDdaJbDD5wLGBOP6R-Eg7CkJilw6Jm-X4Bxy6AF0rxH_Ps-NWqSaxC7fISmznvWe_90XO9yF0IhonvIAFKFglc9bIMpfc0ZxRYy3n2tB42v3ml7i6Zdd3_K4n9RXOhHX0wJ3hzgzkmLIWrjEeMrew0pa-DoLyleW1d_HXvaKWPTAV9-CaCMmrRDNECnl2Ph7DG50GtfBTCklTBsnqXiqKjP1JYmWj2txZtk_69UXPZr3EM_mMPqWKEZ93M91HW649QHs9HsEv6PmiE7P585oIqPEIkpPFl9D1cu7wT8CYIUfhTt83XE3cSz59eFzgRLB6P8QxbXk37zXp1obmKCKBJzAAnhoIGfMwQLeTi9_jqzxpKeSGVXyROwbAAWxXEK0Z1bYB8xHHAN45KKEaZnhpiIfawFTSE8q4BSAEm7Krqa8JJfQr2m4fW3eIcGUC5x6xjooCPMKaiumitB6igcrCygyVK7Mqk4jGg97FTEXAUUjV-UIFX6jkiwwN1w89dTwb798-Cv5a3xpIsmMDhI5KoaP-FzoZGgRv98YrOaAtlqGjlftVWtF_FSDLknHAf1WG8nVI_DNXHWUuN-b67SPm-h3thj67jz9HaHsxX7pjKIcWzY8Y-W_8YQJV priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA7t-lD60Itauq0tefDRbGcml5k8rlu3UlAEXdCnkMmlgtvRrrOI_fU9ycRltoK0b0NIyElyMuc7JPk-hHZF7YQXsAEFKyVhtSyI5I4SRo21nGtD4233o2NxOGPfz_l54tkOb2H65_d5Jr_oKBs4CiLfIwqxDuD8c7QhOADvAdqYHZ-ML4J8XC4kofEg8uMTLddiT6ToT5oqa_DyxbK50fd3ej7vRZrp6-4J920kKAwXTK5Gy7Yemd9_0Tf-4yDeoFcJceJx5yJv0TPXbKKXPR7CLfTroBPD-XmfCKzxPgQ3i7-BpcuFw18hRw0xDnf6wOFr6u7I6eV1ixNB6489HMOed4tekW5sKI4iFHgKHeBTAy5nLrfRbHpwNjkkSYuBGFbyljgGiYe0ABe0ZlTburQ8dwzSQwcQrGaGFyb3gC1MKX1OGbeQSMFP3VXUVznN6Ts0aK4b9x7h0gTOvtw6KjKAg6wumc4K68GbqMysHKLiYZWUSUTlQS9jrmLCkkk1nkzAO1WYT5Xmc4j2Vo1uOp6Op6vvh-VfVQ0k27EAlk2lPasMwJuiEq42HkCjsDB8XwFCLWHslXdg6HZwnl5_BYdsjQ3RzoM3qfRHuFWQmRaMQ_5YDhFZedgjWztXWbP1w3_W30GDdrF0nwAstfXntEn-AJAvDMA priority: 102 providerName: Unpaywall |
| Title | Electromyography Based Gesture Decoding Employing Few-Shot Learning, Transfer Learning, and Training From Scratch |
| URI | https://ieeexplore.ieee.org/document/10258264 https://www.proquest.com/docview/2872458627 https://doi.org/10.1109/access.2023.3317956 https://doaj.org/article/c224286ebcf4416d9d2f885177d58fe9 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoOQCH8lXElnblA8cmJLEdx8ft0qVCYoVUVionK7EnrcSSLUuiqvx6xo53lVKBuEWWI48148wbx36PkLd5BXmd4wLMuVQRr1QWKQEs4sxYK0RpmD_t_mmeny34xwtxES6r-7swAOAPn0HsHv2_fLsyndsqwxWeCYTDfIfsyCLvL2ttN1ScgoQSMjALpYl6N5lOcRKxEwiPGeZJ5VSqB9nHk_QHVZU7APNR11yXtzflcjnINbOnZL6xsj9i8i3u2io2v_4gcPzvaTwjewF10kkfJs_JA2hekCcDLsKX5MdpL4jz_TaQWNMTTHCWfkBbuzXQ91inujxHe41g9zSDm-j8atXSQNJ6eUx96qthPWgqG-uavRAFneEA9Nxg2JmrfbKYnX6ZnkVBjyEyXIo2Ao7Fh7IIGcqSs9JW0ooUOJaIgDCs4kZkJq0RXxip6pRxYbGYwg87FKwuUpayV2S3WTXwmlBpHG9faoHlCUJCXkleJpmtMaKYSqwakWzjJ20CWbnTzFhqX7QkSvfO1c65Ojh3RI63L133XB3_7n7iAmDb1RFt-wZ0lg7rVhuEOFmRQ2VqBI65xenXBaJUiXMvakBD952DB-P1vh2Rw0086fBV-KmxOs24wBpSjki0jbF7tpZeKvOOrQd_GeYNeey69XtCh2S3XXdwhCiprcZ-d2Hs18iYPFzMP0--_gY8vg8L |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHAoHykcRSwv4wLEJSWwn8bHddlmg3UtbqTcrscetxJItS6Kq_PqOHe8qBYG4RVYsjzXjzBvHfo-QD3kNuc1xAea8kBGvZRZJASziTBsjRKWZP-1-Msun5_zLhbgIl9X9XRgA8IfPIHaP_l--WejObZXhCs8EwmH-kDwSnHPRX9dab6k4DQkpisAtlCby4_54jNOInUR4zDBTSqdTPcg_nqY_6Krcg5ibXXNd3d5U8_kg20y2yGxlZ3_I5FvctXWsf_1G4fjfE3lGngbcSff7QHlOHkDzgjwZsBG-JD-Oekmc77eBxpoeYIoz9BPa2i2BHmKl6jId7VWC3dMEbqLTq0VLA03r5R71yc_CctBUNcY1eykKOsEB6KnGwNNX2-R8cnQ2nkZBkSHSvBBtBBzLD2kQNFQVZ5WpCyNS4FgkAgKxmmuR6dQiwtCFtCnjwmA5hZ92KJktU5ayV2SjWTTwmtBCO-a-1ADLEwSFvC54lWTGYkwxmRg5ItnKT0oHunKnmjFXvmxJpOqdq5xzVXDuiOytO133bB3_fv3ABcD6VUe17RvQWSqsXKUR5GRlDrW2CB1zg9O3JeLUAudeWkBDt52DB-P1vh2R3VU8qfBd-KmwPs24wCqyGJFoHWN_2Fp5scx7tr75yzDvyeb07ORYHX-efd0hj12Xfodol2y0yw7eImZq63d-pdwBqscPsw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA7t-lD60Itauq0tefDRbGcml5k8rlu3UlAEXdCnkMmlgtvRrrOI_fU9ycRltoK0b0NIyElyMuc7JPk-hHZF7YQXsAEFKyVhtSyI5I4SRo21nGtD4233o2NxOGPfz_l54tkOb2H65_d5Jr_oKBs4CiLfIwqxDuD8c7QhOADvAdqYHZ-ML4J8XC4kofEg8uMTLddiT6ToT5oqa_DyxbK50fd3ej7vRZrp6-4J920kKAwXTK5Gy7Yemd9_0Tf-4yDeoFcJceJx5yJv0TPXbKKXPR7CLfTroBPD-XmfCKzxPgQ3i7-BpcuFw18hRw0xDnf6wOFr6u7I6eV1ixNB6489HMOed4tekW5sKI4iFHgKHeBTAy5nLrfRbHpwNjkkSYuBGFbyljgGiYe0ABe0ZlTburQ8dwzSQwcQrGaGFyb3gC1MKX1OGbeQSMFP3VXUVznN6Ts0aK4b9x7h0gTOvtw6KjKAg6wumc4K68GbqMysHKLiYZWUSUTlQS9jrmLCkkk1nkzAO1WYT5Xmc4j2Vo1uOp6Op6vvh-VfVQ0k27EAlk2lPasMwJuiEq42HkCjsDB8XwFCLWHslXdg6HZwnl5_BYdsjQ3RzoM3qfRHuFWQmRaMQ_5YDhFZedgjWztXWbP1w3_W30GDdrF0nwAstfXntEn-AJAvDMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromyography+Based+Gesture+Decoding+Employing+Few-Shot+Learning%2C+Transfer+Learning%2C+and+Training+From+Scratch&rft.jtitle=IEEE+access&rft.au=Godoy%2C+Ricardo+V.&rft.au=Guan%2C+Bonnie&rft.au=Sanches%2C+Felipe&rft.au=Dwivedi%2C+Anany&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=104142&rft.epage=104154&rft_id=info:doi/10.1109%2FACCESS.2023.3317956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3317956 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |