An EEG-based marker of functional connectivity: detection of major depressive disorder
Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices...
        Saved in:
      
    
          | Published in | Cognitive neurodynamics Vol. 18; no. 4; pp. 1671 - 1687 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.08.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1871-4080 1871-4099 1871-4099  | 
| DOI | 10.1007/s11571-023-10041-5 | 
Cover
| Abstract | Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD. | 
    
|---|---|
| AbstractList | Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD. Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.  | 
    
| Author | Li, Ling Li, Jiahui Wang, Xianshuo Zhao, Yanping  | 
    
| Author_xml | – sequence: 1 givenname: Ling surname: Li fullname: Li, Ling organization: College of Communication Engineering, Jilin University – sequence: 2 givenname: Xianshuo surname: Wang fullname: Wang, Xianshuo organization: College of Communication Engineering, Jilin University – sequence: 3 givenname: Jiahui surname: Li fullname: Li, Jiahui organization: College of Communication Engineering, Jilin University – sequence: 4 givenname: Yanping surname: Zhao fullname: Zhao, Yanping email: zhaoyp@jlu.edu.cn organization: College of Communication Engineering, Jilin University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39104678$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtv1DAUhS1URB_wB1igSGzYpPjGjzhsUFUNpVKlboCt5Tg3xUPGHuxkqvn3eB70tai68uN-5_r43GNy4INHQt4DPQVK688JQNRQ0oqV-cyhFK_IEah8xWnTHNztFT0kxynNKRVSAX9DDlkDlMtaHZFfZ76YzS7K1iTsioWJfzAWoS_6ydvRBW-GwgbvMR9Wblx_KToccVvZUAszDzFfLSOm5FZYdC6F2GF8S173Zkj4br-ekJ_fZj_Ov5dX1xeX52dXpeW1GPOr2bcRTFRKdra1wCmveyYE73graw6VELTitpUKKUcpBTIJDI1CAX2F7ISwXd_JL8361gyDXkaXv7HWQPUmJb1LSeeU9DYlLbLq6061nNoFdhb9GM29MhinH1e8-61vwkoDVE2tJMsdPu07xPB3wjTqhUsWh8F4DFPSjKpGAONig358gs7DFHOwW6qWIJqmztSHh5buvPyfVAbUDrAxpBSx19aNZjOI7NANz3-3eiJ9UUb7ZFOG_Q3Ge9vPqP4BNiPGaw | 
    
| CitedBy_id | crossref_primary_10_3390_s24216815 | 
    
| Cites_doi | 10.1212/WNL.0000000000003265 10.3389/fnins.2020.00192 10.1177/1550059420965431 10.1002/hbm.25683 10.1016/j.cmpb.2018.11.006 10.1109/bibm.2016.7822702 10.1038/nm.4246 10.1016/j.cnsns.2010.12.031 10.1016/j.acha.2010.08.002 10.1016/j.neuroimage.2020.117385 10.1016/j.apacoust.2021.108078 10.1007/s10489-021-02426-y 10.3389/fnhum.2020.00284 10.1097/PSY.0000000000000490 10.3414/ME12-01-0083 10.1097/00004728-199803000-00032 10.1007/s13246-020-00897-w 10.1016/j.ijmedinf.2019.103983 10.1177/1087054715578270 10.7326/M20-1565 10.1371/journal.pmed.1001547 10.3389/fnins.2018.01037 10.1016/j.bspc.2022.103626 10.3389/fncom.2022.875282 10.1007/s11571-020-09619-0 10.1016/j.compbiomed.2022.105690 10.5194/npg-11-561-2004 10.1126/science.abq2591 10.1103/PhysRevE.65.041903 10.1016/j.compbiomed.2011.06.020 10.1016/j.jneumeth.2021.109209 10.1016/j.bspc.2016.07.006 10.1126/science.abq2599 10.1016/j.neuroimage.2006.03.052 10.1162/cpsy_a_00024 10.3389/fpsyg.2022.881408 10.1371/journal.pone.0068910 10.1017/S0033291717003336 10.1089/cap.2018.0166 10.1089/brain.2012.0073 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c 10.1007/978-3-030-01234-2_1 10.3390/brainsci13010130 10.1109/JBHI.2017.2709841 10.1007/s11571-019-09553-w 10.1093/cercor/bhs352 10.1109/Jsen.2022.3143176 10.1126/science.abq3868 10.1109/EMBC.2018.8512547 10.1007/s12021-013-9186-1 10.1016/j.neuroimage.2004.09.036 10.1016/j.neubiorev.2015.07.014 10.1007/s10877-019-00311-1 10.1111/exsy.12773 10.1192/bjp.179.1.85-a 10.5220/0006111800340041  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023  | 
    
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0S M7P P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s11571-023-10041-5 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed ProQuest One Psychology MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Computer Science  | 
    
| EISSN | 1871-4099 | 
    
| EndPage | 1687 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:11297863 PMC11297863 39104678 10_1007_s11571_023_10041_5  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Malaysia | 
    
| GeographicLocations_xml | – name: Malaysia | 
    
| GrantInformation_xml | – fundername: Jilin Scientific and Technological Development Program grantid: 20230204080YY funderid: http://dx.doi.org/10.13039/501100013061  | 
    
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 7X7 875 8FI 8FJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARMRJ AXYYD B-. BA0 BAWUL BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DIK DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KPH LLZTM M4Y M7P MA- NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 OVD P2P PF0 PSYQQ PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TR2 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 3V. 7XB 8FE 8FG 8FH 8FK AZQEC DWQXO GNUQQ JQ2 K9. LK8 P62 PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c475t-ba004a535286dcbc14047f3554d4b6741255024cb68e04e665e3613ea8e51f2e3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1871-4080 1871-4099  | 
    
| IngestDate | Sun Oct 26 03:50:39 EDT 2025 Tue Sep 30 17:02:45 EDT 2025 Fri Sep 05 09:33:33 EDT 2025 Tue Oct 07 07:06:14 EDT 2025 Sun Aug 03 01:52:54 EDT 2025 Thu Apr 24 22:54:08 EDT 2025 Wed Oct 01 03:34:43 EDT 2025 Fri Feb 21 02:38:50 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Functional connectivity CNN Synchrosqueezed wavelet coherence EEG Major depressive disorder  | 
    
| Language | English | 
    
| License | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c475t-ba004a535286dcbc14047f3554d4b6741255024cb68e04e665e3613ea8e51f2e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11297863 | 
    
| PMID | 39104678 | 
    
| PQID | 3087615997 | 
    
| PQPubID | 2043944 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11571_023_10041_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11297863 proquest_miscellaneous_3089513453 proquest_journals_3087615997 pubmed_primary_39104678 crossref_citationtrail_10_1007_s11571_023_10041_5 crossref_primary_10_1007_s11571_023_10041_5 springer_journals_10_1007_s11571_023_10041_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-01 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht – name: Netherlands  | 
    
| PublicationTitle | Cognitive neurodynamics | 
    
| PublicationTitleAbbrev | Cogn Neurodyn | 
    
| PublicationTitleAlternate | Cogn Neurodyn | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | Drysdale, Grosenick, Downar, Dunlop, Mansouri, Meng, Fetcho, Zebley, Oathes, Etkin, Schatzberg, Sudheimer, Keller, Mayberg, Gunning, Alexopoulos, Fox, Pascual-Leone, Voss, Liston (CR16) 2017; 23 Geng, Fan, Zhong, Casanova, Sokhadze, Li, Kang (CR21) 2023 Ahmadi, Davoudi, Daliri (CR2) 2019; 169 Li, Jing, Hu, Sun (CR31) 2016 Cao, Zhao, Shan, Wei, Guo, Chen, Erkoyuncu, Sarrigiannis (CR11) 2022; 43 Loh, Ooi, Aydemir, Tuncer, Dogan, Acharya (CR34) 2021 Axer, Amunts (CR7) 2022; 378 Jewell, Lewnard, Jewell (CR25) 2020; 173 Saeedi, Saeedi, Maghsoudi, Shalbaf (CR47) 2021; 15 Afshani, Shalbaf, Shalbaf, Sleigh (CR1) 2019; 13 Mulders, van Eijndhoven, Schene, Beckmann, Tendolkar (CR38) 2015; 56 Movahed, Jahromi, Shahyad, Meftahi (CR37) 2021; 358 Wacker, Witte (CR53) 2013; 52 Li, La, Wang, Hu, Zhang (CR32) 2020 Lachaux, Rodriguez, Martinerie, Varela (CR29) 1999; 8 Khan, Masroor, Jailani, Yahya, Yusoff, Khan (CR27) 2022; 22 Chang, Hsu, Pion-Tonachini, Jung (CR13) 2018; 2018 Sakkalis (CR48) 2011; 41 Evans-Lacko, Aguilar-Gaxiola, Al-Hamzawi, Alonso, Benjet, Bruffaerts, Chiu, Florescu, de Girolamo, Gureje, Haro, He, Hu, Karam, Kawakami, Lee, Lund, Kovess-Masfety, Levinson, Thornicroft (CR18) 2018; 48 Thiebaut de Schotten, Forkel (CR52) 2022; 378 Whitfield-Gabrieli, Nieto-Castanon (CR54) 2012; 2 Klem, Luders, Jasper, Elger (CR28) 1999; 52 Shalbaf, Saffar, Sleigh, Shalbaf (CR49) 2018; 22 Woo, Park, Lee, Kweon (CR55) 2018; 11211 Lee, Liu, Dadgar-Kiani (CR30) 2022; 378 Fu, Iraji, Turner, Sui, Miller, Pearlson, Calhoun (CR20) 2021; 224 Ferrari, Charlson, Norman, Patten, Freedman, Murray, Vos, Whiteford (CR19) 2013; 10 Piqueira (CR43) 2011; 16 Xia, Wang, He (CR56) 2013; 8 Mumtaz, Qayyum (CR39) 2019; 132 Cavanagh, Bismark, Frank, Allen (CR12) 2019; 3 CR14 Aydin, Cetin, Uytun, Babadagi, Gueven, Isik (CR9) 2022 Saeedi, Saeedi, Maghsoudi (CR46) 2020; 43 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang, Wang (CR17) 2020; 14 Gloss, Varma, Pringsheim, Nuwer (CR22) 2016; 87 Aubert-Broche, Evans, Collins (CR6) 2006; 32 Niso, Bruna, Pereda, Gutierrez, Bajo, Maestu, Del-Pozo (CR42) 2013; 11 CR51 Grinsted, Moore, Jevrejeva (CR23) 2004; 11 Babiloni, Cincotti, Babiloni, Carducci, Mattia, Astolfi, Basilisco, Rossini, Ding, Ni, Cheng, Christine, Sweeney, He (CR10) 2005; 24 Daubechies, Lu, Wu (CR15) 2011; 30 Mumtaz, Xia, Ali, Yasin, Hussain, Malik (CR40) 2017; 31 Nazneen, Islam, Sajal, Jamal, Amin, Vaidyanathan, Chau, Mamun (CR41) 2022; 16 Aydemir, Tuncer, Dogan, Gururajan, Acharya (CR8) 2021; 51 Li, Xia, Yang, Zhang, Zhang, Liu, Liu, Kaslow, Jiang, Tang, Liu (CR33) 2022; 13 Mohammadi, Moradi (CR36) 2021; 52 Zhang, Wang, Wei, Guo, Wen, Luo (CR57) 2022 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (CR5) 2014; 24 Akbari, Sadiq, Rehman, Ghazvini, Naqvi, Payan, Bagheri, Bagheri (CR4) 2021 Holmes, Hoge, Collins, Woods, Toga, Evans (CR24) 1998; 22 McVoy, Aebi, Loparo, Lytle, Morris, Woods, Deyling, Tatsuoka, Kaffashi, Lhatoo, Sajatovic (CR35) 2019; 29 Saad, Kohn, Clarke, Lagopoulos, Hermens (CR45) 2018; 22 Shalbaf, Shalbaf, Saffar, Sleigh (CR50) 2020; 34 Ahn, Han, Hong, Min, Lee, Hahm, Kim (CR3) 2017; 79 Quian Quiroga, Kraskov, Kreuz, Grassberger (CR44) 2002; 65 Zuchowicz, Wozniak-Kwasniewska, Szekely, Olejarczyk, David (CR58) 2018; 12 F Afshani (10041_CR1) 2019; 13 JH Lee (10041_CR30) 2022; 378 XW Li (10041_CR31) 2016 I Daubechies (10041_CR15) 2011; 30 H Akbari (10041_CR4) 2021 SH Woo (10041_CR55) 2018; 11211 10041_CR14 M Li (10041_CR33) 2022; 13 A Ahmadi (10041_CR2) 2019; 169 CY Chang (10041_CR13) 2018; 2018 F Babiloni (10041_CR10) 2005; 24 M Wacker (10041_CR53) 2013; 52 NP Jewell (10041_CR25) 2020; 173 G Niso (10041_CR42) 2013; 11 AT Drysdale (10041_CR16) 2017; 23 PC Mulders (10041_CR38) 2015; 56 L Duan (10041_CR17) 2020; 14 A Grinsted (10041_CR23) 2004; 11 W Mumtaz (10041_CR39) 2019; 132 GH Klem (10041_CR28) 1999; 52 A Shalbaf (10041_CR49) 2018; 22 M Thiebaut de Schotten (10041_CR52) 2022; 378 W Mumtaz (10041_CR40) 2017; 31 R Quian Quiroga (10041_CR44) 2002; 65 HW Loh (10041_CR34) 2021 M Saeedi (10041_CR46) 2020; 43 S Whitfield-Gabrieli (10041_CR54) 2012; 2 D Gloss (10041_CR22) 2016; 87 X Li (10041_CR32) 2020 CJ Holmes (10041_CR24) 1998; 22 DM Khan (10041_CR27) 2022; 22 JF Saad (10041_CR45) 2018; 22 XL Geng (10041_CR21) 2023 A Saeedi (10041_CR47) 2021; 15 EA Allen (10041_CR5) 2014; 24 U Zuchowicz (10041_CR58) 2018; 12 AJ Ferrari (10041_CR19) 2013; 10 J Ahn (10041_CR3) 2017; 79 E Aydemir (10041_CR8) 2021; 51 V Sakkalis (10041_CR48) 2011; 41 JF Cavanagh (10041_CR12) 2019; 3 S Aydin (10041_CR9) 2022 RA Movahed (10041_CR37) 2021; 358 10041_CR51 Z Fu (10041_CR20) 2021; 224 M Axer (10041_CR7) 2022; 378 M McVoy (10041_CR35) 2019; 29 B Aubert-Broche (10041_CR6) 2006; 32 S Evans-Lacko (10041_CR18) 2018; 48 A Shalbaf (10041_CR50) 2020; 34 T Nazneen (10041_CR41) 2022; 16 JRC Piqueira (10041_CR43) 2011; 16 M Xia (10041_CR56) 2013; 8 YT Zhang (10041_CR57) 2022 J Cao (10041_CR11) 2022; 43 JP Lachaux (10041_CR29) 1999; 8 Y Mohammadi (10041_CR36) 2021; 52  | 
    
| References_xml | – volume: 87 start-page: 2375 year: 2016 end-page: 2379 ident: CR22 article-title: Practice advisory: the utility of EEG theta/beta power ratio in ADHD diagnosis: report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology publication-title: Neurology doi: 10.1212/WNL.0000000000003265 – year: 2020 ident: CR32 article-title: A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography publication-title: Front Neurosci doi: 10.3389/fnins.2020.00192 – volume: 52 start-page: 3 year: 1999 end-page: 6 ident: CR28 article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 52 start-page: 52 year: 2021 end-page: 60 ident: CR36 article-title: Prediction of depression severity scores based on functional connectivity and complexity of the EEG signal publication-title: Clin EEG Neurosci doi: 10.1177/1550059420965431 – ident: CR51 – volume: 43 start-page: 860 year: 2022 end-page: 879 ident: CR11 article-title: Brain functional and effective connectivity based on electroencephalography recordings: a review publication-title: Hum Brain Mapp doi: 10.1002/hbm.25683 – volume: 169 start-page: 9 year: 2019 end-page: 18 ident: CR2 article-title: Computer aided diagnosis system for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.11.006 – year: 2016 ident: CR31 article-title: An EEG-based study on coherence and brain networks in mild depression cognitive process publication-title: Ieee Int Conf Bioinform Biomed (bibm) doi: 10.1109/bibm.2016.7822702 – volume: 23 start-page: 28 year: 2017 end-page: 38 ident: CR16 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat Med doi: 10.1038/nm.4246 – volume: 16 start-page: 3844 year: 2011 end-page: 3854 ident: CR43 article-title: Network of phase-locking oscillators and a possible model for neural synchronization publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2010.12.031 – volume: 30 start-page: 243 year: 2011 end-page: 261 ident: CR15 article-title: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2010.08.002 – volume: 224 start-page: 117385 year: 2021 ident: CR20 article-title: Dynamic state with covarying brain activity-connectivity: on the pathophysiology of schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117385 – year: 2021 ident: CR4 article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.108078 – volume: 51 start-page: 6449 year: 2021 end-page: 6466 ident: CR8 article-title: Automated major depressive disorder detection using melamine pattern with EEG signals publication-title: Appl Intell doi: 10.1007/s10489-021-02426-y – volume: 14 start-page: 284 year: 2020 ident: CR17 article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2020.00284 – volume: 79 start-page: 982 year: 2017 end-page: 987 ident: CR3 article-title: Features of resting-state electroencephalogram theta coherence in somatic symptom disorder compared with major depressive disorder: a pilot study publication-title: Psychosom Med doi: 10.1097/PSY.0000000000000490 – volume: 52 start-page: 279 year: 2013 end-page: 296 ident: CR53 article-title: Time-frequency techniques in biomedical signal analysis. a tutorial review of similarities and differences publication-title: Methods Inf Med doi: 10.3414/ME12-01-0083 – volume: 22 start-page: 324 year: 1998 end-page: 333 ident: CR24 article-title: Enhancement of MR images using registration for signal averaging publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-199803000-00032 – volume: 43 start-page: 1007 year: 2020 end-page: 1018 ident: CR46 article-title: Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals publication-title: Phys Eng Sci Med doi: 10.1007/s13246-020-00897-w – volume: 132 start-page: 103983 year: 2019 ident: CR39 article-title: A deep learning framework for automatic diagnosis of unipolar depression publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2019.103983 – volume: 22 start-page: 815 year: 2018 end-page: 826 ident: CR45 article-title: Is the theta/beta EEG marker for ADHD inherently flawed? publication-title: J Atten Disord doi: 10.1177/1087054715578270 – volume: 173 start-page: 226 year: 2020 end-page: 227 ident: CR25 article-title: Caution warranted: using the institute for health metrics and evaluation model for predicting the course of the COVID-19 pandemic publication-title: Ann Intern Med doi: 10.7326/M20-1565 – volume: 10 start-page: e1001547 year: 2013 ident: CR19 article-title: Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010 publication-title: PLoS Med doi: 10.1371/journal.pmed.1001547 – volume: 12 start-page: 1037 year: 2018 ident: CR58 article-title: EEG Phase synchronization in persons with depression subjected to transcranial magnetic stimulation publication-title: Front Neurosci doi: 10.3389/fnins.2018.01037 – year: 2022 ident: CR9 article-title: Comparison of domain specific connectivity metrics for estimation brain network indices in boys with ADHD-C publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103626 – volume: 16 start-page: 875282 year: 2022 ident: CR41 article-title: Recent trends in non-invasive neural recording based brain-to-brain synchrony analysis on multidisciplinary human interactions for understanding brain dynamics: a systematic review publication-title: Front Comput Neurosci doi: 10.3389/fncom.2022.875282 – volume: 15 start-page: 239 year: 2021 end-page: 252 ident: CR47 article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach publication-title: Cogn Neurodyn doi: 10.1007/s11571-020-09619-0 – year: 2022 ident: CR57 article-title: Minimal EEG channel selection for depression detection with connectivity features during sleep publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105690 – volume: 11 start-page: 561 year: 2004 end-page: 566 ident: CR23 article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series publication-title: Nonlinear Process Geophys doi: 10.5194/npg-11-561-2004 – volume: 378 start-page: 505 year: 2022 end-page: 510 ident: CR52 article-title: The emergent properties of the connected brain publication-title: Science doi: 10.1126/science.abq2591 – volume: 65 start-page: 041903 year: 2002 ident: CR44 article-title: Performance of different synchronization measures in real data: a case study on electroencephalographic signals publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys doi: 10.1103/PhysRevE.65.041903 – volume: 41 start-page: 1110 year: 2011 end-page: 1117 ident: CR48 article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2011.06.020 – ident: CR14 – volume: 358 start-page: 109209 year: 2021 ident: CR37 article-title: A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2021.109209 – volume: 31 start-page: 108 year: 2017 end-page: 115 ident: CR40 article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD) publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.07.006 – volume: 378 start-page: 500 year: 2022 end-page: 504 ident: CR7 article-title: Scale matters: the nested human connectome publication-title: Science doi: 10.1126/science.abq2599 – volume: 32 start-page: 138 year: 2006 end-page: 145 ident: CR6 article-title: A new improved version of the realistic digital brain phantom publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.052 – volume: 3 start-page: 1 year: 2019 end-page: 17 ident: CR12 article-title: Multiple dissociations between comorbid depression and anxiety on reward and punishment processing: evidence from computationally informed EEG publication-title: Comput Psychiatr doi: 10.1162/cpsy_a_00024 – volume: 13 start-page: 881408 year: 2022 ident: CR33 article-title: Depression, anxiety, stress, and their associations with quality of life in a nationwide sample of psychiatrists in china during the COVID-19 pandemic publication-title: Front Psychol doi: 10.3389/fpsyg.2022.881408 – volume: 8 start-page: e68910 year: 2013 ident: CR56 article-title: BrainNet Viewer: a network visualization tool for human brain connectomics publication-title: PLoS ONE doi: 10.1371/journal.pone.0068910 – volume: 48 start-page: 1560 year: 2018 end-page: 1571 ident: CR18 article-title: Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO World Mental Health (WMH) surveys publication-title: Psychol Med doi: 10.1017/S0033291717003336 – volume: 29 start-page: 370 year: 2019 end-page: 377 ident: CR35 article-title: Resting-state quantitative electroencephalography demonstrates differential connectivity in adolescents with major depressive disorder publication-title: J Child Adolesc Psychopharmacol doi: 10.1089/cap.2018.0166 – volume: 2 start-page: 125 year: 2012 end-page: 141 ident: CR54 article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connect doi: 10.1089/brain.2012.0073 – volume: 8 start-page: 194 year: 1999 end-page: 208 ident: CR29 article-title: Measuring phase synchrony in brain signals publication-title: Hum Brain Mapp doi: 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c – volume: 11211 start-page: 3 year: 2018 end-page: 19 ident: CR55 article-title: CBAM: convolutional block attention module. Computer vision Eccv 2018 publication-title: Pt Vii doi: 10.1007/978-3-030-01234-2_1 – year: 2023 ident: CR21 article-title: Abnormalities of EEG functional connectivity and effective connectivity in children with autism spectrum disorder publication-title: Brain Sci doi: 10.3390/brainsci13010130 – volume: 22 start-page: 671 year: 2018 end-page: 677 ident: CR49 article-title: Monitoring the depth of anesthesia using a new adaptive neurofuzzy system publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2709841 – volume: 13 start-page: 531 year: 2019 end-page: 540 ident: CR1 article-title: Frontal-temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia publication-title: Cogn Neurodyn doi: 10.1007/s11571-019-09553-w – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: CR5 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb Cortex doi: 10.1093/cercor/bhs352 – volume: 22 start-page: 4315 year: 2022 end-page: 4325 ident: CR27 article-title: Development of wavelet coherence EEG as a biomarker for diagnosis of major depressive disorder publication-title: IEEE Sens J doi: 10.1109/Jsen.2022.3143176 – volume: 378 start-page: 493 year: 2022 end-page: 499 ident: CR30 article-title: Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI publication-title: Science doi: 10.1126/science.abq3868 – volume: 2018 start-page: 1242 year: 2018 end-page: 1245 ident: CR13 article-title: Evaluation of artifact subspace reconstruction for automatic EEG artifact removal publication-title: Annu Int Conf IEEE Eng Med Biol Soc doi: 10.1109/EMBC.2018.8512547 – volume: 11 start-page: 405 year: 2013 end-page: 434 ident: CR42 article-title: HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity publication-title: Neuroinformatics doi: 10.1007/s12021-013-9186-1 – volume: 24 start-page: 118 year: 2005 end-page: 131 ident: CR10 article-title: Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.09.036 – volume: 56 start-page: 330 year: 2015 end-page: 344 ident: CR38 article-title: Resting-state functional connectivity in major depressive disorder: a review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2015.07.014 – volume: 34 start-page: 331 year: 2020 end-page: 338 ident: CR50 article-title: Monitoring the level of hypnosis using a hierarchical SVM system publication-title: J Clin Monit Comput doi: 10.1007/s10877-019-00311-1 – year: 2021 ident: CR34 article-title: Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals publication-title: Exp Syst doi: 10.1111/exsy.12773 – volume: 3 start-page: 1 year: 2019 ident: 10041_CR12 publication-title: Comput Psychiatr doi: 10.1162/cpsy_a_00024 – volume: 65 start-page: 041903 year: 2002 ident: 10041_CR44 publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys doi: 10.1103/PhysRevE.65.041903 – volume: 11211 start-page: 3 year: 2018 ident: 10041_CR55 publication-title: Pt Vii doi: 10.1007/978-3-030-01234-2_1 – volume: 13 start-page: 881408 year: 2022 ident: 10041_CR33 publication-title: Front Psychol doi: 10.3389/fpsyg.2022.881408 – volume: 11 start-page: 561 year: 2004 ident: 10041_CR23 publication-title: Nonlinear Process Geophys doi: 10.5194/npg-11-561-2004 – volume: 22 start-page: 4315 year: 2022 ident: 10041_CR27 publication-title: IEEE Sens J doi: 10.1109/Jsen.2022.3143176 – volume: 51 start-page: 6449 year: 2021 ident: 10041_CR8 publication-title: Appl Intell doi: 10.1007/s10489-021-02426-y – volume: 43 start-page: 1007 year: 2020 ident: 10041_CR46 publication-title: Phys Eng Sci Med doi: 10.1007/s13246-020-00897-w – volume: 15 start-page: 239 year: 2021 ident: 10041_CR47 publication-title: Cogn Neurodyn doi: 10.1007/s11571-020-09619-0 – volume: 24 start-page: 663 year: 2014 ident: 10041_CR5 publication-title: Cereb Cortex doi: 10.1093/cercor/bhs352 – volume: 87 start-page: 2375 year: 2016 ident: 10041_CR22 publication-title: Neurology doi: 10.1212/WNL.0000000000003265 – volume: 22 start-page: 671 year: 2018 ident: 10041_CR49 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2709841 – year: 2016 ident: 10041_CR31 publication-title: Ieee Int Conf Bioinform Biomed (bibm) doi: 10.1109/bibm.2016.7822702 – volume: 52 start-page: 279 year: 2013 ident: 10041_CR53 publication-title: Methods Inf Med doi: 10.3414/ME12-01-0083 – year: 2020 ident: 10041_CR32 publication-title: Front Neurosci doi: 10.3389/fnins.2020.00192 – volume: 378 start-page: 505 year: 2022 ident: 10041_CR52 publication-title: Science doi: 10.1126/science.abq2591 – volume: 22 start-page: 815 year: 2018 ident: 10041_CR45 publication-title: J Atten Disord doi: 10.1177/1087054715578270 – volume: 8 start-page: 194 year: 1999 ident: 10041_CR29 publication-title: Hum Brain Mapp doi: 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c – volume: 16 start-page: 3844 year: 2011 ident: 10041_CR43 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2010.12.031 – volume: 2018 start-page: 1242 year: 2018 ident: 10041_CR13 publication-title: Annu Int Conf IEEE Eng Med Biol Soc doi: 10.1109/EMBC.2018.8512547 – volume: 14 start-page: 284 year: 2020 ident: 10041_CR17 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2020.00284 – year: 2021 ident: 10041_CR4 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.108078 – volume: 79 start-page: 982 year: 2017 ident: 10041_CR3 publication-title: Psychosom Med doi: 10.1097/PSY.0000000000000490 – volume: 13 start-page: 531 year: 2019 ident: 10041_CR1 publication-title: Cogn Neurodyn doi: 10.1007/s11571-019-09553-w – volume: 48 start-page: 1560 year: 2018 ident: 10041_CR18 publication-title: Psychol Med doi: 10.1017/S0033291717003336 – volume: 31 start-page: 108 year: 2017 ident: 10041_CR40 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.07.006 – volume: 173 start-page: 226 year: 2020 ident: 10041_CR25 publication-title: Ann Intern Med doi: 10.7326/M20-1565 – year: 2022 ident: 10041_CR57 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105690 – volume: 52 start-page: 3 year: 1999 ident: 10041_CR28 publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 52 start-page: 52 year: 2021 ident: 10041_CR36 publication-title: Clin EEG Neurosci doi: 10.1177/1550059420965431 – volume: 378 start-page: 500 year: 2022 ident: 10041_CR7 publication-title: Science doi: 10.1126/science.abq2599 – volume: 16 start-page: 875282 year: 2022 ident: 10041_CR41 publication-title: Front Comput Neurosci doi: 10.3389/fncom.2022.875282 – volume: 32 start-page: 138 year: 2006 ident: 10041_CR6 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.052 – volume: 10 start-page: e1001547 year: 2013 ident: 10041_CR19 publication-title: PLoS Med doi: 10.1371/journal.pmed.1001547 – volume: 22 start-page: 324 year: 1998 ident: 10041_CR24 publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-199803000-00032 – year: 2022 ident: 10041_CR9 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103626 – volume: 30 start-page: 243 year: 2011 ident: 10041_CR15 publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2010.08.002 – year: 2023 ident: 10041_CR21 publication-title: Brain Sci doi: 10.3390/brainsci13010130 – volume: 358 start-page: 109209 year: 2021 ident: 10041_CR37 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2021.109209 – volume: 56 start-page: 330 year: 2015 ident: 10041_CR38 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2015.07.014 – ident: 10041_CR14 doi: 10.1192/bjp.179.1.85-a – year: 2021 ident: 10041_CR34 publication-title: Exp Syst doi: 10.1111/exsy.12773 – volume: 11 start-page: 405 year: 2013 ident: 10041_CR42 publication-title: Neuroinformatics doi: 10.1007/s12021-013-9186-1 – volume: 24 start-page: 118 year: 2005 ident: 10041_CR10 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.09.036 – volume: 41 start-page: 1110 year: 2011 ident: 10041_CR48 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2011.06.020 – volume: 12 start-page: 1037 year: 2018 ident: 10041_CR58 publication-title: Front Neurosci doi: 10.3389/fnins.2018.01037 – volume: 43 start-page: 860 year: 2022 ident: 10041_CR11 publication-title: Hum Brain Mapp doi: 10.1002/hbm.25683 – volume: 224 start-page: 117385 year: 2021 ident: 10041_CR20 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117385 – volume: 29 start-page: 370 year: 2019 ident: 10041_CR35 publication-title: J Child Adolesc Psychopharmacol doi: 10.1089/cap.2018.0166 – volume: 34 start-page: 331 year: 2020 ident: 10041_CR50 publication-title: J Clin Monit Comput doi: 10.1007/s10877-019-00311-1 – volume: 2 start-page: 125 year: 2012 ident: 10041_CR54 publication-title: Brain Connect doi: 10.1089/brain.2012.0073 – volume: 8 start-page: e68910 year: 2013 ident: 10041_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0068910 – ident: 10041_CR51 doi: 10.5220/0006111800340041 – volume: 169 start-page: 9 year: 2019 ident: 10041_CR2 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.11.006 – volume: 378 start-page: 493 year: 2022 ident: 10041_CR30 publication-title: Science doi: 10.1126/science.abq3868 – volume: 132 start-page: 103983 year: 2019 ident: 10041_CR39 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2019.103983 – volume: 23 start-page: 28 year: 2017 ident: 10041_CR16 publication-title: Nat Med doi: 10.1038/nm.4246  | 
    
| SSID | ssj0056814 | 
    
| Score | 2.3832636 | 
    
| Snippet | Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1671 | 
    
| SubjectTerms | Accuracy Artificial Intelligence Artificial neural networks Biochemistry Biomedical and Life Sciences Biomedicine Brain Brain research Cognitive Psychology Coherence Computer Science Datasets Deep learning EEG Electroencephalography Frequency dependence Information processing Machine learning Medical diagnosis Mental depression Mental disorders Missing data Neural networks Neurosciences Research Article Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7gF4QIPByBjISIgXFpE0duIgTaigjgmJCiGG9hY5tqMNtU7pWtD-e-6cH6WaVPEaO3acs33f-c7fAbxKc8XzSidhXkk0UOLKhlKmPERkzpPIDk3siee_TNKzc_75QlzswKS7C0Nhld2e6DdqU2s6I39LzHWoffM8ez__FVLWKPKudik0VJtawZx4irE7sDskZqwB7H4YT75-6_ZmYtvyfmY0E9ByklF7jaa5TBcLfIo6LCQWtTgUm6rqFv68HUbZ-1Lvw92Vm6ubP2o6_Uddne7BgxZnslEzMR7CjnWPYH_k0Mae3bDXzEd--iP1ffgxcmw8_hSSRjNsRgE7C1ZXjHRec1TINMXD6CbTxDtm7NJHcDmqNVM_6wXrImp_W2ZaQs_HcH46_v7xLGzzLYSaZ2KJveC4led7SY0uNTHvZBUBEsPLFKEHmh-o0nWZShtxm6bCJogGrJJWxNXQJk9g4GpnnwIzJtM8jyKLoubc6pJHpbFC5hqbU6IKIO5-baFbMnLKiTEt1jTKJI4CxVF4cRQigDf9O_OGimNr7aNOYkW7LK-L9SQK4GVfjAuKvCTK2Xrl6yDqTLhIAjhoBNx3l-TkEs9kAHJD9H0FIuveLHFXl560m3BtJlNs9LibJevv2jaM434m_ceoD7eP-hncG6IEmwDGIxgsFyv7HEHVsnzRrpS_DGQajQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7QF6oEChBAoyEuJCs002tmP3tkJbKiQqDiwqpyixHdF2411ts6Dy6xk7H2WpVNFbFE8-nBlr3sTPzwBvucypLFUSylJggRKXJhSC0xCROU0iM9KxF57_fMKPp_TTKTvdgFG3FsaT9lVxNrSzamjPfnhu5aJSBx1P7MABhFTw5B5scob4ewCb05Mv4--uskL0jwWR3y6tPZayXSnTrJeLGZ7FNBU6obQ4ZOvZ6AbEvMmU7KdLt-D-yi7yq1_5bPZXRjrablYJXnohQ0dEuRiu6mKofv8j83i3zj6Chy1AJeOm7TFsGPsEdsYWi_PqirwjnjLq_8XvwLexJZPJx9ClQk0qx_RZknlJXLJs_jES5Yg0qtmi4pBoU3vql3VWVX4-X5KOivvTEN0qgT6F6dHk64fjsN2oIVQ0ZTU-Bb9m7oViuFaFcpI9aemQjKYFR8yCdQtiAVVwYSJqOGcmQRhhcmFYXI5M8gwGdm7NcyBap4rKKDIYI5QaVdCo0IYJqfB2OSsDiDuHZapVMXebacyya_1l5-QMnZx5J2csgPf9NYtGw-NW670uDrJ2PF9mTjcRsZ-UaQBv-mYciW56JbdmvvI2CFcTypIAdpuw6R-XSDeXnooAxFpA9QZO5Xu9BePBq313IRDAfhd71-91Wzf2-_j8j16_uJv5S3gwQo82TMg9GNTLlXmF6KwuXrfD8Q98WjFq priority: 102 providerName: Unpaywall  | 
    
| Title | An EEG-based marker of functional connectivity: detection of major depressive disorder | 
    
| URI | https://link.springer.com/article/10.1007/s11571-023-10041-5 https://www.ncbi.nlm.nih.gov/pubmed/39104678 https://www.proquest.com/docview/3087615997 https://www.proquest.com/docview/3089513453 https://pubmed.ncbi.nlm.nih.gov/PMC11297863 https://www.ncbi.nlm.nih.gov/pmc/articles/11297863  | 
    
| UnpaywallVersion | acceptedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1871-4099 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1871-4099 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1871-4099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: AFBBN dateStart: 20070301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1871-4099 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1871-4099 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: 7X7 dateStart: 20070301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1871-4099 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: BENPR dateStart: 20070301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1871-4099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1871-4099 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: U2A dateStart: 20070301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5i2wPwwGDjEjYqIyFeWKRcbMfZW4bSTiCqCVHUPUWJ7QhQ605dC9q_59i5lGpogpdEShw7ybFzvpPz-TPAG56WNK1l7Ke1wAAlrLUvBKc-InMaBzpSoROe_zTm5xP6Ycqm7aSw647t3qUk3Zd6M9ktZAmGvpHlUgU09NkO7DEr54W9eBJl3ffXKmq5XDKGAhgdiaCdKvP3Orbd0S2MeZsq2edLH8L9tbkqb36Vs9kfLmn4GB61WJJkjfGfwD1tDuAwMxhHz2_IW-LYne63-QHsd8s3kHY0H8LXzJA8H_nWkSkytzydJVnUxLq65g8hkZYGI5sFJk6J0itH3DK21Lz8sViSjkj7UxPV6ng-hckw__L-3G-XWfAlTdgKW8FXUTqZF65kJa3gTlJbHKJoxRFxYNSBnlxWXOiAas6ZjhEE6FJoFtaRjp_BrlkY_QKIUomkaRBotDClWlY0qJRmIpVYXclqD8LubRey1SC3S2HMio16srVQgRYqnIUK5sG7_pqrRoHjztLHnRGLdjReF1b1EJFbmiYevO5P4ziyyZHS6MXalUGwGVMWe_C8sXnfXJzaTHgiPBBbvaEvYDW6t8-Y79-cVreFs4ngWOlJ13E293XXY5z0nesfnvrl_9V-BA8itGjDYzyG3dVyrV8htlpVA9hJpgluxXA0gL1sdPkxx_1ZPr74jEdH03DgBhsem4wvssvfbpweow | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHwgBjjIzCGkYAXZpEPO3GQJlSgo2NbhdCG9hYc2xGgNi1dy9R_jr-Ns_NRqkkVL3tNHCfOnf27851_B_A8TiVLCxXRtBDooASFoULEjKJlziLfhDpwxPMn_bh3xj6d8_M1-NOchbFplc2a6BZqPVJ2j_y1Za5D9E3T5O34F7VVo2x0tSmhIevSCnrfUYzVBzuOzPwSXbiL_cMPKO8XYXjQPX3fo3WVAapYwqc0l6gn0rGcxFrlyvLNJIWFYc3yGAEXjW4EMpXHwvjMxDE3EWKgkcLwoAhNhP3egA0WsRSdv4133f7nLw0WWHYvF9dGtwQ9NeHXx3aqw3sBx6uImdSytgWUL0PjFXv3atpmG7u9BZuzciznl3Iw-AceD-7A7dquJZ1KEbdgzZR3YbtTok8_nJOXxGWaui38bfjaKUm3-5FaBNVkaBOEJmRUEIux1dYkUTb_RlWVLd4QbaYuY6y0rYby52hCmgze34bomkD0Hpxdy5-_D-vlqDQPgWidKJb6vkHVYsyonPm5NlykCruTvPAgaH5tpmryc1uDY5AtaJutODIUR-bEkXEPXrXPjCvqj5WtdxqJZfUycJEtlNaDZ-1tnMA2KiNLM5q5NmjlRoxHHjyoBNy-LkptCD4RHogl0bcNLDn48p3yx3dHEm7t6ETE2OleoyWL71o1jL1Wk_5j1I9Wj_opbPZOT46z48P-0WO4GaI0q-TJHVifTmbmCRp003y3njUEvl33RP0Ln49VqQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkTgeOFqOQAEjIV5o1By24_C2gl3KVfHAor5Fie0I0K53tWRB_ffMOMd2VVTBsx07yYwz32Q-fwZ4LvOS57VOw7xWmKDEtQ2VkjxEZM7TyCYm9sLzn47l0ZS_PxEnZ3bxe7Z7X5Js9zSQSpNrDpemPtxsfItFhmlwQryqiMehuAxXOAkloEdPk1H_LSZ1LV9XxrQAMyUVddtm_j7Gdmg6hzfP0yaH2ukNuLZ2y_L0dzmbnQlPk9tws8OVbNQ6wh24ZN0u7I0c5tTzU_aCeaan_4W-C7f6oxxYt7L34OvIsfH4bUhBzbA5cXZWbFEzCnvt30KmiRKj28MmXjFjG0_ictRrXv5YrFhPqv1lmek0Pe_CdDL-8voo7I5cCDXPRIOz4KsoveSLNLrSJL6T1YRJDK8kog_MQDCq60oqG3ErpbApAgJbKiviOrHpPdhxC2cfADMm0zyPIovW5tzqikeVsULlGocrRR1A3L_tQnd65HQsxqzYKCmThQq0UOEtVIgAXg7XLFs1jgt77_dGLLqV-bMgBUREcXmeBfBsaMY1RYWS0tnF2vdB4JlykQZwv7X5MF2aU1U8UwGoLW8YOpBe93aL-_7N63YTtM2UxEEPesfZ3NdFj3EwONc_PPXD_xv9KVz9_GZSfHx3_OERXE_QuC29cR92mtXaPkbI1VRP_Kr6A15oHi8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V7QF6oEChBAoyEuJCs002tmP3tkJbKiQqDiwqpyixHdF2411ts6Dy6xk7H2WpVNFbFE8-nBlr3sTPzwBvucypLFUSylJggRKXJhSC0xCROU0iM9KxF57_fMKPp_TTKTvdgFG3FsaT9lVxNrSzamjPfnhu5aJSBx1P7MABhFTw5B5scob4ewCb05Mv4--uskL0jwWR3y6tPZayXSnTrJeLGZ7FNBU6obQ4ZOvZ6AbEvMmU7KdLt-D-yi7yq1_5bPZXRjrablYJXnohQ0dEuRiu6mKofv8j83i3zj6Chy1AJeOm7TFsGPsEdsYWi_PqirwjnjLq_8XvwLexJZPJx9ClQk0qx_RZknlJXLJs_jES5Yg0qtmi4pBoU3vql3VWVX4-X5KOivvTEN0qgT6F6dHk64fjsN2oIVQ0ZTU-Bb9m7oViuFaFcpI9aemQjKYFR8yCdQtiAVVwYSJqOGcmQRhhcmFYXI5M8gwGdm7NcyBap4rKKDIYI5QaVdCo0IYJqfB2OSsDiDuHZapVMXebacyya_1l5-QMnZx5J2csgPf9NYtGw-NW670uDrJ2PF9mTjcRsZ-UaQBv-mYciW56JbdmvvI2CFcTypIAdpuw6R-XSDeXnooAxFpA9QZO5Xu9BePBq313IRDAfhd71-91Wzf2-_j8j16_uJv5S3gwQo82TMg9GNTLlXmF6KwuXrfD8Q98WjFq | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EEG-based+marker+of+functional+connectivity%3A+detection+of+major+depressive+disorder&rft.jtitle=Cognitive+neurodynamics&rft.au=Li%2C+Ling&rft.au=Wang%2C+Xianshuo&rft.au=Li%2C+Jiahui&rft.au=Zhao%2C+Yanping&rft.date=2024-08-01&rft.pub=Springer+Netherlands&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=18&rft.issue=4&rft.spage=1671&rft.epage=1687&rft_id=info:doi/10.1007%2Fs11571-023-10041-5&rft.externalDocID=10_1007_s11571_023_10041_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon |