Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks

The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal val...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 21; pp. 15923 - 15941
Main Authors Abu Doush, Iyad, Awadallah, Mohammed A., Al-Betar, Mohammed Azmi, Alomari, Osama Ahmad, Makhadmeh, Sharif Naser, Abasi, Ammar Kamal, Alyasseri, Zaid Abdi Alkareem
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
1433-3058
DOI10.1007/s00521-023-08577-y

Cover

Abstract The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.
AbstractList The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.
The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.
Author Alomari, Osama Ahmad
Awadallah, Mohammed A.
Abu Doush, Iyad
Alyasseri, Zaid Abdi Alkareem
Al-Betar, Mohammed Azmi
Makhadmeh, Sharif Naser
Abasi, Ammar Kamal
Author_xml – sequence: 1
  givenname: Iyad
  orcidid: 0000-0001-7200-0032
  surname: Abu Doush
  fullname: Abu Doush, Iyad
  email: idoush@auk.edu.kw
  organization: College of Engineering and Applied Sciences, American University of Kuwait, Computer Science Department, Yarmouk University
– sequence: 2
  givenname: Mohammed A.
  surname: Awadallah
  fullname: Awadallah, Mohammed A.
  organization: Department of Computer Science, Al-Aqsa University, Artificial Intelligence Research Center (AIRC), Ajman University
– sequence: 3
  givenname: Mohammed Azmi
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Department of Information Technology, Al-Huson University College, Al-Balqa Applied University
– sequence: 4
  givenname: Osama Ahmad
  surname: Alomari
  fullname: Alomari, Osama Ahmad
  organization: MLALP Research Group, University of Sharjah
– sequence: 5
  givenname: Sharif Naser
  surname: Makhadmeh
  fullname: Makhadmeh, Sharif Naser
  organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University
– sequence: 6
  givenname: Ammar Kamal
  surname: Abasi
  fullname: Abasi, Ammar Kamal
  organization: Machine Learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)
– sequence: 7
  givenname: Zaid Abdi Alkareem
  surname: Alyasseri
  fullname: Alyasseri, Zaid Abdi Alkareem
  organization: Information Technology Research and Development Center (ITRDC), University of Kufa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37273914$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFP8ABReLCJTC24zg5oaoqBakSFzhxsJxkkrgk9mI7u1p-Pd7uUqCHiovnMN97evN8Rk6ss0jISwpvKYB8FwAEozkwnkMlpMx3T8iKFpznHER1QlZQF2ldFvyUnIVwCwBFWYln5JRLJnlNixX5duHb0Wwwb3TALmudd1ZvjF9CNqLvMjPPizVxl-lpcN7Ecc565zO3jmY2P40dsi2aYYwhMzazuHg9pRG3zn8Pz8nTXk8BXxznOfn64erL5cf85vP1p8uLm7wtpIi5BqpLaIq-bjml6ZVVWSOKjvYlFl1dAOsbgQyF7ICyDoGjLKXoy7aptNb8nPCD72LXerfV06TW3sza7xQFta9KHapSqSp1V5XaJdX7g2q9NDN2LdqYwt8rnTbq3401oxrcJhlSKngNyeHN0cG7HwuGqGYTWpwmbdEtQbGKMQlCVlVCXz9Ab93ibWplT9G6LkHWiXr1d6T7LL-_KwHVAWi9C8Fjr1oTdTRun9BMj5_LHkj_q6NjsyHBdkD_J_Yjql9UOMx0
CitedBy_id crossref_primary_10_1007_s10586_024_04309_6
crossref_primary_10_1007_s00521_024_10131_3
crossref_primary_10_3390_f15081365
crossref_primary_10_1016_j_eswa_2023_122413
Cites_doi 10.1016/j.engappai.2011.07.006
10.1016/j.knosys.2015.12.022
10.1142/S0129065709002002
10.1177/004051750207200706
10.1007/s00500-018-3424-2
10.2991/iske.2007.174
10.1145/3148055.3148075
10.1016/j.eswa.2019.112972
10.3390/bioengineering5020035
10.21203/rs.3.rs-27214/v1
10.1109/45.329294
10.1016/j.ins.2016.05.049
10.1016/j.neucom.2019.03.097
10.1109/IKT.2015.7288738
10.1007/978-981-13-1592-3_41
10.1007/s10489-014-0645-7
10.1080/00051144.2021.2014035
10.1109/ICENCO.2016.7856442
10.3390/math10030315
10.1016/j.ins.2014.08.050
10.1111/exsy.12146
10.1016/j.eswa.2005.11.014
10.1007/s00366-019-00882-2
10.1016/j.amc.2012.04.069
10.1007/s11063-006-9013-x
10.1109/HSI.2008.4581409
10.1023/A:1022995128597
10.1142/S0218213016500330
10.1145/2463372.2463392
10.1109/AEECT.2015.7360576
10.1007/978-981-16-3071-2_58
10.1109/TEVC.2017.2769108
10.1007/s12559-018-9588-3
10.1109/TNN.2004.836237
10.1007/s13042-018-00913-2
10.1007/978-3-030-12127-3_3
10.1109/SIS.2014.7011784
10.1016/j.ins.2014.01.038
10.1109/CEC.2017.7969587
10.1109/ICNN.1995.488968
10.1016/j.neunet.2014.09.003
10.1007/s00521-015-1847-6
10.1155/2016/9063065
10.1007/978-3-642-32894-7_27
10.1109/4235.585893
10.1007/BF02478259
10.1007/978-3-642-12538-6_6
10.1007/978-3-030-36708-4_49
10.1007/s00521-007-0084-z
10.1016/j.ins.2021.04.093
10.1007/s10462-011-9208-z
10.1016/j.eswa.2013.10.053
10.1016/j.ins.2014.02.084
10.1109/TNNLS.2016.2542866
10.1016/j.heliyon.2018.e00938
10.1007/s10489-017-0967-3
10.1109/TCYB.2017.2710133
10.1007/s11063-020-10406-5
10.1177/003754970107600201
10.1016/j.patrec.2008.08.001
10.1007/s00500-022-07592-w
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00521-023-08577-y
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest One Academic
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 15941
ExternalDocumentID 10.1007/s00521-023-08577-y
PMC10115390
37273914
10_1007_s00521_023_08577_y
Genre Journal Article
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-a01a60b4f9c311f9c7869ee5d1f6e4d9402fb5e2e57d012de03e7675f6cb8aaa3
IEDL.DBID UNPAY
ISSN 0941-0643
1433-3058
IngestDate Sun Oct 26 04:14:22 EDT 2025
Tue Sep 30 17:15:00 EDT 2025
Fri Sep 05 14:06:28 EDT 2025
Sat Jul 26 02:20:36 EDT 2025
Wed Feb 19 02:02:37 EST 2025
Thu Apr 24 22:59:37 EDT 2025
Wed Oct 01 03:43:38 EDT 2025
Fri Feb 21 02:43:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords MLP
Coronavirus herd immunity optimizer
Feedforward neural networks
CHIO
Optimization
Archive technique
Language English
License The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-a01a60b4f9c311f9c7869ee5d1f6e4d9402fb5e2e57d012de03e7675f6cb8aaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7200-0032
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-023-08577-y.pdf
PMID 37273914
PQID 2821996079
PQPubID 2043988
PageCount 19
ParticipantIDs unpaywall_primary_10_1007_s00521_023_08577_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10115390
proquest_miscellaneous_2822705788
proquest_journals_2821996079
pubmed_primary_37273914
crossref_citationtrail_10_1007_s00521_023_08577_y
crossref_primary_10_1007_s00521_023_08577_y
springer_journals_10_1007_s00521_023_08577_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationTitleAlternate Neural Comput Appl
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Dalbah LM, Al-Betar MA, Awadallah MA, Zitar RA (2021) A coronavirus herd immunity optimization (chio) for travelling salesman problem. In: International Conference on Innovative Computing and Communications, pp 11–19. Springer
Zhang Y-H, Gong Y-J, Chen W-N, Zhan Z-H, Zhang J (2014) A generic archive technique for enhancing the niching performance of evolutionary computation. In: 2014 IEEE Symposium on Swarm Intelligence, pp 1–8. IEEE
Ahmadian S, Khanteymoori AR (2015) Training back propagation neural networks using asexual reproduction optimization. In: 2015 7th Conference on Information and Knowledge Technology (IKT), pp 1–6. IEEE
Jalali SMJ, Ahmadian S, Kebria PM, Khosravi A, Lim CP, Nahavandi S (2019) Evolving artificial neural networks using butterfly optimization algorithm for data classification. In: International Conference on Neural Information Processing, pp 596–607. Springer
MakhadmehSNAl-BetarMAAwadallahMAAbasiAKAlyasseriZAADoushIAAlomariOADamaševičiusRZajančkauskasAMohammedMAA modified coronavirus herd immunity optimizer for the power scheduling problemMathematics2022103315
HeidariAAFarisHAljarahIMirjaliliSAn efficient hybrid multilayer perceptron neural network with grasshopper optimizationSoft Comput2019231779417958
SavaliaSEmamianVCardiac arrhythmia classification by multi-layer perceptron and convolution neural networksBioengineering20185235
MirjaliliSHow effective is the grey wolf optimizer in training multi-layer perceptronsAppl Intell2015431150161
MirjaliliSHashimSZMSardroudiHMTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248
Nowlan SJ, Platt JC (1995) A convolutional neural network hand tracker. Adv Neural Inf Process Syst, 901–908
Al-Betar MA, Alyasseri ZAA, Awadallah MA, Doush IA (2020) Coronavirus herd immunity optimizer (chio). Neural Comput Appl, 1–32
Samarasinghe S (2016) Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Crc Press
CanoJ-RGarcíaSHerreraFSubgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classesPattern Recogn Lett2008291621562164
Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions, pp 60–65. IEEE
WangZ-JZhanZ-HLinYYuW-JYuanH-QGuT-LKwongSZhangJDual-strategy differential evolution with affinity propagation clustering for multimodal optimization problemsIEEE Trans Evol Comput2017226894908
DasGPattnaikPKPadhySKArtificial neural network trained by particle swarm optimization for non-linear channel equalizationExpert Syst Appl201441734913496
Moayedi H, Nguyen H, Foong LK (2019) Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput, 1–11
TurkyAMAbdullahSA multi-population harmony search algorithm with external archive for dynamic optimization problemsInf Sci20142728495
Orr MJ et al (1996) Introduction to radial basis function networks. Technical Report, center for cognitive science, University of Edinburgh
MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133
Kalra S, Rahnamayan S, Deb K (2017) Enhancing clearing-based niching method using delaunay triangulation. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 2328–2337. IEEE
McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBull Math Biophys194354115133103880063.03860
Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M (2020) Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. Nature-Inspired Optimizers, 23–46
ValianEMohannaSTavakoliSImproved cuckoo search algorithm for feedforward neural network trainingInt J Artif Intell Appl2011233643
Bairathi D, Gopalani D (2019) Salp swarm algorithm (ssa) for training feed-forward neural networks. In: Soft Computing for Problem Solving, pp 521–534. Springer
KullukSOzbakirLBaykasogluATraining neural networks with harmony search algorithms for classification problemsEng Appl Artif Intell20122511119
Ghosh-DastidarSAdeliHSpiking neural networksInt J Neural Syst20091904295308
NgS-CCheungC-CLeungS-HMagnified gradient function with deterministic weight modification in adaptive learningIEEE Trans Neural Netw200415614111423
KennedyJEberhartRParticle swarm optimizationProc ICNN’95 Int Conf Neural Netw1995419421948
GotAMoussaouiAZouacheDA guided population archive whale optimization algorithm for solving multiobjective optimization problemsExpert Syst Appl2020141112972
SheFHKongLNahavandiSKouzaniAIntelligent animal fiber classification with artificial neural networksTextile Res J2002727594600
IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett200317193105
Wdaa ASI, Sttar A (2008) Differential evolution for neural networks learning enhancement. In: PhD Thesis, Universiti Teknologi Malaysia Johor Bahru
DalbahLMAl-BetarMAAwadallahMAZitarRAA modified coronavirus herd immunity optimizer for capacitated vehicle routing problemJ King Saud Univ Comput Inf Sci202234847824795
Sahlol AT, Ewees AA, Hemdan AM, Hassanien AE (2016) Training feedforward neural networks using sine-cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite. In: 2016 12th International Computer Engineering Conference (ICENCO), pp 35–40. IEEE
ZhangYPhillipsPWangSJiGYangJWuJFruit classification by biogeography-based optimization and feedforward neural networkExpert Syst2016333239253
BebisGGeorgiopoulosMFeed-forward neural networksIEEE Potentials19941342731
GhanemWAJantanAA cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptronsCognit Comput201810610961134
Alboaneen DA, Tianfield H, Zhang Y (2017) Glowworm swarm optimisation for training multi-layer perceptrons. In: Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, pp 131–138
Chen H, Wang S, Li J, Li Y (2007) A hybrid of artificial fish swarm algorithm and particle swarm optimization for feedforward neural network training. In: International Conference on Intelligent Systems and Knowledge Engineering 2007. Atlantis Press
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer.
AskariQYounasIPolitical optimizer based feedforward neural network for classification and function approximationNeural Process Lett2021531429458
JaddiNSAbdullahSHamdanARMulti-population cooperative bat algorithm-based optimization of artificial neural network modelInf Sci20152946286443277666
DingSSuCYuJAn optimizing bp neural network algorithm based on genetic algorithmArtif Intell Rev2011362153162
Kumar C, Magdalin Maryb D, Gunasekar T (2021) Mochio: A novel multi-objective coronavirus herd immunity optimization algorithm for solving brushless direct current wheel motor design optimization problem. PREPRINT (Version 1) available at Research Square
Medsker LR, Jain L (2001) Recurrent neural networks. Design Appl , 5
FarisHAljarahIMirjaliliSImproved monarch butterfly optimization for unconstrained global search and neural network trainingAppl Intell2018482445464
Faris H, Aljarah I, Alqatawna J (2015) Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In: 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp 1–5. IEEE
Yang X-S (2012) Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation, pp 240–249. Springer
BhesdadiyaRJangirPJangirNTrivediINLadumorDTraining multi-layer perceptron in neural network using whale optimization algorithmIndian J Sci Technol20169192836
GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSIMULATION20017626068
Irmak B, Karakoyun M, Gülcü Ş (2022) An improved butterfly optimization algorithm for training the feed-forward artificial neural networks. Soft Comput, 1–19
Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp 65–74. Springer
FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019101029012920
SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl2007163235247
ShengWWangXWangZLiQChenYAdaptive memetic differential evolution with niching competition and supporting archive strategies for multimodal optimizationInf Sci20215733163314271741
ZhangLLiHKongX-GEvolving feedforward artificial neural networks using a two-stage approachNeurocomputing20193602536
FarisHAljarahIAl-MadiNMirjaliliSOptimizing the learning process of feedforward neural networks using lightning search algorithmInt J Artif Intell Tools201625061650033
SchmidhuberJDeep learning in neural networks: an overviewNeural Netw20156185117
Kundu S, Biswas S, Das S, Suganthan PN (2013) Crowding-based local differential evolution with speciation-based memory archive for dynamic multimodal optimization. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp 33–40
AbiodunOIJantanAOmolaraAEDadaKVMohamedNAArshadHState-of-the-art in artificial neural network applications: a surveyHeliyon201841100938
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782
MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl201526819191928
Wu H, Zhou
A Got (8577_CR53) 2020; 141
J-R Cano (8577_CR63) 2008; 29
Q Askari (8577_CR56) 2021; 53
G Bebis (8577_CR7) 1994; 13
W Sheng (8577_CR50) 2021; 573
8577_CR61
K Sun (8577_CR58) 2016; 28
WS McCulloch (8577_CR5) 1943; 5
8577_CR67
8577_CR24
SZ Mirjalili (8577_CR31) 2015; 26
8577_CR68
8577_CR21
8577_CR66
8577_CR25
MH Hassoun (8577_CR1) 1995
8577_CR26
8577_CR29
E Valian (8577_CR39) 2011; 2
S Ding (8577_CR19) 2011; 36
J Schmidhuber (8577_CR2) 2015; 61
FH She (8577_CR12) 2002; 72
8577_CR70
DH Wolpert (8577_CR42) 1997; 1
SN Makhadmeh (8577_CR59) 2022; 10
H Faris (8577_CR18) 2019; 10
Z-J Wang (8577_CR49) 2017; 22
8577_CR32
H Faris (8577_CR41) 2016; 25
J Kennedy (8577_CR65) 1995; 4
8577_CR38
AM Turky (8577_CR51) 2014; 272
8577_CR37
L Zhang (8577_CR15) 2019; 360
AA Heidari (8577_CR27) 2019; 23
MB Nasr (8577_CR16) 2006; 24
S-C Ng (8577_CR17) 2004; 15
S Ghosh-Dastidar (8577_CR10) 2009; 19
ZW Geem (8577_CR64) 2001; 76
S Savalia (8577_CR14) 2018; 5
R Bhesdadiya (8577_CR55) 2016; 9
K Socha (8577_CR33) 2007; 16
8577_CR40
S Kulluk (8577_CR71) 2012; 25
8577_CR45
8577_CR43
B Lacroix (8577_CR46) 2016; 367
S Mirjalili (8577_CR23) 2015; 43
8577_CR44
8577_CR47
8577_CR48
G Das (8577_CR20) 2014; 41
NS Jaddi (8577_CR34) 2015; 294
S Mirjalili (8577_CR69) 2016; 96
S Mirjalili (8577_CR36) 2012; 218
LM Dalbah (8577_CR60) 2022; 34
Y Zhang (8577_CR35) 2016; 33
S-H Liao (8577_CR4) 2007; 32
8577_CR9
8577_CR13
H Faris (8577_CR30) 2018; 48
8577_CR57
8577_CR54
OI Abiodun (8577_CR3) 2018; 4
8577_CR11
S Mirjalili (8577_CR62) 2014; 269
8577_CR6
J Ilonen (8577_CR22) 2003; 17
Q Zhu (8577_CR52) 2017; 47
8577_CR8
WA Ghanem (8577_CR28) 2018; 10
References_xml – reference: MirjaliliSHow effective is the grey wolf optimizer in training multi-layer perceptronsAppl Intell2015431150161
– reference: Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M (2020) Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. Nature-Inspired Optimizers, 23–46
– reference: CanoJ-RGarcíaSHerreraFSubgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classesPattern Recogn Lett2008291621562164
– reference: Irmak B, Karakoyun M, Gülcü Ş (2022) An improved butterfly optimization algorithm for training the feed-forward artificial neural networks. Soft Comput, 1–19
– reference: GotAMoussaouiAZouacheDA guided population archive whale optimization algorithm for solving multiobjective optimization problemsExpert Syst Appl2020141112972
– reference: Moayedi H, Nguyen H, Foong LK (2019) Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput, 1–11
– reference: Wu H, Zhou Y, Luo Q, Basset MA (2016) Training feedforward neural networks using symbiotic organisms search algorithm. Comput Intell Neurosci 2016
– reference: ShengWWangXWangZLiQChenYAdaptive memetic differential evolution with niching competition and supporting archive strategies for multimodal optimizationInf Sci20215733163314271741
– reference: Yang X-S (2012) Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation, pp 240–249. Springer
– reference: HeidariAAFarisHAljarahIMirjaliliSAn efficient hybrid multilayer perceptron neural network with grasshopper optimizationSoft Comput2019231779417958
– reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133
– reference: MirjaliliSZSaremiSMirjaliliSMDesigning evolutionary feedforward neural networks using social spider optimization algorithmNeural Comput Appl201526819191928
– reference: Kundu S, Biswas S, Das S, Suganthan PN (2013) Crowding-based local differential evolution with speciation-based memory archive for dynamic multimodal optimization. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp 33–40
– reference: SheFHKongLNahavandiSKouzaniAIntelligent animal fiber classification with artificial neural networksTextile Res J2002727594600
– reference: Dalbah LM, Al-Betar MA, Awadallah MA, Zitar RA (2021) A coronavirus herd immunity optimization (chio) for travelling salesman problem. In: International Conference on Innovative Computing and Communications, pp 11–19. Springer
– reference: SunKHuangS-HWongDS-HJangS-SDesign and application of a variable selection method for multilayer perceptron neural network with lassoIEEE Trans Neural Netw Learn Syst201628613861396
– reference: SochaKBlumCAn ant colony optimization algorithm for continuous optimization: application to feed-forward neural network trainingNeural Comput Appl2007163235247
– reference: FarisHAljarahIAl-MadiNMirjaliliSOptimizing the learning process of feedforward neural networks using lightning search algorithmInt J Artif Intell Tools201625061650033
– reference: Ghosh-DastidarSAdeliHSpiking neural networksInt J Neural Syst20091904295308
– reference: AskariQYounasIPolitical optimizer based feedforward neural network for classification and function approximationNeural Process Lett2021531429458
– reference: Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp 65–74. Springer
– reference: DasGPattnaikPKPadhySKArtificial neural network trained by particle swarm optimization for non-linear channel equalizationExpert Syst Appl201441734913496
– reference: NgS-CCheungC-CLeungS-HMagnified gradient function with deterministic weight modification in adaptive learningIEEE Trans Neural Netw200415614111423
– reference: ZhuQLinQChenWWongK-CCoelloCACLiJChenJZhangJAn external archive-guided multiobjective particle swarm optimization algorithmIEEE Trans Cybern201747927942808
– reference: Faris H, Aljarah I, Alqatawna J (2015) Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In: 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp 1–5. IEEE
– reference: KullukSOzbakirLBaykasogluATraining neural networks with harmony search algorithms for classification problemsEng Appl Artif Intell20122511119
– reference: ZhangLLiHKongX-GEvolving feedforward artificial neural networks using a two-stage approachNeurocomputing20193602536
– reference: HassounMHFundamentals of artificial neural networks1995MIT press0850.68271
– reference: Chen H, Wang S, Li J, Li Y (2007) A hybrid of artificial fish swarm algorithm and particle swarm optimization for feedforward neural network training. In: International Conference on Intelligent Systems and Knowledge Engineering 2007. Atlantis Press
– reference: FarisHMirjaliliSAljarahIAutomatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding schemeInt J Mach Learn Cybern2019101029012920
– reference: Zhang Y-H, Gong Y-J, Chen W-N, Zhan Z-H, Zhang J (2014) A generic archive technique for enhancing the niching performance of evolutionary computation. In: 2014 IEEE Symposium on Swarm Intelligence, pp 1–8. IEEE
– reference: WangZ-JZhanZ-HLinYYuW-JYuanH-QGuT-LKwongSZhangJDual-strategy differential evolution with affinity propagation clustering for multimodal optimization problemsIEEE Trans Evol Comput2017226894908
– reference: Alboaneen DA, Tianfield H, Zhang Y (2017) Glowworm swarm optimisation for training multi-layer perceptrons. In: Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, pp 131–138
– reference: JaddiNSAbdullahSHamdanARMulti-population cooperative bat algorithm-based optimization of artificial neural network modelInf Sci20152946286443277666
– reference: IlonenJKamarainenJ-KLampinenJDifferential evolution training algorithm for feed-forward neural networksNeural Process Lett200317193105
– reference: Nowlan SJ, Platt JC (1995) A convolutional neural network hand tracker. Adv Neural Inf Process Syst, 901–908
– reference: BhesdadiyaRJangirPJangirNTrivediINLadumorDTraining multi-layer perceptron in neural network using whale optimization algorithmIndian J Sci Technol20169192836
– reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSIMULATION20017626068
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782
– reference: Jalali SMJ, Ahmadian S, Kebria PM, Khosravi A, Lim CP, Nahavandi S (2019) Evolving artificial neural networks using butterfly optimization algorithm for data classification. In: International Conference on Neural Information Processing, pp 596–607. Springer
– reference: BebisGGeorgiopoulosMFeed-forward neural networksIEEE Potentials19941342731
– reference: Bairathi D, Gopalani D (2019) Salp swarm algorithm (ssa) for training feed-forward neural networks. In: Soft Computing for Problem Solving, pp 521–534. Springer
– reference: KennedyJEberhartRParticle swarm optimizationProc ICNN’95 Int Conf Neural Netw1995419421948
– reference: Kalra S, Rahnamayan S, Deb K (2017) Enhancing clearing-based niching method using delaunay triangulation. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp 2328–2337. IEEE
– reference: GhanemWAJantanAA cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptronsCognit Comput201810610961134
– reference: Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions, pp 60–65. IEEE
– reference: DingSSuCYuJAn optimizing bp neural network algorithm based on genetic algorithmArtif Intell Rev2011362153162
– reference: LacroixBMolinaDHerreraFRegion-based memetic algorithm with archive for multimodal optimisationInf Sci2016367719746
– reference: AbiodunOIJantanAOmolaraAEDadaKVMohamedNAArshadHState-of-the-art in artificial neural network applications: a surveyHeliyon201841100938
– reference: SchmidhuberJDeep learning in neural networks: an overviewNeural Netw20156185117
– reference: Al-Betar MA, Alyasseri ZAA, Awadallah MA, Doush IA (2020) Coronavirus herd immunity optimizer (chio). Neural Comput Appl, 1–32
– reference: TurkyAMAbdullahSA multi-population harmony search algorithm with external archive for dynamic optimization problemsInf Sci20142728495
– reference: MirjaliliSMirjaliliSMLewisALet a biogeography-based optimizer train your multi-layer perceptronInf Sci20142691882093180809
– reference: Samarasinghe S (2016) Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Crc Press
– reference: NasrMBChtourouMA hybrid training algorithm for feedforward neural networksNeural Process Lett2006242107117
– reference: SavaliaSEmamianVCardiac arrhythmia classification by multi-layer perceptron and convolution neural networksBioengineering20185235
– reference: MirjaliliSHashimSZMSardroudiHMTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithmAppl Math Comput201221822111251113729423951282.90248
– reference: McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBull Math Biophys194354115133103880063.03860
– reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer.
– reference: Ahmadian S, Khanteymoori AR (2015) Training back propagation neural networks using asexual reproduction optimization. In: 2015 7th Conference on Information and Knowledge Technology (IKT), pp 1–6. IEEE
– reference: MakhadmehSNAl-BetarMAAwadallahMAAbasiAKAlyasseriZAADoushIAAlomariOADamaševičiusRZajančkauskasAMohammedMAA modified coronavirus herd immunity optimizer for the power scheduling problemMathematics2022103315
– reference: DalbahLMAl-BetarMAAwadallahMAZitarRAA modified coronavirus herd immunity optimizer for capacitated vehicle routing problemJ King Saud Univ Comput Inf Sci202234847824795
– reference: ValianEMohannaSTavakoliSImproved cuckoo search algorithm for feedforward neural network trainingInt J Artif Intell Appl2011233643
– reference: FarisHAljarahIMirjaliliSImproved monarch butterfly optimization for unconstrained global search and neural network trainingAppl Intell2018482445464
– reference: ZhangYPhillipsPWangSJiGYangJWuJFruit classification by biogeography-based optimization and feedforward neural networkExpert Syst2016333239253
– reference: Kumar C, Magdalin Maryb D, Gunasekar T (2021) Mochio: A novel multi-objective coronavirus herd immunity optimization algorithm for solving brushless direct current wheel motor design optimization problem. PREPRINT (Version 1) available at Research Square
– reference: Wdaa ASI, Sttar A (2008) Differential evolution for neural networks learning enhancement. In: PhD Thesis, Universiti Teknologi Malaysia Johor Bahru
– reference: Sahlol AT, Ewees AA, Hemdan AM, Hassanien AE (2016) Training feedforward neural networks using sine-cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite. In: 2016 12th International Computer Engineering Conference (ICENCO), pp 35–40. IEEE
– reference: LiaoS-HWenC-HArtificial neural networks classification and clustering of methodologies and applications-literature analysis from 1995 to 2005Expert Syst Appl2007321111
– reference: Orr MJ et al (1996) Introduction to radial basis function networks. Technical Report, center for cognitive science, University of Edinburgh
– reference: Medsker LR, Jain L (2001) Recurrent neural networks. Design Appl , 5
– volume: 25
  start-page: 11
  issue: 1
  year: 2012
  ident: 8577_CR71
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.07.006
– volume: 96
  start-page: 120
  year: 2016
  ident: 8577_CR69
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 19
  start-page: 295
  issue: 04
  year: 2009
  ident: 8577_CR10
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065709002002
– volume: 72
  start-page: 594
  issue: 7
  year: 2002
  ident: 8577_CR12
  publication-title: Textile Res J
  doi: 10.1177/004051750207200706
– volume: 23
  start-page: 7941
  issue: 17
  year: 2019
  ident: 8577_CR27
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3424-2
– ident: 8577_CR32
  doi: 10.2991/iske.2007.174
– ident: 8577_CR25
  doi: 10.1145/3148055.3148075
– volume: 141
  start-page: 112972
  year: 2020
  ident: 8577_CR53
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112972
– volume: 5
  start-page: 35
  issue: 2
  year: 2018
  ident: 8577_CR14
  publication-title: Bioengineering
  doi: 10.3390/bioengineering5020035
– ident: 8577_CR43
  doi: 10.21203/rs.3.rs-27214/v1
– volume: 2
  start-page: 36
  issue: 3
  year: 2011
  ident: 8577_CR39
  publication-title: Int J Artif Intell Appl
– volume: 34
  start-page: 4782
  issue: 8
  year: 2022
  ident: 8577_CR60
  publication-title: J King Saud Univ Comput Inf Sci
– ident: 8577_CR11
– volume: 13
  start-page: 27
  issue: 4
  year: 1994
  ident: 8577_CR7
  publication-title: IEEE Potentials
  doi: 10.1109/45.329294
– volume: 367
  start-page: 719
  year: 2016
  ident: 8577_CR46
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.05.049
– volume: 360
  start-page: 25
  year: 2019
  ident: 8577_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.097
– ident: 8577_CR13
  doi: 10.1109/IKT.2015.7288738
– ident: 8577_CR24
  doi: 10.1007/978-981-13-1592-3_41
– volume: 43
  start-page: 150
  issue: 1
  year: 2015
  ident: 8577_CR23
  publication-title: Appl Intell
  doi: 10.1007/s10489-014-0645-7
– ident: 8577_CR45
  doi: 10.1080/00051144.2021.2014035
– ident: 8577_CR70
  doi: 10.1109/ICENCO.2016.7856442
– volume: 10
  start-page: 315
  issue: 3
  year: 2022
  ident: 8577_CR59
  publication-title: Mathematics
  doi: 10.3390/math10030315
– volume: 294
  start-page: 628
  year: 2015
  ident: 8577_CR34
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.08.050
– ident: 8577_CR61
– volume: 33
  start-page: 239
  issue: 3
  year: 2016
  ident: 8577_CR35
  publication-title: Expert Syst
  doi: 10.1111/exsy.12146
– volume: 32
  start-page: 1
  issue: 1
  year: 2007
  ident: 8577_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.11.014
– ident: 8577_CR26
  doi: 10.1007/s00366-019-00882-2
– volume: 218
  start-page: 11125
  issue: 22
  year: 2012
  ident: 8577_CR36
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2012.04.069
– volume: 24
  start-page: 107
  issue: 2
  year: 2006
  ident: 8577_CR16
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-006-9013-x
– ident: 8577_CR21
  doi: 10.1109/HSI.2008.4581409
– volume: 17
  start-page: 93
  issue: 1
  year: 2003
  ident: 8577_CR22
  publication-title: Neural Process Lett
  doi: 10.1023/A:1022995128597
– ident: 8577_CR8
– volume: 25
  start-page: 1650033
  issue: 06
  year: 2016
  ident: 8577_CR41
  publication-title: Int J Artif Intell Tools
  doi: 10.1142/S0218213016500330
– ident: 8577_CR48
  doi: 10.1145/2463372.2463392
– ident: 8577_CR37
  doi: 10.1109/AEECT.2015.7360576
– ident: 8577_CR44
  doi: 10.1007/978-981-16-3071-2_58
– volume: 22
  start-page: 894
  issue: 6
  year: 2017
  ident: 8577_CR49
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2769108
– volume: 10
  start-page: 1096
  issue: 6
  year: 2018
  ident: 8577_CR28
  publication-title: Cognit Comput
  doi: 10.1007/s12559-018-9588-3
– volume: 15
  start-page: 1411
  issue: 6
  year: 2004
  ident: 8577_CR17
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2004.836237
– volume: 10
  start-page: 2901
  issue: 10
  year: 2019
  ident: 8577_CR18
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-00913-2
– ident: 8577_CR38
  doi: 10.1007/978-3-030-12127-3_3
– ident: 8577_CR9
– ident: 8577_CR47
  doi: 10.1109/SIS.2014.7011784
– volume: 269
  start-page: 188
  year: 2014
  ident: 8577_CR62
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.01.038
– ident: 8577_CR54
  doi: 10.1109/CEC.2017.7969587
– volume: 9
  start-page: 28
  issue: 19
  year: 2016
  ident: 8577_CR55
  publication-title: Indian J Sci Technol
– volume: 4
  start-page: 1942
  year: 1995
  ident: 8577_CR65
  publication-title: Proc ICNN’95 Int Conf Neural Netw
  doi: 10.1109/ICNN.1995.488968
– volume: 61
  start-page: 85
  year: 2015
  ident: 8577_CR2
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 26
  start-page: 1919
  issue: 8
  year: 2015
  ident: 8577_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1847-6
– ident: 8577_CR40
  doi: 10.1155/2016/9063065
– ident: 8577_CR68
  doi: 10.1007/978-3-642-32894-7_27
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 8577_CR42
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– ident: 8577_CR67
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 8577_CR5
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– ident: 8577_CR66
  doi: 10.1007/978-3-642-12538-6_6
– ident: 8577_CR29
  doi: 10.1007/978-3-030-36708-4_49
– volume: 16
  start-page: 235
  issue: 3
  year: 2007
  ident: 8577_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0084-z
– volume: 573
  start-page: 316
  year: 2021
  ident: 8577_CR50
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.04.093
– volume: 36
  start-page: 153
  issue: 2
  year: 2011
  ident: 8577_CR19
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9208-z
– volume: 41
  start-page: 3491
  issue: 7
  year: 2014
  ident: 8577_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.10.053
– volume: 272
  start-page: 84
  year: 2014
  ident: 8577_CR51
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.084
– volume: 28
  start-page: 1386
  issue: 6
  year: 2016
  ident: 8577_CR58
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2542866
– ident: 8577_CR6
– volume: 4
  start-page: 00938
  issue: 11
  year: 2018
  ident: 8577_CR3
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 48
  start-page: 445
  issue: 2
  year: 2018
  ident: 8577_CR30
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-0967-3
– volume: 47
  start-page: 2794
  issue: 9
  year: 2017
  ident: 8577_CR52
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2710133
– volume: 53
  start-page: 429
  issue: 1
  year: 2021
  ident: 8577_CR56
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10406-5
– volume-title: Fundamentals of artificial neural networks
  year: 1995
  ident: 8577_CR1
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 8577_CR64
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– volume: 29
  start-page: 2156
  issue: 16
  year: 2008
  ident: 8577_CR63
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2008.08.001
– ident: 8577_CR57
  doi: 10.1007/s00500-022-07592-w
SSID ssj0004685
Score 2.3860133
Snippet The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15923
SubjectTerms Algorithms
Archives & records
Artificial Intelligence
Artificial neural networks
Bias
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Coronaviruses
Data Mining and Knowledge Discovery
Datasets
Evolutionary algorithms
Herd immunity
Heuristic methods
Image Processing and Computer Vision
Machine learning
Multilayer perceptrons
Neural networks
Optimization
Original
Original Article
Parameters
Probability and Statistics in Computer Science
Supervised learning
Swarm intelligence
SummonAdditionalLinks – databaseName: ProQuest One Academic
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_q9UF9sH4bW2UF3-xivrP7UIpKSxE8RCwUfAj7lTZwzZ29nOX8653ZS9IehcOXPCQb9uM3uzuzO_MbgPeowobOxY5nSsc8rUzKhTGaoyUWS507kfnzjm_j_OQ0_XqWnW3BuI-FIbfKfk30C7WdGjoj_4imATnMhoU8nP3mlDWKblf7FBqqS61gDzzF2D3YjokZawTbn4_G33_cipT0STrRpiF_nzTpwmh8MB2dkOLbOOHE-l7w5fpWdUf_vOtGOdylPoT7i2amltdqMrm1XR0_hkednsk-rQTjCWy55ins9DkcWDeln8GvjnqW03ZmmSFCA_WnvlrMGaJpWe3jR9olU5NzHI724pKhmsumuNJc1n-xGezaH67OWd0wIsfESpuVa_n8OZweH_38csK7hAvcpEXWchVGKg91WkmTRBE-C5FL5zIbVblLrURbs9IZIpsVFjc268LEERlMlRstlFLJCxg108a9AoY4aa2VcMqJtBKxTiIlLY6VsS7JnQwg6se2NB0bOSXFmJQDj7LHo0Q8So9HuQzgw_DPbMXFsbH0Xg9Z2c3LeXkjRQG8Gz7jjKJrEtW46cKXiQtUY4UI4OUK4aG6hNQ9GaUBiDXshwLE1r3-pakvPGt3RMp3IsMA9nsxuWnXpm7sD6L0H71-vbnXu_Ag9hJO_sZ7MGqvFu4NalWtfttNlX-tniEC
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCHlncDBRmJG7WUxE5iHytEVSHBiZUqcYhsZ0IjbbPVJku1_fUde5PQVasKLrnY8esb2zP2zGeAT6TCxogp8szYlMvaSa6cs5wssVTbHFUWzju-_8hPZvLbaXY6BIV1o7f7eCUZVuop2M2fYJLpmwruWdkLvn4IjzJP50VSPEuPbkRDhoc4yW7xPj1SDKEyd5exvR3d0jFvu0pO96VP4fGqvTDrSzOf39iSjp_B7qBLsqMN-M_hAbYvYG98p4EN0_Yl_BroZbnfsirmPGmB-dMsVx0jxCrWhBiRfs3M_Pdi2fRn54xUWbag1eS8uaJmsMtwgNqxpmWeAJMqbTfu490rmB1__fnlhA-PKnAni6znJk5MHltZayeShL6FyjViViV1jrLSZE_WNiP0sqKizavCWKAnfKlzZ5UxRryGnXbR4j6wuNDWWqPQoJK1Sq1IjK5orFyFIkcdQTKObekGxnH_8MW8nLiSAx4l4VEGPMp1BJ-nfy42fBv35j4YISuHudeVZER612pqXQQfp2SaNf4qxLS4WIU8aUGqqlIRvNkgPFUnvEqnExmB2sJ-yuAZubdT2uYsMHMnXsEWOo7gcBSTv-26rxuHkyj9Q6_f_l_p7-BJGiTe-xgfwE6_XOF70qR6-yFMnGtXgBfY
  priority: 102
  providerName: Springer Nature
Title Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks
URI https://link.springer.com/article/10.1007/s00521-023-08577-y
https://www.ncbi.nlm.nih.gov/pubmed/37273914
https://www.proquest.com/docview/2821996079
https://www.proquest.com/docview/2822705788
https://pubmed.ncbi.nlm.nih.gov/PMC10115390
https://link.springer.com/content/pdf/10.1007/s00521-023-08577-y.pdf
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfggXEnMCoj8cbc5eIkzmOBdhOIakJU2sRDZDsOi-jSqk2Yul_PcW5QhiYQL4kUO_Htc_zZPuczwCuksLbWrqa-kC5lqWKUKyUpzsTcSAaa-9V6x8dpcDxj70_90x141_rCVNbu7ZZk7dNgVJry4nCZpIed45tZzcRpsOtRo9Ae0s0Qg3ehH_jIyHvQn01PRmeVzB4zhj21nT3zPIrw5o3vzJ8_tD0-XSOd120nuw3UO3CrzJdicynm81_GqMke6LZ0tWnKt2FZyKG6-k348X-Lfw_uNiSWjGrU3YcdnT-AvfaACNL8Lx7Cl0bXlpqxMiHKqCWI79mqXBOESkKyyjml2BAx_7pYZcX5BUEOTRb4G7vIrjB35LJauV2TLCdGeRMTzWu79fUjmE3Gn98e0-Y0B6pY6BdU2I4IbMnSSHmOg9eQB5HWfuKkgWZJhBPZVPoIGz9McNRMtO1pozSTBkpyIYT3GHr5ItdPgdhhJKUUXAvNWcpd6TkiSrBNVKK9QEcWOG0bxqqROjcnbszjTqS5qsEYazCuajDeWPC6e2dZC33cGHu_hUbcdPp1jLNXY9ONubPgZReM3dXswYhcL8oqjhsiR-bcgic1krrkPMMlI4dZwLcw1kUwUuDbIXl2XkmCO4bZe5FtwUGLnp_5uqkYBx1k_6LUz_4t-nO47VYYNcbN-9ArVqV-gRSukAPY5ZOjAfRHR2cfxnh_M56efMKnM3c0aHrvD9X4RX8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48IYGChgJTtQiD-fhQ4V4tNrSdoVQK1XiEOzEaSNts0uTZRV-HL-NsddJu6q04tJLDrETP2Y8nrFnvgF4gyqsq5SvaCikT1mRMZpkmaRoiflcRioJzXnH4TAaHLOvJ-HJCvztYmG0W2UnE42gzseZPiN_j6aBdph1Y_5h8ovqrFH6drVLoSFsaoV820CM2cCOfdXO0ISrt_e-IL3f-v7uztHnAbVZBmjG4rChwvVE5EpW8CzwPHzGScSVCnOviBTLORpYhQxxOGGcozTPlRsojYBSRJlMhBAB_vcWrLGAcTT-1j7tDL99vxKZaZKCog2l_YtYYMN2TPCePpHFt35ANcp8TNvFrfGavnvdbbO_u70D69NqItqZGI2ubI-79-Gu1WvJxzkjPoAVVT2Ee13OCGJFyCP4YaFuqd4-c5JpAAXxu7yY1gS5JyeliVdpWiJGpzj9zdk5QbWajFGynZd_sBtkZg5za1JWRINxYqPV3JW9fgzHNzL1T2C1GldqAwjyhZRSJEqohBWJLwNP8BznKstVECnugNfNbZpZ9HOdhGOU9rjNhh4p0iM19EhbB97130zm2B9La292JEutHKjTS6514HVfjCtYX8uISo2npo4fo9qcJA48nVO4by7Q6iX3mAPJAu37ChodfLGkKs8MSrinlf2Auw5sdWxy2a9lw9jqWek_Rv1s-ahfwfrg6PAgPdgb7j-H277hdu3rvAmrzcVUvUCNrpEv7bIh8POmV-o_8bNe5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaAceLcNLWAkbtRqHk7iHKvCqrwqDqxUiUPkV2ikrXe1m6Vafj1j58Guiiq45GLHsT0zmRl75huAN2jChsbEhqZCxpRVilGulKToicWFzAxP_XnHl7PsdMw-nqfna1n8Ptq9v5JscxocSpNtjma6OhoS39xpJrrBcUIdQntOV7fhDnNACcjR4_h4LTPSF-VEH8bF97CkS5v5-xibqumavXk9bHK4O70P95Z2JlZXYjJZU0-jR_CgsyvJccsIj-GWsU_gYV-zgXQi_BS-d1Cz1KkvTZQDMBA_6_lyQZB6mtQ-X6RZETH5MZ3XzcUlQbOWTPHPcln_wmmQK3-YuiC1JQ4MEz9q21DyxTMYj95_OzmlXYEFqlieNlSEkchCyapCJVGEz5xnhTGpjqrMMF2gb1nJFCmZ5hoVmTZhYhz4S5UpyYUQyQ5s2ak1e0DCvJBSCm6E4azisUwiUWjcK6VNkpkigKjf21J16OOuCMakHHCTPT1KpEfp6VGuAng7vDNrsTdu7H3Qk6zs5HBRokPpwqxxdgG8HppRgty1iLBmuvR94hzNVs4D2G0pPHwuceZdEbEA-Abthw4OnXuzxdYXHqU7csZ2UoQBHPZs8mdeNy3jcGClf1j18_8b_RXc_fpuVH7-cPZpH7Zjz_wu9PgAtpr50rxAA6uRL70M_QZlwR8A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF6oDzbQEFG4ka9TWIncY4VpaqQqDiwUhGHyHYcGnWbXe0mVNtfz9h50KWoAnHJxU7ix2f7G3vmM8BbpLC-MaGhkVQh5YXmVGitKFpiYapiIyK33_HpND6Z8I9n0dkGHPWxMM7bvT-SbGMarEpTVR_M8-JgCHyzu5loBoeMWoX2hK7GmHwPNuMIGfkINiennw-_Opk9bh17Wj97zhhFeIsudubPH1pfn26Rztu-k8MB6hbcb6q5XF3J6fTGGnW8DaavXeuacjFuajXW178JP_5v9R_Bw47EksMWdY9hw1RPYLu_IIJ088VT-Nbp2lK7VuZEW7UE-aNcNEuCUMlJ6YJT6hWR0--zRVmfXxLk0GSG09hleY2lI1du53ZJyopY5U38adX6rS-fweT4w5f3J7S7zYFqnkQ1lX4gY1_xItUsCPCZiDg1JsqDIjY8T9GQLVSEsImSHFfN3PjMWKWZItZKSCnZcxhVs8rsAvGTVCklhZFG8EKEigUyzbFPdG5YbFIPgr4PM91JndsbN6bZINLsWjDDFsxcC2YrD94N78xboY87c-_10Mi6Qb_M0Hq1Pt1YOg_eDMk4XO0ZjKzMrHF5wgQ5shAe7LRIGn7HLJdMA-6BWMPYkMFKga-nVOW5kwQPLLNnqe_Bfo-eX-W6qxr7A2T_otYv_i37S3gQOoxa5-Y9GNWLxrxCCler190I_QmL-0CC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Archive-based+coronavirus+herd+immunity+algorithm+for+optimizing+weights+in+neural+networks&rft.jtitle=Neural+computing+%26+applications&rft.au=Abu+Doush%2C+Iyad&rft.au=Awadallah%2C+Mohammed+A.&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Alomari%2C+Osama+Ahmad&rft.date=2023-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1007%2Fs00521-023-08577-y&rft.externalDocID=PMC10115390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon