Low-latency automotive vision with event cameras
The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth–latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras mea...
Saved in:
| Published in | Nature (London) Vol. 629; no. 8014; pp. 1034 - 1040 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
30.05.2024
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0028-0836 1476-4687 1476-4687 |
| DOI | 10.1038/s41586-024-07409-w |
Cover
| Abstract | The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth–latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements
1
. Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras
2
.
Use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. |
|---|---|
| AbstractList | The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth-latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements1. Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras2.The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth-latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements1. Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras2. The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth-latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements . Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras . The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth–latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements1. Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras2. Use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth–latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements 1 . Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras 2 . Use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth-latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements. Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras. The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth–latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements 1 . Despite these advantages, event-camera-based algorithms are either highly efficient but lag behind image-based ones in terms of accuracy or sacrifice the sparsity and efficiency of events to achieve comparable results. To overcome this, here we propose a hybrid event- and frame-based object detector that preserves the advantages of each modality and thus does not suffer from this trade-off. Our method exploits the high temporal resolution and sparsity of events and the rich but low temporal resolution information in standard images to generate efficient, high-rate object detections, reducing perceptual and computational latency. We show that the use of a 20 frames per second (fps) RGB camera plus an event camera can achieve the same latency as a 5,000-fps camera with the bandwidth of a 45-fps camera without compromising accuracy. Our approach paves the way for efficient and robust perception in edge-case scenarios by uncovering the potential of event cameras 2 . |
| Author | Gehrig, Daniel Scaramuzza, Davide |
| Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0001-9952-3335 surname: Gehrig fullname: Gehrig, Daniel email: dgehrig@ifi.uzh.ch organization: Robotics and Perception Group, University of Zurich – sequence: 2 givenname: Davide orcidid: 0000-0002-3831-6778 surname: Scaramuzza fullname: Scaramuzza, Davide email: sdavide@ifi.uzh.ch organization: Robotics and Perception Group, University of Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38811712$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1URKeFF2CBIrFhY7i245-sEKqgRRqJDawtj2O3rhJ7sJOJ5u3rMgOFLipWXtzvHJ9z7xk6iSk6hF4TeE-AqQ-lJVwJDLTFIFvo8PIMrUgrBW6FkidoBUAVBsXEKTor5RYAOJHtC3TKlCJEErpCsE4LHszkot03Zp7SmKawc80ulJBis4TppnE7F6fGmtFlU16i594Mxb06vufox5fP3y-u8Prb5deLT2tsW8kn3DtvwW6oF7aXPXS97ahtHeUcwAKVTBqxEbzznbG8hmfcC0l975U3Gy89O0fs4DvHrdkvZhj0NofR5L0moO_760N_XfvrX_31UlUfD6rtvBldb2vwbB6UyQT97ySGG32ddpoQwoQQtDq8Ozrk9HN2ZdJjKNYNg4kuzUUzEJRT2XWqom8fobdpzrFu5Z5ilakpK_Xm70h_svy-QQXoAbA5lZKd_7-i6pHIhslM9Wa1Vhielh43W-o_8drlh9hPqO4A5mK8TQ |
| CitedBy_id | crossref_primary_10_3389_fnins_2024_1477979 crossref_primary_10_1109_TCSVT_2024_3482436 crossref_primary_10_1002_inf2_70007 crossref_primary_10_1109_SR_2024_3513952 crossref_primary_10_1007_s00348_024_03946_2 crossref_primary_10_3390_electronics14061105 crossref_primary_10_1002_advs_202414319 crossref_primary_10_3390_jsan14010007 crossref_primary_10_1038_s44287_024_00072_3 crossref_primary_10_1002_aisy_202401065 crossref_primary_10_1109_TGRS_2025_3527474 crossref_primary_10_3390_electronics13142879 crossref_primary_10_1109_LRA_2025_3527311 crossref_primary_10_1109_ACCESS_2024_3523411 crossref_primary_10_1109_OJVT_2024_3519951 crossref_primary_10_1109_TCASAI_2024_3520905 |
| Cites_doi | 10.3389/fnins.2016.00508 10.1038/d41586-018-01683-1 10.1007/978-3-319-46448-0_2 10.1109/TCSVT.2022.3189480 10.1109/ICRA40945.2020.9196877 10.1109/CVPR.2017.781 10.1109/ICCV48922.2021.00097 10.3389/fnins.2015.00437 10.1109/CVPR.2019.00401 10.1109/ICRA.2019.8793924 10.1109/ISCA52012.2021.00010 10.1109/ICRA48891.2023.10161392 10.1109/CVPR.2017.11 10.1109/CVPR52729.2023.01713 10.1007/978-3-031-19830-4_20 10.1109/TBCAS.2008.2005781 10.1109/TIP.2022.3162962 10.1109/TPAMI.2020.3008413 10.1109/IROS.2018.8594119 10.1109/ICCV.2019.00161 10.1007/978-3-030-58565-5_9 10.1109/JSSC.2010.2085952 10.1007/978-3-030-20887-5_7 10.1109/TPAMI.2023.3301975 10.1109/ICRA40945.2020.9197133 10.1109/CVPR.2018.00568 10.1109/ICCV.2019.00573 10.1109/CVPR.2018.00097 10.3389/fnins.2011.00073 10.1109/CVPR52729.2023.02106 10.1109/CVPRW.2019.00209 10.1109/IROS.2018.8593805 10.1109/IJCNN55064.2022.9892618 10.1109/CVPR.2018.00186 10.1109/CVPRW.2018.00107 10.1109/CVPR46437.2021.00023 10.1109/TPAMI.2013.71 10.1109/CVPR.2016.90 10.1007/978-3-319-10602-1_48 10.1109/CVPR52729.2023.01707 10.1007/s11263-015-0816-y 10.1109/CVPR42600.2020.01442 10.1126/scirobotics.aaz9712 10.1109/ICCV.2019.00058 10.1109/CVPR.2014.81 10.1109/34.888718 10.1109/CVPRW.2019.00205 10.1109/CVPR46437.2021.01589 10.1109/LRA.2021.3068942 10.1109/CVPR52688.2022.01723 10.1109/ICRA48891.2023.10160984 10.1109/JSSC.2014.2342715 10.1007/978-3-030-58598-3_25 10.1109/CVPR.2019.00398 10.1109/CVPR.2016.91 10.1109/JSSC.2007.914337 10.1007/s11263-019-01209-w 10.1109/ICRA48891.2023.10161563 10.3390/biomimetics7010031 10.1109/CVPR52688.2022.01205 10.1109/CVPR.2019.00108 10.1109/ICCV.2015.169 10.1109/ACCESS.2020.3015759 10.1109/CVPR52688.2022.00124 10.1109/CVPR.2018.00961 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group May 30, 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group May 30, 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41586-024-07409-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 1040 |
| ExternalDocumentID | 10.1038/s41586-024-07409-w PMC11136662 38811712 10_1038_s41586_024_07409_w |
| Genre | Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM 1VR 2XV 41X 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L AARCD AAYXX ABFSG ABJCF ABUWG ACSTC AEUYN AEZWR AFANA AFHIU AFKRA AFKWF AHWEU AIXLP ALPWD ATHPR AZQEC BBNVY BCU BEC BGLVJ BKEYQ BKSAR BPHCQ BVXVI CCPQU CITATION D1I D1J D1K DWQXO EMH EX3 FYUFA GNUQQ GUQSH HMCUK INR ISR K6- KB. L6V LK5 LK8 M1P M2M M2P M7R M7S NAPCQ NFIDA P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PUEGO PYCSY Q2X R05 S0X SJFOW TUS UKHRP WOW ~7V .-4 .GJ .HR 00M 08P 0B8 0WA 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 88A 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 M0L MVM N4W NEJ NPM OHT P-O PEA PM3 QS- R4F RHI SKT SV3 TH9 TUD UAO UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABUFD AGSTI C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM ADTOC ADXHL AETEA AGQPQ ESTFP UNPAY |
| ID | FETCH-LOGICAL-c475t-defc0cb2f6cd7d09dc92c4e25500c02737a6b659f9ac574035f672fdf8fabf7f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Sun Oct 26 04:13:54 EDT 2025 Tue Sep 30 17:09:08 EDT 2025 Fri Sep 05 08:18:12 EDT 2025 Tue Oct 07 07:02:31 EDT 2025 Wed Feb 19 02:07:46 EST 2025 Wed Oct 01 03:39:24 EDT 2025 Thu Apr 24 22:50:48 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8014 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-defc0cb2f6cd7d09dc92c4e25500c02737a6b659f9ac574035f672fdf8fabf7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3831-6778 0000-0001-9952-3335 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41586-024-07409-w.pdf |
| PMID | 38811712 |
| PQID | 3063799038 |
| PQPubID | 40569 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1038_s41586_024_07409_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_11136662 proquest_miscellaneous_3062527998 proquest_journals_3063799038 pubmed_primary_38811712 crossref_primary_10_1038_s41586_024_07409_w crossref_citationtrail_10_1038_s41586_024_07409_w springer_journals_10_1038_s41586_024_07409_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-30 |
| PublicationDateYYYYMMDD | 2024-05-30 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | ZhangZA flexible new technique for camera calibrationIEEE Trans. Pattern Anal. Mach. Intell.2000221330133410.1109/34.888718 ZhangLZhangHChenJWangLHybrid deblur net: deep non-uniform deblurring with event cameraIEEE Access2020814807514808310.1109/ACCESS.2020.3015759 Qi, C. R., Yi, L., Su, H. & Guibas, L. J. in Advances in Neural Information Processing Systems pages 5099–5108 (MIT, 2017). Sony. Image Sensors for Automotive Use. https://www.sony-semicon.com/en/products/is/automotive/automotive.html (2023). Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Learning to detect objects with a 1 megapixel event camera. In Proc. Advances in Neural Information Processing Systems 33 (NeurIPS) 16639–16652 (eds Larochelle, H. et al.) (2020). Alonso, Iñigo and Murillo, A. C. EV-SegNet: semantic segmentation for event-based cameras. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1624–1633 (IEEE, 2019). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016). Zhou, Z. et al. RGB-event fusion for moving object detection in autonomous driving. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 7808–7815 (IEEE, 2023). Gehrig, D., Loquercio, A., Derpanis, K. G. & Scaramuzza, D. End-to-end learning of representations for asynchronous event-based data. In Proc. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 5632–5642 (IEEE, 2019). Sekikawa, Y., Hara, K. & Saito, H. EventNet: asynchronous recursive event processing. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 3882–3891 (IEEE, 2019). Wang, X., Su, T., Da, F. & Yang, X. ProphNet: efficient agent-centric motion forecasting with anchor-informed proposals. In Proc.2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 21995–22003 (IEEE, 2023). Fey, M., Lenssen, J. E., Weichert, F. & Müller, H. SplineCNN: fast geometric deep learning with continuous b-spline kernels. In Proc.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 869–877 (2018). Chen, Nicholas F. Y. Pseudo-labels for supervised learning on dynamic vision sensor data, applied to object detection under ego-motion. In Proc.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 757–709 (IEEE, 2018). PoschCMatolinDWohlgenanntRA QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDSIEEE J. Solid State Circuits2011462592752011IJSSC..46..259P10.1109/JSSC.2010.2085952 Messikommer, N. A., Gehrig, D., Loquercio, A. & Scaramuzza, D. Event-based asynchronous sparse convolutional networks. In Proc. 16th European Conference of Computer Vision (ECCV) 415–431 (ACM, 2020). OrchardGJayawantACohenGKThakorNConverting static image datasets to spiking neuromorphic datasets using saccadesFront. Neurosci.2015943710.3389/fnins.2015.00437266355134644806 Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E. & Andreopoulos, Y. Graph-based object classification for neuromorphic vision sensing. In Proc. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 491–501 (IEEE, 2019). Prophesee Evaluation Kit - 2 HD.https://www.prophesee.ai/event-based-evk (2023). Sun, Z., Messikommer, N., Gehrig, D. & Scaramuzza, D. ESS: learning event-based semantic segmentation from still images. In Proc. 17th European Conference of Computer Vision (ECCV) 341–357 (ACM, 2022). LichtsteinerPPoschCDelbruckTA 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensorIEEE J. Solid State Circuits2008435665762008IJSSC..43..566L10.1109/JSSC.2007.914337 MitraSFusiSIndiveriGReal-time classification of complex patterns using spike-based learning in neuromorphic vlsiIEEE Trans. Biomed. Circuits Syst.2009332421:STN:280:DC%2BC3sfgslykug%3D%3D10.1109/TBCAS.2008.200578123853161 Fei-Fei, L., Fergus, R. & Perona, P. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In Proc.2004 Conference on Computer Vision and Pattern Recognition Workshop 178 (IEEE, 2004). Prophesee. Transfer latency.https://support.prophesee.ai/portal/en/kb/articles/evk-latency (2023). Cruise. Cruise 101: Learn the Basics of How a Cruise Car Navigates City Streets Safely and Efficiently. https://getcruise.com/technology (2023). Schaefer, S., Gehrig, D. & Scaramuzza, D. AEGNN: asynchronous event-based graph neural networks. In Proc. Conference of Computer Vision and Pattern Recognition (CVPR) 12371–12381 (CVF, 2022). Girshick, R. Fast R-CNN. In Proc. 2015 IEEE International Conference on Computer Vision (ICCV) 1440–1448 (IEEE, 2015). RussakovskyOImageNet large scale visual recognition challengeInt. J. Comput. Vis.2015115211252342248210.1007/s11263-015-0816-y Sanket, N. et al. EVDodgeNet: deep dynamic obstacle dodging with event cameras. In Proc. 2020 IEEE International Conference on Robotics and Automation (ICRA) 10651–10657 (IEEE, 2020). Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Proc. 2014 European Conference of Computer Vision (ECCV), 740–755 (Springer, 2014). Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch geometric. In Proc. ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds (ICLR, 2019). Groh, F., Wieschollek, P. & Lensch, H. P. A. Flex-convolution (million-scale point-cloud learning beyond grid-worlds). In Proc. Computer Vision – ACCV 2018 Vol. 11361 (eds Jawahar, C. et al.) 105–122 (Springer, 2018). Zeng, W., Liang, M., Liao, R. & Urtasun, R. Systems and methods for actor motion forecasting within a surrounding environment of an autonomous vehicle, US Patent 0347941 (2023). FalangaDKleberKScaramuzzaDDynamic obstacle avoidance for quadrotors with event camerasSci. Robot.20205eaaz971210.1126/scirobotics.aaz971233022598 Tulyakov, S. et al. Time lens: event-based video frame interpolation. In Proc. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 16150–16159 (IEEE, 2021). Ge, Z., Liu, S., Wang, F., Li, Z. & Sun, J. YOLOX: exceeding YOLO series in 2021. Preprint at https://arxiv.org/abs/2107.08430 (2021). Cui, A., Casas, S., Wong, K., Suo, S. & Urtasun, R. GoRela: go relative for viewpoint-invariant motion forecasting. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 7801–7807 (IEEE, 2022). Redmon, J. & Farhadi, A. YOLOv3: an incremental improvement. Preprint at https://arxiv.org/abs/1804.02767 (2018). Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. & Wilson, A. G. Averaging weights leads to wider optima and better generalization. In Proc. 34thConference on Uncertainty in Artificial Intelligence (UAI) Vol. 2 (eds Silva, R. et al.) 876–885 (Association For Uncertainty in Artificial Intelligence, 2018). LiJAsynchronous spatio-temporal memory network for continuous event-based object detectionIEEE Trans. Image Process.202231297529872022ITIP...31.2975L10.1109/TIP.2022.316296235377848 Gehrig, M., Shrestha, S. B., Mouritzen, D. & Scaramuzza, D. Event-based angular velocity regression with spiking networks. In Proc. 2020 IEEE International Conference on Robotics and Automation (ICRA) 4195-4202 (IEEE, 2020). Jouppi, N. P. et al. Ten lessons from three generations shaped Google’s TPUv4i: industrial product. In Proc. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) 1–14 (IEEE, 2021). Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. 2014 IEEE Conference on Computer Vision and Pattern Recognition 580–587 (IEEE, 2014). Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. Events-to-video: bringing modern computer vision to event cameras. In Proc.2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 3852–3861 (IEEE, 2019). de Tournemire, P., Nitti, D., Perot, E., Migliore, D. & Sironi, A. A large scale event-based detection dataset for automotive. Preprint at https://arxiv.org/abs/2001.08499 (2020). Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X. & Benosman, R. HATS: histograms of averaged time surfaces for robust event-based object classification. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 1731–1740 (IEEE, 2018). Deng, Y., Chen, H., Liu, H. & Li, Y. A voxel graph CNN for object classification with event cameras. In Proc. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 1162–1171 (IEEE, 2022). Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In Proc. 2019 International Conference on Learning Representations (OpenReview.net, 2019). Liu, W. et al. SSD: single shot multibox detector. In Proc. 2016 European Conference of Computer Vision (ECCV) Vol. 9905, 21–37 (eds Leibe, B. et al.) (Springer, 2016). OmniVision. OX08B4C 8.3 MP Product Brief. https://www.ovt.com/wp-content/uploads/2022/01/OX08B4C-PB-v1.0-WEB.pdf (2023). Mitrokhin, A., Hua, Z., Fermuller, C. & Aloimonos, Y. Learning visual motion segmentation using event surfaces. In Proc.2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 14402–14411 (IEEE, 2020). ZhaoJJiSCaiZZengYWangYMoving object detection and tracking by event frame from neuromorphic vision sensorsBiomimetics20227311:CAS:528:DC%2BB38XhslOhurjJ10.3390/biomimetics7010031353231888945359 Gallego, G. et al. Event-based vision: a survey. In Proc.IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 44, 154–180 (IEEE, 2020). Graham, B., Engelcke, M. & van der Maaten, L. 3D semantic segmentation with submanifold sparse convolutional networks. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 9224–9232 (IEEE, 2018). Cannici, M., Ciccone, M., Romanoni, A. & Matteucci, M. A differentiable recurrent surface for asynchronous event-based data. In Proc. European Conference of Computer Vis P Lichtsteiner (7409_CR16) 2008; 43 J Li (7409_CR28) 2022; 31 7409_CR47 7409_CR44 7409_CR45 7409_CR49 G Orchard (7409_CR42) 2015; 9 7409_CR83 7409_CR86 7409_CR43 7409_CR41 7409_CR85 S Mitra (7409_CR68) 2009; 3 D Gehrig (7409_CR80) 2019; 128 SMNadim Uddin (7409_CR82) 2022; 32 JH Lee (7409_CR71) 2016; 10 JA Perez-Carrasco (7409_CR73) 2013; 35 7409_CR35 7409_CR36 7409_CR33 7409_CR77 7409_CR34 7409_CR78 7409_CR39 D Falanga (7409_CR3) 2020; 5 7409_CR37 7409_CR38 7409_CR72 7409_CR70 7409_CR31 7409_CR75 7409_CR32 7409_CR76 7409_CR30 7409_CR74 Z Zhang (7409_CR84) 2000; 22 O Russakovsky (7409_CR46) 2015; 115 7409_CR8 7409_CR9 7409_CR4 7409_CR24 7409_CR5 7409_CR25 7409_CR69 7409_CR6 7409_CR22 7409_CR66 7409_CR7 7409_CR23 7409_CR1 7409_CR29 7409_CR2 7409_CR26 7409_CR27 7409_CR60 7409_CR61 7409_CR20 7409_CR64 7409_CR21 7409_CR65 C Brandli (7409_CR17) 2014; 49 7409_CR62 M Gehrig (7409_CR40) 2021; 6 7409_CR63 7409_CR19 C Posch (7409_CR48) 2011; 46 G Indiveri (7409_CR67) 2011; 5 L Zhang (7409_CR81) 2020; 8 J Zhao (7409_CR79) 2022; 7 7409_CR13 7409_CR57 7409_CR14 7409_CR58 7409_CR11 7409_CR55 7409_CR12 7409_CR56 7409_CR18 7409_CR15 7409_CR59 7409_CR50 7409_CR53 7409_CR10 7409_CR54 7409_CR51 7409_CR52 |
| References_xml | – reference: PoschCMatolinDWohlgenanntRA QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDSIEEE J. Solid State Circuits2011462592752011IJSSC..46..259P10.1109/JSSC.2010.2085952 – reference: Chen, Nicholas F. Y. Pseudo-labels for supervised learning on dynamic vision sensor data, applied to object detection under ego-motion. In Proc.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 757–709 (IEEE, 2018). – reference: Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch geometric. In Proc. ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds (ICLR, 2019). – reference: Zeng, W., Liang, M., Liao, R. & Urtasun, R. Systems and methods for actor motion forecasting within a surrounding environment of an autonomous vehicle, US Patent 0347941 (2023). – reference: FalangaDKleberKScaramuzzaDDynamic obstacle avoidance for quadrotors with event camerasSci. Robot.20205eaaz971210.1126/scirobotics.aaz971233022598 – reference: Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In Proc. 2019 International Conference on Learning Representations (OpenReview.net, 2019). – reference: Zhu, A. Z., Yuan, L., Chaney, K. & Daniilidis, K. Unsupervised event-based learning of optical flow, depth, and egomotion. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 989–997 (IEEE, 2019). – reference: Cristovao, N. Tesla’s FSD hardware 4.0 to use cameras with LED flicker mitigation. Not a Tesla App. https://www.notateslaapp.com/news/679/tesla-s-fsd-hardware-4-0-to-use-new-cameras (2022). – reference: Bosch. Multi Purpose Camera: Combination of Classic Cutting Edge Computer Vision Algorithms and Artificial Intelligence Methods. https://www.bosch-mobility.com/media/global/solutions/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/multi-camera-system/multi-purpose-camera/summary_multi-purpose-camera_en.pdf (2023). – reference: Ren, S., He, K., Girshick, R. & Sun, J. in Advances in Neural Information Processing Systems Vol. 28. (eds Cortes, C. et al.) 91–99 (Curran Associates, 2015). – reference: Perez-CarrascoJAMapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing–application to feedforward ConvNetsIEEE Trans. Pattern Anal. Mach. Intell.2013352706271910.1109/TPAMI.2013.7124051730 – reference: Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X. & Benosman, R. HATS: histograms of averaged time surfaces for robust event-based object classification. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 1731–1740 (IEEE, 2018). – reference: Mitrokhin, A., Hua, Z., Fermuller, C. & Aloimonos, Y. Learning visual motion segmentation using event surfaces. In Proc.2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 14402–14411 (IEEE, 2020). – reference: Tulyakov, S. et al. Time lens: event-based video frame interpolation. In Proc. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 16150–16159 (IEEE, 2021). – reference: LeeJHDelbruckTPfeifferMTraining deep spiking neural networks using backpropagationFront. Neurosci.20161050810.3389/fnins.2016.00508278771075099523 – reference: de Tournemire, P., Nitti, D., Perot, E., Migliore, D. & Sironi, A. A large scale event-based detection dataset for automotive. Preprint at https://arxiv.org/abs/2001.08499 (2020). – reference: Naughton, K. Driverless cars’ need for data is sparking a new space race. Bloomberg (17 September 2021). – reference: Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. Events-to-video: bringing modern computer vision to event cameras. In Proc.2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 3852–3861 (IEEE, 2019). – reference: Cannici, M., Ciccone, M., Romanoni, A. & Matteucci, M. A differentiable recurrent surface for asynchronous event-based data. In Proc. European Conference of Computer Vision (ECCV) (eds Vedaldi, A. et al.) Vol. 12365, 136–152 (Springer, 2020). – reference: LiJAsynchronous spatio-temporal memory network for continuous event-based object detectionIEEE Trans. Image Process.202231297529872022ITIP...31.2975L10.1109/TIP.2022.316296235377848 – reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016). – reference: Zhou, Z., Wang, J., Li, Y.-H. & Huang, Y.-K. Query-centric trajectory prediction. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 17863–17873 (IEEE, 2023). – reference: Fei-Fei, L., Fergus, R. & Perona, P. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In Proc.2004 Conference on Computer Vision and Pattern Recognition Workshop 178 (IEEE, 2004). – reference: ZhangLZhangHChenJWangLHybrid deblur net: deep non-uniform deblurring with event cameraIEEE Access2020814807514808310.1109/ACCESS.2020.3015759 – reference: Gallego, G. et al. Event-based vision: a survey. In Proc.IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 44, 154–180 (IEEE, 2020). – reference: Schaefer, S., Gehrig, D. & Scaramuzza, D. AEGNN: asynchronous event-based graph neural networks. In Proc. Conference of Computer Vision and Pattern Recognition (CVPR) 12371–12381 (CVF, 2022). – reference: Sanket, N. et al. EVDodgeNet: deep dynamic obstacle dodging with event cameras. In Proc. 2020 IEEE International Conference on Robotics and Automation (ICRA) 10651–10657 (IEEE, 2020). – reference: Shashua, A., Shalev-Shwartz, S. & Shammah, S. Systems and methods for navigating with sensing uncertainty. US patent 0269277 (2022). – reference: Qi, C. R., Yi, L., Su, H. & Guibas, L. J. in Advances in Neural Information Processing Systems pages 5099–5108 (MIT, 2017). – reference: Big data needs a hardware revolution. Nature554, 145–146 (2018). – reference: Fischer, T. et al. QDTrack: quasi-dense similarity learning for appearance-only multiple object tracking. IEEE Trans. Pattern Anal. Mach. Intell.45, 15380–15393 (2023). – reference: ZhaoJJiSCaiZZengYWangYMoving object detection and tracking by event frame from neuromorphic vision sensorsBiomimetics20227311:CAS:528:DC%2BB38XhslOhurjJ10.3390/biomimetics7010031353231888945359 – reference: Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Proc. 2014 European Conference of Computer Vision (ECCV), 740–755 (Springer, 2014). – reference: Mitrokhin, A., Fermuller, C., Parameshwara, C. & Aloimonos, Y. Event-based moving object detection and tracking. In Proc. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2018). – reference: Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. 2014 IEEE Conference on Computer Vision and Pattern Recognition 580–587 (IEEE, 2014). – reference: Cannici, M., Ciccone, M., Romanoni, A. & Matteucci, M. Asynchronous convolutional networks for object detection in neuromorphic cameras. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1656–1665 (IEEE, 2019). – reference: Deng, Y., Chen, H., Liu, H. & Li, Y. A voxel graph CNN for object classification with event cameras. In Proc. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 1162–1171 (IEEE, 2022). – reference: Wang, X., Su, T., Da, F. & Yang, X. ProphNet: efficient agent-centric motion forecasting with anchor-informed proposals. In Proc.2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 21995–22003 (IEEE, 2023). – reference: GehrigDRebecqHGallegoGScaramuzzaDEKLT: asynchronous photometric feature tracking using events and framesInt. J. Comput. Vis.201912860161810.1007/s11263-019-01209-w – reference: Fey, M., Lenssen, J. E., Weichert, F. & Müller, H. SplineCNN: fast geometric deep learning with continuous b-spline kernels. In Proc.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 869–877 (2018). – reference: Maqueda, A. I., Loquercio, A., Gallego, G., García, N. & Scaramuzza, D. Event-based vision meets deep learning on steering prediction for self-driving cars. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 5419–5427 (IEEE, 2018). – reference: Redmon, J. & Farhadi, A. YOLOv3: an incremental improvement. Preprint at https://arxiv.org/abs/1804.02767 (2018). – reference: Girshick, R. Fast R-CNN. In Proc. 2015 IEEE International Conference on Computer Vision (ICCV) 1440–1448 (IEEE, 2015). – reference: Messikommer, N. A., Gehrig, D., Loquercio, A. & Scaramuzza, D. Event-based asynchronous sparse convolutional networks. In Proc. 16th European Conference of Computer Vision (ECCV) 415–431 (ACM, 2020). – reference: Sony. Image Sensors for Automotive Use. https://www.sony-semicon.com/en/products/is/automotive/automotive.html (2023). – reference: MitraSFusiSIndiveriGReal-time classification of complex patterns using spike-based learning in neuromorphic vlsiIEEE Trans. Biomed. Circuits Syst.2009332421:STN:280:DC%2BC3sfgslykug%3D%3D10.1109/TBCAS.2008.200578123853161 – reference: Alonso, Iñigo and Murillo, A. C. EV-SegNet: semantic segmentation for event-based cameras. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1624–1633 (IEEE, 2019). – reference: Jian, Z. et al. Mixed frame-/event-driven fast pedestrian detection. In Proc.2019 International Conference on Robotics and Automation (ICRA) 8332–8338 (IEEE, 2019). – reference: UddinSMNadimAhmedSoikatHasanJungYongJuUnsupervised deep event stereo for depth estimationIEEE Trans. Circuits Syst. Video Technol.2022327489750410.1109/TCSVT.2022.3189480 – reference: Mobileye. EyeQ: Vision System on a Chip. https://www.mobileye-vision.com/uploaded/eyeq.pdf (2023). – reference: LichtsteinerPPoschCDelbruckTA 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensorIEEE J. Solid State Circuits2008435665762008IJSSC..43..566L10.1109/JSSC.2007.914337 – reference: BrandliCBernerRYangMLiuShih-ChiiDelbruckTA 240 × 180 130 dB 3 μs latency global shutter spatiotemporal vision sensorIEEE J. Solid State Circuits201449233323412014IJSSC..49.2333B10.1109/JSSC.2014.2342715 – reference: RussakovskyOImageNet large scale visual recognition challengeInt. J. Comput. Vis.2015115211252342248210.1007/s11263-015-0816-y – reference: OmniVision. OX08B4C 8.3 MP Product Brief. https://www.ovt.com/wp-content/uploads/2022/01/OX08B4C-PB-v1.0-WEB.pdf (2023). – reference: Cui, A., Casas, S., Wong, K., Suo, S. & Urtasun, R. GoRela: go relative for viewpoint-invariant motion forecasting. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 7801–7807 (IEEE, 2022). – reference: GehrigMAarentsWGehrigDScaramuzzaDDSEC: a stereo event camera dataset for driving scenariosIEEE Robot. Automat.Lett.202164947495410.1109/LRA.2021.3068942 – reference: Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Learning to detect objects with a 1 megapixel event camera. In Proc. Advances in Neural Information Processing Systems 33 (NeurIPS) 16639–16652 (eds Larochelle, H. et al.) (2020). – reference: Zhou, Z. et al. RGB-event fusion for moving object detection in autonomous driving. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 7808–7815 (IEEE, 2023). – reference: Forrai, B., Miki, T., Gehrig, D., Hutter, M. & Scaramuzza, D. Event-based agile object catching with a quadrupedal robot. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 12177–12183 (IEEE, 2023). – reference: Simonovsky, M. & Komodakis, N. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 29–38 (IEEE, 2017). – reference: Prophesee. Transfer latency.https://support.prophesee.ai/portal/en/kb/articles/evk-latency (2023). – reference: Cordone, L., Miramond, B. & Thierion, P. Object detection with spiking neural networks on automotive event data. In Proc. 2022 International Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2022). – reference: Gehrig, D., Loquercio, A., Derpanis, K. G. & Scaramuzza, D. End-to-end learning of representations for asynchronous event-based data. In Proc. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 5632–5642 (IEEE, 2019). – reference: Li, Y. et al. Graph-based asynchronous event processing for rapid object recognition. In Proc. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) 914–923 (IEEE, 2021). – reference: Amir, A. et al. A low power, fully event-based gesture recognition system. In Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7388–7397 (IEEE, 2017). – reference: Tulyakov, S., Fleuret, F., Kiefel, M., Gehler, P. & Hirsch, M. Learning an event sequence embedding for dense event-based deep stereo. In Proc. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 1527–1537 (IEEE, 2019). – reference: Tulyakov, S. et al. Time lens++: event-based frame interpolation with parametric nonlinear flow and multi-scale fusion. In Proc. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 17734–17743 (IEEE, 2022). – reference: Pang, J. et al. Quasi-dense similarity learning for multiple object tracking. In Proc. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 164–173 (IEEE, 2021). – reference: Prophesee Evaluation Kit - 2 HD.https://www.prophesee.ai/event-based-evk (2023). – reference: Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E. & Andreopoulos, Y. Graph-based object classification for neuromorphic vision sensing. In Proc. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 491–501 (IEEE, 2019). – reference: Cruise. Cruise 101: Learn the Basics of How a Cruise Car Navigates City Streets Safely and Efficiently. https://getcruise.com/technology (2023). – reference: Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. & Wilson, A. G. Averaging weights leads to wider optima and better generalization. In Proc. 34thConference on Uncertainty in Artificial Intelligence (UAI) Vol. 2 (eds Silva, R. et al.) 876–885 (Association For Uncertainty in Artificial Intelligence, 2018). – reference: Cho, H., Cho, J. & Yoon, K.-J. Learning adaptive dense event stereo from the image domain. In Proc.2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 17797–17807 (IEEE, 2023). – reference: Sun, Z., Messikommer, N., Gehrig, D. & Scaramuzza, D. ESS: learning event-based semantic segmentation from still images. In Proc. 17th European Conference of Computer Vision (ECCV) 341–357 (ACM, 2022). – reference: Gehrig, M., Shrestha, S. B., Mouritzen, D. & Scaramuzza, D. Event-based angular velocity regression with spiking networks. In Proc. 2020 IEEE International Conference on Robotics and Automation (ICRA) 4195-4202 (IEEE, 2020). – reference: Graham, B., Engelcke, M. & van der Maaten, L. 3D semantic segmentation with submanifold sparse convolutional networks. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 9224–9232 (IEEE, 2018). – reference: Sekikawa, Y., Hara, K. & Saito, H. EventNet: asynchronous recursive event processing. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 3882–3891 (IEEE, 2019). – reference: Ge, Z., Liu, S., Wang, F., Li, Z. & Sun, J. YOLOX: exceeding YOLO series in 2021. Preprint at https://arxiv.org/abs/2107.08430 (2021). – reference: OrchardGJayawantACohenGKThakorNConverting static image datasets to spiking neuromorphic datasets using saccadesFront. Neurosci.2015943710.3389/fnins.2015.00437266355134644806 – reference: Iacono, M., Weber, S., Glover, A. & Bartolozzi, C. Towards event-driven object detection with off-the-shelf deep learning. In Proc. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1–9 (IEEE, 2018). – reference: Jouppi, N. P. et al. Ten lessons from three generations shaped Google’s TPUv4i: industrial product. In Proc. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) 1–14 (IEEE, 2021). – reference: Liu, W. et al. SSD: single shot multibox detector. In Proc. 2016 European Conference of Computer Vision (ECCV) Vol. 9905, 21–37 (eds Leibe, B. et al.) (Springer, 2016). – reference: Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only Look Once: unified, real-time object detection. In Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 779–788 (IEEE, 2016). – reference: IndiveriGNeuromorphic silicon neuron circuitsFront. Neurosci.201157310.3389/fnins.2011.00073217477543130465 – reference: ZhangZA flexible new technique for camera calibrationIEEE Trans. Pattern Anal. Mach. Intell.2000221330133410.1109/34.888718 – reference: Groh, F., Wieschollek, P. & Lensch, H. P. A. Flex-convolution (million-scale point-cloud learning beyond grid-worlds). In Proc. Computer Vision – ACCV 2018 Vol. 11361 (eds Jawahar, C. et al.) 105–122 (Springer, 2018). – ident: 7409_CR63 – ident: 7409_CR15 – ident: 7409_CR34 – volume: 10 start-page: 508 year: 2016 ident: 7409_CR71 publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00508 – ident: 7409_CR53 – ident: 7409_CR7 – ident: 7409_CR2 doi: 10.1038/d41586-018-01683-1 – ident: 7409_CR64 doi: 10.1007/978-3-319-46448-0_2 – volume: 32 start-page: 7489 year: 2022 ident: 7409_CR82 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3189480 – ident: 7409_CR4 – ident: 7409_CR69 doi: 10.1109/ICRA40945.2020.9196877 – ident: 7409_CR72 doi: 10.1109/CVPR.2017.781 – ident: 7409_CR32 doi: 10.1109/ICCV48922.2021.00097 – volume: 9 start-page: 437 year: 2015 ident: 7409_CR42 publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00437 – ident: 7409_CR19 – ident: 7409_CR75 doi: 10.1109/CVPR.2019.00401 – ident: 7409_CR27 doi: 10.1109/ICRA.2019.8793924 – ident: 7409_CR37 doi: 10.1109/ISCA52012.2021.00010 – ident: 7409_CR60 doi: 10.1109/ICRA48891.2023.10161392 – ident: 7409_CR86 – ident: 7409_CR33 doi: 10.1109/CVPR.2017.11 – ident: 7409_CR12 doi: 10.1109/CVPR52729.2023.01713 – ident: 7409_CR18 doi: 10.1007/978-3-031-19830-4_20 – volume: 3 start-page: 32 year: 2009 ident: 7409_CR68 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2008.2005781 – volume: 31 start-page: 2975 year: 2022 ident: 7409_CR28 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3162962 – ident: 7409_CR1 doi: 10.1109/TPAMI.2020.3008413 – ident: 7409_CR26 doi: 10.1109/IROS.2018.8594119 – ident: 7409_CR21 doi: 10.1109/ICCV.2019.00161 – ident: 7409_CR29 doi: 10.1007/978-3-030-58565-5_9 – volume: 46 start-page: 259 year: 2011 ident: 7409_CR48 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2010.2085952 – ident: 7409_CR8 – ident: 7409_CR78 doi: 10.1007/978-3-030-20887-5_7 – ident: 7409_CR49 doi: 10.1109/TPAMI.2023.3301975 – ident: 7409_CR70 doi: 10.1109/ICRA40945.2020.9197133 – ident: 7409_CR5 – ident: 7409_CR47 – ident: 7409_CR59 doi: 10.1109/CVPR.2018.00568 – ident: 7409_CR23 doi: 10.1109/ICCV.2019.00573 – ident: 7409_CR35 doi: 10.1109/CVPR.2018.00097 – volume: 5 start-page: 73 year: 2011 ident: 7409_CR67 publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00073 – ident: 7409_CR11 doi: 10.1109/CVPR52729.2023.02106 – ident: 7409_CR58 doi: 10.1109/CVPRW.2019.00209 – ident: 7409_CR76 doi: 10.1109/IROS.2018.8593805 – ident: 7409_CR39 doi: 10.1109/IJCNN55064.2022.9892618 – ident: 7409_CR13 – ident: 7409_CR74 doi: 10.1109/CVPR.2018.00186 – ident: 7409_CR38 doi: 10.1109/CVPRW.2018.00107 – ident: 7409_CR50 doi: 10.1109/CVPR46437.2021.00023 – volume: 35 start-page: 2706 year: 2013 ident: 7409_CR73 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.71 – ident: 7409_CR55 – ident: 7409_CR30 doi: 10.1109/CVPR.2016.90 – ident: 7409_CR9 – ident: 7409_CR85 doi: 10.1007/978-3-319-10602-1_48 – ident: 7409_CR54 doi: 10.1109/CVPR52729.2023.01707 – volume: 115 start-page: 211 year: 2015 ident: 7409_CR46 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: 7409_CR45 doi: 10.1109/CVPR42600.2020.01442 – volume: 5 start-page: eaaz9712 year: 2020 ident: 7409_CR3 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aaz9712 – ident: 7409_CR43 doi: 10.1109/ICCV.2019.00058 – ident: 7409_CR61 doi: 10.1109/CVPR.2014.81 – volume: 22 start-page: 1330 year: 2000 ident: 7409_CR84 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.888718 – ident: 7409_CR20 doi: 10.1109/CVPRW.2019.00205 – ident: 7409_CR56 – ident: 7409_CR14 – ident: 7409_CR22 doi: 10.1109/CVPR46437.2021.01589 – ident: 7409_CR41 – volume: 6 start-page: 4947 year: 2021 ident: 7409_CR40 publication-title: IEEE Robot. Automat.Lett. doi: 10.1109/LRA.2021.3068942 – ident: 7409_CR83 doi: 10.1109/CVPR52688.2022.01723 – ident: 7409_CR10 doi: 10.1109/ICRA48891.2023.10160984 – ident: 7409_CR77 – volume: 49 start-page: 2333 year: 2014 ident: 7409_CR17 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2014.2342715 – ident: 7409_CR36 doi: 10.1007/978-3-030-58598-3_25 – ident: 7409_CR25 doi: 10.1109/CVPR.2019.00398 – ident: 7409_CR65 doi: 10.1109/CVPR.2016.91 – ident: 7409_CR6 – volume: 43 start-page: 566 year: 2008 ident: 7409_CR16 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2007.914337 – volume: 128 start-page: 601 year: 2019 ident: 7409_CR80 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01209-w – ident: 7409_CR51 doi: 10.1109/ICRA48891.2023.10161563 – volume: 7 start-page: 31 year: 2022 ident: 7409_CR79 publication-title: Biomimetics doi: 10.3390/biomimetics7010031 – ident: 7409_CR52 – ident: 7409_CR31 doi: 10.1109/CVPR52688.2022.01205 – ident: 7409_CR24 doi: 10.1109/CVPR.2019.00108 – ident: 7409_CR66 – ident: 7409_CR62 doi: 10.1109/ICCV.2015.169 – volume: 8 start-page: 148075 year: 2020 ident: 7409_CR81 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015759 – ident: 7409_CR44 doi: 10.1109/CVPR52688.2022.00124 – ident: 7409_CR57 doi: 10.1109/CVPR.2018.00961 |
| SSID | ssj0005174 |
| Score | 2.6969593 |
| Snippet | The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth–latency... The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth-latency... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1034 |
| SubjectTerms | 639/166 639/705/117 Accuracy Advanced driver assistance systems Algorithms Bandwidths Cameras Computer vision Efficiency Frames per second Graphs Humanities and Social Sciences Latency Methods multidisciplinary Neural networks Science Science (multidisciplinary) Sensors Sparsity Temporal resolution Tradeoffs |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFdE-iK1fp1Ui-KDYpZtsdjd5KKLSUkQOEQt9C5v9QOHIneauR_97ZzebXM_C4XNmk-zszOzszsxvAN4oiwaglinhWkuSC66JYkIRWWijSpuizxyyLSbi_CL_cskvd2DS18L4tMreJgZDbWba35Efo2vLJJpOVnyY_ya-a5SPrvYtNFRsrWBOAsTYHdjNPDLWCHY_nU6-fV8nffyDyxzLaPCtxy1uZYVPyM0Jbqu0JKvNreqW_3k7jXKIpe7BvWUzV9crNZ3e2K7OHsKD6GcmHzvB2Icd2xzA3ZDvqdsD2I863SZvI_D0u0dAv85WZKq8F32dqOUiJOpd2aSrP0_8lW0SAJ8SrfxdVvsYLs5Of3w-J7GjAtG55AtirNNU15kT2khDS6PLTOcWjxWUao9sI5WoBS9dqTRHJjDuhMyccYVTtZOOPYFRM2vsM0jQDtSS1hmesEyOnCxyK9BZVI7Z1OZUjyHtmVfpCDfuu15MqxD2ZkXVMbxChleB4dVqDO-HMfMObGMr9WG_JlVUvLZai8kYXg-PUWV8HEQ1drYMNBnPkAppnnZLOHyOFb7yNs3GUGws7kDg4bg3nzS_fgZY7tS3xxEChx71crD-r23TOBpk5T9m_Xz7rF_A_SyIMCeMHsJo8WdpX6LbtKhfRV34C2jJEoo priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xpmnwgAbjo1CmTNoDaLVw4vgjj6gCoWna05B4ixzH1iZVaUVaKv57zk6aUiohePbZSe4jd_adfwfwQ1v8ARQyJtwYSVLBDdFMaCKVKXVmY4yZQ7XFH3Fzm_6643cbMFjchVnJ3wfo7hpdjPKFsilBd0czMv8AHxUqpu9XMBTDZUHHC8zl9ooMrnKxvsaqG1qLLddLJLs86TZ8nlUT_TjXo9EzV3T9BXbaGDK6bIS-Cxu22oNPoZbT1Huw29prHZ21oNLnX4H-Hs_JSPsI-THSs2kownuwUXO3PPLHsVEAc4qM9udU9T7cXl_9Hd6QtlsCMankU1JaZ6gpEidMKUualSZLTGpxy0Cp8ag1UotC8Mxl2nBkAuNOyMSVTjldOOnYAWxW48oeQYQ2XkhaJLh7KlPkpEqtwEBQO2Zjm1LTg3jBvNy0UOK-o8UoDyltpvKG4TkyPA8Mz-c9-NnNmTRAGq9S9xcyyVujqnPc3TCJ3pOpHnzvhtEcfI5DV3Y8CzQJT5AKaQ4bEXaPY8rfqo2THqgV4XYEHmp7daT6_y9Abse-9Y0QOHWw0IPle732GYNOV97w1cfvW_0EtpKg0pww2ofN6f3MnmKINC2-Bct4AnxvBdE priority: 102 providerName: Springer Nature |
| Title | Low-latency automotive vision with event cameras |
| URI | https://link.springer.com/article/10.1038/s41586-024-07409-w https://www.ncbi.nlm.nih.gov/pubmed/38811712 https://www.proquest.com/docview/3063799038 https://www.proquest.com/docview/3062527998 https://pubmed.ncbi.nlm.nih.gov/PMC11136662 https://www.nature.com/articles/s41586-024-07409-w.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 629 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: AFBBN dateStart: 20190103 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8FG dateStart: 19900104 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRDwAGwMKIwqSDyAmEs-beexrVYmhKoJUVGeIsexBaJKK5JQjb-es_PBytDEXhIpPsc---w723c_A7wUCieAlHkkkpKRkEaSiIAKwrjMRKw8tJmtt8Wcni3C98touQe0jYWxTvsW0tJO06132NsCFQ037rIhQaXnxmQ72mR6H_o0Qhu8B_3F_Hz85TLksg0rYhTL56yJlnED_o8f7WqkK2bmVW_J7sj0Ltyu8o242IrV6pJWmt2Hzy0_tTPK91FVpiP56y-ox5sz_ADuNYaqM64pD2BP5YdwyzqMyuIQDppJoXBeNcjVrx-C-2G9JSthzPALR1Sl9fT7qZw6gN0xe76ORYxypDCbYcURLGann6ZnpLmSgciQRSXJlJauTH1NZcYyN85k7MtQ4brEdaWBxmGCptglOhYywmoHkabM15nmWqSa6eAR9PJ1rp6AgxNJytzUxyVaFmJ_8VBRtDaFDpSnQlcOwGu7JZENXrm5NmOV2HPzgCd1EyXYRIltomQ7gDddnk2N1nEt9XHb20kzcosEl1ABQxUd8AG86JJxzJmDFJGrdWVp_MhHKqR5XAtHV1zATeiu5w-A74hNR2DwvHdT8m9fLa63Z-7XoRSznrQS9qde17Fx0knhf3D99Gbkz-COb4UwIoF7DL3yR6Weox1WpkPYZ0uGTz71zHP2bgj98WwymeN7cjo__4hfp3Q6bAbnb3AUMUk |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GgMocEDYuOywoAggQRi1hzHsZMHhBAwdazsaZP6FhzHFpOqtJCWqD_FN3LsXEqZVPGyZx8n9rn52OcG8FIZVAC5DEmstSRcxJqoSCgiE12o1IRoM_toizMxvOBfxvF4C353uTAurLLTiV5RF1Pt3siP0LSNJKrOKHk_-0Fc1yjnXe1aaDRscWqWNV7Zqncnn5C-rxg7_nz-cUjargJEcxnPSWGspjpnVuhCFjQtdMo0N2haU6pddRepRC7i1KZKx5LTKLZCMlvYxKrcShvhd2_ATR6hLkH5kWO5Cin5p-pzm6SDaz6q8KBMXLgvJ3ho05TU6wfhFev2apBm76m9AzuLcqaWtZpM_joMj-_B3daKDT40bLcLW6bcg1s-mlRXe7DbaowqeN2WtX5zH-hoWpOJcjb6MlCLuQ8D_GWCJrs9cA_CgS8nFWjlXsqqB3BxLZh9CNvltDT7EKCWySXNGd7fCo6YTLgRaIoqG5nQcKoHEHbIy3RbzNz11Jhk3qkeJVmD8AwRnnmEZ_UA3vZzZk0pj43QBx1Nslasq2zFhAN40Q-jQDoviyrNdOFhWMwQCmEeNSTsfxclLq83ZANI1ojbA7hi3-sj5eV3X_Q7dM13hMCphx0frNa1aRuHPa_8x64fb971c9gZnn8dZaOTs9MncJt5do5JRA9ge_5zYZ6igTbPn3mpCODbdYvhH1bpSp8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEBuDFQYECSTQZs2xEzt5QAgxqo1NEw9M6ltwHFsgVWlZWqL-a_x1nJ2PUiZVvOzZ58Q-353Pvp_vAF4pgwYglyGJtZYkErEmigtFZKILlZoQfWaPtjgXxxfR51E82oDf3VsYB6vsbKI31MVEuzvyQ3RtuUTTyZND28IivhwN309_EldBykVau3IajYicmkWNx7fq3ckRrvVrxoafvn48Jm2FAaIjGc9IYaymOmdW6EIWNC10ynRk0M2mVLtML1KJXMSpTZWOZUR5bIVktrCJVbmVluN3b8BNyXnq4IRyJJfwkn8yQLcPdtz4K9w0Ewf9jQhu4DQl9eqmeMXTvQrY7KO29-DOvJyqRa3G4782xuEDuN96tMGHRgS3YMOU23DLI0t1tQ1brfWogjdtiuu3D4GeTWoyVs5fXwRqPvOQwF8maF66B-5yOPCppQKt3K1ZtQMX18LZR7BZTkqzCwFanFzSnOFZroiQk0lkBLqlynITmojqAYQd8zLdJjZ39TXGmQ-w8yRrGJ4hwzPP8KwewH7fZ9qk9VhLvdetSdaqeJUtBXIAL_tmVE4XcVGlmcw9DYsZUiHN42YJ-9_xxL3xDdkAkpXF7Qlc4u_VlvLHd58APHSFeITArgedHCzHtW4aB72s_Mesn6yf9Qu4jQqYnZ2cnz6Fu8xLc0w43YPN2eXcPENfbZY_90oRwLfr1sI_DYZO4g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGTQh4ADYYHAxUJB5ALLe0aT76OCGmCaGJB06MpypNE4E49U605TT-epz0gx1DE3uO28SxYzuJ_QvAS23RABQyJtwYSVLBDdFMaCKVKXVmY4yZQ7bFqTiZp-_P-NkWiKEWJiTtB0jLYKaH7LDDGh2N8umyKUGnRzOynq1KdwO2BccYfALb89OPR18uQi6HsiIpsH8l-2oZytQ_frTpkS6FmZezJccr0ztwq61W-nytF4sLXun4Hnwe-OmSUb7P2qaYmV9_QT1en-H7cLcPVKOjjnIHtmy1CzdDwqipd2GnNwp19KpHrn79AOiH5ZostA_DzyPdNiHT76eNugL2yJ_5RgExKjLaH4bVD2F-_O7T2xPSP8lATCp5Q0rrDDVF4oQpZUmz0mSJSS3uSyg1HhpHalGgSFymDcdhM-6ETFzplNOFk47twaRaVvYxRGhICkmLBLdoZYryUqkVGG1qx2xsU2qmEA9iyU2PV-6fzVjk4d6cqbybohynKA9TlK-n8Gb8ZtWhdVxJvT9IO-9Xbp3jFopJdNFMTeHF2Ixrzl-k6Mou20CT8ASpkOZRpxxjd0z50t04mYLaUJuRwON5b7ZU374GXO_Yv68jBH56MGjYn3FdxcbBqIX_wfWT65E_hdtJUEJOGN2HSfOjtc8wDmuK5_2i-w1W-Cq8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-latency+automotive+vision+with+event+cameras&rft.jtitle=Nature+%28London%29&rft.au=Gehrig%2C+Daniel&rft.au=Scaramuzza%2C+Davide&rft.date=2024-05-30&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=629&rft.issue=8014&rft.spage=1034&rft_id=info:doi/10.1038%2Fs41586-024-07409-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |