Pectoral muscle removal in mammogram images: A novel approach for improved accuracy and efficiency
Purpose Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with exist...
Saved in:
| Published in | Cancer causes & control Vol. 35; no. 1; pp. 185 - 191 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.01.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-5243 1573-7225 1573-7225 |
| DOI | 10.1007/s10552-023-01781-0 |
Cover
| Abstract | Purpose
Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).
Methods
A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.
Results
Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra’s estimated error of 20.44%. This 40% gain in accuracy was statistically significant (
p
< 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).
Conclusion
We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field. |
|---|---|
| AbstractList | Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).
A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.
Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra's estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).
We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field. Purpose Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra). Methods A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine. Results Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra’s estimated error of 20.44%. This 40% gain in accuracy was statistically significant ( p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram). Conclusion We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field. Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).PURPOSEAccurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.METHODSA pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra's estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).RESULTSOur proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra's estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.CONCLUSIONWe present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field. PurposeAccurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).MethodsA pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.ResultsOur proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra’s estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).ConclusionWe present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field. |
| Author | Chen, Simin Jiang, Shu Bennett, Debbie L. Colditz, Graham A. |
| Author_xml | – sequence: 1 givenname: Simin orcidid: 0000-0003-1464-4838 surname: Chen fullname: Chen, Simin organization: Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine – sequence: 2 givenname: Debbie L. orcidid: 0000-0002-7307-0291 surname: Bennett fullname: Bennett, Debbie L. organization: Department of Radiology, Washington University School of Medicine – sequence: 3 givenname: Graham A. orcidid: 0000-0003-1898-0361 surname: Colditz fullname: Colditz, Graham A. email: colditzg@wustl.edu organization: Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine – sequence: 4 givenname: Shu surname: Jiang fullname: Jiang, Shu email: jiang.shu@wustl.edu organization: Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37676616$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URKeFP8ACWWLDJnDj54QNqipeUiVYwNpynJupq8QOdjLV_Hs8zFCgi4qVdXXPOTr38xk5CTEgIc9reF0D6De5BilZBYxXUOt1XcEjsqql5pVmTJ6QFTRSV5IJfkrOcr4BAKkYPCGnXCutVK1WpP2Kbo7JDnRcshuQJhzjtow-0NGOY9wkO1I_2g3mt_SChrjFgdppStG6a9rHVJZl2GJHrXNLsm5Hbego9r13HoPbPSWPeztkfHZ8z8n3D--_XX6qrr58_Hx5cVU5oeVcIXDdaa3BuQ5aLnsBTFgnuIa2cRw18E5ZjU7WPRO9sC23olVtWTq0suHnhB9ylzDZ3a0dBjOl0jztTA1mT8wciJlCzPwiZqC43h1c09KO2DkMc6Fx54zWm383wV-bTdyWQK2E0PuEV8eEFH8smGcz-uxwGGzAuGTD1ooxgEaxIn15T3oTlxQKFcMaaDjnksmievF3pbsuv3-tCNYHgUsx54S9cX62s4_7hn54-Fx2z_pfjI5kcxGHDaY_tR9w_QQWDMxq |
| CitedBy_id | crossref_primary_10_3390_jimaging10120331 crossref_primary_10_1200_CCI_24_00103 crossref_primary_10_1007_s10278_024_01364_8 crossref_primary_10_3390_diagnostics14192144 |
| Cites_doi | 10.1007/s11547-022-01521-5 10.1145/358669.358692 10.1186/bcr2778 10.1016/j.media.2019.06.007 10.1001/jamaoncol.2023.0434 10.1118/1.4736530 10.1016/S0031-3203(00)00023-6 10.1007/978-1-4842-4149-3_4 10.4103/0971-6203.58777 10.1093/biostatistics/kxab032 10.21203/rs.3.rs-838121/v1 10.1109/BHI.2019.8834599 10.1093/jncics/pky057 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TO 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH H94 K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s10552-023-01781-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Oncogenes and Growth Factors Abstracts |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-7225 |
| EndPage | 191 |
| ExternalDocumentID | 10.1007/s10552-023-01781-0 PMC10764470 37676616 10_1007_s10552_023_01781_0 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCI grantid: R37 CA256810; R37 CA256810 – fundername: NCI NIH HHS grantid: P30 CA091842 – fundername: NCI NIH HHS grantid: R37 CA256810 |
| GroupedDBID | --- -4W -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 199 1N0 1SB 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AACGO AAHNG AAIAL AAJBT AAJKR AANCE AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPLY ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEVLU AEXYK AEXZC AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQVQM ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DCCCD DDRTE DL5 DNIVK DOOOF DPUIP DU5 EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HGD HMCUK HMJXF HQ3 HQYDN HRMNR HTVGU HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST JZLTJ KDC KOV KOW KPH LAK LLZTM M1P M4Y MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S37 S3B SA0 SAP SBY SCLPG SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 WOW YLTOR Z45 Z7U Z7W Z81 Z82 Z83 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADQXQ AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7TO 7XB 8FK H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-e037d7770ccd0b35f4024ac4370b9c3e703d6a7ec51f24f4ab3a4b6bb9ccea593 |
| IEDL.DBID | AGYKE |
| ISSN | 0957-5243 1573-7225 |
| IngestDate | Sun Oct 26 04:13:38 EDT 2025 Tue Sep 30 17:10:24 EDT 2025 Thu Oct 02 05:48:10 EDT 2025 Fri Oct 03 08:21:40 EDT 2025 Mon Jul 21 02:03:13 EDT 2025 Wed Oct 01 03:41:46 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Fri Feb 21 02:40:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Breast evaluation Full-field digital mammography Pectoral muscle removal |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-e037d7770ccd0b35f4024ac4370b9c3e703d6a7ec51f24f4ab3a4b6bb9ccea593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1898-0361 0000-0002-7307-0291 0000-0003-1464-4838 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10552-023-01781-0 |
| PMID | 37676616 |
| PQID | 2909333525 |
| PQPubID | 31057 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1007_s10552_023_01781_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10764470 proquest_miscellaneous_2862200962 proquest_journals_2909333525 pubmed_primary_37676616 crossref_citationtrail_10_1007_s10552_023_01781_0 crossref_primary_10_1007_s10552_023_01781_0 springer_journals_10_1007_s10552_023_01781_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
| PublicationSubtitle | An International Journal of Studies of Cancer in Human Populations |
| PublicationTitle | Cancer causes & control |
| PublicationTitleAbbrev | Cancer Causes Control |
| PublicationTitleAlternate | Cancer Causes Control |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Keller, Nathan, Wang (CR3) 2012; 39 CR4 CR5 Stone, Ding, Warren, Duffy, Hopper (CR12) 2010; 12 Fischler, Bolles (CR11) 1981; 24 Sharma, Aggarwal (CR9) 2010; 35 CR14 CR13 Singh, Singh (CR6) 2019 CR10 Rampun, Lopez-Linares, Morrow (CR8) 2019; 57 Jiang, Bennett, Rosner, Colditz (CR1) 2023; 9 Sansone, Marrone, Di Salvio (CR2) 2022; 127 Ding, Goshtasby (CR7) 2001; 34 1781_CR10 MA Fischler (1781_CR11) 1981; 24 A Rampun (1781_CR8) 2019; 57 L Ding (1781_CR7) 2001; 34 H Singh (1781_CR6) 2019 S Jiang (1781_CR1) 2023; 9 J Stone (1781_CR12) 2010; 12 1781_CR5 1781_CR4 M Sansone (1781_CR2) 2022; 127 BM Keller (1781_CR3) 2012; 39 1781_CR14 N Sharma (1781_CR9) 2010; 35 1781_CR13 |
| References_xml | – volume: 127 start-page: 848 year: 2022 end-page: 856 ident: CR2 article-title: Comparison between two packages for pectoral muscle removal on mammographic images publication-title: Radiol Med (Torino) doi: 10.1007/s11547-022-01521-5 – volume: 24 start-page: 381 year: 1981 end-page: 395 ident: CR11 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun ACM doi: 10.1145/358669.358692 – volume: 12 start-page: R97 year: 2010 ident: CR12 article-title: Using mammographic density to predict breast cancer risk: dense area or percentage dense area publication-title: Breast Cancer Res doi: 10.1186/bcr2778 – ident: CR4 – ident: CR14 – volume: 57 start-page: 1 year: 2019 end-page: 17 ident: CR8 article-title: Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network publication-title: Med Image Anal doi: 10.1016/j.media.2019.06.007 – volume: 9 start-page: 808 year: 2023 end-page: 814 ident: CR1 article-title: Longitudinal analysis of change in mammographic density in each breast and its association with breast cancer risk publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2023.0434 – ident: CR13 – ident: CR10 – volume: 39 start-page: 4903 year: 2012 end-page: 4917 ident: CR3 article-title: Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation publication-title: Med Phys doi: 10.1118/1.4736530 – volume: 34 start-page: 721 year: 2001 end-page: 725 ident: CR7 article-title: On the Canny edge detector publication-title: Pattern Recogn doi: 10.1016/S0031-3203(00)00023-6 – ident: CR5 – start-page: 63 year: 2019 end-page: 88 ident: CR6 article-title: Advanced Image Processing Using OpenCV publication-title: Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python doi: 10.1007/978-1-4842-4149-3_4 – volume: 35 start-page: 3 year: 2010 end-page: 14 ident: CR9 article-title: Automated medical image segmentation techniques publication-title: J Med Phys doi: 10.4103/0971-6203.58777 – volume: 12 start-page: R97 year: 2010 ident: 1781_CR12 publication-title: Breast Cancer Res doi: 10.1186/bcr2778 – volume: 39 start-page: 4903 year: 2012 ident: 1781_CR3 publication-title: Med Phys doi: 10.1118/1.4736530 – volume: 9 start-page: 808 year: 2023 ident: 1781_CR1 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2023.0434 – volume: 127 start-page: 848 year: 2022 ident: 1781_CR2 publication-title: Radiol Med (Torino) doi: 10.1007/s11547-022-01521-5 – volume: 35 start-page: 3 year: 2010 ident: 1781_CR9 publication-title: J Med Phys doi: 10.4103/0971-6203.58777 – volume: 57 start-page: 1 year: 2019 ident: 1781_CR8 publication-title: Med Image Anal doi: 10.1016/j.media.2019.06.007 – start-page: 63 volume-title: Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python year: 2019 ident: 1781_CR6 doi: 10.1007/978-1-4842-4149-3_4 – volume: 34 start-page: 721 year: 2001 ident: 1781_CR7 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(00)00023-6 – ident: 1781_CR14 doi: 10.1093/biostatistics/kxab032 – ident: 1781_CR5 doi: 10.21203/rs.3.rs-838121/v1 – ident: 1781_CR4 doi: 10.1109/BHI.2019.8834599 – volume: 24 start-page: 381 year: 1981 ident: 1781_CR11 publication-title: Commun ACM doi: 10.1145/358669.358692 – ident: 1781_CR10 – ident: 1781_CR13 doi: 10.1093/jncics/pky057 |
| SSID | ssj0005620 |
| Score | 2.4573324 |
| Snippet | Purpose
Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel... Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to... PurposeAccurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 185 |
| SubjectTerms | Accuracy Algorithms Biomedical and Life Sciences Biomedicine Breast Breast - diagnostic imaging Breast Neoplasms - diagnostic imaging Cancer Research Computer applications Efficiency Epidemiology Female Hematology Humans Mammography Mammography - methods Muscles Oncology Original Paper Pectoralis Muscles - diagnostic imaging Public Health Radiographic Image Interpretation, Computer-Assisted - methods Statistical analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFXwgovUVrbKC3-zSXLLJJoJIlZYi9Chiod_CvoIHd8l5d1H63zuTbHIehcPPu0t2MrOz89j5DcD7tFRy7KKc28hqdFB0znWoQy4VQRO60soWp-Bikp5fiW_XyfUeTPpaGHpW2evEVlHb2lCM_DjKyfcm8M7Pi1-cukZRdrVvoaF8awX7qYUYuwP7ESFjjWD_y-nk8vvm0UfaATXmiUQXTMS-jMYX0yVJxPEO49SyHp3s7avqlv15-xnlkEt9APeaaqFu_qjZ7J_r6uwxPPJ2JjvpBOMJ7LnqAO5e-Ez6ATzs4nWsK0N6CvqyDd_jknmzwhVs6eY1SiGbVmyukHp6xcWmc1Q_q4_shFX1bzdjPSI5Q9MXByk-4SzD39QslblhqrLMtRgVVOD5DK7OTn98Pee-_wI3QiZr7sJYWillaIwNdZyU6GsKZUQskaUmdqgsbKqkM8m4jEQplI6V0KnGQeNUksfPYVTVlXsJLMlTk6FzZcZSCTIrbJkJQo3ILBocWRbAuP_VhfHg5NQjY1ZsYJWJPQUuKVr2FGEAH4Y1iw6aY-fsw56DhT-mq2IjVAG8G4bxgFHWRFWubnAO-nyUQkqjAF50DB8-R1A4aOCkAWRbojBMIPDu7ZFq-rMF8Ua3G01Rifs66qVms69dZBwNkvUfVL_aTfVruB8hT7uQ0iGM1svGvUEja63f-pPzFyVVIJ8 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToIhxMdgkDGQkXhj7tLEidO9VYNpQtq0ByqNp8hfERWtW7UJaPz1nOMkWzc0gXg-O_HH2f6d7-5ngPdpIfjAREOqIy3RQJFDKkMZUi4cNaEpNK95Ck7P0pMx-3yRXGzAxzYXpo52b12SPqfBsTTZ8mChi4NriW9JElE8b6h7Xh4N4j6K78FmmiAi78Hm-Ox89NXT7HG0tXycfcJjylF_m9yZP39o_Xy6BTpvx052DtSH8KCyC3H5U0yn186o4ydg2t750JTv_aqUffXrBvHj_3b_KTxuQCwZea17BhvGbsP908ZNvw2P_GUg8TlOz0Ge174BrDKrVliDLM1sjipOJpbMBK4EFyJGJjPc21aHZETs_IeZkpbunCCuRqG7_DCaCKWqpVCXRFhNTE2A4bJHX8D4-NOXoxPaPO5AFeNJSU0Yc805D5XSoYyTAg1ZJhSLOeqLig3uRDoV3KhkUESsYELGgslUolAZkQzjHejZuTWvgOCcqwwtNzXggjnMoouMOUqKTCOaybIABu2U5qphPncPcEzzK85mN6A5VsnrAc3DAD50dRae9-PO0nutpuTNHrDKo6G7LXJ0swG868S4ep1LRlgzr7AMGpTOP5VGAbz0itX9zvHsIHpKA8jWVK4r4JjB1yV28q1mCEebHnEux3btt8p01a67urHfafBf9Hr334q_hq0I59jfX-1Br1xW5g0iulK-bRbsb9hMP1w priority: 102 providerName: Unpaywall |
| Title | Pectoral muscle removal in mammogram images: A novel approach for improved accuracy and efficiency |
| URI | https://link.springer.com/article/10.1007/s10552-023-01781-0 https://www.ncbi.nlm.nih.gov/pubmed/37676616 https://www.proquest.com/docview/2909333525 https://www.proquest.com/docview/2862200962 https://pubmed.ncbi.nlm.nih.gov/PMC10764470 https://link.springer.com/content/pdf/10.1007/s10552-023-01781-0.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7225 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005620 issn: 0957-5243 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7225 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005620 issn: 0957-5243 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7225 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005620 issn: 0957-5243 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5inQRDiMtgEBiVkXhjmXJx4oS3tGqZQKsqRKXuKfItoqJNp7YBjV_PcW5dGZrYSyLl2E4cH9vn-hngfZhx5movtpWnBCooIraFIxybcQNNqDPFSpyC81F4NqGfp8G0TgpbN9HujUuyXKmvJbsFgWfjHmObI-VRCd6D_RJvqwP7yaeLL4NtaEdYwTHGAUNFi_p1ssy_W9ndkG5ImTeDJVuP6UN4UOSX_OoXn8-vbUrDJzBpulPFovw4LTbiVP7-C-nxrv19Co9rKZUkFVs9g3s6P4T757Uf_hAeVdY-UiUxPQcxLo3_WGVRrLEGWenFEnmYzHKy4MjqJgaMzBa4eK0_koTky596Tho8c4KCMxKNdUMrwqUsVlxeEZ4rokuEC5Me-gImw8G3_pldn95gS8qCja0dnynGmCOlcoQfZKipUi6pz5AhpK9xqVEhZ1oGbubRjHLhcypCgUSpeRD7R9DJl7l-BSSIQxmhaiZdxqkRSlQWUYM5ESkUV6LIArcZwlTW0ObmhI15ugVlNj8zxSpp-TNTx4IPbZ3LCtjj1tLHDWek9SRfp15szEEGT9aCdy0Zp6fxufBcLwssgxqjcUCFngUvK0ZqX2eAdFA8Ci2IdlisLWCgv3cp-ex7CQGOSjsKsgy_66Rhnu133daNk5Zj_6PXr-_W-hs48HCMKwPVMXQ2q0K_RZFtI7qwx6YMr1Hf7eJsHfZ6o249a_HeG4zGX5HaD_t4nXgJPpuMxsnFH5B7PCk |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBWsR0frRaNUV9MkGc8kmmwgipVqutld8aKFv6X4FD-6S8-5iuX_Kv9GZfF2PwuFLn3eX7GZmZ-e3M_NbgPdRJkXP-olrfKMQoKjEVZ7yXCGJmtBmRlQ8BYOzqH_Bf1yGlxvwt62FobTK1iZWhtoUmu7IP_kJYW8i7_w6-e3Sq1EUXW2f0KjV4sQurhGyzb4cf0P5fvD9o-_nh323eVXA1VyEc9d6gTBCCE9r46kgzBBBcal5IHCiOrC4BUwkhdVhL_N5xqUKJFeRwkZtZUjkS2jy7_HAF2QI4sMbKSVRTQOZhAIBHg-aIp2mVC8MfRdPSATvIkYIv3oQ3vJubydpdpHabdgq84lcXMvR6MZhePQYHjVeLDuo1e4JbNh8B-4Pmjj9DjysbwNZXeT0FNTPKjiAQ8blDEewqR0XqONsmLOxxH9LOWJsOEbjNvvMDlhe_LEj1vKdM3SssZFuP6xhUutyKvWCydwwWzFgUPnoM7i4Ezk8h828yO0usDCJdIzQTfeE5OS0mCzmxEkRG3Rn4tiBXvurU91Qn9MLHKN0SdpM4klxSFqJJ_Uc-NiNmdTEH2t777USTBsjMEuXKuvAu64Zty_FZGRuixL7IKKkAFXkO_CiFnj3OSLaQfcpciBeUYWuA1GDr7bkw18VRTiCenR0Bc5rv9Wa5bzWLWO_06z_WPXL9at-C1v988Fpenp8dvIKHvgo3_ryag8259PSvkZ3bq7eVHuIwdVdb9p_FQlX4g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KC1WRovUrWnUFfbKhuWSTTQoixXq01pY-WLi3uF_Bg7vkvLu03L_mX-dMvs6jcPjS590lu5nZ2fntzPwW4H2USdGzfuIa3ygEKCpxlac8V0iiJrSZERVPwflFdHLFvw3CwQb8aWthKK2ytYmVoTaFpjvyAz8h7E3knQdZkxZxedz_PPnt0gtSFGltn9OoVeTMLm4Qvs0-nR6jrD_4fv_rjy8nbvPCgKu5COeu9QJhhBCe1sZTQZghmuJS80DgpHVgcTuYSAqrw17m84xLFUiuIoWN2sqQiJjQ_G-JIEgonVAMxDK9JKopIZNQINjjQVOw05TthaHv4mmJQF7ECOdXD8Vbnu7thM0uavsA7pX5RC5u5Gj0z8HYfwQ7jUfLjmoVfAwbNt-F7fMmZr8LD-ubQVYXPD0BdVkFCnDIuJzhCDa14wL1nQ1zNpb4bylfjA3HaOhmh-yI5cW1HbGW-5yhk42NdBNiDZNal1OpF0zmhtmKDYNKSZ_C1Z3I4Rls5kVuXwALk0jHCON0T0hODozJYk78FLFB1yaOHei1vzrVDQ06vcYxSpcEziSeFIeklXhSz4GP3ZhJTQKytvdeK8G0MQizdKm-DrzrmnErU3xG5rYosQ-iSwpWRb4Dz2uBd58j0h10pSIH4hVV6DoQTfhqSz78VdGFI8BHp1fgvPZbrVnOa90y9jvN-o9Vv1y_6rewjds1_X56cfYK7vso3voeaw8259PSvkbPbq7eVFuIwc-73rN_AdwHXFE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToIhxMdgkDGQkXhj7tLEidO9VYNpQtq0ByqNp8hfERWtW7UJaPz1nOMkWzc0gXg-O_HH2f6d7-5ngPdpIfjAREOqIy3RQJFDKkMZUi4cNaEpNK95Ck7P0pMx-3yRXGzAxzYXpo52b12SPqfBsTTZ8mChi4NriW9JElE8b6h7Xh4N4j6K78FmmiAi78Hm-Ox89NXT7HG0tXycfcJjylF_m9yZP39o_Xy6BTpvx052DtSH8KCyC3H5U0yn186o4ydg2t750JTv_aqUffXrBvHj_3b_KTxuQCwZea17BhvGbsP908ZNvw2P_GUg8TlOz0Ge174BrDKrVliDLM1sjipOJpbMBK4EFyJGJjPc21aHZETs_IeZkpbunCCuRqG7_DCaCKWqpVCXRFhNTE2A4bJHX8D4-NOXoxPaPO5AFeNJSU0Yc805D5XSoYyTAg1ZJhSLOeqLig3uRDoV3KhkUESsYELGgslUolAZkQzjHejZuTWvgOCcqwwtNzXggjnMoouMOUqKTCOaybIABu2U5qphPncPcEzzK85mN6A5VsnrAc3DAD50dRae9-PO0nutpuTNHrDKo6G7LXJ0swG868S4ep1LRlgzr7AMGpTOP5VGAbz0itX9zvHsIHpKA8jWVK4r4JjB1yV28q1mCEebHnEux3btt8p01a67urHfafBf9Hr334q_hq0I59jfX-1Br1xW5g0iulK-bRbsb9hMP1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pectoral+muscle+removal+in+mammogram+images%3A+A+novel+approach+for+improved+accuracy+and+efficiency&rft.jtitle=Cancer+causes+%26+control&rft.au=Chen%2C+Simin&rft.au=Bennett%2C+Debbie+L.&rft.au=Colditz%2C+Graham+A.&rft.au=Jiang%2C+Shu&rft.date=2024-01-01&rft.pub=Springer+International+Publishing&rft.issn=0957-5243&rft.eissn=1573-7225&rft.volume=35&rft.issue=1&rft.spage=185&rft.epage=191&rft_id=info:doi/10.1007%2Fs10552-023-01781-0&rft_id=info%3Apmid%2F37676616&rft.externalDocID=PMC10764470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5243&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5243&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5243&client=summon |