Electromyography Based Gesture Decoding Employing Few-Shot Learning, Transfer Learning, and Training From Scratch

Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands. However, the performance of EMG-based frameworks can be affected by: i) the onset of fatigue due to long data collection sessions, ii) musculos...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 104142 - 104154
Main Authors Godoy, Ricardo V., Guan, Bonnie, Sanches, Felipe, Dwivedi, Anany, Liarokapis, Minas
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3317956

Cover

Abstract Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands. However, the performance of EMG-based frameworks can be affected by: i) the onset of fatigue due to long data collection sessions, ii) musculoskeletal differences between individuals, and iii) sensor position drifting between different sessions with the same user. To evaluate these aspects, in this work, we compare the performance of EMG-based hand gesture decoding models developed using three approaches. This comparison allows for future works in EMG-based Human-Machine Interfaces development to make more informed ML decisions. First, we trained from scratch a Transformer-based architecture, called Temporal Multi-Channel Vision Transformer (TMC-ViT). For our second approach, we utilized a pre-trained and fine-tuned TMC-ViT model (a transfer learning approach). Finally, for our third approach, we developed a Prototypical Network (a few-shot learning approach). The models are trained in a subject-specific and subject-generic manner for eight subjects and validated employing the 10-fold cross-validation procedure. This study shows that training a deep learning decoding model from scratch in a subject-specific manner leads to higher decoding accuracies when a larger dataset is available. For smaller datasets, subject-generic models, or inter-session models, the few-shot learning approach produces more robust results with better performance, and is more suited to applications where long data collection scenarios are not possible, or where multiple users are intended for the interface. Our findings show that the few-shot learning approach can outperform training a model from scratch in different scenarios.
AbstractList Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands. However, the performance of EMG-based frameworks can be affected by: i) the onset of fatigue due to long data collection sessions, ii) musculoskeletal differences between individuals, and iii) sensor position drifting between different sessions with the same user. To evaluate these aspects, in this work, we compare the performance of EMG-based hand gesture decoding models developed using three approaches. This comparison allows for future works in EMG-based Human-Machine Interfaces development to make more informed ML decisions. First, we trained from scratch a Transformer-based architecture, called Temporal Multi-Channel Vision Transformer (TMC-ViT). For our second approach, we utilized a pre-trained and fine-tuned TMC-ViT model (a transfer learning approach). Finally, for our third approach, we developed a Prototypical Network (a few-shot learning approach). The models are trained in a subject-specific and subject-generic manner for eight subjects and validated employing the 10-fold cross-validation procedure. This study shows that training a deep learning decoding model from scratch in a subject-specific manner leads to higher decoding accuracies when a larger dataset is available. For smaller datasets, subject-generic models, or inter-session models, the few-shot learning approach produces more robust results with better performance, and is more suited to applications where long data collection scenarios are not possible, or where multiple users are intended for the interface. Our findings show that the few-shot learning approach can outperform training a model from scratch in different scenarios.
Author Guan, Bonnie
Liarokapis, Minas
Dwivedi, Anany
Sanches, Felipe
Godoy, Ricardo V.
Author_xml – sequence: 1
  givenname: Ricardo V.
  orcidid: 0000-0002-5323-9299
  surname: Godoy
  fullname: Godoy, Ricardo V.
  email: rdeg264@aucklanduni.ac.nz
  organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand
– sequence: 2
  givenname: Bonnie
  surname: Guan
  fullname: Guan, Bonnie
  organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand
– sequence: 3
  givenname: Felipe
  surname: Sanches
  fullname: Sanches, Felipe
  organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand
– sequence: 4
  givenname: Anany
  orcidid: 0000-0003-3262-6676
  surname: Dwivedi
  fullname: Dwivedi, Anany
  organization: Artificial Intelligence (AI) Institute, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
– sequence: 5
  givenname: Minas
  orcidid: 0000-0002-6016-1477
  surname: Liarokapis
  fullname: Liarokapis, Minas
  organization: Department of Mechanical and Mechatronics Engineering, New Dexterity Research Group, The University of Auckland, Auckland, New Zealand
BookMark eNqFkUtv2zAQhIUiBZqm-QXtQUCvlSu-JPKYOs4DMJCD0zOxpla2DJlUSBqB_n3oKCiM9BBeSAx2vgF3vmZn1lnMsu-knBFSqt9X8_litZrRkrIZY6RWovqUnVNSqYIJVp2dvL9klyHsynRkkkR9nj0tejTRu_3oNh6G7Zj_gYBNfoshHjzm12hc09lNvtgPvRuPrxt8LlZbF_MlgrdJ-ZU_erChRX8igW2OcmdfLSkgXxkP0Wy_ZZ9b6ANevt0X2d-bxeP8rlg-3N7Pr5aF4bWIBXJVc9XQkgBwBs26bgRBLnmJXFRrbgQ1pC2JMLVqCeOiUapCMChZKwkj7CK7n7iNg50efLcHP2oHnX4VnN9o8LEzPWpDKaeywrVpOSdVk2JbKQWpU6ZsUSUWn1gHO8D4DH3_D0hKfWxBgzEYgj62oN9aSLafk23w7umQNqp37uBt-rWmsqZcyIrWaYpNU8a7EDy2_7Gnht-z1TuX6SLEztmYtt5_4P0xeTtEPEmjQtKKsxcOZbRR
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_1109_TIFS_2024_3396624
crossref_primary_10_1109_ACCESS_2024_3508799
crossref_primary_10_14326_abe_13_363
Cites_doi 10.1109/BIOROB.2018.8487222
10.1109/EMBC.2018.8512624
10.1007/s00422-008-0278-1
10.1002/0471678384
10.1016/j.clinbiomech.2014.04.003
10.1109/JBHI.2020.3009383
10.1109/10.914793
10.1145/1753326.1753451
10.3390/ijgi10100653
10.1103/PRXEnergy.1.033005
10.1109/LRA.2022.3192623
10.1371/journal.pone.0160817
10.1109/TSMCB.2012.2185843
10.1109/TNSRE.2022.3196622
10.1098/rspb.1938.0050
10.1109/NEWCAS52662.2022.9901391
10.1109/IROS.2011.6048503
10.1016/j.patrec.2019.07.021
10.1109/NER.2017.8008285
10.1016/j.apmr.2007.11.005
10.1302/2058-5241.5.180038
10.1109/TOH.2013.6
10.1109/TNSRE.2021.3077413
10.1109/IROS.2011.6094739
10.1109/TNSRE.2019.2896269
10.1016/j.bspc.2007.07.009
10.1109/ACCESS.2022.3206436
10.3389/fnins.2022.977328
10.1109/EMBC46164.2021.9630998
10.1109/TNSRE.2019.2936622
10.1038/s41598-022-25982-w
10.1007/s40435-021-00836-x
10.1109/AIEA53260.2021.00069
10.1103/PhysRevApplied.19.034030
10.1109/TRO.2009.2039378
10.1109/ACII.2017.8273651
10.3390/s22176319
10.3390/s22051941
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2023.3317956
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 104154
ExternalDocumentID oai_doaj_org_article_c224286ebcf4416d9d2f885177d58fe9
10.1109/access.2023.3317956
10_1109_ACCESS_2023_3317956
10258264
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-e49749d201aa43adb7d51e4840e456b4c52c1f015c79f1345d996eace83f81313
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:40 EDT 2025
Sun Oct 26 04:10:07 EDT 2025
Mon Jun 30 15:20:10 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Wed Oct 01 04:51:58 EDT 2025
Wed Aug 27 02:49:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-e49749d201aa43adb7d51e4840e456b4c52c1f015c79f1345d996eace83f81313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5323-9299
0000-0003-3262-6676
0000-0002-6016-1477
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10258264
PQID 2872458627
PQPubID 4845423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c224286ebcf4416d9d2f885177d58fe9
unpaywall_primary_10_1109_access_2023_3317956
ieee_primary_10258264
proquest_journals_2872458627
crossref_citationtrail_10_1109_ACCESS_2023_3317956
crossref_primary_10_1109_ACCESS_2023_3317956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref15
ref37
ref36
ro?ca (ref2) 2021; 12
ref30
ref11
ref33
dosovitskiy (ref14) 2020
ref10
ref32
ioffe (ref43) 2015
ref17
ref39
ref16
ref38
ref19
ref18
kingma (ref47) 2015
snell (ref46) 2017
snell (ref34) 2017
ref24
ref23
ref26
ref48
ref25
srivastava (ref45) 2014; 15
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
atzori (ref31) 2014; 1
ref29
vaswani (ref13) 2017
ref8
ref7
dwivedi (ref1) 2021
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref35
  doi: 10.1109/BIOROB.2018.8487222
– ident: ref6
  doi: 10.1109/EMBC.2018.8512624
– year: 2020
  ident: ref14
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv 2010 11929
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref45
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1007/s00422-008-0278-1
– ident: ref39
  doi: 10.1002/0471678384
– year: 2021
  ident: ref1
  article-title: Analysis, development, and evaluation of muscle machine interfaces for the intuitive control of robotic devices
– ident: ref9
  doi: 10.1016/j.clinbiomech.2014.04.003
– ident: ref29
  doi: 10.1109/JBHI.2020.3009383
– ident: ref42
  doi: 10.1109/10.914793
– ident: ref24
  doi: 10.1145/1753326.1753451
– ident: ref27
  doi: 10.3390/ijgi10100653
– ident: ref15
  doi: 10.1103/PRXEnergy.1.033005
– ident: ref26
  doi: 10.1109/LRA.2022.3192623
– start-page: 448
  year: 2015
  ident: ref43
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– ident: ref23
  doi: 10.1371/journal.pone.0160817
– ident: ref22
  doi: 10.1109/TSMCB.2012.2185843
– ident: ref20
  doi: 10.1109/TNSRE.2022.3196622
– ident: ref12
  doi: 10.1098/rspb.1938.0050
– year: 2017
  ident: ref34
  article-title: Prototypical networks for few-shot learning
  publication-title: arXiv 1703 05175
– ident: ref33
  doi: 10.1109/NEWCAS52662.2022.9901391
– ident: ref8
  doi: 10.1109/IROS.2011.6048503
– ident: ref25
  doi: 10.1016/j.patrec.2019.07.021
– ident: ref44
  doi: 10.1109/NER.2017.8008285
– ident: ref3
  doi: 10.1016/j.apmr.2007.11.005
– ident: ref4
  doi: 10.1302/2058-5241.5.180038
– ident: ref40
  doi: 10.1109/TOH.2013.6
– volume: 1
  start-page: 1
  year: 2014
  ident: ref31
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Data Science Journal
– volume: 12
  year: 2021
  ident: ref2
  article-title: Psychological consequences in patients with amputation of a limb. An interpretative-phenomenological analysis
  publication-title: Frontier in Psychology
– ident: ref32
  doi: 10.1109/TNSRE.2021.3077413
– ident: ref5
  doi: 10.1109/IROS.2011.6094739
– ident: ref28
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref41
  doi: 10.1016/j.bspc.2007.07.009
– ident: ref19
  doi: 10.1109/ACCESS.2022.3206436
– ident: ref30
  doi: 10.3389/fnins.2022.977328
– ident: ref37
  doi: 10.1109/EMBC46164.2021.9630998
– ident: ref36
  doi: 10.1109/TNSRE.2019.2936622
– ident: ref48
  doi: 10.1038/s41598-022-25982-w
– start-page: 1
  year: 2017
  ident: ref13
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1007/s40435-021-00836-x
– ident: ref18
  doi: 10.1109/AIEA53260.2021.00069
– ident: ref16
  doi: 10.1103/PhysRevApplied.19.034030
– start-page: 1
  year: 2017
  ident: ref46
  article-title: Prototypical networks for few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2015
  ident: ref47
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref21
  doi: 10.1109/TRO.2009.2039378
– ident: ref11
  doi: 10.1109/ACII.2017.8273651
– ident: ref10
  doi: 10.3390/s22176319
– ident: ref38
  doi: 10.3390/s22051941
SSID ssj0000816957
Score 2.3185456
Snippet Over the last decade several machine learning (ML) based data-driven approaches have been used for Electromyography (EMG) based control of prosthetic hands....
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104142
SubjectTerms Data collection
Data models
Datasets
Decoding
Deep learning
Electromyography
few-shot learning
gesture decoding
Gesture recognition
Machine learning
Man-machine interfaces
Position sensing
Prostheses
Training
Transfer learning
Transformers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQF-AwDdaJbDD5wLGBOP6R-Eg7CkJilw6Jm-X4Bxy6AF0rxH_Ps-NWqSaxC7fISmznvWe_90XO9yF0IhonvIAFKFglc9bIMpfc0ZxRYy3n2tB42v3ml7i6Zdd3_K4n9RXOhHX0wJ3hzgzkmLIWrjEeMrew0pa-DoLyleW1d_HXvaKWPTAV9-CaCMmrRDNECnl2Ph7DG50GtfBTCklTBsnqXiqKjP1JYmWj2txZtk_69UXPZr3EM_mMPqWKEZ93M91HW649QHs9HsEv6PmiE7P585oIqPEIkpPFl9D1cu7wT8CYIUfhTt83XE3cSz59eFzgRLB6P8QxbXk37zXp1obmKCKBJzAAnhoIGfMwQLeTi9_jqzxpKeSGVXyROwbAAWxXEK0Z1bYB8xHHAN45KKEaZnhpiIfawFTSE8q4BSAEm7Krqa8JJfQr2m4fW3eIcGUC5x6xjooCPMKaiumitB6igcrCygyVK7Mqk4jGg97FTEXAUUjV-UIFX6jkiwwN1w89dTwb798-Cv5a3xpIsmMDhI5KoaP-FzoZGgRv98YrOaAtlqGjlftVWtF_FSDLknHAf1WG8nVI_DNXHWUuN-b67SPm-h3thj67jz9HaHsxX7pjKIcWzY8Y-W_8YQJV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA7t-lD60Itauq0tefDRbGcml5k8rlu3UlAEXdCnkMmlgtvRrrOI_fU9ycRltoK0b0NIyElyMuc7JPk-hHZF7YQXsAEFKyVhtSyI5I4SRo21nGtD4233o2NxOGPfz_l54tkOb2H65_d5Jr_oKBs4CiLfIwqxDuD8c7QhOADvAdqYHZ-ML4J8XC4kofEg8uMTLddiT6ToT5oqa_DyxbK50fd3ej7vRZrp6-4J920kKAwXTK5Gy7Yemd9_0Tf-4yDeoFcJceJx5yJv0TPXbKKXPR7CLfTroBPD-XmfCKzxPgQ3i7-BpcuFw18hRw0xDnf6wOFr6u7I6eV1ixNB6489HMOed4tekW5sKI4iFHgKHeBTAy5nLrfRbHpwNjkkSYuBGFbyljgGiYe0ABe0ZlTburQ8dwzSQwcQrGaGFyb3gC1MKX1OGbeQSMFP3VXUVznN6Ts0aK4b9x7h0gTOvtw6KjKAg6wumc4K68GbqMysHKLiYZWUSUTlQS9jrmLCkkk1nkzAO1WYT5Xmc4j2Vo1uOp6Op6vvh-VfVQ0k27EAlk2lPasMwJuiEq42HkCjsDB8XwFCLWHslXdg6HZwnl5_BYdsjQ3RzoM3qfRHuFWQmRaMQ_5YDhFZedgjWztXWbP1w3_W30GDdrF0nwAstfXntEn-AJAvDMA
  priority: 102
  providerName: Unpaywall
Title Electromyography Based Gesture Decoding Employing Few-Shot Learning, Transfer Learning, and Training From Scratch
URI https://ieeexplore.ieee.org/document/10258264
https://www.proquest.com/docview/2872458627
https://doi.org/10.1109/access.2023.3317956
https://doaj.org/article/c224286ebcf4416d9d2f885177d58fe9
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoOQCH8lXElnblA8cmJLEdx8ft0qVCYoVUVionK7EnrcSSLUuiqvx6xo53lVKBuEWWI48148wbx36PkLd5BXmd4wLMuVQRr1QWKQEs4sxYK0RpmD_t_mmeny34xwtxES6r-7swAOAPn0HsHv2_fLsyndsqwxWeCYTDfIfsyCLvL2ttN1ScgoQSMjALpYl6N5lOcRKxEwiPGeZJ5VSqB9nHk_QHVZU7APNR11yXtzflcjnINbOnZL6xsj9i8i3u2io2v_4gcPzvaTwjewF10kkfJs_JA2hekCcDLsKX5MdpL4jz_TaQWNMTTHCWfkBbuzXQ91inujxHe41g9zSDm-j8atXSQNJ6eUx96qthPWgqG-uavRAFneEA9Nxg2JmrfbKYnX6ZnkVBjyEyXIo2Ao7Fh7IIGcqSs9JW0ooUOJaIgDCs4kZkJq0RXxip6pRxYbGYwg87FKwuUpayV2S3WTXwmlBpHG9faoHlCUJCXkleJpmtMaKYSqwakWzjJ20CWbnTzFhqX7QkSvfO1c65Ojh3RI63L133XB3_7n7iAmDb1RFt-wZ0lg7rVhuEOFmRQ2VqBI65xenXBaJUiXMvakBD952DB-P1vh2Rw0086fBV-KmxOs24wBpSjki0jbF7tpZeKvOOrQd_GeYNeey69XtCh2S3XXdwhCiprcZ-d2Hs18iYPFzMP0--_gY8vg8L
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHAoHykcRSwv4wLEJSWwn8bHddlmg3UtbqTcrscetxJItS6Kq_PqOHe8qBYG4RVYsjzXjzBvHfo-QD3kNuc1xAea8kBGvZRZJASziTBsjRKWZP-1-Msun5_zLhbgIl9X9XRgA8IfPIHaP_l--WejObZXhCs8EwmH-kDwSnHPRX9dab6k4DQkpisAtlCby4_54jNOInUR4zDBTSqdTPcg_nqY_6Krcg5ibXXNd3d5U8_kg20y2yGxlZ3_I5FvctXWsf_1G4fjfE3lGngbcSff7QHlOHkDzgjwZsBG-JD-Oekmc77eBxpoeYIoz9BPa2i2BHmKl6jId7VWC3dMEbqLTq0VLA03r5R71yc_CctBUNcY1eykKOsEB6KnGwNNX2-R8cnQ2nkZBkSHSvBBtBBzLD2kQNFQVZ5WpCyNS4FgkAgKxmmuR6dQiwtCFtCnjwmA5hZ92KJktU5ayV2SjWTTwmtBCO-a-1ADLEwSFvC54lWTGYkwxmRg5ItnKT0oHunKnmjFXvmxJpOqdq5xzVXDuiOytO133bB3_fv3ABcD6VUe17RvQWSqsXKUR5GRlDrW2CB1zg9O3JeLUAudeWkBDt52DB-P1vh2R3VU8qfBd-KmwPs24wCqyGJFoHWN_2Fp5scx7tr75yzDvyeb07ORYHX-efd0hj12Xfodol2y0yw7eImZq63d-pdwBqscPsw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA7t-lD60Itauq0tefDRbGcml5k8rlu3UlAEXdCnkMmlgtvRrrOI_fU9ycRltoK0b0NIyElyMuc7JPk-hHZF7YQXsAEFKyVhtSyI5I4SRo21nGtD4233o2NxOGPfz_l54tkOb2H65_d5Jr_oKBs4CiLfIwqxDuD8c7QhOADvAdqYHZ-ML4J8XC4kofEg8uMTLddiT6ToT5oqa_DyxbK50fd3ej7vRZrp6-4J920kKAwXTK5Gy7Yemd9_0Tf-4yDeoFcJceJx5yJv0TPXbKKXPR7CLfTroBPD-XmfCKzxPgQ3i7-BpcuFw18hRw0xDnf6wOFr6u7I6eV1ixNB6489HMOed4tekW5sKI4iFHgKHeBTAy5nLrfRbHpwNjkkSYuBGFbyljgGiYe0ABe0ZlTburQ8dwzSQwcQrGaGFyb3gC1MKX1OGbeQSMFP3VXUVznN6Ts0aK4b9x7h0gTOvtw6KjKAg6wumc4K68GbqMysHKLiYZWUSUTlQS9jrmLCkkk1nkzAO1WYT5Xmc4j2Vo1uOp6Op6vvh-VfVQ0k27EAlk2lPasMwJuiEq42HkCjsDB8XwFCLWHslXdg6HZwnl5_BYdsjQ3RzoM3qfRHuFWQmRaMQ_5YDhFZedgjWztXWbP1w3_W30GDdrF0nwAstfXntEn-AJAvDMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromyography+Based+Gesture+Decoding+Employing+Few-Shot+Learning%2C+Transfer+Learning%2C+and+Training+From+Scratch&rft.jtitle=IEEE+access&rft.au=Godoy%2C+Ricardo+V.&rft.au=Guan%2C+Bonnie&rft.au=Sanches%2C+Felipe&rft.au=Dwivedi%2C+Anany&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=104142&rft.epage=104154&rft_id=info:doi/10.1109%2FACCESS.2023.3317956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3317956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon