Assessment of epicardial adipose tissue on virtual non-contrast images derived from photon-counting detector coronary CTA datasets

Objectives To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. Methods Consecutive patients ( n = 42...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 33; no. 4; pp. 2450 - 2460
Main Authors Risch, Franka, Schwarz, Florian, Braun, Franziska, Bette, Stefanie, Becker, Judith, Scheurig-Muenkler, Christian, Kroencke, Thomas J., Decker, Josua A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-022-09257-6

Cover

Abstract Objectives To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. Methods Consecutive patients ( n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNC Conv ) and a novel calcium-preserving (VNC PC ) algorithm. EAT was segmented on TNC, VNC Conv , VNC PC , and CCTA (CTA -30 ) series using thresholds of −190 to −30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA 0 ). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t -test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data. Results EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R 2 > 0.9). Measurements on the novel VNC PC series showed the best correlation ( R 2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were −12%, −3%, −13%, and +10% for VNC Conv , VNC PC , CTA -30 , and CTA 0 compared to TNC. Distribution of CT values on VNC PC showed less difference to TNC than on VNC Conv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016). Conclusions VNC PC -reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient’s radiation dose. Key points • Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R 2 >0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNC PC ) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.
AbstractList ObjectivesTo assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.MethodsConsecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of −190 to −30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.ResultsEAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were −12%, −3%, −13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).ConclusionsVNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient’s radiation dose.Key points• Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9).• Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values.• A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.
Objectives To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. Methods Consecutive patients ( n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNC Conv ) and a novel calcium-preserving (VNC PC ) algorithm. EAT was segmented on TNC, VNC Conv , VNC PC , and CCTA (CTA -30 ) series using thresholds of −190 to −30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA 0 ). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t -test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data. Results EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R 2 > 0.9). Measurements on the novel VNC PC series showed the best correlation ( R 2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were −12%, −3%, −13%, and +10% for VNC Conv , VNC PC , CTA -30 , and CTA 0 compared to TNC. Distribution of CT values on VNC PC showed less difference to TNC than on VNC Conv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016). Conclusions VNC PC -reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient’s radiation dose. Key points • Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R 2 >0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNC PC ) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.
To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. Consecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNC ) and a novel calcium-preserving (VNC ) algorithm. EAT was segmented on TNC, VNC , VNC , and CCTA (CTA ) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA ). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data. EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R > 0.9). Measurements on the novel VNC series showed the best correlation (R = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNC , VNC , CTA , and CTA compared to TNC. Distribution of CT values on VNC showed less difference to TNC than on VNC (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016). VNC -reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose. • Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R >0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNC ) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.
To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.OBJECTIVESTo assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.Consecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.METHODSConsecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).RESULTSEAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).VNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose.CONCLUSIONSVNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose.• Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.KEY POINTS• Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.
Author Bette, Stefanie
Risch, Franka
Decker, Josua A.
Kroencke, Thomas J.
Schwarz, Florian
Braun, Franziska
Scheurig-Muenkler, Christian
Becker, Judith
Author_xml – sequence: 1
  givenname: Franka
  surname: Risch
  fullname: Risch, Franka
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg
– sequence: 2
  givenname: Florian
  surname: Schwarz
  fullname: Schwarz, Florian
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Medical Faculty, Ludwig-Maximilian University Munich
– sequence: 3
  givenname: Franziska
  surname: Braun
  fullname: Braun, Franziska
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg
– sequence: 4
  givenname: Stefanie
  surname: Bette
  fullname: Bette, Stefanie
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg
– sequence: 5
  givenname: Judith
  surname: Becker
  fullname: Becker, Judith
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg
– sequence: 6
  givenname: Christian
  surname: Scheurig-Muenkler
  fullname: Scheurig-Muenkler, Christian
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg
– sequence: 7
  givenname: Thomas J.
  surname: Kroencke
  fullname: Kroencke, Thomas J.
  email: Thomas.Kroencke@uk-augsburg.de
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg
– sequence: 8
  givenname: Josua A.
  surname: Decker
  fullname: Decker, Josua A.
  organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36462042$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNURB_wB1ggS2zYBPyMkxUajXhJldiUteU611NXiR1sZ6rZ8stxZgZauqhY2dL9zvG5x-fViQ8equo1we8JxvJDwpgxXGNKa9xRIevmWXVGOKM1wS0_eXA_rc5TusUYd4TLF9Upa3hDMadn1a9VSpDSCD6jYBFMzujYOz0g3bspJEDZpTQDCh5tXcxzmZQYtQk-R50ycqPeQEI9RLeFHtkYRjTdhLxnZp-d35RhBpNDRCbE4HXcofXVCvU66wQ5vayeWz0keHU8L6ofnz9drb_Wl9-_fFuvLmvDpci1tLghHaayFdcGWCuEbLuOSmEJkZYI4IbbnlFGeYcFF9oyK7g1puOd7gHYRcUOvrOf9O5OD4OaYokfd4pgtTSqDo2q0qjaN6qaovp4UE3z9Qi9gWXve2XQTv078e5GbcJ2MSSyIYvDu6NDDD9nSFmNLhkYBu0hzElRyRvWcYJpQd8-Qm_DHH1ppVCtxII2cqHePIz0N8ufXy0APQAmhpQi2P9btH0kMi7r7PYf7YanpcdmU3nHbyDex35C9RucENf-
CitedBy_id crossref_primary_10_1055_a_2359_0368
crossref_primary_10_1007_s12471_024_01904_5
crossref_primary_10_1007_s10554_024_03096_w
crossref_primary_10_1007_s00330_024_10865_7
crossref_primary_10_3390_diagnostics14222483
crossref_primary_10_3390_diagnostics15010079
crossref_primary_10_3390_jcdd10090363
crossref_primary_10_1007_s00330_024_10675_x
crossref_primary_10_1007_s11547_024_01773_3
crossref_primary_10_1016_j_acra_2023_05_029
crossref_primary_10_1055_a_2093_5188
crossref_primary_10_1093_eurheartj_ehad484
crossref_primary_10_1259_bjr_20230407
crossref_primary_10_3390_jcm13082359
crossref_primary_10_1016_j_heliyon_2024_e32436
crossref_primary_10_1016_j_ejrad_2023_111125
crossref_primary_10_1007_s00330_024_11329_8
crossref_primary_10_1002_mco2_413
Cites_doi 10.1016/j.jcct.2011.03.009
10.1148/radiology.211.1.r99ap15283
10.1148/radiol.212579
10.1016/j.atherosclerosis.2018.05.013
10.1016/j.atherosclerosis.2007.08.016
10.1016/j.numecd.2019.08.007
10.1097/00004424-200502000-00007
10.1016/j.jcct.2013.01.002
10.1210/jc.2005-1087
10.1093/cvr/cvu045
10.1016/j.ejrad.2021.109902
10.1007/s00330-021-08481-w
10.1016/j.ejmp.2020.10.030
10.1016/j.ejrad.2017.01.002
10.1002/mp.14157
10.1016/j.jcct.2017.11.007
10.1371/journal.pone.0183514
10.5114/aoms.2016.63259
10.1016/j.ejrad.2018.05.007
10.1002/clc.23644
10.3390/diagnostics12030558
10.1177/2047487316679524
10.3390/diagnostics11122377
10.1016/j.ijcard.2018.09.089
10.1016/j.ejrad.2019.108732
10.1097/MD.0000000000016101
10.1148/radiol.12112455
10.1016/j.ejrad.2021.109741
10.1016/j.ejrad.2022.110157
10.1016/j.acra.2022.04.021
10.1097/RLI.0000000000000868
10.1002/cphy.c160034
10.1148/radiol.213260
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00330-022-09257-6
DatabaseName Springer Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 2460
ExternalDocumentID 10.1007/s00330-022-09257-6
PMC10017616
36462042
10_1007_s00330_022_09257_6
Genre Journal Article
GrantInformation_xml – fundername: Universitätsklinikum Augsburg (8972)
– fundername: ;
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-7f061902785bce38557899275f117f15e4c4fd3232490545af3f54fcc949adee3
IEDL.DBID C6C
ISSN 1432-1084
0938-7994
IngestDate Sun Oct 26 03:13:26 EDT 2025
Thu Aug 21 18:37:31 EDT 2025
Thu Oct 02 05:20:14 EDT 2025
Tue Oct 07 05:51:59 EDT 2025
Mon Jul 21 06:07:47 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Wed Oct 01 01:17:10 EDT 2025
Fri Feb 21 02:45:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Heart
Computed tomography angiography
Medical image processing
Adipose tissue
Radiation dosage
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-7f061902785bce38557899275f117f15e4c4fd3232490545af3f54fcc949adee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s00330-022-09257-6
PMID 36462042
PQID 2787052672
PQPubID 54162
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s00330_022_09257_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017616
proquest_miscellaneous_2746394102
proquest_journals_2787052672
pubmed_primary_36462042
crossref_primary_10_1007_s00330_022_09257_6
crossref_citationtrail_10_1007_s00330_022_09257_6
springer_journals_10_1007_s00330_022_09257_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wheeler, Shi, Beck (CR24) 2005; 40
Wellenberg, Boomsma, van Osch (CR33) 2017; 88
Ansaldo, Montecucco, Sahebkar (CR2) 2019; 278
Iacobellis, Leonetti (CR6) 2005; 90
CR19
Yoshizumi, Nakamura, Yamane (CR25) 1999; 211
Niehoff, Woeltjen, Laukamp (CR31) 2021; 11
McCollough, Boedeker, Cody (CR22) 2020; 47
Nagy, Jermendy, Merkely, Maurovich-Horvat (CR1) 2017; 13
Gorter, van Lindert, de Vos (CR7) 2008; 197
Parisi, Petraglia, Formisano (CR10) 2020; 30
CR34
CR11
Marwan, Koenig, Schreiber (CR16) 2019; 121
Nakazato, Shmilovich, Tamarappoo (CR23) 2011; 5
Franssens, Nathoe, Leiner (CR12) 2017; 24
Hatem, Sanders (CR5) 2014; 102
Sauter, Muenzel, Dangelmaier (CR30) 2018; 104
Schwarz, Nance, Ruzsics (CR28) 2012; 264
Decker, Bette, Scheurig-Münkler (CR29) 2022; 12
Kahn, Fehrenbach, Böning (CR27) 2019; 98
Brandt, Decker, Schoepf (CR4) 2022; 32
Brandt, Bekeredjian, Schoepf (CR3) 2022; 148
Xu, Xu, Coulden (CR17) 2018; 275
Decker, Bette, Scheurig-Muenkler (CR20) 2022; 12
Monti, Capra, Zanardo (CR14) 2021; 143
Goeller, Achenbach, Marwan (CR8) 2018; 12
Mahabadi, Balcer, Dykun (CR13) 2017; 12
CR21
van Woerden, van Veldhuisen, Gorter (CR9) 2021; 44
Choi, Lee, Choi, Pak (CR32) 2021; 140
Marwan, Achenbach (CR15) 2013; 7
Rajendran, Petersilka, Henning (CR26) 2021; 303
Flohr, Petersilka, Henning (CR18) 2020; 79
M Goeller (9257_CR8) 2018; 12
T Yoshizumi (9257_CR25) 1999; 211
K Rajendran (9257_CR26) 2021; 303
9257_CR34
M Marwan (9257_CR16) 2019; 121
9257_CR11
V Parisi (9257_CR10) 2020; 30
JA Decker (9257_CR20) 2022; 12
CB Monti (9257_CR14) 2021; 143
PM Gorter (9257_CR7) 2008; 197
AA Mahabadi (9257_CR13) 2017; 12
9257_CR19
M Marwan (9257_CR15) 2013; 7
V Brandt (9257_CR4) 2022; 32
GL Wheeler (9257_CR24) 2005; 40
E Nagy (9257_CR1) 2017; 13
T Flohr (9257_CR18) 2020; 79
R Nakazato (9257_CR23) 2011; 5
J Decker (9257_CR29) 2022; 12
J Kahn (9257_CR27) 2019; 98
L Xu (9257_CR17) 2018; 275
SN Hatem (9257_CR5) 2014; 102
V Brandt (9257_CR3) 2022; 148
9257_CR21
AM Ansaldo (9257_CR2) 2019; 278
F Schwarz (9257_CR28) 2012; 264
MH Choi (9257_CR32) 2021; 140
G Iacobellis (9257_CR6) 2005; 90
RHH Wellenberg (9257_CR33) 2017; 88
G van Woerden (9257_CR9) 2021; 44
BT Franssens (9257_CR12) 2017; 24
JH Niehoff (9257_CR31) 2021; 11
CH McCollough (9257_CR22) 2020; 47
AP Sauter (9257_CR30) 2018; 104
References_xml – volume: 5
  start-page: 172
  year: 2011
  end-page: 179
  ident: CR23
  article-title: Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from non-contrast cardiac CT
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2011.03.009
– volume: 211
  start-page: 283
  year: 1999
  end-page: 286
  ident: CR25
  article-title: Abdominal fat: standardized technique for measurement at CT
  publication-title: Radiology
  doi: 10.1148/radiology.211.1.r99ap15283
– volume: 303
  start-page: 130
  year: 2021
  end-page: 138
  ident: CR26
  article-title: First clinical photon-counting detector CT system: technical evaluation
  publication-title: Radiology
  doi: 10.1148/radiol.212579
– volume: 275
  start-page: 74
  year: 2018
  end-page: 79
  ident: CR17
  article-title: Comparison of epicardial adipose tissue radiodensity threshold between contrast and non-contrast enhanced computed tomography scans: a cohort study of derivation and validation
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2018.05.013
– volume: 197
  start-page: 896
  year: 2008
  end-page: 903
  ident: CR7
  article-title: Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2007.08.016
– volume: 30
  start-page: 99
  year: 2020
  end-page: 105
  ident: CR10
  article-title: Validation of the echocardiographic assessment of epicardial adipose tissue thickness at the Rindfleisch fold for the prediction of coronary artery disease
  publication-title: Nutr Metab Cardiovasc Dis
  doi: 10.1016/j.numecd.2019.08.007
– volume: 40
  start-page: 97
  year: 2005
  end-page: 101
  ident: CR24
  article-title: Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families
  publication-title: Invest Radiol
  doi: 10.1097/00004424-200502000-00007
– volume: 7
  start-page: 3
  year: 2013
  end-page: 10
  ident: CR15
  article-title: Quantification of epicardial fat by computed tomography: why, when and how?
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2013.01.002
– volume: 90
  start-page: 6300
  year: 2005
  end-page: 6302
  ident: CR6
  article-title: Epicardial adipose tissue and insulin resistance in obese subjects
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2005-1087
– volume: 102
  start-page: 205
  year: 2014
  end-page: 213
  ident: CR5
  article-title: Epicardial adipose tissue and atrial fibrillation
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvu045
– volume: 143
  start-page: 109902
  year: 2021
  ident: CR14
  article-title: CT-derived epicardial adipose tissue density: systematic review and meta-analysis
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109902
– volume: 32
  start-page: 4243
  year: 2022
  end-page: 4252
  ident: CR4
  article-title: Additive value of epicardial adipose tissue quantification to coronary CT angiography–derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08481-w
– volume: 79
  start-page: 126
  year: 2020
  end-page: 136
  ident: CR18
  article-title: Photon-counting CT review
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2020.10.030
– volume: 88
  start-page: 61
  year: 2017
  end-page: 70
  ident: CR33
  article-title: Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2017.01.002
– ident: CR21
– ident: CR19
– volume: 47
  start-page: e881
  year: 2020
  end-page: e912
  ident: CR22
  article-title: Principles and applications of multienergy CT: report of AAPM task group 291
  publication-title: Med Phys
  doi: 10.1002/mp.14157
– volume: 12
  start-page: 67
  year: 2018
  end-page: 73
  ident: CR8
  article-title: Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2017.11.007
– volume: 12
  start-page: e0183514
  year: 2017
  ident: CR13
  article-title: Cardiac computed tomography-derived epicardial fat volume and attenuation independently distinguish patients with and without myocardial infarction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183514
– volume: 13
  start-page: 864
  year: 2017
  end-page: 874
  ident: CR1
  article-title: Clinical importance of epicardial adipose tissue
  publication-title: Arch Med Sci AMS
  doi: 10.5114/aoms.2016.63259
– volume: 104
  start-page: 108
  year: 2018
  end-page: 114
  ident: CR30
  article-title: Dual-layer spectral computed tomography: virtual non-contrast in comparison to true non-contrast images
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.05.007
– volume: 44
  start-page: 987
  year: 2021
  end-page: 993
  ident: CR9
  article-title: Importance of epicardial adipose tissue localization using cardiac magnetic resonance imaging in patients with heart failure with mid-range and preserved ejection fraction
  publication-title: Clin Cardiol
  doi: 10.1002/clc.23644
– volume: 12
  start-page: 558
  year: 2022
  ident: CR29
  article-title: Virtual non-contrast reconstructions of photon-counting detector CT angiography datasets as substitutes for true non-contrast acquisitions in patients after EVAR—performance of a novel calcium-preserving reconstruction algorithm
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12030558
– volume: 24
  start-page: 660
  year: 2017
  end-page: 670
  ident: CR12
  article-title: Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events
  publication-title: Eur J Prev Cardiol
  doi: 10.1177/2047487316679524
– volume: 11
  start-page: 2377
  year: 2021
  ident: CR31
  article-title: Virtual non-contrast versus true non-contrast computed tomography: initial experiences with a photon counting scanner approved for clinical use
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11122377
– ident: CR11
– volume: 278
  start-page: 254
  year: 2019
  end-page: 260
  ident: CR2
  article-title: Epicardial adipose tissue and cardiovascular diseases
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2018.09.089
– volume: 121
  start-page: 108732
  year: 2019
  ident: CR16
  article-title: Quantification of epicardial adipose tissue by cardiac CT: influence of acquisition parameters and contrast enhancement
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.108732
– volume: 12
  start-page: 558
  year: 2022
  ident: CR20
  article-title: Virtual non-contrast reconstructions of photon-counting detector CT angiography datasets as substitutes for true non-contrast acquisitions in patients after EVAR—performance of a novel calcium-preserving reconstruction algorithm
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12030558
– ident: CR34
– volume: 98
  start-page: e16101
  year: 2019
  ident: CR27
  article-title: Spectral CT in patients with acute thoracoabdominal bleeding—a safe technique to improve diagnostic confidence and reduce dose?
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000016101
– volume: 264
  start-page: 700
  year: 2012
  end-page: 707
  ident: CR28
  article-title: Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography
  publication-title: Radiology
  doi: 10.1148/radiol.12112455
– volume: 140
  start-page: 109741
  year: 2021
  ident: CR32
  article-title: Dual-energy CT of the liver: true noncontrast vs. virtual noncontrast images derived from multiple phases for the diagnosis of fatty liver
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109741
– volume: 148
  start-page: 110157
  year: 2022
  ident: CR3
  article-title: Prognostic value of epicardial adipose tissue volume in combination with coronary plaque and flow assessment for the prediction of major adverse cardiac events
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2022.110157
– volume: 303
  start-page: 130
  year: 2021
  ident: 9257_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.212579
– volume: 11
  start-page: 2377
  year: 2021
  ident: 9257_CR31
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11122377
– ident: 9257_CR34
  doi: 10.1016/j.acra.2022.04.021
– volume: 44
  start-page: 987
  year: 2021
  ident: 9257_CR9
  publication-title: Clin Cardiol
  doi: 10.1002/clc.23644
– volume: 98
  start-page: e16101
  year: 2019
  ident: 9257_CR27
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000016101
– volume: 32
  start-page: 4243
  year: 2022
  ident: 9257_CR4
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08481-w
– ident: 9257_CR21
  doi: 10.1097/RLI.0000000000000868
– volume: 13
  start-page: 864
  year: 2017
  ident: 9257_CR1
  publication-title: Arch Med Sci AMS
  doi: 10.5114/aoms.2016.63259
– volume: 140
  start-page: 109741
  year: 2021
  ident: 9257_CR32
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109741
– volume: 12
  start-page: 67
  year: 2018
  ident: 9257_CR8
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2017.11.007
– volume: 47
  start-page: e881
  year: 2020
  ident: 9257_CR22
  publication-title: Med Phys
  doi: 10.1002/mp.14157
– volume: 278
  start-page: 254
  year: 2019
  ident: 9257_CR2
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2018.09.089
– volume: 264
  start-page: 700
  year: 2012
  ident: 9257_CR28
  publication-title: Radiology
  doi: 10.1148/radiol.12112455
– volume: 12
  start-page: 558
  year: 2022
  ident: 9257_CR29
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12030558
– volume: 24
  start-page: 660
  year: 2017
  ident: 9257_CR12
  publication-title: Eur J Prev Cardiol
  doi: 10.1177/2047487316679524
– volume: 79
  start-page: 126
  year: 2020
  ident: 9257_CR18
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2020.10.030
– volume: 211
  start-page: 283
  year: 1999
  ident: 9257_CR25
  publication-title: Radiology
  doi: 10.1148/radiology.211.1.r99ap15283
– volume: 30
  start-page: 99
  year: 2020
  ident: 9257_CR10
  publication-title: Nutr Metab Cardiovasc Dis
  doi: 10.1016/j.numecd.2019.08.007
– volume: 40
  start-page: 97
  year: 2005
  ident: 9257_CR24
  publication-title: Invest Radiol
  doi: 10.1097/00004424-200502000-00007
– volume: 88
  start-page: 61
  year: 2017
  ident: 9257_CR33
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2017.01.002
– volume: 121
  start-page: 108732
  year: 2019
  ident: 9257_CR16
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.108732
– volume: 12
  start-page: 558
  year: 2022
  ident: 9257_CR20
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12030558
– volume: 12
  start-page: e0183514
  year: 2017
  ident: 9257_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183514
– volume: 275
  start-page: 74
  year: 2018
  ident: 9257_CR17
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2018.05.013
– volume: 7
  start-page: 3
  year: 2013
  ident: 9257_CR15
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2013.01.002
– volume: 104
  start-page: 108
  year: 2018
  ident: 9257_CR30
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.05.007
– volume: 148
  start-page: 110157
  year: 2022
  ident: 9257_CR3
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2022.110157
– volume: 102
  start-page: 205
  year: 2014
  ident: 9257_CR5
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvu045
– volume: 197
  start-page: 896
  year: 2008
  ident: 9257_CR7
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2007.08.016
– ident: 9257_CR11
  doi: 10.1002/cphy.c160034
– ident: 9257_CR19
  doi: 10.1148/radiol.213260
– volume: 143
  start-page: 109902
  year: 2021
  ident: 9257_CR14
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109902
– volume: 5
  start-page: 172
  year: 2011
  ident: 9257_CR23
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2011.03.009
– volume: 90
  start-page: 6300
  year: 2005
  ident: 9257_CR6
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2005-1087
SSID ssj0009147
Score 2.5141973
Snippet Objectives To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA...
To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA)...
ObjectivesTo assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2450
SubjectTerms Adipose tissue
Adipose Tissue - diagnostic imaging
Algorithms
Angiography
Attenuation
Body fat
Computed Tomography
Datasets
Diagnostic Radiology
Euclidean geometry
Histograms
Humans
Image contrast
Image segmentation
Imaging
Internal Medicine
Interventional Radiology
Medicine
Medicine & Public Health
Neuroradiology
Photons
Radiation
Radiation dosage
Radiation measurement
Radiology
Rank tests
Reproducibility of Results
Retrospective Studies
Tomography, X-Ray Computed - methods
Ultrasound
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbpBvo4hL7SbpMUFXprRNe2ZFmHUrYhIRSylJJAbkaWJbKwtd21NyXX_vLOyI_tElhyloxHnk-jkWfmG0I-aqsUEp0zqcOM8UQbsIM2YFli4klmHZw5WOB8MYvPr_j3a3G9Q2Z9LQymVfY20RvqvDT4j_xziMgSYSzDr9Vvhl2jMLrat9DQXWuF_IunGHtEdkNkxhqR3W-nsx8_1zS8gW85Btf4hEmQsiuj8cV02NZswjC7faIAyCzePKru-Z_30yiHWOoz8mRVVPruj14s_juuzp6Tvc7PpNMWGC_Iji1ekscXXST9Ffk7HSg5aemorUBZiJUF1fm8KmtLG68SWhb0dr7EKhNalAXzqe26buj8F1iimuaA4FubUyxTodVN2fg5bf8JGGx8UIAa5EnQyzt6cjmlmJRa26Z-Ta7OTi9PzlnXj4EZLkXDpIPDX2GoUmTGRomA3a5UKIULAukCYbnhLo_QR1PgCQrtIie4M0ZxpXNro30yAkntW0ITm4RGZoo7uF6K2OgoCa1AZh8D4AnkmAT9p09NR1aOPTMW6UCz7NWVgrpSr640HpNPwzNVS9WxdfZhr9G027Z1ugbZmHwYhmHDYRRFF7Zc4RwOXh0Hx2xM3rQAGF4XxRz5_WEk2YDGMAHJvDdHivmNJ_VGLiwZByDXcY-itVzblnE8IO0Bq363fdUH5GkITlybmXRIRs1yZY_A6Wqy991O-gfTcSgO
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrQTlwDdloSAjcaPZbhI7jo-rQlUhteLQlcopchxbXbEk0cZbVI78csbOByxFFYizJ7u28zx-0cy8AXgjtRBO6DzgMsoDmkqFflCHQZ6qZJprg3eOK3A-OU2O5_TDOTvfgnd9LYzPdu9Dkm1Ng1NpKu1BXZiDofDNtSCbBi4TfSoQdEEyweFbsJ0wZOQj2J6ffpx98jJ7eJ658P0QkRlE6HVS2tXO_PmHNu-na6Tzeu7kEEC9C3fWZS2vvsrl8pc76ug-6H51bWrK58na5hP17Tfhx_9d_gO415FYMmtR9xC2dPkIbp90YfrH8H026H2SyhBdIxIcEJdEFou6ajSx_n2TqiSXi5UrYSFlVQY-b142liy-oJtrSIHH41IXxNXAkPqist6mbW6Bg9ZHHIhyIgxydUUOz2bEZbw22jZPYH70_uzwOOiaPQSKcmYDbpBZCBcHZbnSccrQlQgRcWbCkJuQaaqoKWJHAAXSTCZNbBg1SgkqZKF1_BRGOFP9DEiq00jxXFCD364sUTJOI82cbJBCZIZ8DGH_ijPVKaG7hhzLbNBw9huc4QZnfoOzZAxvh2fqVgfkRuu9HjlZ5xOaLHK-kUUJj8bwehjG0-xCNLLU1drZUKSMFFnfGHZboA1_FyfUNQ_AkXQDgoOBUwrfHCkXF14x3Alt8STEee334Po5r5uWsT8g-i9W_fzfzF_AToSMsU2D2oORXa31S2R4Nn_VHeAfdklGvA
  priority: 102
  providerName: Unpaywall
Title Assessment of epicardial adipose tissue on virtual non-contrast images derived from photon-counting detector coronary CTA datasets
URI https://link.springer.com/article/10.1007/s00330-022-09257-6
https://www.ncbi.nlm.nih.gov/pubmed/36462042
https://www.proquest.com/docview/2787052672
https://www.proquest.com/docview/2746394102
https://pubmed.ncbi.nlm.nih.gov/PMC10017616
https://link.springer.com/content/pdf/10.1007/s00330-022-09257-6.pdf
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdrC_t4GPteti5osLfVUNv6sB6dkLRsNJTRQPpkZFmigcw2sdPR1_3lu7Mdd1lH2V4ksCRb0p10J9_dT4R80lYpBDr3pA5Sj0XawD5ofS-NjDhOrQOZgwHOZzNxOmdfFnzRweRgLMwf9nsE-4QTt4c-58cK2MsTe-QAhJRoDLNifAuw6zPZBcX8vd2u4LmjTd51iuwto0_Io01e6psferX6TfhMn5GnndZI45bMz8kDm78gD886u_hL8jPuATZp4agtYeqR8iuqs2VZVJbWzQTTIqfXyzXGjFA493uNo7quarr8DvtKRTPgx2ubUQw6oeVVUTd12tskoLBufvFTg6gHen1DxxcxRRfTytbVKzKfTi7Gp153u4JnmOS1Jx2IcoWGR54aG0Yc1q5SgeTO96XzuWWGuSxEjUuBXse1Cx1nzhjFlM6sDV-TfeipfUtoZKPAyFQxB4dFLowOo8ByxOkxwAq-HBB_O_WJ6aDH8QaMVdKDJjfkSoBcSUOuRAzI575N2QJv3Fv7cEvRpFuEVRLgZsQDIYMB-dgXw_JBm4jObbHBOgx0NAZq1oC8aRmg_1woGKL1Q0m0wxp9BYTm3i3Jl1cNRDciW0nhQ7-Otlx026_7hnHUc9o_jPrd_739PXkcgIrW-h0dkv16vbEfQKWq0yHZkwsJaTQ9GZKDeDoazTA_ufw6gXw0mZ1_GzbrDdJ5EMOz-ew8vvwFN6QhXQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJjF4QPxeYYCR4IlFNIkdxw8TKmNTx9YKoU7aW-Y4jlapS0KTbuorfxh_G3duklJNqnjZs53Gzn13PvfuviPkgzJSItG5I5QXOyxUGuygcZ041EE3NimcOVjgPBgG_TP2_Zyfb5A_TS0MplU2NtEa6iTX-B_5Zw-Rxb1AeF-KXw52jcLoatNCQ9WtFZJ9SzFWF3acmPkNXOHK_eNvIO-Pnnd0ODroO3WXAUczwStHpHCkSQzA8VgbP-SAYSk9wVPXFanLDdMsTXz0PCT4N1ylfspZqrVkUiXG-PC798gW85mEy9_W18Phj59L2l_XtjjrSjArAr5KXbZji_ewjVrXwWz6rgTFcYLVo_GWv3s7bbON3T4k27OsUPMbNZn8czwePSaPar-W9hZAfEI2TPaU3B_Ukftn5HevpQCleUpNAeBAbE6oSsZFXhpaWQjQPKPX4ylWtdAszxybSq_Kio6vwPKVNAGNuTYJxbIYWlzmlZ2z6HcBg5UNQlCNvAxqOqcHox7FJNjSVOVzcnYnknlBNmGlZofQ0ISeFrFkKVxneaCVH3qGI5OQBrC6okPc5tNHuiZHxx4dk6ildbbiikBckRVXFHTIp_aZYkENsnb2biPRqDYTZbQEdYe8b4dBwTFqozKTz3AOAy-SgSPYIS8XAGhf5wcM-wnASLgCjXYCkoevjmTjS0sijtxbInBhXXsNipbrWreNvRZp_7HrV-t3_Y5s90eD0-j0eHjymjzwwIFcZEXtks1qOjNvwOGr4re1VlFycdeK_BcrFmOU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQocEK_CQgEjwYlG3SR2HB8QWrWsWkorDq3UW3AcW11pScIm22qv_Cx-HTPOY1lVWnHp2U5iZ74ZTzIz3xDyXhkpkejcEypIPRYrDXbQ-F4a62iYGgtnDhY4n5xGh-fs6wW_2CB_uloYTKvsbKIz1Fmh8R_5XoDI4kEkgj3bpkV8Pxh_Ln952EEKI61dO40GIsdmcQ2fb9WnowOQ9YcgGH852z_02g4DnmaC156wcJxJDL7xVJsw5oBfKQPBre8L63PDNLNZiF6HBN-GKxtazqzWkkmVGRPCfe-QuyIMJaYTiguxJPz1XXOzoQSDIuB9tAU7rmwPG6gNPcyjH0pQGS9aPRRveLo3Ezb7qO0Dcm-el2pxrabTfw7G8SPysPVo6aiB4GOyYfInZOukjdk_Jb9HPfknLSw1JcACUTmlKpuURWVo7YRPi5xeTWZYz0LzIvdcEr2qajr5CTavohnoypXJKBbE0PKyqN2cptMFDNYu_EA1MjKo2YLun40opr9Wpq6ekfNbkcs22YSVmheExiYOtEgls_AhyyOtwjgwHDmENMDUFwPid68-0S0tOnbnmCY9obMTVwLiSpy4kmhAPvbXlA0pyNrZO51Ek9ZAVMkSzgPyrh8G1cZ4jcpNMcc5DPxHBi7ggDxvANA_LowYdhKAkXgFGv0EpA1fHcknl44-HFm3ROTDunY7FC3XtW4buz3S_mPXL9fv-i3ZAvVNvh2dHr8i9wPwHJt0qB2yWc_m5jV4enX6xqkUJT9uW4f_AlncYS4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrQTlwDdloSAjcaPZbhI7jo-rQlUhteLQlcopchxbXbEk0cZbVI78csbOByxFFYizJ7u28zx-0cy8AXgjtRBO6DzgMsoDmkqFflCHQZ6qZJprg3eOK3A-OU2O5_TDOTvfgnd9LYzPdu9Dkm1Ng1NpKu1BXZiDofDNtSCbBi4TfSoQdEEyweFbsJ0wZOQj2J6ffpx98jJ7eJ658P0QkRlE6HVS2tXO_PmHNu-na6Tzeu7kEEC9C3fWZS2vvsrl8pc76ug-6H51bWrK58na5hP17Tfhx_9d_gO415FYMmtR9xC2dPkIbp90YfrH8H026H2SyhBdIxIcEJdEFou6ajSx_n2TqiSXi5UrYSFlVQY-b142liy-oJtrSIHH41IXxNXAkPqist6mbW6Bg9ZHHIhyIgxydUUOz2bEZbw22jZPYH70_uzwOOiaPQSKcmYDbpBZCBcHZbnSccrQlQgRcWbCkJuQaaqoKWJHAAXSTCZNbBg1SgkqZKF1_BRGOFP9DEiq00jxXFCD364sUTJOI82cbJBCZIZ8DGH_ijPVKaG7hhzLbNBw9huc4QZnfoOzZAxvh2fqVgfkRuu9HjlZ5xOaLHK-kUUJj8bwehjG0-xCNLLU1drZUKSMFFnfGHZboA1_FyfUNQ_AkXQDgoOBUwrfHCkXF14x3Alt8STEee334Po5r5uWsT8g-i9W_fzfzF_AToSMsU2D2oORXa31S2R4Nn_VHeAfdklGvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+epicardial+adipose+tissue+on+virtual+non-contrast+images+derived+from+photon-counting+detector+coronary+CTA+datasets&rft.jtitle=European+radiology&rft.au=Risch%2C+Franka&rft.au=Schwarz%2C+Florian&rft.au=Braun%2C+Franziska&rft.au=Bette%2C+Stefanie&rft.date=2023-04-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=33&rft.issue=4&rft.spage=2450&rft_id=info:doi/10.1007%2Fs00330-022-09257-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon