Evaluation of the impact of a novel denoising algorithm on image quality in dual-energy abdominal CT of obese patients

Objectives Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging. Methods Seventy-nine patients with contrast-enhanced abdominal imaging (54 women; age: 58 ± 14 years; BMI: 39 ± 5 kg/m 2 , range: 35–62 kg/m 2 ) from seven DECT (SOMATOM Flash o...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 33; no. 10; pp. 7056 - 7065
Main Authors Schwartz, Fides R., Clark, Darin P., Rigiroli, Francesca, Kalisz, Kevin, Wildman-Tobriner, Benjamin, Thomas, Sarah, Wilson, Joshua, Badea, Cristian T., Marin, Daniele
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-023-09644-7

Cover

Abstract Objectives Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging. Methods Seventy-nine patients with contrast-enhanced abdominal imaging (54 women; age: 58 ± 14 years; BMI: 39 ± 5 kg/m 2 , range: 35–62 kg/m 2 ) from seven DECT (SOMATOM Flash or Force) were retrospectively included (01/2019–12/2020). Image domain data were reconstructed with the standard clinical algorithm (ADMIRE/SAFIRE 2), and denoised with a comparison (ME-NLM) and a test algorithm (rank-sparse kernel regression). Contrast-to-noise ratio (CNR) was calculated. Four blinded readers evaluated the same original and denoised images (0 (worst)–100 (best)) in randomized order for perceived image noise, quality, and their comfort making a diagnosis from a table of 80 options. Comparisons between algorithms were performed using paired t -tests and mixed-effects linear modeling. Results Average CNR was 5.0 ± 1.9 (original), 31.1 ± 10.3 (comparison; p  < 0.001), and 8.9 ± 2.9 (test; p  < 0.001). Readers were in good to moderate agreement over perceived image noise (ICC: 0.83), image quality (ICC: 0.71), and diagnostic comfort (ICC: 0.6). Diagnostic accuracy was low across algorithms (accuracy: 66, 63, and 67% (original, comparison, test)). The noise received a mean score of 54, 84, and 66 ( p  < 0.05); image quality 59, 61, and 65; and the diagnostic comfort 63, 68, and 68, respectively. Quality and comfort scores were not statistically significantly different between algorithms. Conclusions The test algorithm produces quantitatively higher image quality than current standard and existing denoising algorithms in obese patients imaged with DECT and readers show a preference for it. Clinical relevance statement Accurate diagnosis on CT imaging of obese patients is challenging and denoising algorithms can increase the diagnostic comfort and quantitative image quality. This could lead to better clinical reads. Key Points • Improving image quality in DECT imaging of obese patients is important for accurate and confident clinical reads, which may be aided by novel denoising algorithms using image domain data . • Accurate diagnosis on CT imaging of obese patients is especially challenging and denoising algorithms can increase quantitative and qualitative image quality . • Image domain algorithms can generalize well and can be implemented at other institutions .
AbstractList Objectives Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging. Methods Seventy-nine patients with contrast-enhanced abdominal imaging (54 women; age: 58 ± 14 years; BMI: 39 ± 5 kg/m 2 , range: 35–62 kg/m 2 ) from seven DECT (SOMATOM Flash or Force) were retrospectively included (01/2019–12/2020). Image domain data were reconstructed with the standard clinical algorithm (ADMIRE/SAFIRE 2), and denoised with a comparison (ME-NLM) and a test algorithm (rank-sparse kernel regression). Contrast-to-noise ratio (CNR) was calculated. Four blinded readers evaluated the same original and denoised images (0 (worst)–100 (best)) in randomized order for perceived image noise, quality, and their comfort making a diagnosis from a table of 80 options. Comparisons between algorithms were performed using paired t -tests and mixed-effects linear modeling. Results Average CNR was 5.0 ± 1.9 (original), 31.1 ± 10.3 (comparison; p  < 0.001), and 8.9 ± 2.9 (test; p  < 0.001). Readers were in good to moderate agreement over perceived image noise (ICC: 0.83), image quality (ICC: 0.71), and diagnostic comfort (ICC: 0.6). Diagnostic accuracy was low across algorithms (accuracy: 66, 63, and 67% (original, comparison, test)). The noise received a mean score of 54, 84, and 66 ( p  < 0.05); image quality 59, 61, and 65; and the diagnostic comfort 63, 68, and 68, respectively. Quality and comfort scores were not statistically significantly different between algorithms. Conclusions The test algorithm produces quantitatively higher image quality than current standard and existing denoising algorithms in obese patients imaged with DECT and readers show a preference for it. Clinical relevance statement Accurate diagnosis on CT imaging of obese patients is challenging and denoising algorithms can increase the diagnostic comfort and quantitative image quality. This could lead to better clinical reads. Key Points • Improving image quality in DECT imaging of obese patients is important for accurate and confident clinical reads, which may be aided by novel denoising algorithms using image domain data . • Accurate diagnosis on CT imaging of obese patients is especially challenging and denoising algorithms can increase quantitative and qualitative image quality . • Image domain algorithms can generalize well and can be implemented at other institutions .
ObjectivesEvaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging.MethodsSeventy-nine patients with contrast-enhanced abdominal imaging (54 women; age: 58 ± 14 years; BMI: 39 ± 5 kg/m2, range: 35–62 kg/m2) from seven DECT (SOMATOM Flash or Force) were retrospectively included (01/2019–12/2020). Image domain data were reconstructed with the standard clinical algorithm (ADMIRE/SAFIRE 2), and denoised with a comparison (ME-NLM) and a test algorithm (rank-sparse kernel regression). Contrast-to-noise ratio (CNR) was calculated. Four blinded readers evaluated the same original and denoised images (0 (worst)–100 (best)) in randomized order for perceived image noise, quality, and their comfort making a diagnosis from a table of 80 options. Comparisons between algorithms were performed using paired t-tests and mixed-effects linear modeling.ResultsAverage CNR was 5.0 ± 1.9 (original), 31.1 ± 10.3 (comparison; p < 0.001), and 8.9 ± 2.9 (test; p < 0.001). Readers were in good to moderate agreement over perceived image noise (ICC: 0.83), image quality (ICC: 0.71), and diagnostic comfort (ICC: 0.6). Diagnostic accuracy was low across algorithms (accuracy: 66, 63, and 67% (original, comparison, test)). The noise received a mean score of 54, 84, and 66 (p < 0.05); image quality 59, 61, and 65; and the diagnostic comfort 63, 68, and 68, respectively. Quality and comfort scores were not statistically significantly different between algorithms.ConclusionsThe test algorithm produces quantitatively higher image quality than current standard and existing denoising algorithms in obese patients imaged with DECT and readers show a preference for it.Clinical relevance statementAccurate diagnosis on CT imaging of obese patients is challenging and denoising algorithms can increase the diagnostic comfort and quantitative image quality. This could lead to better clinical reads.Key Points• Improving image quality in DECT imaging of obese patients is important for accurate and confident clinical reads, which may be aided by novel denoising algorithms using image domain data.• Accurate diagnosis on CT imaging of obese patients is especially challenging and denoising algorithms can increase quantitative and qualitative image quality.• Image domain algorithms can generalize well and can be implemented at other institutions.
Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging. Seventy-nine patients with contrast-enhanced abdominal imaging (54 women; age: 58 ± 14 years; BMI: 39 ± 5 kg/m , range: 35-62 kg/m ) from seven DECT (SOMATOM Flash or Force) were retrospectively included (01/2019-12/2020). Image domain data were reconstructed with the standard clinical algorithm (ADMIRE/SAFIRE 2), and denoised with a comparison (ME-NLM) and a test algorithm (rank-sparse kernel regression). Contrast-to-noise ratio (CNR) was calculated. Four blinded readers evaluated the same original and denoised images (0 (worst)-100 (best)) in randomized order for perceived image noise, quality, and their comfort making a diagnosis from a table of 80 options. Comparisons between algorithms were performed using paired t-tests and mixed-effects linear modeling. Average CNR was 5.0 ± 1.9 (original), 31.1 ± 10.3 (comparison; p < 0.001), and 8.9 ± 2.9 (test; p < 0.001). Readers were in good to moderate agreement over perceived image noise (ICC: 0.83), image quality (ICC: 0.71), and diagnostic comfort (ICC: 0.6). Diagnostic accuracy was low across algorithms (accuracy: 66, 63, and 67% (original, comparison, test)). The noise received a mean score of 54, 84, and 66 (p < 0.05); image quality 59, 61, and 65; and the diagnostic comfort 63, 68, and 68, respectively. Quality and comfort scores were not statistically significantly different between algorithms. The test algorithm produces quantitatively higher image quality than current standard and existing denoising algorithms in obese patients imaged with DECT and readers show a preference for it. Accurate diagnosis on CT imaging of obese patients is challenging and denoising algorithms can increase the diagnostic comfort and quantitative image quality. This could lead to better clinical reads. • Improving image quality in DECT imaging of obese patients is important for accurate and confident clinical reads, which may be aided by novel denoising algorithms using image domain data. • Accurate diagnosis on CT imaging of obese patients is especially challenging and denoising algorithms can increase quantitative and qualitative image quality. • Image domain algorithms can generalize well and can be implemented at other institutions.
Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging.OBJECTIVESEvaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging.Seventy-nine patients with contrast-enhanced abdominal imaging (54 women; age: 58 ± 14 years; BMI: 39 ± 5 kg/m2, range: 35-62 kg/m2) from seven DECT (SOMATOM Flash or Force) were retrospectively included (01/2019-12/2020). Image domain data were reconstructed with the standard clinical algorithm (ADMIRE/SAFIRE 2), and denoised with a comparison (ME-NLM) and a test algorithm (rank-sparse kernel regression). Contrast-to-noise ratio (CNR) was calculated. Four blinded readers evaluated the same original and denoised images (0 (worst)-100 (best)) in randomized order for perceived image noise, quality, and their comfort making a diagnosis from a table of 80 options. Comparisons between algorithms were performed using paired t-tests and mixed-effects linear modeling.METHODSSeventy-nine patients with contrast-enhanced abdominal imaging (54 women; age: 58 ± 14 years; BMI: 39 ± 5 kg/m2, range: 35-62 kg/m2) from seven DECT (SOMATOM Flash or Force) were retrospectively included (01/2019-12/2020). Image domain data were reconstructed with the standard clinical algorithm (ADMIRE/SAFIRE 2), and denoised with a comparison (ME-NLM) and a test algorithm (rank-sparse kernel regression). Contrast-to-noise ratio (CNR) was calculated. Four blinded readers evaluated the same original and denoised images (0 (worst)-100 (best)) in randomized order for perceived image noise, quality, and their comfort making a diagnosis from a table of 80 options. Comparisons between algorithms were performed using paired t-tests and mixed-effects linear modeling.Average CNR was 5.0 ± 1.9 (original), 31.1 ± 10.3 (comparison; p < 0.001), and 8.9 ± 2.9 (test; p < 0.001). Readers were in good to moderate agreement over perceived image noise (ICC: 0.83), image quality (ICC: 0.71), and diagnostic comfort (ICC: 0.6). Diagnostic accuracy was low across algorithms (accuracy: 66, 63, and 67% (original, comparison, test)). The noise received a mean score of 54, 84, and 66 (p < 0.05); image quality 59, 61, and 65; and the diagnostic comfort 63, 68, and 68, respectively. Quality and comfort scores were not statistically significantly different between algorithms.RESULTSAverage CNR was 5.0 ± 1.9 (original), 31.1 ± 10.3 (comparison; p < 0.001), and 8.9 ± 2.9 (test; p < 0.001). Readers were in good to moderate agreement over perceived image noise (ICC: 0.83), image quality (ICC: 0.71), and diagnostic comfort (ICC: 0.6). Diagnostic accuracy was low across algorithms (accuracy: 66, 63, and 67% (original, comparison, test)). The noise received a mean score of 54, 84, and 66 (p < 0.05); image quality 59, 61, and 65; and the diagnostic comfort 63, 68, and 68, respectively. Quality and comfort scores were not statistically significantly different between algorithms.The test algorithm produces quantitatively higher image quality than current standard and existing denoising algorithms in obese patients imaged with DECT and readers show a preference for it.CONCLUSIONSThe test algorithm produces quantitatively higher image quality than current standard and existing denoising algorithms in obese patients imaged with DECT and readers show a preference for it.Accurate diagnosis on CT imaging of obese patients is challenging and denoising algorithms can increase the diagnostic comfort and quantitative image quality. This could lead to better clinical reads.CLINICAL RELEVANCE STATEMENTAccurate diagnosis on CT imaging of obese patients is challenging and denoising algorithms can increase the diagnostic comfort and quantitative image quality. This could lead to better clinical reads.• Improving image quality in DECT imaging of obese patients is important for accurate and confident clinical reads, which may be aided by novel denoising algorithms using image domain data. • Accurate diagnosis on CT imaging of obese patients is especially challenging and denoising algorithms can increase quantitative and qualitative image quality. • Image domain algorithms can generalize well and can be implemented at other institutions.KEY POINTS• Improving image quality in DECT imaging of obese patients is important for accurate and confident clinical reads, which may be aided by novel denoising algorithms using image domain data. • Accurate diagnosis on CT imaging of obese patients is especially challenging and denoising algorithms can increase quantitative and qualitative image quality. • Image domain algorithms can generalize well and can be implemented at other institutions.
Author Badea, Cristian T.
Schwartz, Fides R.
Marin, Daniele
Clark, Darin P.
Rigiroli, Francesca
Thomas, Sarah
Kalisz, Kevin
Wildman-Tobriner, Benjamin
Wilson, Joshua
AuthorAffiliation 2 Quantitative Imaging and Analysis Lab, Duke University, Department of Radiology
1 Duke University Health System, Department of Radiology
3 Duke University Medical Physics Graduate Program
AuthorAffiliation_xml – name: 1 Duke University Health System, Department of Radiology
– name: 3 Duke University Medical Physics Graduate Program
– name: 2 Quantitative Imaging and Analysis Lab, Duke University, Department of Radiology
Author_xml – sequence: 1
  givenname: Fides R.
  surname: Schwartz
  fullname: Schwartz, Fides R.
  email: fides.schwartz@duke.edu
  organization: Department of Radiology, Duke University Health System
– sequence: 2
  givenname: Darin P.
  surname: Clark
  fullname: Clark, Darin P.
  organization: Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University
– sequence: 3
  givenname: Francesca
  surname: Rigiroli
  fullname: Rigiroli, Francesca
  organization: Department of Radiology, Duke University Health System
– sequence: 4
  givenname: Kevin
  surname: Kalisz
  fullname: Kalisz, Kevin
  organization: Department of Radiology, Duke University Health System
– sequence: 5
  givenname: Benjamin
  surname: Wildman-Tobriner
  fullname: Wildman-Tobriner, Benjamin
  organization: Department of Radiology, Duke University Health System
– sequence: 6
  givenname: Sarah
  surname: Thomas
  fullname: Thomas, Sarah
  organization: Department of Radiology, Duke University Health System
– sequence: 7
  givenname: Joshua
  orcidid: 0000-0002-4175-6301
  surname: Wilson
  fullname: Wilson, Joshua
  organization: Clinical Imaging Physics Group
– sequence: 8
  givenname: Cristian T.
  surname: Badea
  fullname: Badea, Cristian T.
  organization: Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University
– sequence: 9
  givenname: Daniele
  surname: Marin
  fullname: Marin, Daniele
  organization: Department of Radiology, Duke University Health System
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37083742$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARfcAPsECW2LAJXL8SZ4XQqDykSmzK2nKSm4wrx07jZKr5e5zOQEsXFStf2-ece-6xz7MTHzxm2VsKHylA-SkCcA45MJ5DVQiRly-yMyo4yykocfKoPs3OY7wBgIqK8lV2yktQvBTsLNtd7oxbzGyDJ6Ej8xaJHUbTzOvOEB926EiLPthofU-M68Nk5-1AEt4Opkdyuxhn5z2xnrSpzNHj1O-JqdswWG8c2VyvWqHGiGRMndDP8XX2sjMu4pvjepH9-np5vfmeX_389mPz5SpvRCnn3HRKgGFSoawpUCZBddSogreiQN61rGlNVYk0vWS1KjpBG5bOVItUVmgkv8j4QXfxo9nfGef0OCXf015T0GuK-pCiTinq-xR1mVifD6xxqQdsm-R4Mg_MYKz-98bbre7DLglWwBSjSeHDUWEKtwvGWQ82Nuic8RiWqJkCCZxKAQn6_gn0JixTCm5FFUXBZSVWS-8eW_rr5c9LJgA7AJopxDhh93-Dqiekxs73nyGNZd3z1GOyMfXxPU4Ptp9h_QZkoNKG
CitedBy_id crossref_primary_10_1177_02841851241262765
crossref_primary_10_62347_WKNS8633
crossref_primary_10_1016_j_acra_2024_12_052
crossref_primary_10_1016_j_eswa_2023_122983
crossref_primary_10_1186_s12880_024_01277_6
crossref_primary_10_1016_j_crad_2023_12_015
Cites_doi 10.1148/radiol.2019191422
10.1148/rg.313105138
10.1259/bjr.20170931
10.1148/radiol.2421060015
10.1259/bjr.20190043
10.1007/s00330-019-06359-6
10.1148/radiol.2015132766
10.1259/bjr.20200677
10.2214/AJR.12.9074
10.1002/mp.12174
10.1088/1361-6560/ab03e2
10.1148/rg.2021200196
10.2214/AJR.11.6988
10.1148/radiol.2020203453
10.1007/s10278-010-9311-8
10.1007/s00330-004-2635-3
10.1118/1.4851635
10.1016/S0720-048X(00)00270-9
10.1371/journal.pone.0180324
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to European Society of Radiology.
Copyright_xml – notice: The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to European Society of Radiology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00330-023-09644-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 7065
ExternalDocumentID oai:pubmedcentral.nih.gov:10902821
PMC10902821
37083742
10_1007_s00330_023_09644_7
Genre Journal Article
GrantInformation_xml – fundername: NIH
  grantid: U24 CA 220245; R01 CA196667
– fundername: NCI NIH HHS
  grantid: U24 CA220245
– fundername: NIA NIH HHS
  grantid: RF1 AG070149
– fundername: NIA NIH HHS
  grantid: R01 AG070149
– fundername: NIH HHS
  grantid: R01 CA196667
– fundername: NIH HHS
  grantid: U24 CA 220245
– fundername: NCI NIH HHS
  grantid: R01 CA196667
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-af840a258e5b1012508f1a863d46e3fd2cda99409652b86f41c22cd8de159ea53
IEDL.DBID BENPR
ISSN 1432-1084
0938-7994
IngestDate Sun Oct 26 04:15:08 EDT 2025
Thu Aug 21 18:31:14 EDT 2025
Fri Sep 05 10:04:32 EDT 2025
Tue Oct 07 06:08:46 EDT 2025
Mon Jul 21 05:14:36 EDT 2025
Wed Oct 01 01:17:13 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Fri Feb 21 02:42:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Medical image processing
Obesity
Tomography, X-ray computed
Image quality enhancement
Multidetector computed tomography
Language English
License 2023. The Author(s), under exclusive licence to European Society of Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-af840a258e5b1012508f1a863d46e3fd2cda99409652b86f41c22cd8de159ea53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4175-6301
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10902821/pdf/nihms-1965202.pdf
PMID 37083742
PQID 2866635947
PQPubID 54162
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s00330_023_09644_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10902821
proquest_miscellaneous_2805031540
proquest_journals_2866635947
pubmed_primary_37083742
crossref_primary_10_1007_s00330_023_09644_7
crossref_citationtrail_10_1007_s00330_023_09644_7
springer_journals_10_1007_s00330_023_09644_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Li, Leng, Yu, Manduca, McCollough (CR9) 2017; 44
Langer (CR5) 2011; 24
Mileto, Guimaraes, McCollough, Fletcher, Yu (CR6) 2019; 293
Steuwe, Weber, Bethge (CR12) 2021; 94
Willatt, Mason (CR16) 2006; 16
Carney, Bogart, Geller (CR15) 2012; 198
CR7
Jaffe, Martin, Miller (CR11) 2007; 242
Megibow, Sahani (CR1) 2012; 199
Uppot (CR3) 2018; 91
Mohammadinejad, Mileto, Yu (CR13) 2021; 41
Li, Yu, Trzasko (CR8) 2014; 41
Modica, Kanal, Gunn (CR2) 2011; 31
Homayounieh, Holmberg, Umairi (CR17) 2021; 298
Rubin (CR4) 2000; 36
Geyer, Schoepf, Meinel (CR14) 2015; 276
Taylor-Phillips, Stinton (CR18) 2019; 92
Badea, Clark, Holbrook, Srivastava, Mowery, Ghaghada (CR19) 2019; 64
Greffier, Frandon, Larbi, Beregi, Pereira (CR10) 2020; 30
J Greffier (9644_CR10) 2020; 30
LL Geyer (9644_CR14) 2015; 276
RN Uppot (9644_CR3) 2018; 91
CT Badea (9644_CR19) 2019; 64
SG Langer (9644_CR5) 2011; 24
P Mohammadinejad (9644_CR13) 2021; 41
MJ Modica (9644_CR2) 2011; 31
TA Jaffe (9644_CR11) 2007; 242
S Taylor-Phillips (9644_CR18) 2019; 92
F Homayounieh (9644_CR17) 2021; 298
AJ Megibow (9644_CR1) 2012; 199
GD Rubin (9644_CR4) 2000; 36
Z Li (9644_CR8) 2014; 41
A Steuwe (9644_CR12) 2021; 94
A Mileto (9644_CR6) 2019; 293
JMG Willatt (9644_CR16) 2006; 16
Z Li (9644_CR9) 2017; 44
9644_CR7
PA Carney (9644_CR15) 2012; 198
References_xml – volume: 293
  start-page: 491
  year: 2019
  end-page: 503
  ident: CR6
  article-title: State of the art in abdominal CT: the limits of iterative reconstruction algorithms
  publication-title: Radiology
  doi: 10.1148/radiol.2019191422
– volume: 31
  start-page: 811
  year: 2011
  end-page: 823
  ident: CR2
  article-title: The obese emergency patient: imaging challenges and solutions
  publication-title: Radiographics
  doi: 10.1148/rg.313105138
– volume: 91
  start-page: 20170931
  year: 2018
  ident: CR3
  article-title: Technical challenges of imaging & image-guided interventions in obese patients
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20170931
– volume: 242
  start-page: 175
  year: 2007
  end-page: 181
  ident: CR11
  article-title: Abdominal pain: coronal reformations from isotropic voxels with 16-section CT–reader lesion detection and interpretation time
  publication-title: Radiology
  doi: 10.1148/radiol.2421060015
– volume: 92
  start-page: 20190043
  year: 2019
  ident: CR18
  article-title: Fatigue in radiology: a fertile area for future research
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190043
– volume: 30
  start-page: 487
  year: 2020
  end-page: 500
  ident: CR10
  article-title: CT iterative reconstruction algorithms: a task-based image quality assessment
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06359-6
– volume: 276
  start-page: 339
  year: 2015
  end-page: 357
  ident: CR14
  article-title: State of the art: iterative CT reconstruction techniques
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 94
  start-page: 20200677
  year: 2021
  ident: CR12
  article-title: Influence of a novel deep-learning based reconstruction software on the objective and subjective image quality in low-dose abdominal computed tomography
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20200677
– volume: 199
  start-page: S71
  year: 2012
  end-page: S77
  ident: CR1
  article-title: Best practice: implementation and use of abdominal dual-energy CT in routine patient care
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.12.9074
– volume: 44
  start-page: 1610
  year: 2017
  end-page: 1623
  ident: CR9
  article-title: An effective noise reduction method for multi-energy CT images that exploit spatio-spectral features
  publication-title: Med Phys
  doi: 10.1002/mp.12174
– volume: 64
  year: 2019
  ident: CR19
  article-title: Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab03e2
– volume: 41
  start-page: 1493
  year: 2021
  end-page: 1508
  ident: CR13
  article-title: CT noise-reduction methods for lower-dose scanning: strengths and weaknesses of iterative reconstruction algorithms and new techniques
  publication-title: Radiographics
  doi: 10.1148/rg.2021200196
– volume: 198
  start-page: 970
  year: 2012
  end-page: 978
  ident: CR15
  article-title: Association between time spent interpreting, level of confidence, and accuracy of screening mammography
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.11.6988
– volume: 298
  start-page: E141
  year: 2021
  end-page: E151
  ident: CR17
  article-title: Variations in CT utilization, protocols, and radiation doses in COVID-19 pneumonia: results from 28 countries in the IAEA Study
  publication-title: Radiology
  doi: 10.1148/radiol.2020203453
– volume: 24
  start-page: 203
  year: 2011
  end-page: 207
  ident: CR5
  article-title: Challenges for data storage in medical imaging research
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-010-9311-8
– ident: CR7
– volume: 16
  start-page: 437
  year: 2006
  end-page: 444
  ident: CR16
  article-title: Comparison of radiology residency programs in ten countries
  publication-title: Eur Radiol
  doi: 10.1007/s00330-004-2635-3
– volume: 41
  year: 2014
  ident: CR8
  article-title: Adaptive nonlocal means filtering based on local noise level for CT denoising
  publication-title: Med Phys
  doi: 10.1118/1.4851635
– volume: 36
  start-page: 74
  year: 2000
  end-page: 80
  ident: CR4
  article-title: Data explosion: the challenge of multidetector-row CT
  publication-title: Eur J Radiol
  doi: 10.1016/S0720-048X(00)00270-9
– volume: 41
  year: 2014
  ident: 9644_CR8
  publication-title: Med Phys
  doi: 10.1118/1.4851635
– ident: 9644_CR7
  doi: 10.1371/journal.pone.0180324
– volume: 198
  start-page: 970
  year: 2012
  ident: 9644_CR15
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.11.6988
– volume: 92
  start-page: 20190043
  year: 2019
  ident: 9644_CR18
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190043
– volume: 41
  start-page: 1493
  year: 2021
  ident: 9644_CR13
  publication-title: Radiographics
  doi: 10.1148/rg.2021200196
– volume: 16
  start-page: 437
  year: 2006
  ident: 9644_CR16
  publication-title: Eur Radiol
  doi: 10.1007/s00330-004-2635-3
– volume: 242
  start-page: 175
  year: 2007
  ident: 9644_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2421060015
– volume: 276
  start-page: 339
  year: 2015
  ident: 9644_CR14
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 94
  start-page: 20200677
  year: 2021
  ident: 9644_CR12
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20200677
– volume: 24
  start-page: 203
  year: 2011
  ident: 9644_CR5
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-010-9311-8
– volume: 36
  start-page: 74
  year: 2000
  ident: 9644_CR4
  publication-title: Eur J Radiol
  doi: 10.1016/S0720-048X(00)00270-9
– volume: 199
  start-page: S71
  year: 2012
  ident: 9644_CR1
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.12.9074
– volume: 44
  start-page: 1610
  year: 2017
  ident: 9644_CR9
  publication-title: Med Phys
  doi: 10.1002/mp.12174
– volume: 30
  start-page: 487
  year: 2020
  ident: 9644_CR10
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06359-6
– volume: 298
  start-page: E141
  year: 2021
  ident: 9644_CR17
  publication-title: Radiology
  doi: 10.1148/radiol.2020203453
– volume: 293
  start-page: 491
  year: 2019
  ident: 9644_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2019191422
– volume: 31
  start-page: 811
  year: 2011
  ident: 9644_CR2
  publication-title: Radiographics
  doi: 10.1148/rg.313105138
– volume: 64
  year: 2019
  ident: 9644_CR19
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab03e2
– volume: 91
  start-page: 20170931
  year: 2018
  ident: 9644_CR3
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20170931
SSID ssj0009147
Score 2.463765
Snippet Objectives Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging. Methods Seventy-nine patients with...
Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging. Seventy-nine patients with contrast-enhanced...
ObjectivesEvaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging.MethodsSeventy-nine patients with...
Evaluate a novel algorithm for noise reduction in obese patients using dual-source dual-energy (DE) CT imaging.OBJECTIVESEvaluate a novel algorithm for noise...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7056
SubjectTerms Adult
Aged
Algorithms
Comfort
Computed Tomography
Diagnosis
Diagnostic Radiology
Diagnostic systems
Female
Humans
Image quality
Imaging
Internal Medicine
Interventional Radiology
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Neuroradiology
Noise reduction
Obesity - complications
Obesity - diagnostic imaging
Phantoms, Imaging
Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Retrospective Studies
Signal-To-Noise Ratio
Statistical analysis
Tomography, X-Ray Computed - methods
Ultrasound
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4P0IFGQkbjTV2nES77GqtlSgcupK5RTZid1GpEnVzRaVX8_YcVyWoooeEz8SOzP2N_HMNwAfNa8UVaiAVE9VzCVNY6HQSjGVwP1K6YQ7OoaDb9n-gn85So98UNhy9HYfjyTdSh2C3WzasWmMe0yMsJvzOL8LG45vawIbO5-_f51fke1SnvsAmX-3XN-EriHL6w6S4ZT0IdxftWfy8qdsmj82or3HsBiHMPif_Nhe9Wq7_PUXu-Ntx_gEHnlkSnYGUXoKd3T7DO4d-LP353AxD8TgpDMEgSMZQiztlSRtd6EbgqtYV9vfD0Q2x9153Z-cEqxfn-KyRYYAzktSt8RGgMXaxR0SqarOpRYju4e2r07ppSae8HX5AhZ788Pd_dhnbYhLnqd9LA3ajJKlQqfKkochAjRUiiypeKYTU7GykrMZt6wzTInMcFoyvCcqjchKyzR5CZO2a_VrIFmqmKRGIUoUXKZojMpEVkwjyDVoSZkI6PgZi9JTmtvMGk0RyJjdhBY4oYWb0CKP4FNoczYQetxYe3OUjsIr97JgIrM4bcax-EMoRrW0Zy2y1d3K1rFEO4hPpxG8GoQpPC7JEffmnEUg1sQsVLCU3-slbX3iqL-dG61gNIKtUYCu3uumYWwFqf2PUb-5Xe9v4QGzIutcHDdh0p-v9DuEar167zXzNzO-M_0
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4ancTlgfslMJCReGNOG8dJvMep2piQOu1hlcZTZCc2jcilWtuh8es5di5QJk0g8Zj45OLmO_Z36nM-A3zQPFeBQgcM9ERRLoOICoVRiskFzldKh9zJMcxO45M5_3wRXezAp74WZlnhXTJV-HVZ-XWxcLmVfY7Y-Gw2dYmEggXjZW7GaFCtqBXFwxjexzN3YDeOkJSPYHd-enb4xSntoUsnB25LRCQHDAcewbvyGVdEZ7czm1CcuyjSec5psj1F3eCdN9MnhzXUB3BvUy_l9XdZlr9NU8ePYDF00GWnfPM3a-VnP_7QfvwPv8BjeNhRWXLYXvQEdnT9FO7OusX6Z3B1NCiJk8YQZJqkrcm0R5LUzZUuCQ57TWH_ryCy_NpcFutFRdC-qHCcI23F5zUpamJLxqh2hYpEqrxxe5GR6bm9V6P0SpNOIXb1HObHR-fTE9pt80AznkRrKg0GmZJFQkfKqo0hZTSBFHGY81iHJmdZLvHzWZkapkRseJAxPCdyjVRMyyh8AaO6qfUrIHGkmAyMQlopuIwwepWhzJlGVmww9DIeBP2XTbNOA91uxVGmg3qzQ0OKaEgdGtLEg4_DNctWAeRW670eMGk3GqxSJmJL7A44Nr8fmtGP7eKMrHWzsTZWmQcJ7cSDly2-hseFCRLlhDMPxBbyBgOrEb7dgrhwWuE9WDzY70H6671u68b-AOS_6PXrfzN_A_eZ9TeXE7kHo_XlRr9FbrdW7zq__Qn-30WU
  priority: 102
  providerName: Unpaywall
Title Evaluation of the impact of a novel denoising algorithm on image quality in dual-energy abdominal CT of obese patients
URI https://link.springer.com/article/10.1007/s00330-023-09644-7
https://www.ncbi.nlm.nih.gov/pubmed/37083742
https://www.proquest.com/docview/2866635947
https://www.proquest.com/docview/2805031540
https://pubmed.ncbi.nlm.nih.gov/PMC10902821
https://pmc.ncbi.nlm.nih.gov/articles/PMC10902821/pdf/nihms-1965202.pdf
UnpaywallVersion submittedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD60CezyMHafty5osLdVLJZlW3kYIylJy0ZDGQ2kT0ay5DXg2tmSdPTf70i-ZKEQ9mJjS75I50jn0-V8B-Cj4Vr5Chugb_qKcumHVCgcpWRaoL1SJuCOjuF8Gp3N-Ld5OD-AaeMLY7dVNn2i66h1mdo58s9MRNY4Dnj8dfmL2qhRdnW1CaEh69AK-oujGDuELrPMWB3ojsbTix9bGl7fhRzDYbyg8WDAazca50xnw5r1KdowirCecxrvmqp7-PP-Nsp2LfUxPNwUS3n3R-b5P-Zq8hSe1DiTDCvFeAYHpngOD87rlfQXcDtuab5JmRGEgaRymLRXkhTlrckJ9knlwk4mEJn_xMpYX98QzL-4wU6IVO6Yd2RREOvPRY3zIiRS6dIFCiMnl_ZdpTIrQ2r61tVLmE3GlydntI7BQFMeh2sqMxwBShYKEypLBYZ4LvOliALNIxNkmqVaYj1aDhmmRJRxP2V4T2iDOMnIMHgFnaIszBsgUaiY9DOFmE9wiVLiMpCaGYSsGY6LMg_8prqTtCYot3Ey8qSlVnYiSlBEiRNREnvwqX1mWdFz7M191EgxqZvqKtkqlgcf2mRsZHblRBam3Ng8ljYH0Wbfg9eV0NvPBTGi2JgzD8SOOrQZLIH3bkqxuHZE3m5TrGC-B8eN5mz_a18xjlvt-o9Sv91f6nfwiFmldxsUj6Cz_r0x7xForVUPDuN5jEcxOe1BdzgZjab2fHr1fdyrWxamztgQr2bTi-HVX5WOKiI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aNomxB8SdwAAjwROLaBwncR4mBKNTx9YKoU7aW2bHDquUJR1tN_XP8ds4dp2UalLFyx7buG6cc_tO7PMdgPeaKRlINMBAd6TPRBD5XGKWUiiO8UrqkFk6hv4g7p2y72fR2Qb8aWphzLHKxidaR63q3Lwj_0R5bIJjypLP4yvfdI0yu6tNCw3hWiuofUsx5go7jvX8BlO4yf7RN5T3B0oPu8ODnu-6DPg5S6KpLwrMcQSNuI6kIbtCxFIEgsehYrEOC0VzJdKUGZYUKnlcsCCn-B1XGpGAFqZrBIaALRayFJO_ra_dwY-fS9rfwLY466ToVhKcxZXt2OI900at42PM9HFuxvxkNTTewru3j222e7c7sD2rxmJ-I8ryn_B4-BAeOFxLviwU8RFs6Oox3Ou7nfsncN1tacVJXRCEnWRRoGk-CVLV17ok6APrkXl5QUT5Cx_-9OKS4PjRJTo9sij_nJNRRUz9mK9t1SIRUtW2MRk5GJq5aqknmji62MlTOL0TaTyDzaqu9AsgcSSpCAqJGJMzgVrBRCgU1QiRC8zDCg-C5nFnuSNEN305yqylcrYiylBEmRVRlnjwsf3NeEEHsnb0biPFzLmGSbZUZA_etZfRqM1Ojah0PTNjDE0PotuOB88XQm__LkwQNSeMesBX1KEdYAjDV69UowtLHG4P4XIaeLDXaM7yvtYtY6_Vrv9Y9cv1q34L271h_yQ7ORocv4L71BiAPRy5C5vT3zP9GkHeVL5xlkTg_K6N9y-1f18O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6ahjTgAXEnMMBI8MSsNY4TOw8IoW3VxtjEwyb1LdiJzSplSaHtpv41fh3HzqVUkype9tjGdeOci78Tn_MdgPeGFzrUaIChGWjKVRhTqTFKsYXE_UqbiHs6hpPT5PCcfx3Fow3409XCuLTKzid6R13UuXtHvstk4jbHlItd26ZFfN8ffp78oq6DlDtp7dppNCpybBbXGL5NPx3to6w_MDY8ONs7pG2HAZpzEc-oshjfKBZLE2tHdIVoxYZKJlHBExPZguWFSlPuGFKYlonlYc7wO1kYRAFGuY4R6P7viChKXTqhGIkl4W_om5sNUnQoAudoC3Z82Z5roDaguFtSnJlzKlY3xRtI92bCZn9qex_uzquJWlyrsvxnYxw-hActoiVfGhV8BBumegxbJ-2Z_RO4OugJxUltCQJO0pRmuk-KVPWVKQl6v3rsXlsQVf7ERz27uCQ4fnyJ7o40hZ8LMq6IqxyjxtcrEqWL2rckI3tnbq5am6khLVHs9Cmc34osnsFmVVfmBZAk1kyFViO6lFzFGMSqSBXMIDi2GIHZAMLucWd5S4XuOnKUWU_i7EWUoYgyL6JMBPCx_82kIQJZO3q7k2LWOoVptlThAN71l9Gc3RmNqkw9d2McQQ_i2kEAzxuh938XCcTLgrMA5Io69AMcVfjqlWp84SnDffqtZGEAO53mLO9r3TJ2eu36j1W_XL_qt7CFJpt9Ozo9fgX3mNN_nxW5DZuz33PzGtHdTL_xZkTgx23b7V8DSVyo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4ancTlgfslMJCReGNOG8dJvMep2piQOu1hlcZTZCc2jcilWtuh8es5di5QJk0g8Zj45OLmO_Z36nM-A3zQPFeBQgcM9ERRLoOICoVRiskFzldKh9zJMcxO45M5_3wRXezAp74WZlnhXTJV-HVZ-XWxcLmVfY7Y-Gw2dYmEggXjZW7GaFCtqBXFwxjexzN3YDeOkJSPYHd-enb4xSntoUsnB25LRCQHDAcewbvyGVdEZ7czm1CcuyjSec5psj1F3eCdN9MnhzXUB3BvUy_l9XdZlr9NU8ePYDF00GWnfPM3a-VnP_7QfvwPv8BjeNhRWXLYXvQEdnT9FO7OusX6Z3B1NCiJk8YQZJqkrcm0R5LUzZUuCQ57TWH_ryCy_NpcFutFRdC-qHCcI23F5zUpamJLxqh2hYpEqrxxe5GR6bm9V6P0SpNOIXb1HObHR-fTE9pt80AznkRrKg0GmZJFQkfKqo0hZTSBFHGY81iHJmdZLvHzWZkapkRseJAxPCdyjVRMyyh8AaO6qfUrIHGkmAyMQlopuIwwepWhzJlGVmww9DIeBP2XTbNOA91uxVGmg3qzQ0OKaEgdGtLEg4_DNctWAeRW670eMGk3GqxSJmJL7A44Nr8fmtGP7eKMrHWzsTZWmQcJ7cSDly2-hseFCRLlhDMPxBbyBgOrEb7dgrhwWuE9WDzY70H6671u68b-AOS_6PXrfzN_A_eZ9TeXE7kHo_XlRr9FbrdW7zq__Qn-30WU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+impact+of+a+novel+denoising+algorithm+on+image+quality+in+dual-energy+abdominal+CT+of+obese+patients&rft.jtitle=European+radiology&rft.au=Schwartz%2C+Fides+R&rft.au=Clark%2C+Darin+P&rft.au=Rigiroli%2C+Francesca&rft.au=Kalisz%2C+Kevin&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=33&rft.issue=10&rft.spage=7056&rft.epage=7065&rft_id=info:doi/10.1007%2Fs00330-023-09644-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon