Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks
The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal val...
Saved in:
| Published in | Neural computing & applications Vol. 35; no. 21; pp. 15923 - 15941 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 1433-3058 |
| DOI | 10.1007/s00521-023-08577-y |
Cover
| Abstract | The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others. |
|---|---|
| AbstractList | The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others. The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others. |
| Author | Alomari, Osama Ahmad Awadallah, Mohammed A. Abu Doush, Iyad Alyasseri, Zaid Abdi Alkareem Al-Betar, Mohammed Azmi Makhadmeh, Sharif Naser Abasi, Ammar Kamal |
| Author_xml | – sequence: 1 givenname: Iyad orcidid: 0000-0001-7200-0032 surname: Abu Doush fullname: Abu Doush, Iyad email: idoush@auk.edu.kw organization: College of Engineering and Applied Sciences, American University of Kuwait, Computer Science Department, Yarmouk University – sequence: 2 givenname: Mohammed A. surname: Awadallah fullname: Awadallah, Mohammed A. organization: Department of Computer Science, Al-Aqsa University, Artificial Intelligence Research Center (AIRC), Ajman University – sequence: 3 givenname: Mohammed Azmi surname: Al-Betar fullname: Al-Betar, Mohammed Azmi organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Department of Information Technology, Al-Huson University College, Al-Balqa Applied University – sequence: 4 givenname: Osama Ahmad surname: Alomari fullname: Alomari, Osama Ahmad organization: MLALP Research Group, University of Sharjah – sequence: 5 givenname: Sharif Naser surname: Makhadmeh fullname: Makhadmeh, Sharif Naser organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University – sequence: 6 givenname: Ammar Kamal surname: Abasi fullname: Abasi, Ammar Kamal organization: Machine Learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) – sequence: 7 givenname: Zaid Abdi Alkareem surname: Alyasseri fullname: Alyasseri, Zaid Abdi Alkareem organization: Information Technology Research and Development Center (ITRDC), University of Kufa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37273914$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFv1DAQhS1URLeFP8ABReLCJTC24zg5oaoqBakSFzhxsJxkkrgk9mI7u1p-Pd7uUqCHiovnMN97evN8Rk6ss0jISwpvKYB8FwAEozkwnkMlpMx3T8iKFpznHER1QlZQF2ldFvyUnIVwCwBFWYln5JRLJnlNixX5duHb0Wwwb3TALmudd1ZvjF9CNqLvMjPPizVxl-lpcN7Ecc565zO3jmY2P40dsi2aYYwhMzazuHg9pRG3zn8Pz8nTXk8BXxznOfn64erL5cf85vP1p8uLm7wtpIi5BqpLaIq-bjml6ZVVWSOKjvYlFl1dAOsbgQyF7ICyDoGjLKXoy7aptNb8nPCD72LXerfV06TW3sza7xQFta9KHapSqSp1V5XaJdX7g2q9NDN2LdqYwt8rnTbq3401oxrcJhlSKngNyeHN0cG7HwuGqGYTWpwmbdEtQbGKMQlCVlVCXz9Ab93ibWplT9G6LkHWiXr1d6T7LL-_KwHVAWi9C8Fjr1oTdTRun9BMj5_LHkj_q6NjsyHBdkD_J_Yjql9UOMx0 |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04309_6 crossref_primary_10_1007_s00521_024_10131_3 crossref_primary_10_3390_f15081365 crossref_primary_10_1016_j_eswa_2023_122413 |
| Cites_doi | 10.1016/j.engappai.2011.07.006 10.1016/j.knosys.2015.12.022 10.1142/S0129065709002002 10.1177/004051750207200706 10.1007/s00500-018-3424-2 10.2991/iske.2007.174 10.1145/3148055.3148075 10.1016/j.eswa.2019.112972 10.3390/bioengineering5020035 10.21203/rs.3.rs-27214/v1 10.1109/45.329294 10.1016/j.ins.2016.05.049 10.1016/j.neucom.2019.03.097 10.1109/IKT.2015.7288738 10.1007/978-981-13-1592-3_41 10.1007/s10489-014-0645-7 10.1080/00051144.2021.2014035 10.1109/ICENCO.2016.7856442 10.3390/math10030315 10.1016/j.ins.2014.08.050 10.1111/exsy.12146 10.1016/j.eswa.2005.11.014 10.1007/s00366-019-00882-2 10.1016/j.amc.2012.04.069 10.1007/s11063-006-9013-x 10.1109/HSI.2008.4581409 10.1023/A:1022995128597 10.1142/S0218213016500330 10.1145/2463372.2463392 10.1109/AEECT.2015.7360576 10.1007/978-981-16-3071-2_58 10.1109/TEVC.2017.2769108 10.1007/s12559-018-9588-3 10.1109/TNN.2004.836237 10.1007/s13042-018-00913-2 10.1007/978-3-030-12127-3_3 10.1109/SIS.2014.7011784 10.1016/j.ins.2014.01.038 10.1109/CEC.2017.7969587 10.1109/ICNN.1995.488968 10.1016/j.neunet.2014.09.003 10.1007/s00521-015-1847-6 10.1155/2016/9063065 10.1007/978-3-642-32894-7_27 10.1109/4235.585893 10.1007/BF02478259 10.1007/978-3-642-12538-6_6 10.1007/978-3-030-36708-4_49 10.1007/s00521-007-0084-z 10.1016/j.ins.2021.04.093 10.1007/s10462-011-9208-z 10.1016/j.eswa.2013.10.053 10.1016/j.ins.2014.02.084 10.1109/TNNLS.2016.2542866 10.1016/j.heliyon.2018.e00938 10.1007/s10489-017-0967-3 10.1109/TCYB.2017.2710133 10.1007/s11063-020-10406-5 10.1177/003754970107600201 10.1016/j.patrec.2008.08.001 10.1007/s00500-022-07592-w |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s00521-023-08577-y |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest One Academic Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 15941 |
| ExternalDocumentID | 10.1007/s00521-023-08577-y PMC10115390 37273914 10_1007_s00521_023_08577_y |
| Genre | Journal Article |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-a01a60b4f9c311f9c7869ee5d1f6e4d9402fb5e2e57d012de03e7675f6cb8aaa3 |
| IEDL.DBID | UNPAY |
| ISSN | 0941-0643 1433-3058 |
| IngestDate | Sun Oct 26 04:14:22 EDT 2025 Tue Sep 30 17:15:00 EDT 2025 Fri Sep 05 14:06:28 EDT 2025 Sat Jul 26 02:20:36 EDT 2025 Wed Feb 19 02:02:37 EST 2025 Thu Apr 24 22:59:37 EDT 2025 Wed Oct 01 03:43:38 EDT 2025 Fri Feb 21 02:43:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | MLP Coronavirus herd immunity optimizer Feedforward neural networks CHIO Optimization Archive technique |
| Language | English |
| License | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-a01a60b4f9c311f9c7869ee5d1f6e4d9402fb5e2e57d012de03e7675f6cb8aaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7200-0032 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-023-08577-y.pdf |
| PMID | 37273914 |
| PQID | 2821996079 |
| PQPubID | 2043988 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1007_s00521_023_08577_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_10115390 proquest_miscellaneous_2822705788 proquest_journals_2821996079 pubmed_primary_37273914 crossref_citationtrail_10_1007_s00521_023_08577_y crossref_primary_10_1007_s00521_023_08577_y springer_journals_10_1007_s00521_023_08577_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationTitleAlternate | Neural Comput Appl |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Dalbah LM, Al-Betar MA, Awadallah MA, Zitar RA (2021) A coronavirus herd immunity optimization (chio) for travelling salesman problem. In: International Conference on Innovative Computing and Communications, pp 11–19. Springer Zhang Y-H, Gong Y-J, Chen W-N, Zhan Z-H, Zhang J (2014) A generic archive technique for enhancing the niching performance of evolutionary computation. In: 2014 IEEE Symposium on Swarm Intelligence, pp 1–8. IEEE Ahmadian S, Khanteymoori AR (2015) Training back propagation neural networks using asexual reproduction optimization. In: 2015 7th Conference on Information and Knowledge Technology (IKT), pp 1–6. IEEE Jalali SMJ, Ahmadian S, Kebria PM, Khosravi A, Lim CP, Nahavandi S (2019) Evolving artificial neural networks using butterfly optimization algorithm for data classification. In: International Conference on Neural Information Processing, pp 596–607. Springer MakhadmehSNAl-BetarMAAwadallahMAAbasiAKAlyasseriZAADoushIAAlomariOADamaševičiusRZajančkauskasAMohammedMAA modified coronavirus herd immunity optimizer for the power scheduling problemMathematics2022103315 HeidariAAFarisHAljarahIMirjaliliSAn efficient hybrid multilayer perceptron neural network with grasshopper optimizationSoft Comput2019231779417958 SavaliaSEmamianVCardiac arrhythmia classification by multi-layer perceptron and convolution neural networksBioengineering20185235 MirjaliliSHow effective is the grey wolf optimizer in training multi-layer perceptronsAppl Intell2015431150161 MirjaliliSHashimSZMSardroudiHMTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248 Nowlan SJ, Platt JC (1995) A convolutional neural network hand tracker. Adv Neural Inf Process Syst, 901–908 Al-Betar MA, Alyasseri ZAA, Awadallah MA, Doush IA (2020) Coronavirus herd immunity optimizer (chio). Neural Comput Appl, 1–32 Samarasinghe S (2016) Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Crc Press CanoJ-RGarcíaSHerreraFSubgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classesPattern Recogn Lett2008291621562164 Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions, pp 60–65. IEEE WangZ-JZhanZ-HLinYYuW-JYuanH-QGuT-LKwongSZhangJDual-strategy differential evolution with affinity propagation clustering for multimodal optimization problemsIEEE Trans Evol Comput2017226894908 DasGPattnaikPKPadhySKArtificial neural network trained by particle swarm optimization for non-linear channel equalizationExpert Syst Appl201441734913496 Moayedi H, Nguyen H, Foong LK (2019) Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput, 1–11 TurkyAMAbdullahSA multi-population harmony search algorithm with external archive for dynamic optimization problemsInf Sci20142728495 Orr MJ et al (1996) Introduction to radial basis function networks. Technical Report, center for cognitive science, University of Edinburgh MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133 Kalra S, Rahnamayan S, Deb K (2017) Enhancing clearing-based niching method using delaunay triangulation. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 2328–2337. IEEE McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBull Math Biophys194354115133103880063.03860 Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M (2020) Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. Nature-Inspired Optimizers, 23–46 ValianEMohannaSTavakoliSImproved cuckoo search algorithm for feedforward neural network trainingInt J Artif Intell Appl2011233643 Bairathi D, Gopalani D (2019) Salp swarm algorithm (ssa) for training feed-forward neural networks. In: Soft Computing for Problem Solving, pp 521–534. Springer KullukSOzbakirLBaykasogluATraining neural networks with harmony search algorithms for classification problemsEng Appl Artif Intell20122511119 Ghosh-DastidarSAdeliHSpiking neural networksInt J Neural Syst20091904295308 NgS-CCheungC-CLeungS-HMagnified gradient function with deterministic weight modification in adaptive learningIEEE Trans Neural Netw200415614111423 KennedyJEberhartRParticle swarm optimizationProc ICNN’95 Int Conf Neural Netw1995419421948 GotAMoussaouiAZouacheDA guided population archive whale optimization algorithm for solving multiobjective optimization problemsExpert Syst Appl2020141112972 SheFHKongLNahavandiSKouzaniAIntelligent animal fiber classification with artificial neural networksTextile Res J2002727594600 IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett200317193105 Wdaa ASI, Sttar A (2008) Differential evolution for neural networks learning enhancement. In: PhD Thesis, Universiti Teknologi Malaysia Johor Bahru DalbahLMAl-BetarMAAwadallahMAZitarRAA modified coronavirus herd immunity optimizer for capacitated vehicle routing problemJ King Saud Univ Comput Inf Sci202234847824795 Sahlol AT, Ewees AA, Hemdan AM, Hassanien AE (2016) Training feedforward neural networks using sine-cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite. In: 2016 12th International Computer Engineering Conference (ICENCO), pp 35–40. IEEE ZhangYPhillipsPWangSJiGYangJWuJFruit classification by biogeography-based optimization and feedforward neural networkExpert Syst2016333239253 BebisGGeorgiopoulosMFeed-forward neural networksIEEE Potentials19941342731 GhanemWAJantanAA cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptronsCognit Comput201810610961134 Alboaneen DA, Tianfield H, Zhang Y (2017) Glowworm swarm optimisation for training multi-layer perceptrons. In: Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, pp 131–138 Chen H, Wang S, Li J, Li Y (2007) A hybrid of artificial fish swarm algorithm and particle swarm optimization for feedforward neural network training. In: International Conference on Intelligent Systems and Knowledge Engineering 2007. Atlantis Press Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer. AskariQYounasIPolitical optimizer based feedforward neural network for classification and function approximationNeural Process Lett2021531429458 JaddiNSAbdullahSHamdanARMulti-population cooperative bat algorithm-based optimization of artificial neural network modelInf Sci20152946286443277666 DingSSuCYuJAn optimizing bp neural network algorithm based on genetic algorithmArtif Intell Rev2011362153162 Kumar C, Magdalin Maryb D, Gunasekar T (2021) Mochio: A novel multi-objective coronavirus herd immunity optimization algorithm for solving brushless direct current wheel motor design optimization problem. PREPRINT (Version 1) available at Research Square Medsker LR, Jain L (2001) Recurrent neural networks. Design Appl , 5 FarisHAljarahIMirjaliliSImproved monarch butterfly optimization for unconstrained global search and neural network trainingAppl Intell2018482445464 Faris H, Aljarah I, Alqatawna J (2015) Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In: 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp 1–5. IEEE Yang X-S (2012) Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation, pp 240–249. Springer BhesdadiyaRJangirPJangirNTrivediINLadumorDTraining multi-layer perceptron in neural network using whale optimization algorithmIndian J Sci Technol20169192836 GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSIMULATION20017626068 Irmak B, Karakoyun M, Gülcü Ş (2022) An improved butterfly optimization algorithm for training the feed-forward artificial neural networks. Soft Comput, 1–19 Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp 65–74. Springer FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019101029012920 SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl2007163235247 ShengWWangXWangZLiQChenYAdaptive memetic differential evolution with niching competition and supporting archive strategies for multimodal optimizationInf Sci20215733163314271741 ZhangLLiHKongX-GEvolving feedforward artificial neural networks using a two-stage approachNeurocomputing20193602536 FarisHAljarahIAl-MadiNMirjaliliSOptimizing the learning process of feedforward neural networks using lightning search algorithmInt J Artif Intell Tools201625061650033 SchmidhuberJDeep learning in neural networks: an overviewNeural Netw20156185117 Kundu S, Biswas S, Das S, Suganthan PN (2013) Crowding-based local differential evolution with speciation-based memory archive for dynamic multimodal optimization. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp 33–40 AbiodunOIJantanAOmolaraAEDadaKVMohamedNAArshadHState-of-the-art in artificial neural network applications: a surveyHeliyon201841100938 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782 MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl201526819191928 Wu H, Zhou A Got (8577_CR53) 2020; 141 J-R Cano (8577_CR63) 2008; 29 Q Askari (8577_CR56) 2021; 53 G Bebis (8577_CR7) 1994; 13 W Sheng (8577_CR50) 2021; 573 8577_CR61 K Sun (8577_CR58) 2016; 28 WS McCulloch (8577_CR5) 1943; 5 8577_CR67 8577_CR24 SZ Mirjalili (8577_CR31) 2015; 26 8577_CR68 8577_CR21 8577_CR66 8577_CR25 MH Hassoun (8577_CR1) 1995 8577_CR26 8577_CR29 E Valian (8577_CR39) 2011; 2 S Ding (8577_CR19) 2011; 36 J Schmidhuber (8577_CR2) 2015; 61 FH She (8577_CR12) 2002; 72 8577_CR70 DH Wolpert (8577_CR42) 1997; 1 SN Makhadmeh (8577_CR59) 2022; 10 H Faris (8577_CR18) 2019; 10 Z-J Wang (8577_CR49) 2017; 22 8577_CR32 H Faris (8577_CR41) 2016; 25 J Kennedy (8577_CR65) 1995; 4 8577_CR38 AM Turky (8577_CR51) 2014; 272 8577_CR37 L Zhang (8577_CR15) 2019; 360 AA Heidari (8577_CR27) 2019; 23 MB Nasr (8577_CR16) 2006; 24 S-C Ng (8577_CR17) 2004; 15 S Ghosh-Dastidar (8577_CR10) 2009; 19 ZW Geem (8577_CR64) 2001; 76 S Savalia (8577_CR14) 2018; 5 R Bhesdadiya (8577_CR55) 2016; 9 K Socha (8577_CR33) 2007; 16 8577_CR40 S Kulluk (8577_CR71) 2012; 25 8577_CR45 8577_CR43 B Lacroix (8577_CR46) 2016; 367 S Mirjalili (8577_CR23) 2015; 43 8577_CR44 8577_CR47 8577_CR48 G Das (8577_CR20) 2014; 41 NS Jaddi (8577_CR34) 2015; 294 S Mirjalili (8577_CR69) 2016; 96 S Mirjalili (8577_CR36) 2012; 218 LM Dalbah (8577_CR60) 2022; 34 Y Zhang (8577_CR35) 2016; 33 S-H Liao (8577_CR4) 2007; 32 8577_CR9 8577_CR13 H Faris (8577_CR30) 2018; 48 8577_CR57 8577_CR54 OI Abiodun (8577_CR3) 2018; 4 8577_CR11 S Mirjalili (8577_CR62) 2014; 269 8577_CR6 J Ilonen (8577_CR22) 2003; 17 Q Zhu (8577_CR52) 2017; 47 8577_CR8 WA Ghanem (8577_CR28) 2018; 10 |
| References_xml | – reference: MirjaliliSHow effective is the grey wolf optimizer in training multi-layer perceptronsAppl Intell2015431150161 – reference: Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M (2020) Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. Nature-Inspired Optimizers, 23–46 – reference: CanoJ-RGarcíaSHerreraFSubgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classesPattern Recogn Lett2008291621562164 – reference: Irmak B, Karakoyun M, Gülcü Ş (2022) An improved butterfly optimization algorithm for training the feed-forward artificial neural networks. Soft Comput, 1–19 – reference: GotAMoussaouiAZouacheDA guided population archive whale optimization algorithm for solving multiobjective optimization problemsExpert Syst Appl2020141112972 – reference: Moayedi H, Nguyen H, Foong LK (2019) Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput, 1–11 – reference: Wu H, Zhou Y, Luo Q, Basset MA (2016) Training feedforward neural networks using symbiotic organisms search algorithm. Comput Intell Neurosci 2016 – reference: ShengWWangXWangZLiQChenYAdaptive memetic differential evolution with niching competition and supporting archive strategies for multimodal optimizationInf Sci20215733163314271741 – reference: Yang X-S (2012) Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation, pp 240–249. Springer – reference: HeidariAAFarisHAljarahIMirjaliliSAn efficient hybrid multilayer perceptron neural network with grasshopper optimizationSoft Comput2019231779417958 – reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133 – reference: MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl201526819191928 – reference: Kundu S, Biswas S, Das S, Suganthan PN (2013) Crowding-based local differential evolution with speciation-based memory archive for dynamic multimodal optimization. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp 33–40 – reference: SheFHKongLNahavandiSKouzaniAIntelligent animal fiber classification with artificial neural networksTextile Res J2002727594600 – reference: Dalbah LM, Al-Betar MA, Awadallah MA, Zitar RA (2021) A coronavirus herd immunity optimization (chio) for travelling salesman problem. In: International Conference on Innovative Computing and Communications, pp 11–19. Springer – reference: SunKHuangS-HWongDS-HJangS-SDesign and application of a variable selection method for multilayer perceptron neural network with lassoIEEE Trans Neural Netw Learn Syst201628613861396 – reference: SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl2007163235247 – reference: FarisHAljarahIAl-MadiNMirjaliliSOptimizing the learning process of feedforward neural networks using lightning search algorithmInt J Artif Intell Tools201625061650033 – reference: Ghosh-DastidarSAdeliHSpiking neural networksInt J Neural Syst20091904295308 – reference: AskariQYounasIPolitical optimizer based feedforward neural network for classification and function approximationNeural Process Lett2021531429458 – reference: Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp 65–74. Springer – reference: DasGPattnaikPKPadhySKArtificial neural network trained by particle swarm optimization for non-linear channel equalizationExpert Syst Appl201441734913496 – reference: NgS-CCheungC-CLeungS-HMagnified gradient function with deterministic weight modification in adaptive learningIEEE Trans Neural Netw200415614111423 – reference: ZhuQLinQChenWWongK-CCoelloCACLiJChenJZhangJAn external archive-guided multiobjective particle swarm optimization algorithmIEEE Trans Cybern201747927942808 – reference: Faris H, Aljarah I, Alqatawna J (2015) Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In: 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp 1–5. IEEE – reference: KullukSOzbakirLBaykasogluATraining neural networks with harmony search algorithms for classification problemsEng Appl Artif Intell20122511119 – reference: ZhangLLiHKongX-GEvolving feedforward artificial neural networks using a two-stage approachNeurocomputing20193602536 – reference: HassounMHFundamentals of artificial neural networks1995MIT press0850.68271 – reference: Chen H, Wang S, Li J, Li Y (2007) A hybrid of artificial fish swarm algorithm and particle swarm optimization for feedforward neural network training. In: International Conference on Intelligent Systems and Knowledge Engineering 2007. Atlantis Press – reference: FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019101029012920 – reference: Zhang Y-H, Gong Y-J, Chen W-N, Zhan Z-H, Zhang J (2014) A generic archive technique for enhancing the niching performance of evolutionary computation. In: 2014 IEEE Symposium on Swarm Intelligence, pp 1–8. IEEE – reference: WangZ-JZhanZ-HLinYYuW-JYuanH-QGuT-LKwongSZhangJDual-strategy differential evolution with affinity propagation clustering for multimodal optimization problemsIEEE Trans Evol Comput2017226894908 – reference: Alboaneen DA, Tianfield H, Zhang Y (2017) Glowworm swarm optimisation for training multi-layer perceptrons. In: Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, pp 131–138 – reference: JaddiNSAbdullahSHamdanARMulti-population cooperative bat algorithm-based optimization of artificial neural network modelInf Sci20152946286443277666 – reference: IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett200317193105 – reference: Nowlan SJ, Platt JC (1995) A convolutional neural network hand tracker. Adv Neural Inf Process Syst, 901–908 – reference: BhesdadiyaRJangirPJangirNTrivediINLadumorDTraining multi-layer perceptron in neural network using whale optimization algorithmIndian J Sci Technol20169192836 – reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSIMULATION20017626068 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782 – reference: Jalali SMJ, Ahmadian S, Kebria PM, Khosravi A, Lim CP, Nahavandi S (2019) Evolving artificial neural networks using butterfly optimization algorithm for data classification. In: International Conference on Neural Information Processing, pp 596–607. Springer – reference: BebisGGeorgiopoulosMFeed-forward neural networksIEEE Potentials19941342731 – reference: Bairathi D, Gopalani D (2019) Salp swarm algorithm (ssa) for training feed-forward neural networks. In: Soft Computing for Problem Solving, pp 521–534. Springer – reference: KennedyJEberhartRParticle swarm optimizationProc ICNN’95 Int Conf Neural Netw1995419421948 – reference: Kalra S, Rahnamayan S, Deb K (2017) Enhancing clearing-based niching method using delaunay triangulation. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 2328–2337. IEEE – reference: GhanemWAJantanAA cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptronsCognit Comput201810610961134 – reference: Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions, pp 60–65. IEEE – reference: DingSSuCYuJAn optimizing bp neural network algorithm based on genetic algorithmArtif Intell Rev2011362153162 – reference: LacroixBMolinaDHerreraFRegion-based memetic algorithm with archive for multimodal optimisationInf Sci2016367719746 – reference: AbiodunOIJantanAOmolaraAEDadaKVMohamedNAArshadHState-of-the-art in artificial neural network applications: a surveyHeliyon201841100938 – reference: SchmidhuberJDeep learning in neural networks: an overviewNeural Netw20156185117 – reference: Al-Betar MA, Alyasseri ZAA, Awadallah MA, Doush IA (2020) Coronavirus herd immunity optimizer (chio). Neural Comput Appl, 1–32 – reference: TurkyAMAbdullahSA multi-population harmony search algorithm with external archive for dynamic optimization problemsInf Sci20142728495 – reference: MirjaliliSMirjaliliSMLewisALet a biogeography-based optimizer train your multi-layer perceptronInf Sci20142691882093180809 – reference: Samarasinghe S (2016) Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Crc Press – reference: NasrMBChtourouMA hybrid training algorithm for feedforward neural networksNeural Process Lett2006242107117 – reference: SavaliaSEmamianVCardiac arrhythmia classification by multi-layer perceptron and convolution neural networksBioengineering20185235 – reference: MirjaliliSHashimSZMSardroudiHMTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248 – reference: McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBull Math Biophys194354115133103880063.03860 – reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer. – reference: Ahmadian S, Khanteymoori AR (2015) Training back propagation neural networks using asexual reproduction optimization. In: 2015 7th Conference on Information and Knowledge Technology (IKT), pp 1–6. IEEE – reference: MakhadmehSNAl-BetarMAAwadallahMAAbasiAKAlyasseriZAADoushIAAlomariOADamaševičiusRZajančkauskasAMohammedMAA modified coronavirus herd immunity optimizer for the power scheduling problemMathematics2022103315 – reference: DalbahLMAl-BetarMAAwadallahMAZitarRAA modified coronavirus herd immunity optimizer for capacitated vehicle routing problemJ King Saud Univ Comput Inf Sci202234847824795 – reference: ValianEMohannaSTavakoliSImproved cuckoo search algorithm for feedforward neural network trainingInt J Artif Intell Appl2011233643 – reference: FarisHAljarahIMirjaliliSImproved monarch butterfly optimization for unconstrained global search and neural network trainingAppl Intell2018482445464 – reference: ZhangYPhillipsPWangSJiGYangJWuJFruit classification by biogeography-based optimization and feedforward neural networkExpert Syst2016333239253 – reference: Kumar C, Magdalin Maryb D, Gunasekar T (2021) Mochio: A novel multi-objective coronavirus herd immunity optimization algorithm for solving brushless direct current wheel motor design optimization problem. PREPRINT (Version 1) available at Research Square – reference: Wdaa ASI, Sttar A (2008) Differential evolution for neural networks learning enhancement. In: PhD Thesis, Universiti Teknologi Malaysia Johor Bahru – reference: Sahlol AT, Ewees AA, Hemdan AM, Hassanien AE (2016) Training feedforward neural networks using sine-cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite. In: 2016 12th International Computer Engineering Conference (ICENCO), pp 35–40. IEEE – reference: LiaoS-HWenC-HArtificial neural networks classification and clustering of methodologies and applications-literature analysis from 1995 to 2005Expert Syst Appl2007321111 – reference: Orr MJ et al (1996) Introduction to radial basis function networks. Technical Report, center for cognitive science, University of Edinburgh – reference: Medsker LR, Jain L (2001) Recurrent neural networks. Design Appl , 5 – volume: 25 start-page: 11 issue: 1 year: 2012 ident: 8577_CR71 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.07.006 – volume: 96 start-page: 120 year: 2016 ident: 8577_CR69 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 19 start-page: 295 issue: 04 year: 2009 ident: 8577_CR10 publication-title: Int J Neural Syst doi: 10.1142/S0129065709002002 – volume: 72 start-page: 594 issue: 7 year: 2002 ident: 8577_CR12 publication-title: Textile Res J doi: 10.1177/004051750207200706 – volume: 23 start-page: 7941 issue: 17 year: 2019 ident: 8577_CR27 publication-title: Soft Comput doi: 10.1007/s00500-018-3424-2 – ident: 8577_CR32 doi: 10.2991/iske.2007.174 – ident: 8577_CR25 doi: 10.1145/3148055.3148075 – volume: 141 start-page: 112972 year: 2020 ident: 8577_CR53 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112972 – volume: 5 start-page: 35 issue: 2 year: 2018 ident: 8577_CR14 publication-title: Bioengineering doi: 10.3390/bioengineering5020035 – ident: 8577_CR43 doi: 10.21203/rs.3.rs-27214/v1 – volume: 2 start-page: 36 issue: 3 year: 2011 ident: 8577_CR39 publication-title: Int J Artif Intell Appl – volume: 34 start-page: 4782 issue: 8 year: 2022 ident: 8577_CR60 publication-title: J King Saud Univ Comput Inf Sci – ident: 8577_CR11 – volume: 13 start-page: 27 issue: 4 year: 1994 ident: 8577_CR7 publication-title: IEEE Potentials doi: 10.1109/45.329294 – volume: 367 start-page: 719 year: 2016 ident: 8577_CR46 publication-title: Inf Sci doi: 10.1016/j.ins.2016.05.049 – volume: 360 start-page: 25 year: 2019 ident: 8577_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.097 – ident: 8577_CR13 doi: 10.1109/IKT.2015.7288738 – ident: 8577_CR24 doi: 10.1007/978-981-13-1592-3_41 – volume: 43 start-page: 150 issue: 1 year: 2015 ident: 8577_CR23 publication-title: Appl Intell doi: 10.1007/s10489-014-0645-7 – ident: 8577_CR45 doi: 10.1080/00051144.2021.2014035 – ident: 8577_CR70 doi: 10.1109/ICENCO.2016.7856442 – volume: 10 start-page: 315 issue: 3 year: 2022 ident: 8577_CR59 publication-title: Mathematics doi: 10.3390/math10030315 – volume: 294 start-page: 628 year: 2015 ident: 8577_CR34 publication-title: Inf Sci doi: 10.1016/j.ins.2014.08.050 – ident: 8577_CR61 – volume: 33 start-page: 239 issue: 3 year: 2016 ident: 8577_CR35 publication-title: Expert Syst doi: 10.1111/exsy.12146 – volume: 32 start-page: 1 issue: 1 year: 2007 ident: 8577_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.11.014 – ident: 8577_CR26 doi: 10.1007/s00366-019-00882-2 – volume: 218 start-page: 11125 issue: 22 year: 2012 ident: 8577_CR36 publication-title: Appl Math Comput doi: 10.1016/j.amc.2012.04.069 – volume: 24 start-page: 107 issue: 2 year: 2006 ident: 8577_CR16 publication-title: Neural Process Lett doi: 10.1007/s11063-006-9013-x – ident: 8577_CR21 doi: 10.1109/HSI.2008.4581409 – volume: 17 start-page: 93 issue: 1 year: 2003 ident: 8577_CR22 publication-title: Neural Process Lett doi: 10.1023/A:1022995128597 – ident: 8577_CR8 – volume: 25 start-page: 1650033 issue: 06 year: 2016 ident: 8577_CR41 publication-title: Int J Artif Intell Tools doi: 10.1142/S0218213016500330 – ident: 8577_CR48 doi: 10.1145/2463372.2463392 – ident: 8577_CR37 doi: 10.1109/AEECT.2015.7360576 – ident: 8577_CR44 doi: 10.1007/978-981-16-3071-2_58 – volume: 22 start-page: 894 issue: 6 year: 2017 ident: 8577_CR49 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2769108 – volume: 10 start-page: 1096 issue: 6 year: 2018 ident: 8577_CR28 publication-title: Cognit Comput doi: 10.1007/s12559-018-9588-3 – volume: 15 start-page: 1411 issue: 6 year: 2004 ident: 8577_CR17 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2004.836237 – volume: 10 start-page: 2901 issue: 10 year: 2019 ident: 8577_CR18 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-00913-2 – ident: 8577_CR38 doi: 10.1007/978-3-030-12127-3_3 – ident: 8577_CR9 – ident: 8577_CR47 doi: 10.1109/SIS.2014.7011784 – volume: 269 start-page: 188 year: 2014 ident: 8577_CR62 publication-title: Inf Sci doi: 10.1016/j.ins.2014.01.038 – ident: 8577_CR54 doi: 10.1109/CEC.2017.7969587 – volume: 9 start-page: 28 issue: 19 year: 2016 ident: 8577_CR55 publication-title: Indian J Sci Technol – volume: 4 start-page: 1942 year: 1995 ident: 8577_CR65 publication-title: Proc ICNN’95 Int Conf Neural Netw doi: 10.1109/ICNN.1995.488968 – volume: 61 start-page: 85 year: 2015 ident: 8577_CR2 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – volume: 26 start-page: 1919 issue: 8 year: 2015 ident: 8577_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1847-6 – ident: 8577_CR40 doi: 10.1155/2016/9063065 – ident: 8577_CR68 doi: 10.1007/978-3-642-32894-7_27 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 8577_CR42 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – ident: 8577_CR67 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 8577_CR5 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – ident: 8577_CR66 doi: 10.1007/978-3-642-12538-6_6 – ident: 8577_CR29 doi: 10.1007/978-3-030-36708-4_49 – volume: 16 start-page: 235 issue: 3 year: 2007 ident: 8577_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-007-0084-z – volume: 573 start-page: 316 year: 2021 ident: 8577_CR50 publication-title: Inf Sci doi: 10.1016/j.ins.2021.04.093 – volume: 36 start-page: 153 issue: 2 year: 2011 ident: 8577_CR19 publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9208-z – volume: 41 start-page: 3491 issue: 7 year: 2014 ident: 8577_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.10.053 – volume: 272 start-page: 84 year: 2014 ident: 8577_CR51 publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.084 – volume: 28 start-page: 1386 issue: 6 year: 2016 ident: 8577_CR58 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2542866 – ident: 8577_CR6 – volume: 4 start-page: 00938 issue: 11 year: 2018 ident: 8577_CR3 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 48 start-page: 445 issue: 2 year: 2018 ident: 8577_CR30 publication-title: Appl Intell doi: 10.1007/s10489-017-0967-3 – volume: 47 start-page: 2794 issue: 9 year: 2017 ident: 8577_CR52 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2710133 – volume: 53 start-page: 429 issue: 1 year: 2021 ident: 8577_CR56 publication-title: Neural Process Lett doi: 10.1007/s11063-020-10406-5 – volume-title: Fundamentals of artificial neural networks year: 1995 ident: 8577_CR1 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 8577_CR64 publication-title: SIMULATION doi: 10.1177/003754970107600201 – volume: 29 start-page: 2156 issue: 16 year: 2008 ident: 8577_CR63 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2008.08.001 – ident: 8577_CR57 doi: 10.1007/s00500-022-07592-w |
| SSID | ssj0004685 |
| Score | 2.3860133 |
| Snippet | The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 15923 |
| SubjectTerms | Algorithms Archives & records Artificial Intelligence Artificial neural networks Bias Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Coronaviruses Data Mining and Knowledge Discovery Datasets Evolutionary algorithms Herd immunity Heuristic methods Image Processing and Computer Vision Machine learning Multilayer perceptrons Neural networks Optimization Original Original Article Parameters Probability and Statistics in Computer Science Supervised learning Swarm intelligence |
| SummonAdditionalLinks | – databaseName: ProQuest One Academic dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_q9UF9sH4bW2UF3-xivrP7UIpKSxE8RCwUfAj7lTZwzZ29nOX8653ZS9IehcOXPCQb9uM3uzuzO_MbgPeowobOxY5nSsc8rUzKhTGaoyUWS507kfnzjm_j_OQ0_XqWnW3BuI-FIbfKfk30C7WdGjoj_4imATnMhoU8nP3mlDWKblf7FBqqS61gDzzF2D3YjokZawTbn4_G33_cipT0STrRpiF_nzTpwmh8MB2dkOLbOOHE-l7w5fpWdUf_vOtGOdylPoT7i2amltdqMrm1XR0_hkednsk-rQTjCWy55ins9DkcWDeln8GvjnqW03ZmmSFCA_WnvlrMGaJpWe3jR9olU5NzHI724pKhmsumuNJc1n-xGezaH67OWd0wIsfESpuVa_n8OZweH_38csK7hAvcpEXWchVGKg91WkmTRBE-C5FL5zIbVblLrURbs9IZIpsVFjc268LEERlMlRstlFLJCxg108a9AoY4aa2VcMqJtBKxTiIlLY6VsS7JnQwg6se2NB0bOSXFmJQDj7LHo0Q8So9HuQzgw_DPbMXFsbH0Xg9Z2c3LeXkjRQG8Gz7jjKJrEtW46cKXiQtUY4UI4OUK4aG6hNQ9GaUBiDXshwLE1r3-pakvPGt3RMp3IsMA9nsxuWnXpm7sD6L0H71-vbnXu_Ag9hJO_sZ7MGqvFu4NalWtfttNlX-tniEC priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCHlncDBRmJG7WUxE5iHytEVSHBiZUqcYhsZ0IjbbPVJku1_fUde5PQVasKLrnY8esb2zP2zGeAT6TCxogp8szYlMvaSa6cs5wssVTbHFUWzju-_8hPZvLbaXY6BIV1o7f7eCUZVuop2M2fYJLpmwruWdkLvn4IjzJP50VSPEuPbkRDhoc4yW7xPj1SDKEyd5exvR3d0jFvu0pO96VP4fGqvTDrSzOf39iSjp_B7qBLsqMN-M_hAbYvYG98p4EN0_Yl_BroZbnfsirmPGmB-dMsVx0jxCrWhBiRfs3M_Pdi2fRn54xUWbag1eS8uaJmsMtwgNqxpmWeAJMqbTfu490rmB1__fnlhA-PKnAni6znJk5MHltZayeShL6FyjViViV1jrLSZE_WNiP0sqKizavCWKAnfKlzZ5UxRryGnXbR4j6wuNDWWqPQoJK1Sq1IjK5orFyFIkcdQTKObekGxnH_8MW8nLiSAx4l4VEGPMp1BJ-nfy42fBv35j4YISuHudeVZER612pqXQQfp2SaNf4qxLS4WIU8aUGqqlIRvNkgPFUnvEqnExmB2sJ-yuAZubdT2uYsMHMnXsEWOo7gcBSTv-26rxuHkyj9Q6_f_l_p7-BJGiTe-xgfwE6_XOF70qR6-yFMnGtXgBfY priority: 102 providerName: Springer Nature |
| Title | Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks |
| URI | https://link.springer.com/article/10.1007/s00521-023-08577-y https://www.ncbi.nlm.nih.gov/pubmed/37273914 https://www.proquest.com/docview/2821996079 https://www.proquest.com/docview/2822705788 https://pubmed.ncbi.nlm.nih.gov/PMC10115390 https://link.springer.com/content/pdf/10.1007/s00521-023-08577-y.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfggXEnMCoj8cbc5eIkzmOBdhOIakJU2sRDZDsOi-jSqk2Yul_PcW5QhiYQL4kUO_Htc_zZPuczwCuksLbWrqa-kC5lqWKUKyUpzsTcSAaa-9V6x8dpcDxj70_90x141_rCVNbu7ZZk7dNgVJry4nCZpIed45tZzcRpsOtRo9Ae0s0Qg3ehH_jIyHvQn01PRmeVzB4zhj21nT3zPIrw5o3vzJ8_tD0-XSOd120nuw3UO3CrzJdicynm81_GqMke6LZ0tWnKt2FZyKG6-k348X-Lfw_uNiSWjGrU3YcdnT-AvfaACNL8Lx7Cl0bXlpqxMiHKqCWI79mqXBOESkKyyjml2BAx_7pYZcX5BUEOTRb4G7vIrjB35LJauV2TLCdGeRMTzWu79fUjmE3Gn98e0-Y0B6pY6BdU2I4IbMnSSHmOg9eQB5HWfuKkgWZJhBPZVPoIGz9McNRMtO1pozSTBkpyIYT3GHr5ItdPgdhhJKUUXAvNWcpd6TkiSrBNVKK9QEcWOG0bxqqROjcnbszjTqS5qsEYazCuajDeWPC6e2dZC33cGHu_hUbcdPp1jLNXY9ONubPgZReM3dXswYhcL8oqjhsiR-bcgic1krrkPMMlI4dZwLcw1kUwUuDbIXl2XkmCO4bZe5FtwUGLnp_5uqkYBx1k_6LUz_4t-nO47VYYNcbN-9ArVqV-gRSukAPY5ZOjAfRHR2cfxnh_M56efMKnM3c0aHrvD9X4RX8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48IYGChgJTtQiD-fhQ4V4tNrSdoVQK1XiEOzEaSNts0uTZRV-HL-NsddJu6q04tJLDrETP2Y8nrFnvgF4gyqsq5SvaCikT1mRMZpkmaRoiflcRioJzXnH4TAaHLOvJ-HJCvztYmG0W2UnE42gzseZPiN_j6aBdph1Y_5h8ovqrFH6drVLoSFsaoV820CM2cCOfdXO0ISrt_e-IL3f-v7uztHnAbVZBmjG4rChwvVE5EpW8CzwPHzGScSVCnOviBTLORpYhQxxOGGcozTPlRsojYBSRJlMhBAB_vcWrLGAcTT-1j7tDL99vxKZaZKCog2l_YtYYMN2TPCePpHFt35ANcp8TNvFrfGavnvdbbO_u70D69NqItqZGI2ubI-79-Gu1WvJxzkjPoAVVT2Ee13OCGJFyCP4YaFuqd4-c5JpAAXxu7yY1gS5JyeliVdpWiJGpzj9zdk5QbWajFGynZd_sBtkZg5za1JWRINxYqPV3JW9fgzHNzL1T2C1GldqAwjyhZRSJEqohBWJLwNP8BznKstVECnugNfNbZpZ9HOdhGOU9rjNhh4p0iM19EhbB97130zm2B9La292JEutHKjTS6514HVfjCtYX8uISo2npo4fo9qcJA48nVO4by7Q6iX3mAPJAu37ChodfLGkKs8MSrinlf2Auw5sdWxy2a9lw9jqWek_Rv1s-ahfwfrg6PAgPdgb7j-H277hdu3rvAmrzcVUvUCNrpEv7bIh8POmV-o_8bNe5g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaAceLcNLWAkbtRqHk7iHKvCqrwqDqxUiUPkV2ikrXe1m6Vafj1j58Guiiq45GLHsT0zmRl75huAN2jChsbEhqZCxpRVilGulKToicWFzAxP_XnHl7PsdMw-nqfna1n8Ptq9v5JscxocSpNtjma6OhoS39xpJrrBcUIdQntOV7fhDnNACcjR4_h4LTPSF-VEH8bF97CkS5v5-xibqumavXk9bHK4O70P95Z2JlZXYjJZU0-jR_CgsyvJccsIj-GWsU_gYV-zgXQi_BS-d1Cz1KkvTZQDMBA_6_lyQZB6mtQ-X6RZETH5MZ3XzcUlQbOWTPHPcln_wmmQK3-YuiC1JQ4MEz9q21DyxTMYj95_OzmlXYEFqlieNlSEkchCyapCJVGEz5xnhTGpjqrMMF2gb1nJFCmZ5hoVmTZhYhz4S5UpyYUQyQ5s2ak1e0DCvJBSCm6E4azisUwiUWjcK6VNkpkigKjf21J16OOuCMakHHCTPT1KpEfp6VGuAng7vDNrsTdu7H3Qk6zs5HBRokPpwqxxdgG8HppRgty1iLBmuvR94hzNVs4D2G0pPHwuceZdEbEA-Abthw4OnXuzxdYXHqU7csZ2UoQBHPZs8mdeNy3jcGClf1j18_8b_RXc_fpuVH7-cPZpH7Zjz_wu9PgAtpr50rxAA6uRL70M_QZlwR8A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF6oDzbQEFG4ka9TWIncY4VpaqQqDiwUhGHyHYcGnWbXe0mVNtfz9h50KWoAnHJxU7ix2f7G3vmM8BbpLC-MaGhkVQh5YXmVGitKFpiYapiIyK33_HpND6Z8I9n0dkGHPWxMM7bvT-SbGMarEpTVR_M8-JgCHyzu5loBoeMWoX2hK7GmHwPNuMIGfkINiennw-_Opk9bh17Wj97zhhFeIsudubPH1pfn26Rztu-k8MB6hbcb6q5XF3J6fTGGnW8DaavXeuacjFuajXW178JP_5v9R_Bw47EksMWdY9hw1RPYLu_IIJ088VT-Nbp2lK7VuZEW7UE-aNcNEuCUMlJ6YJT6hWR0--zRVmfXxLk0GSG09hleY2lI1du53ZJyopY5U38adX6rS-fweT4w5f3J7S7zYFqnkQ1lX4gY1_xItUsCPCZiDg1JsqDIjY8T9GQLVSEsImSHFfN3PjMWKWZItZKSCnZcxhVs8rsAvGTVCklhZFG8EKEigUyzbFPdG5YbFIPgr4PM91JndsbN6bZINLsWjDDFsxcC2YrD94N78xboY87c-_10Mi6Qb_M0Hq1Pt1YOg_eDMk4XO0ZjKzMrHF5wgQ5shAe7LRIGn7HLJdMA-6BWMPYkMFKga-nVOW5kwQPLLNnqe_Bfo-eX-W6qxr7A2T_otYv_i37S3gQOoxa5-Y9GNWLxrxCCler190I_QmL-0CC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Archive-based+coronavirus+herd+immunity+algorithm+for+optimizing+weights+in+neural+networks&rft.jtitle=Neural+computing+%26+applications&rft.au=Abu+Doush%2C+Iyad&rft.au=Awadallah%2C+Mohammed+A.&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Alomari%2C+Osama+Ahmad&rft.date=2023-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1007%2Fs00521-023-08577-y&rft.externalDocID=PMC10115390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |