An EEG-based marker of functional connectivity: detection of major depressive disorder

Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices...

Full description

Saved in:
Bibliographic Details
Published inCognitive neurodynamics Vol. 18; no. 4; pp. 1671 - 1687
Main Authors Li, Ling, Wang, Xianshuo, Li, Jiahui, Zhao, Yanping
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1871-4080
1871-4099
1871-4099
DOI10.1007/s11571-023-10041-5

Cover

Abstract Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.
AbstractList Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.
Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.
Author Li, Ling
Li, Jiahui
Wang, Xianshuo
Zhao, Yanping
Author_xml – sequence: 1
  givenname: Ling
  surname: Li
  fullname: Li, Ling
  organization: College of Communication Engineering, Jilin University
– sequence: 2
  givenname: Xianshuo
  surname: Wang
  fullname: Wang, Xianshuo
  organization: College of Communication Engineering, Jilin University
– sequence: 3
  givenname: Jiahui
  surname: Li
  fullname: Li, Jiahui
  organization: College of Communication Engineering, Jilin University
– sequence: 4
  givenname: Yanping
  surname: Zhao
  fullname: Zhao, Yanping
  email: zhaoyp@jlu.edu.cn
  organization: College of Communication Engineering, Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39104678$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wB1igSGzYpPjGjzhsUFUNpVKlboCt5Tg3xUPGHuxkqvn3eB70tai68uN-5_r43GNy4INHQt4DPQVK688JQNRQ0oqV-cyhFK_IEah8xWnTHNztFT0kxynNKRVSAX9DDlkDlMtaHZFfZ76YzS7K1iTsioWJfzAWoS_6ydvRBW-GwgbvMR9Wblx_KToccVvZUAszDzFfLSOm5FZYdC6F2GF8S173Zkj4br-ekJ_fZj_Ov5dX1xeX52dXpeW1GPOr2bcRTFRKdra1wCmveyYE73graw6VELTitpUKKUcpBTIJDI1CAX2F7ISwXd_JL8361gyDXkaXv7HWQPUmJb1LSeeU9DYlLbLq6061nNoFdhb9GM29MhinH1e8-61vwkoDVE2tJMsdPu07xPB3wjTqhUsWh8F4DFPSjKpGAONig358gs7DFHOwW6qWIJqmztSHh5buvPyfVAbUDrAxpBSx19aNZjOI7NANz3-3eiJ9UUb7ZFOG_Q3Ge9vPqP4BNiPGaw
CitedBy_id crossref_primary_10_3390_s24216815
Cites_doi 10.1212/WNL.0000000000003265
10.3389/fnins.2020.00192
10.1177/1550059420965431
10.1002/hbm.25683
10.1016/j.cmpb.2018.11.006
10.1109/bibm.2016.7822702
10.1038/nm.4246
10.1016/j.cnsns.2010.12.031
10.1016/j.acha.2010.08.002
10.1016/j.neuroimage.2020.117385
10.1016/j.apacoust.2021.108078
10.1007/s10489-021-02426-y
10.3389/fnhum.2020.00284
10.1097/PSY.0000000000000490
10.3414/ME12-01-0083
10.1097/00004728-199803000-00032
10.1007/s13246-020-00897-w
10.1016/j.ijmedinf.2019.103983
10.1177/1087054715578270
10.7326/M20-1565
10.1371/journal.pmed.1001547
10.3389/fnins.2018.01037
10.1016/j.bspc.2022.103626
10.3389/fncom.2022.875282
10.1007/s11571-020-09619-0
10.1016/j.compbiomed.2022.105690
10.5194/npg-11-561-2004
10.1126/science.abq2591
10.1103/PhysRevE.65.041903
10.1016/j.compbiomed.2011.06.020
10.1016/j.jneumeth.2021.109209
10.1016/j.bspc.2016.07.006
10.1126/science.abq2599
10.1016/j.neuroimage.2006.03.052
10.1162/cpsy_a_00024
10.3389/fpsyg.2022.881408
10.1371/journal.pone.0068910
10.1017/S0033291717003336
10.1089/cap.2018.0166
10.1089/brain.2012.0073
10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
10.1007/978-3-030-01234-2_1
10.3390/brainsci13010130
10.1109/JBHI.2017.2709841
10.1007/s11571-019-09553-w
10.1093/cercor/bhs352
10.1109/Jsen.2022.3143176
10.1126/science.abq3868
10.1109/EMBC.2018.8512547
10.1007/s12021-013-9186-1
10.1016/j.neuroimage.2004.09.036
10.1016/j.neubiorev.2015.07.014
10.1007/s10877-019-00311-1
10.1111/exsy.12773
10.1192/bjp.179.1.85-a
10.5220/0006111800340041
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0S
M7P
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11571-023-10041-5
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest One Psychology
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1871-4099
EndPage 1687
ExternalDocumentID oai:pubmedcentral.nih.gov:11297863
PMC11297863
39104678
10_1007_s11571_023_10041_5
Genre Journal Article
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GrantInformation_xml – fundername: Jilin Scientific and Technological Development Program
  grantid: 20230204080YY
  funderid: http://dx.doi.org/10.13039/501100013061
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
7X7
875
8FI
8FJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KPH
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
OVD
P2P
PF0
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
3V.
7XB
8FE
8FG
8FH
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
LK8
P62
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-ba004a535286dcbc14047f3554d4b6741255024cb68e04e665e3613ea8e51f2e3
IEDL.DBID U2A
ISSN 1871-4080
1871-4099
IngestDate Sun Oct 26 03:50:39 EDT 2025
Tue Sep 30 17:02:45 EDT 2025
Fri Sep 05 09:33:33 EDT 2025
Tue Oct 07 07:06:14 EDT 2025
Sun Aug 03 01:52:54 EDT 2025
Thu Apr 24 22:54:08 EDT 2025
Wed Oct 01 03:34:43 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Functional connectivity
CNN
Synchrosqueezed wavelet coherence
EEG
Major depressive disorder
Language English
License The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-ba004a535286dcbc14047f3554d4b6741255024cb68e04e665e3613ea8e51f2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11297863
PMID 39104678
PQID 3087615997
PQPubID 2043944
PageCount 17
ParticipantIDs unpaywall_primary_10_1007_s11571_023_10041_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11297863
proquest_miscellaneous_3089513453
proquest_journals_3087615997
pubmed_primary_39104678
crossref_citationtrail_10_1007_s11571_023_10041_5
crossref_primary_10_1007_s11571_023_10041_5
springer_journals_10_1007_s11571_023_10041_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle Cognitive neurodynamics
PublicationTitleAbbrev Cogn Neurodyn
PublicationTitleAlternate Cogn Neurodyn
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Drysdale, Grosenick, Downar, Dunlop, Mansouri, Meng, Fetcho, Zebley, Oathes, Etkin, Schatzberg, Sudheimer, Keller, Mayberg, Gunning, Alexopoulos, Fox, Pascual-Leone, Voss, Liston (CR16) 2017; 23
Geng, Fan, Zhong, Casanova, Sokhadze, Li, Kang (CR21) 2023
Ahmadi, Davoudi, Daliri (CR2) 2019; 169
Li, Jing, Hu, Sun (CR31) 2016
Cao, Zhao, Shan, Wei, Guo, Chen, Erkoyuncu, Sarrigiannis (CR11) 2022; 43
Loh, Ooi, Aydemir, Tuncer, Dogan, Acharya (CR34) 2021
Axer, Amunts (CR7) 2022; 378
Jewell, Lewnard, Jewell (CR25) 2020; 173
Saeedi, Saeedi, Maghsoudi, Shalbaf (CR47) 2021; 15
Afshani, Shalbaf, Shalbaf, Sleigh (CR1) 2019; 13
Mulders, van Eijndhoven, Schene, Beckmann, Tendolkar (CR38) 2015; 56
Movahed, Jahromi, Shahyad, Meftahi (CR37) 2021; 358
Wacker, Witte (CR53) 2013; 52
Li, La, Wang, Hu, Zhang (CR32) 2020
Lachaux, Rodriguez, Martinerie, Varela (CR29) 1999; 8
Khan, Masroor, Jailani, Yahya, Yusoff, Khan (CR27) 2022; 22
Chang, Hsu, Pion-Tonachini, Jung (CR13) 2018; 2018
Sakkalis (CR48) 2011; 41
Evans-Lacko, Aguilar-Gaxiola, Al-Hamzawi, Alonso, Benjet, Bruffaerts, Chiu, Florescu, de Girolamo, Gureje, Haro, He, Hu, Karam, Kawakami, Lee, Lund, Kovess-Masfety, Levinson, Thornicroft (CR18) 2018; 48
Thiebaut de Schotten, Forkel (CR52) 2022; 378
Whitfield-Gabrieli, Nieto-Castanon (CR54) 2012; 2
Klem, Luders, Jasper, Elger (CR28) 1999; 52
Shalbaf, Saffar, Sleigh, Shalbaf (CR49) 2018; 22
Woo, Park, Lee, Kweon (CR55) 2018; 11211
Lee, Liu, Dadgar-Kiani (CR30) 2022; 378
Fu, Iraji, Turner, Sui, Miller, Pearlson, Calhoun (CR20) 2021; 224
Ferrari, Charlson, Norman, Patten, Freedman, Murray, Vos, Whiteford (CR19) 2013; 10
Piqueira (CR43) 2011; 16
Xia, Wang, He (CR56) 2013; 8
Mumtaz, Qayyum (CR39) 2019; 132
Cavanagh, Bismark, Frank, Allen (CR12) 2019; 3
CR14
Aydin, Cetin, Uytun, Babadagi, Gueven, Isik (CR9) 2022
Saeedi, Saeedi, Maghsoudi (CR46) 2020; 43
Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang, Wang (CR17) 2020; 14
Gloss, Varma, Pringsheim, Nuwer (CR22) 2016; 87
Aubert-Broche, Evans, Collins (CR6) 2006; 32
Niso, Bruna, Pereda, Gutierrez, Bajo, Maestu, Del-Pozo (CR42) 2013; 11
CR51
Grinsted, Moore, Jevrejeva (CR23) 2004; 11
Babiloni, Cincotti, Babiloni, Carducci, Mattia, Astolfi, Basilisco, Rossini, Ding, Ni, Cheng, Christine, Sweeney, He (CR10) 2005; 24
Daubechies, Lu, Wu (CR15) 2011; 30
Mumtaz, Xia, Ali, Yasin, Hussain, Malik (CR40) 2017; 31
Nazneen, Islam, Sajal, Jamal, Amin, Vaidyanathan, Chau, Mamun (CR41) 2022; 16
Aydemir, Tuncer, Dogan, Gururajan, Acharya (CR8) 2021; 51
Li, Xia, Yang, Zhang, Zhang, Liu, Liu, Kaslow, Jiang, Tang, Liu (CR33) 2022; 13
Mohammadi, Moradi (CR36) 2021; 52
Zhang, Wang, Wei, Guo, Wen, Luo (CR57) 2022
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (CR5) 2014; 24
Akbari, Sadiq, Rehman, Ghazvini, Naqvi, Payan, Bagheri, Bagheri (CR4) 2021
Holmes, Hoge, Collins, Woods, Toga, Evans (CR24) 1998; 22
McVoy, Aebi, Loparo, Lytle, Morris, Woods, Deyling, Tatsuoka, Kaffashi, Lhatoo, Sajatovic (CR35) 2019; 29
Saad, Kohn, Clarke, Lagopoulos, Hermens (CR45) 2018; 22
Shalbaf, Shalbaf, Saffar, Sleigh (CR50) 2020; 34
Ahn, Han, Hong, Min, Lee, Hahm, Kim (CR3) 2017; 79
Quian Quiroga, Kraskov, Kreuz, Grassberger (CR44) 2002; 65
Zuchowicz, Wozniak-Kwasniewska, Szekely, Olejarczyk, David (CR58) 2018; 12
F Afshani (10041_CR1) 2019; 13
JH Lee (10041_CR30) 2022; 378
XW Li (10041_CR31) 2016
I Daubechies (10041_CR15) 2011; 30
H Akbari (10041_CR4) 2021
SH Woo (10041_CR55) 2018; 11211
10041_CR14
M Li (10041_CR33) 2022; 13
A Ahmadi (10041_CR2) 2019; 169
CY Chang (10041_CR13) 2018; 2018
F Babiloni (10041_CR10) 2005; 24
M Wacker (10041_CR53) 2013; 52
NP Jewell (10041_CR25) 2020; 173
G Niso (10041_CR42) 2013; 11
AT Drysdale (10041_CR16) 2017; 23
PC Mulders (10041_CR38) 2015; 56
L Duan (10041_CR17) 2020; 14
A Grinsted (10041_CR23) 2004; 11
W Mumtaz (10041_CR39) 2019; 132
GH Klem (10041_CR28) 1999; 52
A Shalbaf (10041_CR49) 2018; 22
M Thiebaut de Schotten (10041_CR52) 2022; 378
W Mumtaz (10041_CR40) 2017; 31
R Quian Quiroga (10041_CR44) 2002; 65
HW Loh (10041_CR34) 2021
M Saeedi (10041_CR46) 2020; 43
S Whitfield-Gabrieli (10041_CR54) 2012; 2
D Gloss (10041_CR22) 2016; 87
X Li (10041_CR32) 2020
CJ Holmes (10041_CR24) 1998; 22
DM Khan (10041_CR27) 2022; 22
JF Saad (10041_CR45) 2018; 22
XL Geng (10041_CR21) 2023
A Saeedi (10041_CR47) 2021; 15
EA Allen (10041_CR5) 2014; 24
U Zuchowicz (10041_CR58) 2018; 12
AJ Ferrari (10041_CR19) 2013; 10
J Ahn (10041_CR3) 2017; 79
E Aydemir (10041_CR8) 2021; 51
V Sakkalis (10041_CR48) 2011; 41
JF Cavanagh (10041_CR12) 2019; 3
S Aydin (10041_CR9) 2022
RA Movahed (10041_CR37) 2021; 358
10041_CR51
Z Fu (10041_CR20) 2021; 224
M Axer (10041_CR7) 2022; 378
M McVoy (10041_CR35) 2019; 29
B Aubert-Broche (10041_CR6) 2006; 32
S Evans-Lacko (10041_CR18) 2018; 48
A Shalbaf (10041_CR50) 2020; 34
T Nazneen (10041_CR41) 2022; 16
JRC Piqueira (10041_CR43) 2011; 16
M Xia (10041_CR56) 2013; 8
YT Zhang (10041_CR57) 2022
J Cao (10041_CR11) 2022; 43
JP Lachaux (10041_CR29) 1999; 8
Y Mohammadi (10041_CR36) 2021; 52
References_xml – volume: 87
  start-page: 2375
  year: 2016
  end-page: 2379
  ident: CR22
  article-title: Practice advisory: the utility of EEG theta/beta power ratio in ADHD diagnosis: report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003265
– year: 2020
  ident: CR32
  article-title: A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00192
– volume: 52
  start-page: 3
  year: 1999
  end-page: 6
  ident: CR28
  article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 52
  start-page: 52
  year: 2021
  end-page: 60
  ident: CR36
  article-title: Prediction of depression severity scores based on functional connectivity and complexity of the EEG signal
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059420965431
– ident: CR51
– volume: 43
  start-page: 860
  year: 2022
  end-page: 879
  ident: CR11
  article-title: Brain functional and effective connectivity based on electroencephalography recordings: a review
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25683
– volume: 169
  start-page: 9
  year: 2019
  end-page: 18
  ident: CR2
  article-title: Computer aided diagnosis system for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.11.006
– year: 2016
  ident: CR31
  article-title: An EEG-based study on coherence and brain networks in mild depression cognitive process
  publication-title: Ieee Int Conf Bioinform Biomed (bibm)
  doi: 10.1109/bibm.2016.7822702
– volume: 23
  start-page: 28
  year: 2017
  end-page: 38
  ident: CR16
  article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat Med
  doi: 10.1038/nm.4246
– volume: 16
  start-page: 3844
  year: 2011
  end-page: 3854
  ident: CR43
  article-title: Network of phase-locking oscillators and a possible model for neural synchronization
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2010.12.031
– volume: 30
  start-page: 243
  year: 2011
  end-page: 261
  ident: CR15
  article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2010.08.002
– volume: 224
  start-page: 117385
  year: 2021
  ident: CR20
  article-title: Dynamic state with covarying brain activity-connectivity: on the pathophysiology of schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117385
– year: 2021
  ident: CR4
  article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.108078
– volume: 51
  start-page: 6449
  year: 2021
  end-page: 6466
  ident: CR8
  article-title: Automated major depressive disorder detection using melamine pattern with EEG signals
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02426-y
– volume: 14
  start-page: 284
  year: 2020
  ident: CR17
  article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2020.00284
– volume: 79
  start-page: 982
  year: 2017
  end-page: 987
  ident: CR3
  article-title: Features of resting-state electroencephalogram theta coherence in somatic symptom disorder compared with major depressive disorder: a pilot study
  publication-title: Psychosom Med
  doi: 10.1097/PSY.0000000000000490
– volume: 52
  start-page: 279
  year: 2013
  end-page: 296
  ident: CR53
  article-title: Time-frequency techniques in biomedical signal analysis. a tutorial review of similarities and differences
  publication-title: Methods Inf Med
  doi: 10.3414/ME12-01-0083
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  ident: CR24
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-199803000-00032
– volume: 43
  start-page: 1007
  year: 2020
  end-page: 1018
  ident: CR46
  article-title: Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-020-00897-w
– volume: 132
  start-page: 103983
  year: 2019
  ident: CR39
  article-title: A deep learning framework for automatic diagnosis of unipolar depression
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.103983
– volume: 22
  start-page: 815
  year: 2018
  end-page: 826
  ident: CR45
  article-title: Is the theta/beta EEG marker for ADHD inherently flawed?
  publication-title: J Atten Disord
  doi: 10.1177/1087054715578270
– volume: 173
  start-page: 226
  year: 2020
  end-page: 227
  ident: CR25
  article-title: Caution warranted: using the institute for health metrics and evaluation model for predicting the course of the COVID-19 pandemic
  publication-title: Ann Intern Med
  doi: 10.7326/M20-1565
– volume: 10
  start-page: e1001547
  year: 2013
  ident: CR19
  article-title: Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001547
– volume: 12
  start-page: 1037
  year: 2018
  ident: CR58
  article-title: EEG Phase synchronization in persons with depression subjected to transcranial magnetic stimulation
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.01037
– year: 2022
  ident: CR9
  article-title: Comparison of domain specific connectivity metrics for estimation brain network indices in boys with ADHD-C
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103626
– volume: 16
  start-page: 875282
  year: 2022
  ident: CR41
  article-title: Recent trends in non-invasive neural recording based brain-to-brain synchrony analysis on multidisciplinary human interactions for understanding brain dynamics: a systematic review
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2022.875282
– volume: 15
  start-page: 239
  year: 2021
  end-page: 252
  ident: CR47
  article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-020-09619-0
– year: 2022
  ident: CR57
  article-title: Minimal EEG channel selection for depression detection with connectivity features during sleep
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105690
– volume: 11
  start-page: 561
  year: 2004
  end-page: 566
  ident: CR23
  article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series
  publication-title: Nonlinear Process Geophys
  doi: 10.5194/npg-11-561-2004
– volume: 378
  start-page: 505
  year: 2022
  end-page: 510
  ident: CR52
  article-title: The emergent properties of the connected brain
  publication-title: Science
  doi: 10.1126/science.abq2591
– volume: 65
  start-page: 041903
  year: 2002
  ident: CR44
  article-title: Performance of different synchronization measures in real data: a case study on electroencephalographic signals
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
  doi: 10.1103/PhysRevE.65.041903
– volume: 41
  start-page: 1110
  year: 2011
  end-page: 1117
  ident: CR48
  article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2011.06.020
– ident: CR14
– volume: 358
  start-page: 109209
  year: 2021
  ident: CR37
  article-title: A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2021.109209
– volume: 31
  start-page: 108
  year: 2017
  end-page: 115
  ident: CR40
  article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.07.006
– volume: 378
  start-page: 500
  year: 2022
  end-page: 504
  ident: CR7
  article-title: Scale matters: the nested human connectome
  publication-title: Science
  doi: 10.1126/science.abq2599
– volume: 32
  start-page: 138
  year: 2006
  end-page: 145
  ident: CR6
  article-title: A new improved version of the realistic digital brain phantom
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.03.052
– volume: 3
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR12
  article-title: Multiple dissociations between comorbid depression and anxiety on reward and punishment processing: evidence from computationally informed EEG
  publication-title: Comput Psychiatr
  doi: 10.1162/cpsy_a_00024
– volume: 13
  start-page: 881408
  year: 2022
  ident: CR33
  article-title: Depression, anxiety, stress, and their associations with quality of life in a nationwide sample of psychiatrists in china during the COVID-19 pandemic
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2022.881408
– volume: 8
  start-page: e68910
  year: 2013
  ident: CR56
  article-title: BrainNet Viewer: a network visualization tool for human brain connectomics
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068910
– volume: 48
  start-page: 1560
  year: 2018
  end-page: 1571
  ident: CR18
  article-title: Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO World Mental Health (WMH) surveys
  publication-title: Psychol Med
  doi: 10.1017/S0033291717003336
– volume: 29
  start-page: 370
  year: 2019
  end-page: 377
  ident: CR35
  article-title: Resting-state quantitative electroencephalography demonstrates differential connectivity in adolescents with major depressive disorder
  publication-title: J Child Adolesc Psychopharmacol
  doi: 10.1089/cap.2018.0166
– volume: 2
  start-page: 125
  year: 2012
  end-page: 141
  ident: CR54
  article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0073
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  ident: CR29
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum Brain Mapp
  doi: 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
– volume: 11211
  start-page: 3
  year: 2018
  end-page: 19
  ident: CR55
  article-title: CBAM: convolutional block attention module. Computer vision Eccv 2018
  publication-title: Pt Vii
  doi: 10.1007/978-3-030-01234-2_1
– year: 2023
  ident: CR21
  article-title: Abnormalities of EEG functional connectivity and effective connectivity in children with autism spectrum disorder
  publication-title: Brain Sci
  doi: 10.3390/brainsci13010130
– volume: 22
  start-page: 671
  year: 2018
  end-page: 677
  ident: CR49
  article-title: Monitoring the depth of anesthesia using a new adaptive neurofuzzy system
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2709841
– volume: 13
  start-page: 531
  year: 2019
  end-page: 540
  ident: CR1
  article-title: Frontal-temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-019-09553-w
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: CR5
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs352
– volume: 22
  start-page: 4315
  year: 2022
  end-page: 4325
  ident: CR27
  article-title: Development of wavelet coherence EEG as a biomarker for diagnosis of major depressive disorder
  publication-title: IEEE Sens J
  doi: 10.1109/Jsen.2022.3143176
– volume: 378
  start-page: 493
  year: 2022
  end-page: 499
  ident: CR30
  article-title: Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI
  publication-title: Science
  doi: 10.1126/science.abq3868
– volume: 2018
  start-page: 1242
  year: 2018
  end-page: 1245
  ident: CR13
  article-title: Evaluation of artifact subspace reconstruction for automatic EEG artifact removal
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/EMBC.2018.8512547
– volume: 11
  start-page: 405
  year: 2013
  end-page: 434
  ident: CR42
  article-title: HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9186-1
– volume: 24
  start-page: 118
  year: 2005
  end-page: 131
  ident: CR10
  article-title: Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.09.036
– volume: 56
  start-page: 330
  year: 2015
  end-page: 344
  ident: CR38
  article-title: Resting-state functional connectivity in major depressive disorder: a review
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2015.07.014
– volume: 34
  start-page: 331
  year: 2020
  end-page: 338
  ident: CR50
  article-title: Monitoring the level of hypnosis using a hierarchical SVM system
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-019-00311-1
– year: 2021
  ident: CR34
  article-title: Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals
  publication-title: Exp Syst
  doi: 10.1111/exsy.12773
– volume: 3
  start-page: 1
  year: 2019
  ident: 10041_CR12
  publication-title: Comput Psychiatr
  doi: 10.1162/cpsy_a_00024
– volume: 65
  start-page: 041903
  year: 2002
  ident: 10041_CR44
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
  doi: 10.1103/PhysRevE.65.041903
– volume: 11211
  start-page: 3
  year: 2018
  ident: 10041_CR55
  publication-title: Pt Vii
  doi: 10.1007/978-3-030-01234-2_1
– volume: 13
  start-page: 881408
  year: 2022
  ident: 10041_CR33
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2022.881408
– volume: 11
  start-page: 561
  year: 2004
  ident: 10041_CR23
  publication-title: Nonlinear Process Geophys
  doi: 10.5194/npg-11-561-2004
– volume: 22
  start-page: 4315
  year: 2022
  ident: 10041_CR27
  publication-title: IEEE Sens J
  doi: 10.1109/Jsen.2022.3143176
– volume: 51
  start-page: 6449
  year: 2021
  ident: 10041_CR8
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02426-y
– volume: 43
  start-page: 1007
  year: 2020
  ident: 10041_CR46
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-020-00897-w
– volume: 15
  start-page: 239
  year: 2021
  ident: 10041_CR47
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-020-09619-0
– volume: 24
  start-page: 663
  year: 2014
  ident: 10041_CR5
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs352
– volume: 87
  start-page: 2375
  year: 2016
  ident: 10041_CR22
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003265
– volume: 22
  start-page: 671
  year: 2018
  ident: 10041_CR49
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2709841
– year: 2016
  ident: 10041_CR31
  publication-title: Ieee Int Conf Bioinform Biomed (bibm)
  doi: 10.1109/bibm.2016.7822702
– volume: 52
  start-page: 279
  year: 2013
  ident: 10041_CR53
  publication-title: Methods Inf Med
  doi: 10.3414/ME12-01-0083
– year: 2020
  ident: 10041_CR32
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00192
– volume: 378
  start-page: 505
  year: 2022
  ident: 10041_CR52
  publication-title: Science
  doi: 10.1126/science.abq2591
– volume: 22
  start-page: 815
  year: 2018
  ident: 10041_CR45
  publication-title: J Atten Disord
  doi: 10.1177/1087054715578270
– volume: 8
  start-page: 194
  year: 1999
  ident: 10041_CR29
  publication-title: Hum Brain Mapp
  doi: 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
– volume: 16
  start-page: 3844
  year: 2011
  ident: 10041_CR43
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2010.12.031
– volume: 2018
  start-page: 1242
  year: 2018
  ident: 10041_CR13
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/EMBC.2018.8512547
– volume: 14
  start-page: 284
  year: 2020
  ident: 10041_CR17
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2020.00284
– year: 2021
  ident: 10041_CR4
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.108078
– volume: 79
  start-page: 982
  year: 2017
  ident: 10041_CR3
  publication-title: Psychosom Med
  doi: 10.1097/PSY.0000000000000490
– volume: 13
  start-page: 531
  year: 2019
  ident: 10041_CR1
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-019-09553-w
– volume: 48
  start-page: 1560
  year: 2018
  ident: 10041_CR18
  publication-title: Psychol Med
  doi: 10.1017/S0033291717003336
– volume: 31
  start-page: 108
  year: 2017
  ident: 10041_CR40
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.07.006
– volume: 173
  start-page: 226
  year: 2020
  ident: 10041_CR25
  publication-title: Ann Intern Med
  doi: 10.7326/M20-1565
– year: 2022
  ident: 10041_CR57
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105690
– volume: 52
  start-page: 3
  year: 1999
  ident: 10041_CR28
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 52
  start-page: 52
  year: 2021
  ident: 10041_CR36
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059420965431
– volume: 378
  start-page: 500
  year: 2022
  ident: 10041_CR7
  publication-title: Science
  doi: 10.1126/science.abq2599
– volume: 16
  start-page: 875282
  year: 2022
  ident: 10041_CR41
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2022.875282
– volume: 32
  start-page: 138
  year: 2006
  ident: 10041_CR6
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.03.052
– volume: 10
  start-page: e1001547
  year: 2013
  ident: 10041_CR19
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001547
– volume: 22
  start-page: 324
  year: 1998
  ident: 10041_CR24
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-199803000-00032
– year: 2022
  ident: 10041_CR9
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103626
– volume: 30
  start-page: 243
  year: 2011
  ident: 10041_CR15
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2010.08.002
– year: 2023
  ident: 10041_CR21
  publication-title: Brain Sci
  doi: 10.3390/brainsci13010130
– volume: 358
  start-page: 109209
  year: 2021
  ident: 10041_CR37
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2021.109209
– volume: 56
  start-page: 330
  year: 2015
  ident: 10041_CR38
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2015.07.014
– ident: 10041_CR14
  doi: 10.1192/bjp.179.1.85-a
– year: 2021
  ident: 10041_CR34
  publication-title: Exp Syst
  doi: 10.1111/exsy.12773
– volume: 11
  start-page: 405
  year: 2013
  ident: 10041_CR42
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9186-1
– volume: 24
  start-page: 118
  year: 2005
  ident: 10041_CR10
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.09.036
– volume: 41
  start-page: 1110
  year: 2011
  ident: 10041_CR48
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2011.06.020
– volume: 12
  start-page: 1037
  year: 2018
  ident: 10041_CR58
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.01037
– volume: 43
  start-page: 860
  year: 2022
  ident: 10041_CR11
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25683
– volume: 224
  start-page: 117385
  year: 2021
  ident: 10041_CR20
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117385
– volume: 29
  start-page: 370
  year: 2019
  ident: 10041_CR35
  publication-title: J Child Adolesc Psychopharmacol
  doi: 10.1089/cap.2018.0166
– volume: 34
  start-page: 331
  year: 2020
  ident: 10041_CR50
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-019-00311-1
– volume: 2
  start-page: 125
  year: 2012
  ident: 10041_CR54
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0073
– volume: 8
  start-page: e68910
  year: 2013
  ident: 10041_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068910
– ident: 10041_CR51
  doi: 10.5220/0006111800340041
– volume: 169
  start-page: 9
  year: 2019
  ident: 10041_CR2
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.11.006
– volume: 378
  start-page: 493
  year: 2022
  ident: 10041_CR30
  publication-title: Science
  doi: 10.1126/science.abq3868
– volume: 132
  start-page: 103983
  year: 2019
  ident: 10041_CR39
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.103983
– volume: 23
  start-page: 28
  year: 2017
  ident: 10041_CR16
  publication-title: Nat Med
  doi: 10.1038/nm.4246
SSID ssj0056814
Score 2.3832636
Snippet Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1671
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Biochemistry
Biomedical and Life Sciences
Biomedicine
Brain
Brain research
Cognitive Psychology
Coherence
Computer Science
Datasets
Deep learning
EEG
Electroencephalography
Frequency dependence
Information processing
Machine learning
Medical diagnosis
Mental depression
Mental disorders
Missing data
Neural networks
Neurosciences
Research Article
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7gF4QIPByBjISIgXFpE0duIgTaigjgmJCiGG9hY5tqMNtU7pWtD-e-6cH6WaVPEaO3acs33f-c7fAbxKc8XzSidhXkk0UOLKhlKmPERkzpPIDk3siee_TNKzc_75QlzswKS7C0Nhld2e6DdqU2s6I39LzHWoffM8ez__FVLWKPKudik0VJtawZx4irE7sDskZqwB7H4YT75-6_ZmYtvyfmY0E9ByklF7jaa5TBcLfIo6LCQWtTgUm6rqFv68HUbZ-1Lvw92Vm6ubP2o6_Uddne7BgxZnslEzMR7CjnWPYH_k0Mae3bDXzEd--iP1ffgxcmw8_hSSRjNsRgE7C1ZXjHRec1TINMXD6CbTxDtm7NJHcDmqNVM_6wXrImp_W2ZaQs_HcH46_v7xLGzzLYSaZ2KJveC4led7SY0uNTHvZBUBEsPLFKEHmh-o0nWZShtxm6bCJogGrJJWxNXQJk9g4GpnnwIzJtM8jyKLoubc6pJHpbFC5hqbU6IKIO5-baFbMnLKiTEt1jTKJI4CxVF4cRQigDf9O_OGimNr7aNOYkW7LK-L9SQK4GVfjAuKvCTK2Xrl6yDqTLhIAjhoBNx3l-TkEs9kAHJD9H0FIuveLHFXl560m3BtJlNs9LibJevv2jaM434m_ceoD7eP-hncG6IEmwDGIxgsFyv7HEHVsnzRrpS_DGQajQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7QF6oEChBAoyEuJCs002tmP3tkJbKiQqDiwqpyixHdF2411ts6Dy6xk7H2WpVNFbFE8-nBlr3sTPzwBvucypLFUSylJggRKXJhSC0xCROU0iM9KxF57_fMKPp_TTKTvdgFG3FsaT9lVxNrSzamjPfnhu5aJSBx1P7MABhFTw5B5scob4ewCb05Mv4--uskL0jwWR3y6tPZayXSnTrJeLGZ7FNBU6obQ4ZOvZ6AbEvMmU7KdLt-D-yi7yq1_5bPZXRjrablYJXnohQ0dEuRiu6mKofv8j83i3zj6Chy1AJeOm7TFsGPsEdsYWi_PqirwjnjLq_8XvwLexJZPJx9ClQk0qx_RZknlJXLJs_jES5Yg0qtmi4pBoU3vql3VWVX4-X5KOivvTEN0qgT6F6dHk64fjsN2oIVQ0ZTU-Bb9m7oViuFaFcpI9aemQjKYFR8yCdQtiAVVwYSJqOGcmQRhhcmFYXI5M8gwGdm7NcyBap4rKKDIYI5QaVdCo0IYJqfB2OSsDiDuHZapVMXebacyya_1l5-QMnZx5J2csgPf9NYtGw-NW670uDrJ2PF9mTjcRsZ-UaQBv-mYciW56JbdmvvI2CFcTypIAdpuw6R-XSDeXnooAxFpA9QZO5Xu9BePBq313IRDAfhd71-91Wzf2-_j8j16_uJv5S3gwQo82TMg9GNTLlXmF6KwuXrfD8Q98WjFq
  priority: 102
  providerName: Unpaywall
Title An EEG-based marker of functional connectivity: detection of major depressive disorder
URI https://link.springer.com/article/10.1007/s11571-023-10041-5
https://www.ncbi.nlm.nih.gov/pubmed/39104678
https://www.proquest.com/docview/3087615997
https://www.proquest.com/docview/3089513453
https://pubmed.ncbi.nlm.nih.gov/PMC11297863
https://www.ncbi.nlm.nih.gov/pmc/articles/11297863
UnpaywallVersion acceptedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: AFBBN
  dateStart: 20070301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: 7X7
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1871-4099
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: BENPR
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: U2A
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5i2wPwwGDjEjYqIyFeWKRcbMfZW4bSTiCqCVHUPUWJ7QhQ605dC9q_59i5lGpogpdEShw7ybFzvpPz-TPAG56WNK1l7Ke1wAAlrLUvBKc-InMaBzpSoROe_zTm5xP6Ycqm7aSw647t3qUk3Zd6M9ktZAmGvpHlUgU09NkO7DEr54W9eBJl3ffXKmq5XDKGAhgdiaCdKvP3Orbd0S2MeZsq2edLH8L9tbkqb36Vs9kfLmn4GB61WJJkjfGfwD1tDuAwMxhHz2_IW-LYne63-QHsd8s3kHY0H8LXzJA8H_nWkSkytzydJVnUxLq65g8hkZYGI5sFJk6J0itH3DK21Lz8sViSjkj7UxPV6ng-hckw__L-3G-XWfAlTdgKW8FXUTqZF65kJa3gTlJbHKJoxRFxYNSBnlxWXOiAas6ZjhEE6FJoFtaRjp_BrlkY_QKIUomkaRBotDClWlY0qJRmIpVYXclqD8LubRey1SC3S2HMio16srVQgRYqnIUK5sG7_pqrRoHjztLHnRGLdjReF1b1EJFbmiYevO5P4ziyyZHS6MXalUGwGVMWe_C8sXnfXJzaTHgiPBBbvaEvYDW6t8-Y79-cVreFs4ngWOlJ13E293XXY5z0nesfnvrl_9V-BA8itGjDYzyG3dVyrV8htlpVA9hJpgluxXA0gL1sdPkxx_1ZPr74jEdH03DgBhsem4wvssvfbpweow
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHwgBjjIzCGkYAXZpEPO3GQJlSgo2NbhdCG9hYc2xGgNi1dy9R_jr-Ns_NRqkkVL3tNHCfOnf27851_B_A8TiVLCxXRtBDooASFoULEjKJlziLfhDpwxPMn_bh3xj6d8_M1-NOchbFplc2a6BZqPVJ2j_y1Za5D9E3T5O34F7VVo2x0tSmhIevSCnrfUYzVBzuOzPwSXbiL_cMPKO8XYXjQPX3fo3WVAapYwqc0l6gn0rGcxFrlyvLNJIWFYc3yGAEXjW4EMpXHwvjMxDE3EWKgkcLwoAhNhP3egA0WsRSdv4133f7nLw0WWHYvF9dGtwQ9NeHXx3aqw3sBx6uImdSytgWUL0PjFXv3atpmG7u9BZuzciznl3Iw-AceD-7A7dquJZ1KEbdgzZR3YbtTok8_nJOXxGWaui38bfjaKUm3-5FaBNVkaBOEJmRUEIux1dYkUTb_RlWVLd4QbaYuY6y0rYby52hCmgze34bomkD0Hpxdy5-_D-vlqDQPgWidKJb6vkHVYsyonPm5NlykCruTvPAgaH5tpmryc1uDY5AtaJutODIUR-bEkXEPXrXPjCvqj5WtdxqJZfUycJEtlNaDZ-1tnMA2KiNLM5q5NmjlRoxHHjyoBNy-LkptCD4RHogl0bcNLDn48p3yx3dHEm7t6ETE2OleoyWL71o1jL1Wk_5j1I9Wj_opbPZOT46z48P-0WO4GaI0q-TJHVifTmbmCRp003y3njUEvl33RP0Ln49VqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkTgeOFqOQAEjIV5o1By24_C2gl3KVfHAor5Fie0I0K53tWRB_ffMOMd2VVTBsx07yYwz32Q-fwZ4LvOS57VOw7xWmKDEtQ2VkjxEZM7TyCYm9sLzn47l0ZS_PxEnZ3bxe7Z7X5Js9zSQSpNrDpemPtxsfItFhmlwQryqiMehuAxXOAkloEdPk1H_LSZ1LV9XxrQAMyUVddtm_j7Gdmg6hzfP0yaH2ukNuLZ2y_L0dzmbnQlPk9tws8OVbNQ6wh24ZN0u7I0c5tTzU_aCeaan_4W-C7f6oxxYt7L34OvIsfH4bUhBzbA5cXZWbFEzCnvt30KmiRKj28MmXjFjG0_ictRrXv5YrFhPqv1lmek0Pe_CdDL-8voo7I5cCDXPRIOz4KsoveSLNLrSJL6T1YRJDK8kog_MQDCq60oqG3ErpbApAgJbKiviOrHpPdhxC2cfADMm0zyPIovW5tzqikeVsULlGocrRR1A3L_tQnd65HQsxqzYKCmThQq0UOEtVIgAXg7XLFs1jgt77_dGLLqV-bMgBUREcXmeBfBsaMY1RYWS0tnF2vdB4JlykQZwv7X5MF2aU1U8UwGoLW8YOpBe93aL-_7N63YTtM2UxEEPesfZ3NdFj3EwONc_PPXD_xv9KVz9_GZSfHx3_OERXE_QuC29cR92mtXaPkbI1VRP_Kr6A15oHi8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7QF6oEChBAoyEuJCs002tmP3tkJbKiQqDiwqpyixHdF2411ts6Dy6xk7H2WpVNFbFE8-nBlr3sTPzwBvucypLFUSylJggRKXJhSC0xCROU0iM9KxF57_fMKPp_TTKTvdgFG3FsaT9lVxNrSzamjPfnhu5aJSBx1P7MABhFTw5B5scob4ewCb05Mv4--uskL0jwWR3y6tPZayXSnTrJeLGZ7FNBU6obQ4ZOvZ6AbEvMmU7KdLt-D-yi7yq1_5bPZXRjrablYJXnohQ0dEuRiu6mKofv8j83i3zj6Chy1AJeOm7TFsGPsEdsYWi_PqirwjnjLq_8XvwLexJZPJx9ClQk0qx_RZknlJXLJs_jES5Yg0qtmi4pBoU3vql3VWVX4-X5KOivvTEN0qgT6F6dHk64fjsN2oIVQ0ZTU-Bb9m7oViuFaFcpI9aemQjKYFR8yCdQtiAVVwYSJqOGcmQRhhcmFYXI5M8gwGdm7NcyBap4rKKDIYI5QaVdCo0IYJqfB2OSsDiDuHZapVMXebacyya_1l5-QMnZx5J2csgPf9NYtGw-NW670uDrJ2PF9mTjcRsZ-UaQBv-mYciW56JbdmvvI2CFcTypIAdpuw6R-XSDeXnooAxFpA9QZO5Xu9BePBq313IRDAfhd71-91Wzf2-_j8j16_uJv5S3gwQo82TMg9GNTLlXmF6KwuXrfD8Q98WjFq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EEG-based+marker+of+functional+connectivity%3A+detection+of+major+depressive+disorder&rft.jtitle=Cognitive+neurodynamics&rft.au=Li%2C+Ling&rft.au=Wang%2C+Xianshuo&rft.au=Li%2C+Jiahui&rft.au=Zhao%2C+Yanping&rft.date=2024-08-01&rft.pub=Springer+Netherlands&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=18&rft.issue=4&rft.spage=1671&rft.epage=1687&rft_id=info:doi/10.1007%2Fs11571-023-10041-5&rft.externalDocID=10_1007_s11571_023_10041_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon