Pectoral muscle removal in mammogram images: A novel approach for improved accuracy and efficiency

Purpose Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with exist...

Full description

Saved in:
Bibliographic Details
Published inCancer causes & control Vol. 35; no. 1; pp. 185 - 191
Main Authors Chen, Simin, Bennett, Debbie L., Colditz, Graham A., Jiang, Shu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0957-5243
1573-7225
1573-7225
DOI10.1007/s10552-023-01781-0

Cover

Abstract Purpose Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra). Methods A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine. Results Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra’s estimated error of 20.44%. This 40% gain in accuracy was statistically significant ( p  < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram). Conclusion We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.
AbstractList Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra). A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine. Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra's estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram). We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.
Purpose Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra). Methods A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine. Results Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra’s estimated error of 20.44%. This 40% gain in accuracy was statistically significant ( p  < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram). Conclusion We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.
Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).PURPOSEAccurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).A pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.METHODSA pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.Our proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra's estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).RESULTSOur proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra's estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).We present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.CONCLUSIONWe present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.
PurposeAccurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to remove pectoral muscles form mediolateral oblique (MLO) view mammograms and compare accuracy and computational efficiency with existing method (Libra).MethodsA pectoral muscle identification pipeline was developed. The image is first binarized to enhance contrast and then the Canny algorithm was applied for edge detection. Robust interpolation is used to smooth out the pectoral muscle region. Accuracy and computational speed of pectoral muscle identification was assessed using 951 women (1,902 MLO mammograms) from the Joanne Knight Breast Health Cohort at Washington University School of Medicine.ResultsOur proposed algorithm exhibits lower mean error of 12.22% in comparison to Libra’s estimated error of 20.44%. This 40% gain in accuracy was statistically significant (p < 0.001). The computational time for the proposed algorithm is 5.4 times faster when compared to Libra (5.1 s for proposed vs. 27.7 s for Libra per mammogram).ConclusionWe present a novel approach for pectoral muscle removal in mammogram images that demonstrates significant improvement in accuracy and efficiency compared to existing method. Our findings have important implications for the development of computer-aided systems and other automated tools in this field.
Author Chen, Simin
Jiang, Shu
Bennett, Debbie L.
Colditz, Graham A.
Author_xml – sequence: 1
  givenname: Simin
  orcidid: 0000-0003-1464-4838
  surname: Chen
  fullname: Chen, Simin
  organization: Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine
– sequence: 2
  givenname: Debbie L.
  orcidid: 0000-0002-7307-0291
  surname: Bennett
  fullname: Bennett, Debbie L.
  organization: Department of Radiology, Washington University School of Medicine
– sequence: 3
  givenname: Graham A.
  orcidid: 0000-0003-1898-0361
  surname: Colditz
  fullname: Colditz, Graham A.
  email: colditzg@wustl.edu
  organization: Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine
– sequence: 4
  givenname: Shu
  surname: Jiang
  fullname: Jiang, Shu
  email: jiang.shu@wustl.edu
  organization: Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37676616$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFP8ACWWLDJnDj54QNqipeUiVYwNpynJupq8QOdjLV_Hs8zFCgi4qVdXXPOTr38xk5CTEgIc9reF0D6De5BilZBYxXUOt1XcEjsqql5pVmTJ6QFTRSV5IJfkrOcr4BAKkYPCGnXCutVK1WpP2Kbo7JDnRcshuQJhzjtow-0NGOY9wkO1I_2g3mt_SChrjFgdppStG6a9rHVJZl2GJHrXNLsm5Hbego9r13HoPbPSWPeztkfHZ8z8n3D--_XX6qrr58_Hx5cVU5oeVcIXDdaa3BuQ5aLnsBTFgnuIa2cRw18E5ZjU7WPRO9sC23olVtWTq0suHnhB9ylzDZ3a0dBjOl0jztTA1mT8wciJlCzPwiZqC43h1c09KO2DkMc6Fx54zWm383wV-bTdyWQK2E0PuEV8eEFH8smGcz-uxwGGzAuGTD1ooxgEaxIn15T3oTlxQKFcMaaDjnksmievF3pbsuv3-tCNYHgUsx54S9cX62s4_7hn54-Fx2z_pfjI5kcxGHDaY_tR9w_QQWDMxq
CitedBy_id crossref_primary_10_3390_jimaging10120331
crossref_primary_10_1200_CCI_24_00103
crossref_primary_10_1007_s10278_024_01364_8
crossref_primary_10_3390_diagnostics14192144
Cites_doi 10.1007/s11547-022-01521-5
10.1145/358669.358692
10.1186/bcr2778
10.1016/j.media.2019.06.007
10.1001/jamaoncol.2023.0434
10.1118/1.4736530
10.1016/S0031-3203(00)00023-6
10.1007/978-1-4842-4149-3_4
10.4103/0971-6203.58777
10.1093/biostatistics/kxab032
10.21203/rs.3.rs-838121/v1
10.1109/BHI.2019.8834599
10.1093/jncics/pky057
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TO
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10552-023-01781-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-7225
EndPage 191
ExternalDocumentID 10.1007/s10552-023-01781-0
PMC10764470
37676616
10_1007_s10552_023_01781_0
Genre Journal Article
GrantInformation_xml – fundername: NCI
  grantid: R37 CA256810; R37 CA256810
– fundername: NCI NIH HHS
  grantid: P30 CA091842
– fundername: NCI NIH HHS
  grantid: R37 CA256810
GroupedDBID ---
-4W
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
199
1N0
1SB
203
28-
29B
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AACGO
AAHNG
AAIAL
AAJBT
AAJKR
AANCE
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPLY
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTLG
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEVLU
AEXYK
AEXZC
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQVQM
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DCCCD
DDRTE
DL5
DNIVK
DOOOF
DPUIP
DU5
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HGD
HMCUK
HMJXF
HQ3
HQYDN
HRMNR
HTVGU
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IPSME
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LLZTM
M1P
M4Y
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SA0
SAP
SBY
SCLPG
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
WOW
YLTOR
Z45
Z7U
Z7W
Z81
Z82
Z83
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADQXQ
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7XB
8FK
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-e037d7770ccd0b35f4024ac4370b9c3e703d6a7ec51f24f4ab3a4b6bb9ccea593
IEDL.DBID AGYKE
ISSN 0957-5243
1573-7225
IngestDate Sun Oct 26 04:13:38 EDT 2025
Tue Sep 30 17:10:24 EDT 2025
Thu Oct 02 05:48:10 EDT 2025
Fri Oct 03 08:21:40 EDT 2025
Mon Jul 21 02:03:13 EDT 2025
Wed Oct 01 03:41:46 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Fri Feb 21 02:40:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Breast evaluation
Full-field digital mammography
Pectoral muscle removal
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-e037d7770ccd0b35f4024ac4370b9c3e703d6a7ec51f24f4ab3a4b6bb9ccea593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1898-0361
0000-0002-7307-0291
0000-0003-1464-4838
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10552-023-01781-0
PMID 37676616
PQID 2909333525
PQPubID 31057
PageCount 7
ParticipantIDs unpaywall_primary_10_1007_s10552_023_01781_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10764470
proquest_miscellaneous_2862200962
proquest_journals_2909333525
pubmed_primary_37676616
crossref_citationtrail_10_1007_s10552_023_01781_0
crossref_primary_10_1007_s10552_023_01781_0
springer_journals_10_1007_s10552_023_01781_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle An International Journal of Studies of Cancer in Human Populations
PublicationTitle Cancer causes & control
PublicationTitleAbbrev Cancer Causes Control
PublicationTitleAlternate Cancer Causes Control
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Keller, Nathan, Wang (CR3) 2012; 39
CR4
CR5
Stone, Ding, Warren, Duffy, Hopper (CR12) 2010; 12
Fischler, Bolles (CR11) 1981; 24
Sharma, Aggarwal (CR9) 2010; 35
CR14
CR13
Singh, Singh (CR6) 2019
CR10
Rampun, Lopez-Linares, Morrow (CR8) 2019; 57
Jiang, Bennett, Rosner, Colditz (CR1) 2023; 9
Sansone, Marrone, Di Salvio (CR2) 2022; 127
Ding, Goshtasby (CR7) 2001; 34
1781_CR10
MA Fischler (1781_CR11) 1981; 24
A Rampun (1781_CR8) 2019; 57
L Ding (1781_CR7) 2001; 34
H Singh (1781_CR6) 2019
S Jiang (1781_CR1) 2023; 9
J Stone (1781_CR12) 2010; 12
1781_CR5
1781_CR4
M Sansone (1781_CR2) 2022; 127
BM Keller (1781_CR3) 2012; 39
1781_CR14
N Sharma (1781_CR9) 2010; 35
1781_CR13
References_xml – volume: 127
  start-page: 848
  year: 2022
  end-page: 856
  ident: CR2
  article-title: Comparison between two packages for pectoral muscle removal on mammographic images
  publication-title: Radiol Med (Torino)
  doi: 10.1007/s11547-022-01521-5
– volume: 24
  start-page: 381
  year: 1981
  end-page: 395
  ident: CR11
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun ACM
  doi: 10.1145/358669.358692
– volume: 12
  start-page: R97
  year: 2010
  ident: CR12
  article-title: Using mammographic density to predict breast cancer risk: dense area or percentage dense area
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2778
– ident: CR4
– ident: CR14
– volume: 57
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR8
  article-title: Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.06.007
– volume: 9
  start-page: 808
  year: 2023
  end-page: 814
  ident: CR1
  article-title: Longitudinal analysis of change in mammographic density in each breast and its association with breast cancer risk
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2023.0434
– ident: CR13
– ident: CR10
– volume: 39
  start-page: 4903
  year: 2012
  end-page: 4917
  ident: CR3
  article-title: Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation
  publication-title: Med Phys
  doi: 10.1118/1.4736530
– volume: 34
  start-page: 721
  year: 2001
  end-page: 725
  ident: CR7
  article-title: On the Canny edge detector
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(00)00023-6
– ident: CR5
– start-page: 63
  year: 2019
  end-page: 88
  ident: CR6
  article-title: Advanced Image Processing Using OpenCV
  publication-title: Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
  doi: 10.1007/978-1-4842-4149-3_4
– volume: 35
  start-page: 3
  year: 2010
  end-page: 14
  ident: CR9
  article-title: Automated medical image segmentation techniques
  publication-title: J Med Phys
  doi: 10.4103/0971-6203.58777
– volume: 12
  start-page: R97
  year: 2010
  ident: 1781_CR12
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2778
– volume: 39
  start-page: 4903
  year: 2012
  ident: 1781_CR3
  publication-title: Med Phys
  doi: 10.1118/1.4736530
– volume: 9
  start-page: 808
  year: 2023
  ident: 1781_CR1
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2023.0434
– volume: 127
  start-page: 848
  year: 2022
  ident: 1781_CR2
  publication-title: Radiol Med (Torino)
  doi: 10.1007/s11547-022-01521-5
– volume: 35
  start-page: 3
  year: 2010
  ident: 1781_CR9
  publication-title: J Med Phys
  doi: 10.4103/0971-6203.58777
– volume: 57
  start-page: 1
  year: 2019
  ident: 1781_CR8
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.06.007
– start-page: 63
  volume-title: Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
  year: 2019
  ident: 1781_CR6
  doi: 10.1007/978-1-4842-4149-3_4
– volume: 34
  start-page: 721
  year: 2001
  ident: 1781_CR7
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(00)00023-6
– ident: 1781_CR14
  doi: 10.1093/biostatistics/kxab032
– ident: 1781_CR5
  doi: 10.21203/rs.3.rs-838121/v1
– ident: 1781_CR4
  doi: 10.1109/BHI.2019.8834599
– volume: 24
  start-page: 381
  year: 1981
  ident: 1781_CR11
  publication-title: Commun ACM
  doi: 10.1145/358669.358692
– ident: 1781_CR10
– ident: 1781_CR13
  doi: 10.1093/jncics/pky057
SSID ssj0005620
Score 2.4573324
Snippet Purpose Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel...
Accurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel approach to...
PurposeAccurate pectoral muscle removal is critical in mammographic breast density estimation and many other computer-aided algorithms. We propose a novel...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 185
SubjectTerms Accuracy
Algorithms
Biomedical and Life Sciences
Biomedicine
Breast
Breast - diagnostic imaging
Breast Neoplasms - diagnostic imaging
Cancer Research
Computer applications
Efficiency
Epidemiology
Female
Hematology
Humans
Mammography
Mammography - methods
Muscles
Oncology
Original Paper
Pectoralis Muscles - diagnostic imaging
Public Health
Radiographic Image Interpretation, Computer-Assisted - methods
Statistical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFXwgovUVrbKC3-zSXLLJJoJIlZYi9Chiod_CvoIHd8l5d1H63zuTbHIehcPPu0t2MrOz89j5DcD7tFRy7KKc28hqdFB0znWoQy4VQRO60soWp-Bikp5fiW_XyfUeTPpaGHpW2evEVlHb2lCM_DjKyfcm8M7Pi1-cukZRdrVvoaF8awX7qYUYuwP7ESFjjWD_y-nk8vvm0UfaATXmiUQXTMS-jMYX0yVJxPEO49SyHp3s7avqlv15-xnlkEt9APeaaqFu_qjZ7J_r6uwxPPJ2JjvpBOMJ7LnqAO5e-Ez6ATzs4nWsK0N6CvqyDd_jknmzwhVs6eY1SiGbVmyukHp6xcWmc1Q_q4_shFX1bzdjPSI5Q9MXByk-4SzD39QslblhqrLMtRgVVOD5DK7OTn98Pee-_wI3QiZr7sJYWillaIwNdZyU6GsKZUQskaUmdqgsbKqkM8m4jEQplI6V0KnGQeNUksfPYVTVlXsJLMlTk6FzZcZSCTIrbJkJQo3ILBocWRbAuP_VhfHg5NQjY1ZsYJWJPQUuKVr2FGEAH4Y1iw6aY-fsw56DhT-mq2IjVAG8G4bxgFHWRFWubnAO-nyUQkqjAF50DB8-R1A4aOCkAWRbojBMIPDu7ZFq-rMF8Ua3G01Rifs66qVms69dZBwNkvUfVL_aTfVruB8hT7uQ0iGM1svGvUEja63f-pPzFyVVIJ8
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToIhxMdgkDGQkXhj7tLEidO9VYNpQtq0ByqNp8hfERWtW7UJaPz1nOMkWzc0gXg-O_HH2f6d7-5ngPdpIfjAREOqIy3RQJFDKkMZUi4cNaEpNK95Ck7P0pMx-3yRXGzAxzYXpo52b12SPqfBsTTZ8mChi4NriW9JElE8b6h7Xh4N4j6K78FmmiAi78Hm-Ox89NXT7HG0tXycfcJjylF_m9yZP39o_Xy6BTpvx052DtSH8KCyC3H5U0yn186o4ydg2t750JTv_aqUffXrBvHj_3b_KTxuQCwZea17BhvGbsP908ZNvw2P_GUg8TlOz0Ge174BrDKrVliDLM1sjipOJpbMBK4EFyJGJjPc21aHZETs_IeZkpbunCCuRqG7_DCaCKWqpVCXRFhNTE2A4bJHX8D4-NOXoxPaPO5AFeNJSU0Yc805D5XSoYyTAg1ZJhSLOeqLig3uRDoV3KhkUESsYELGgslUolAZkQzjHejZuTWvgOCcqwwtNzXggjnMoouMOUqKTCOaybIABu2U5qphPncPcEzzK85mN6A5VsnrAc3DAD50dRae9-PO0nutpuTNHrDKo6G7LXJ0swG868S4ep1LRlgzr7AMGpTOP5VGAbz0itX9zvHsIHpKA8jWVK4r4JjB1yV28q1mCEebHnEux3btt8p01a67urHfafBf9Hr334q_hq0I59jfX-1Br1xW5g0iulK-bRbsb9hMP1w
  priority: 102
  providerName: Unpaywall
Title Pectoral muscle removal in mammogram images: A novel approach for improved accuracy and efficiency
URI https://link.springer.com/article/10.1007/s10552-023-01781-0
https://www.ncbi.nlm.nih.gov/pubmed/37676616
https://www.proquest.com/docview/2909333525
https://www.proquest.com/docview/2862200962
https://pubmed.ncbi.nlm.nih.gov/PMC10764470
https://link.springer.com/content/pdf/10.1007/s10552-023-01781-0.pdf
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7225
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005620
  issn: 0957-5243
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7225
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005620
  issn: 0957-5243
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7225
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005620
  issn: 0957-5243
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5inQRDiMtgEBiVkXhjmXJx4oS3tGqZQKsqRKXuKfItoqJNp7YBjV_PcW5dGZrYSyLl2E4cH9vn-hngfZhx5movtpWnBCooIraFIxybcQNNqDPFSpyC81F4NqGfp8G0TgpbN9HujUuyXKmvJbsFgWfjHmObI-VRCd6D_RJvqwP7yaeLL4NtaEdYwTHGAUNFi_p1ssy_W9ndkG5ImTeDJVuP6UN4UOSX_OoXn8-vbUrDJzBpulPFovw4LTbiVP7-C-nxrv19Co9rKZUkFVs9g3s6P4T757Uf_hAeVdY-UiUxPQcxLo3_WGVRrLEGWenFEnmYzHKy4MjqJgaMzBa4eK0_koTky596Tho8c4KCMxKNdUMrwqUsVlxeEZ4rokuEC5Me-gImw8G3_pldn95gS8qCja0dnynGmCOlcoQfZKipUi6pz5AhpK9xqVEhZ1oGbubRjHLhcypCgUSpeRD7R9DJl7l-BSSIQxmhaiZdxqkRSlQWUYM5ESkUV6LIArcZwlTW0ObmhI15ugVlNj8zxSpp-TNTx4IPbZ3LCtjj1tLHDWek9SRfp15szEEGT9aCdy0Zp6fxufBcLwssgxqjcUCFngUvK0ZqX2eAdFA8Ci2IdlisLWCgv3cp-ex7CQGOSjsKsgy_66Rhnu133daNk5Zj_6PXr-_W-hs48HCMKwPVMXQ2q0K_RZFtI7qwx6YMr1Hf7eJsHfZ6o249a_HeG4zGX5HaD_t4nXgJPpuMxsnFH5B7PCk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBWsR0frRaNUV9MkGc8kmmwgipVqutld8aKFv6X4FD-6S8-5iuX_Kv9GZfF2PwuFLn3eX7GZmZ-e3M_NbgPdRJkXP-olrfKMQoKjEVZ7yXCGJmtBmRlQ8BYOzqH_Bf1yGlxvwt62FobTK1iZWhtoUmu7IP_kJYW8i7_w6-e3Sq1EUXW2f0KjV4sQurhGyzb4cf0P5fvD9o-_nh323eVXA1VyEc9d6gTBCCE9r46kgzBBBcal5IHCiOrC4BUwkhdVhL_N5xqUKJFeRwkZtZUjkS2jy7_HAF2QI4sMbKSVRTQOZhAIBHg-aIp2mVC8MfRdPSATvIkYIv3oQ3vJubydpdpHabdgq84lcXMvR6MZhePQYHjVeLDuo1e4JbNh8B-4Pmjj9DjysbwNZXeT0FNTPKjiAQ8blDEewqR0XqONsmLOxxH9LOWJsOEbjNvvMDlhe_LEj1vKdM3SssZFuP6xhUutyKvWCydwwWzFgUPnoM7i4Ezk8h828yO0usDCJdIzQTfeE5OS0mCzmxEkRG3Rn4tiBXvurU91Qn9MLHKN0SdpM4klxSFqJJ_Uc-NiNmdTEH2t777USTBsjMEuXKuvAu64Zty_FZGRuixL7IKKkAFXkO_CiFnj3OSLaQfcpciBeUYWuA1GDr7bkw18VRTiCenR0Bc5rv9Wa5bzWLWO_06z_WPXL9at-C1v988Fpenp8dvIKHvgo3_ryag8259PSvkZ3bq7eVHuIwdVdb9p_FQlX4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KC1WRovUrWnUFfbKhuWSTTQoixXq01pY-WLi3uF_Bg7vkvLu03L_mX-dMvs6jcPjS590lu5nZ2fntzPwW4H2USdGzfuIa3ygEKCpxlac8V0iiJrSZERVPwflFdHLFvw3CwQb8aWthKK2ytYmVoTaFpjvyAz8h7E3knQdZkxZxedz_PPnt0gtSFGltn9OoVeTMLm4Qvs0-nR6jrD_4fv_rjy8nbvPCgKu5COeu9QJhhBCe1sZTQZghmuJS80DgpHVgcTuYSAqrw17m84xLFUiuIoWN2sqQiJjQ_G-JIEgonVAMxDK9JKopIZNQINjjQVOw05TthaHv4mmJQF7ECOdXD8Vbnu7thM0uavsA7pX5RC5u5Gj0z8HYfwQ7jUfLjmoVfAwbNt-F7fMmZr8LD-ubQVYXPD0BdVkFCnDIuJzhCDa14wL1nQ1zNpb4bylfjA3HaOhmh-yI5cW1HbGW-5yhk42NdBNiDZNal1OpF0zmhtmKDYNKSZ_C1Z3I4Rls5kVuXwALk0jHCON0T0hODozJYk78FLFB1yaOHei1vzrVDQ06vcYxSpcEziSeFIeklXhSz4GP3ZhJTQKytvdeK8G0MQizdKm-DrzrmnErU3xG5rYosQ-iSwpWRb4Dz2uBd58j0h10pSIH4hVV6DoQTfhqSz78VdGFI8BHp1fgvPZbrVnOa90y9jvN-o9Vv1y_6rewjds1_X56cfYK7vso3voeaw8259PSvkbPbq7eVFuIwc-73rN_AdwHXFE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToIhxMdgkDGQkXhj7tLEidO9VYNpQtq0ByqNp8hfERWtW7UJaPz1nOMkWzc0gXg-O_HH2f6d7-5ngPdpIfjAREOqIy3RQJFDKkMZUi4cNaEpNK95Ck7P0pMx-3yRXGzAxzYXpo52b12SPqfBsTTZ8mChi4NriW9JElE8b6h7Xh4N4j6K78FmmiAi78Hm-Ox89NXT7HG0tXycfcJjylF_m9yZP39o_Xy6BTpvx052DtSH8KCyC3H5U0yn186o4ydg2t750JTv_aqUffXrBvHj_3b_KTxuQCwZea17BhvGbsP908ZNvw2P_GUg8TlOz0Ge174BrDKrVliDLM1sjipOJpbMBK4EFyJGJjPc21aHZETs_IeZkpbunCCuRqG7_DCaCKWqpVCXRFhNTE2A4bJHX8D4-NOXoxPaPO5AFeNJSU0Yc805D5XSoYyTAg1ZJhSLOeqLig3uRDoV3KhkUESsYELGgslUolAZkQzjHejZuTWvgOCcqwwtNzXggjnMoouMOUqKTCOaybIABu2U5qphPncPcEzzK85mN6A5VsnrAc3DAD50dRae9-PO0nutpuTNHrDKo6G7LXJ0swG868S4ep1LRlgzr7AMGpTOP5VGAbz0itX9zvHsIHpKA8jWVK4r4JjB1yV28q1mCEebHnEux3btt8p01a67urHfafBf9Hr334q_hq0I59jfX-1Br1xW5g0iulK-bRbsb9hMP1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pectoral+muscle+removal+in+mammogram+images%3A+A+novel+approach+for+improved+accuracy+and+efficiency&rft.jtitle=Cancer+causes+%26+control&rft.au=Chen%2C+Simin&rft.au=Bennett%2C+Debbie+L.&rft.au=Colditz%2C+Graham+A.&rft.au=Jiang%2C+Shu&rft.date=2024-01-01&rft.pub=Springer+International+Publishing&rft.issn=0957-5243&rft.eissn=1573-7225&rft.volume=35&rft.issue=1&rft.spage=185&rft.epage=191&rft_id=info:doi/10.1007%2Fs10552-023-01781-0&rft_id=info%3Apmid%2F37676616&rft.externalDocID=PMC10764470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5243&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5243&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5243&client=summon