Assessment of epicardial adipose tissue on virtual non-contrast images derived from photon-counting detector coronary CTA datasets
Objectives To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. Methods Consecutive patients ( n = 42...
Saved in:
| Published in | European radiology Vol. 33; no. 4; pp. 2450 - 2460 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-1084 0938-7994 1432-1084 |
| DOI | 10.1007/s00330-022-09257-6 |
Cover
| Abstract | Objectives
To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.
Methods
Consecutive patients (
n
= 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNC
Conv
) and a novel calcium-preserving (VNC
PC
) algorithm. EAT was segmented on TNC, VNC
Conv
, VNC
PC
, and CCTA (CTA
-30
) series using thresholds of −190 to −30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA
0
). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired
t
-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.
Results
EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all
p
< .05), but excellent correlation (all
R
2
> 0.9). Measurements on the novel VNC
PC
series showed the best correlation (
R
2
= 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were −12%, −3%, −13%, and +10% for VNC
Conv
, VNC
PC
, CTA
-30
, and CTA
0
compared to TNC. Distribution of CT values on VNC
PC
showed less difference to TNC than on VNC
Conv
(mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).
Conclusions
VNC
PC
-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient’s radiation dose.
Key points
• Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R
2
>0.9).
• Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values.
• A novel VNC algorithm (VNC
PC
) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series. |
|---|---|
| AbstractList | ObjectivesTo assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.MethodsConsecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of −190 to −30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.ResultsEAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were −12%, −3%, −13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).ConclusionsVNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient’s radiation dose.Key points• Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9).• Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values.• A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series. Objectives To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. Methods Consecutive patients ( n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNC Conv ) and a novel calcium-preserving (VNC PC ) algorithm. EAT was segmented on TNC, VNC Conv , VNC PC , and CCTA (CTA -30 ) series using thresholds of −190 to −30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA 0 ). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t -test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data. Results EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R 2 > 0.9). Measurements on the novel VNC PC series showed the best correlation ( R 2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were −12%, −3%, −13%, and +10% for VNC Conv , VNC PC , CTA -30 , and CTA 0 compared to TNC. Distribution of CT values on VNC PC showed less difference to TNC than on VNC Conv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016). Conclusions VNC PC -reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient’s radiation dose. Key points • Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R 2 >0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNC PC ) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series. To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. Consecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNC ) and a novel calcium-preserving (VNC ) algorithm. EAT was segmented on TNC, VNC , VNC , and CCTA (CTA ) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA ). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data. EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R > 0.9). Measurements on the novel VNC series showed the best correlation (R = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNC , VNC , CTA , and CTA compared to TNC. Distribution of CT values on VNC showed less difference to TNC than on VNC (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016). VNC -reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose. • Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R >0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNC ) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series. To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.OBJECTIVESTo assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.Consecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.METHODSConsecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).RESULTSEAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).VNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose.CONCLUSIONSVNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose.• Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.KEY POINTS• Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series. |
| Author | Bette, Stefanie Risch, Franka Decker, Josua A. Kroencke, Thomas J. Schwarz, Florian Braun, Franziska Scheurig-Muenkler, Christian Becker, Judith |
| Author_xml | – sequence: 1 givenname: Franka surname: Risch fullname: Risch, Franka organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg – sequence: 2 givenname: Florian surname: Schwarz fullname: Schwarz, Florian organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Medical Faculty, Ludwig-Maximilian University Munich – sequence: 3 givenname: Franziska surname: Braun fullname: Braun, Franziska organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg – sequence: 4 givenname: Stefanie surname: Bette fullname: Bette, Stefanie organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg – sequence: 5 givenname: Judith surname: Becker fullname: Becker, Judith organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg – sequence: 6 givenname: Christian surname: Scheurig-Muenkler fullname: Scheurig-Muenkler, Christian organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg – sequence: 7 givenname: Thomas J. surname: Kroencke fullname: Kroencke, Thomas J. email: Thomas.Kroencke@uk-augsburg.de organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg – sequence: 8 givenname: Josua A. surname: Decker fullname: Decker, Josua A. organization: Department of Diagnostic and Interventional Radiology, University Hospital Augsburg |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36462042$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhSNURB_wB1ggS2zYBPyMkxUajXhJldiUteU611NXiR1sZ6rZ8stxZgZauqhY2dL9zvG5x-fViQ8equo1we8JxvJDwpgxXGNKa9xRIevmWXVGOKM1wS0_eXA_rc5TusUYd4TLF9Upa3hDMadn1a9VSpDSCD6jYBFMzujYOz0g3bspJEDZpTQDCh5tXcxzmZQYtQk-R50ycqPeQEI9RLeFHtkYRjTdhLxnZp-d35RhBpNDRCbE4HXcofXVCvU66wQ5vayeWz0keHU8L6ofnz9drb_Wl9-_fFuvLmvDpci1tLghHaayFdcGWCuEbLuOSmEJkZYI4IbbnlFGeYcFF9oyK7g1puOd7gHYRcUOvrOf9O5OD4OaYokfd4pgtTSqDo2q0qjaN6qaovp4UE3z9Qi9gWXve2XQTv078e5GbcJ2MSSyIYvDu6NDDD9nSFmNLhkYBu0hzElRyRvWcYJpQd8-Qm_DHH1ppVCtxII2cqHePIz0N8ufXy0APQAmhpQi2P9btH0kMi7r7PYf7YanpcdmU3nHbyDex35C9RucENf- |
| CitedBy_id | crossref_primary_10_1055_a_2359_0368 crossref_primary_10_1007_s12471_024_01904_5 crossref_primary_10_1007_s10554_024_03096_w crossref_primary_10_1007_s00330_024_10865_7 crossref_primary_10_3390_diagnostics14222483 crossref_primary_10_3390_diagnostics15010079 crossref_primary_10_3390_jcdd10090363 crossref_primary_10_1007_s00330_024_10675_x crossref_primary_10_1007_s11547_024_01773_3 crossref_primary_10_1016_j_acra_2023_05_029 crossref_primary_10_1055_a_2093_5188 crossref_primary_10_1093_eurheartj_ehad484 crossref_primary_10_1259_bjr_20230407 crossref_primary_10_3390_jcm13082359 crossref_primary_10_1016_j_heliyon_2024_e32436 crossref_primary_10_1016_j_ejrad_2023_111125 crossref_primary_10_1007_s00330_024_11329_8 crossref_primary_10_1002_mco2_413 |
| Cites_doi | 10.1016/j.jcct.2011.03.009 10.1148/radiology.211.1.r99ap15283 10.1148/radiol.212579 10.1016/j.atherosclerosis.2018.05.013 10.1016/j.atherosclerosis.2007.08.016 10.1016/j.numecd.2019.08.007 10.1097/00004424-200502000-00007 10.1016/j.jcct.2013.01.002 10.1210/jc.2005-1087 10.1093/cvr/cvu045 10.1016/j.ejrad.2021.109902 10.1007/s00330-021-08481-w 10.1016/j.ejmp.2020.10.030 10.1016/j.ejrad.2017.01.002 10.1002/mp.14157 10.1016/j.jcct.2017.11.007 10.1371/journal.pone.0183514 10.5114/aoms.2016.63259 10.1016/j.ejrad.2018.05.007 10.1002/clc.23644 10.3390/diagnostics12030558 10.1177/2047487316679524 10.3390/diagnostics11122377 10.1016/j.ijcard.2018.09.089 10.1016/j.ejrad.2019.108732 10.1097/MD.0000000000016101 10.1148/radiol.12112455 10.1016/j.ejrad.2021.109741 10.1016/j.ejrad.2022.110157 10.1016/j.acra.2022.04.021 10.1097/RLI.0000000000000868 10.1002/cphy.c160034 10.1148/radiol.213260 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s00330-022-09257-6 |
| DatabaseName | Springer Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 2460 |
| ExternalDocumentID | 10.1007/s00330-022-09257-6 PMC10017616 36462042 10_1007_s00330_022_09257_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Universitätsklinikum Augsburg (8972) – fundername: ; |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADHKG AGQPQ CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-7f061902785bce38557899275f117f15e4c4fd3232490545af3f54fcc949adee3 |
| IEDL.DBID | C6C |
| ISSN | 1432-1084 0938-7994 |
| IngestDate | Sun Oct 26 03:13:26 EDT 2025 Thu Aug 21 18:37:31 EDT 2025 Thu Oct 02 05:20:14 EDT 2025 Tue Oct 07 05:51:59 EDT 2025 Mon Jul 21 06:07:47 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Wed Oct 01 01:17:10 EDT 2025 Fri Feb 21 02:45:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Heart Computed tomography angiography Medical image processing Adipose tissue Radiation dosage |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-7f061902785bce38557899275f117f15e4c4fd3232490545af3f54fcc949adee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1007/s00330-022-09257-6 |
| PMID | 36462042 |
| PQID | 2787052672 |
| PQPubID | 54162 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1007_s00330_022_09257_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017616 proquest_miscellaneous_2746394102 proquest_journals_2787052672 pubmed_primary_36462042 crossref_primary_10_1007_s00330_022_09257_6 crossref_citationtrail_10_1007_s00330_022_09257_6 springer_journals_10_1007_s00330_022_09257_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Wheeler, Shi, Beck (CR24) 2005; 40 Wellenberg, Boomsma, van Osch (CR33) 2017; 88 Ansaldo, Montecucco, Sahebkar (CR2) 2019; 278 Iacobellis, Leonetti (CR6) 2005; 90 CR19 Yoshizumi, Nakamura, Yamane (CR25) 1999; 211 Niehoff, Woeltjen, Laukamp (CR31) 2021; 11 McCollough, Boedeker, Cody (CR22) 2020; 47 Nagy, Jermendy, Merkely, Maurovich-Horvat (CR1) 2017; 13 Gorter, van Lindert, de Vos (CR7) 2008; 197 Parisi, Petraglia, Formisano (CR10) 2020; 30 CR34 CR11 Marwan, Koenig, Schreiber (CR16) 2019; 121 Nakazato, Shmilovich, Tamarappoo (CR23) 2011; 5 Franssens, Nathoe, Leiner (CR12) 2017; 24 Hatem, Sanders (CR5) 2014; 102 Sauter, Muenzel, Dangelmaier (CR30) 2018; 104 Schwarz, Nance, Ruzsics (CR28) 2012; 264 Decker, Bette, Scheurig-Münkler (CR29) 2022; 12 Kahn, Fehrenbach, Böning (CR27) 2019; 98 Brandt, Decker, Schoepf (CR4) 2022; 32 Brandt, Bekeredjian, Schoepf (CR3) 2022; 148 Xu, Xu, Coulden (CR17) 2018; 275 Decker, Bette, Scheurig-Muenkler (CR20) 2022; 12 Monti, Capra, Zanardo (CR14) 2021; 143 Goeller, Achenbach, Marwan (CR8) 2018; 12 Mahabadi, Balcer, Dykun (CR13) 2017; 12 CR21 van Woerden, van Veldhuisen, Gorter (CR9) 2021; 44 Choi, Lee, Choi, Pak (CR32) 2021; 140 Marwan, Achenbach (CR15) 2013; 7 Rajendran, Petersilka, Henning (CR26) 2021; 303 Flohr, Petersilka, Henning (CR18) 2020; 79 M Goeller (9257_CR8) 2018; 12 T Yoshizumi (9257_CR25) 1999; 211 K Rajendran (9257_CR26) 2021; 303 9257_CR34 M Marwan (9257_CR16) 2019; 121 9257_CR11 V Parisi (9257_CR10) 2020; 30 JA Decker (9257_CR20) 2022; 12 CB Monti (9257_CR14) 2021; 143 PM Gorter (9257_CR7) 2008; 197 AA Mahabadi (9257_CR13) 2017; 12 9257_CR19 M Marwan (9257_CR15) 2013; 7 V Brandt (9257_CR4) 2022; 32 GL Wheeler (9257_CR24) 2005; 40 E Nagy (9257_CR1) 2017; 13 T Flohr (9257_CR18) 2020; 79 R Nakazato (9257_CR23) 2011; 5 J Decker (9257_CR29) 2022; 12 J Kahn (9257_CR27) 2019; 98 L Xu (9257_CR17) 2018; 275 SN Hatem (9257_CR5) 2014; 102 V Brandt (9257_CR3) 2022; 148 9257_CR21 AM Ansaldo (9257_CR2) 2019; 278 F Schwarz (9257_CR28) 2012; 264 MH Choi (9257_CR32) 2021; 140 G Iacobellis (9257_CR6) 2005; 90 RHH Wellenberg (9257_CR33) 2017; 88 G van Woerden (9257_CR9) 2021; 44 BT Franssens (9257_CR12) 2017; 24 JH Niehoff (9257_CR31) 2021; 11 CH McCollough (9257_CR22) 2020; 47 AP Sauter (9257_CR30) 2018; 104 |
| References_xml | – volume: 5 start-page: 172 year: 2011 end-page: 179 ident: CR23 article-title: Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from non-contrast cardiac CT publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2011.03.009 – volume: 211 start-page: 283 year: 1999 end-page: 286 ident: CR25 article-title: Abdominal fat: standardized technique for measurement at CT publication-title: Radiology doi: 10.1148/radiology.211.1.r99ap15283 – volume: 303 start-page: 130 year: 2021 end-page: 138 ident: CR26 article-title: First clinical photon-counting detector CT system: technical evaluation publication-title: Radiology doi: 10.1148/radiol.212579 – volume: 275 start-page: 74 year: 2018 end-page: 79 ident: CR17 article-title: Comparison of epicardial adipose tissue radiodensity threshold between contrast and non-contrast enhanced computed tomography scans: a cohort study of derivation and validation publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.05.013 – volume: 197 start-page: 896 year: 2008 end-page: 903 ident: CR7 article-title: Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2007.08.016 – volume: 30 start-page: 99 year: 2020 end-page: 105 ident: CR10 article-title: Validation of the echocardiographic assessment of epicardial adipose tissue thickness at the Rindfleisch fold for the prediction of coronary artery disease publication-title: Nutr Metab Cardiovasc Dis doi: 10.1016/j.numecd.2019.08.007 – volume: 40 start-page: 97 year: 2005 end-page: 101 ident: CR24 article-title: Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families publication-title: Invest Radiol doi: 10.1097/00004424-200502000-00007 – volume: 7 start-page: 3 year: 2013 end-page: 10 ident: CR15 article-title: Quantification of epicardial fat by computed tomography: why, when and how? publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2013.01.002 – volume: 90 start-page: 6300 year: 2005 end-page: 6302 ident: CR6 article-title: Epicardial adipose tissue and insulin resistance in obese subjects publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2005-1087 – volume: 102 start-page: 205 year: 2014 end-page: 213 ident: CR5 article-title: Epicardial adipose tissue and atrial fibrillation publication-title: Cardiovasc Res doi: 10.1093/cvr/cvu045 – volume: 143 start-page: 109902 year: 2021 ident: CR14 article-title: CT-derived epicardial adipose tissue density: systematic review and meta-analysis publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109902 – volume: 32 start-page: 4243 year: 2022 end-page: 4252 ident: CR4 article-title: Additive value of epicardial adipose tissue quantification to coronary CT angiography–derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia publication-title: Eur Radiol doi: 10.1007/s00330-021-08481-w – volume: 79 start-page: 126 year: 2020 end-page: 136 ident: CR18 article-title: Photon-counting CT review publication-title: Phys Med doi: 10.1016/j.ejmp.2020.10.030 – volume: 88 start-page: 61 year: 2017 end-page: 70 ident: CR33 article-title: Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2017.01.002 – ident: CR21 – ident: CR19 – volume: 47 start-page: e881 year: 2020 end-page: e912 ident: CR22 article-title: Principles and applications of multienergy CT: report of AAPM task group 291 publication-title: Med Phys doi: 10.1002/mp.14157 – volume: 12 start-page: 67 year: 2018 end-page: 73 ident: CR8 article-title: Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2017.11.007 – volume: 12 start-page: e0183514 year: 2017 ident: CR13 article-title: Cardiac computed tomography-derived epicardial fat volume and attenuation independently distinguish patients with and without myocardial infarction publication-title: PLoS One doi: 10.1371/journal.pone.0183514 – volume: 13 start-page: 864 year: 2017 end-page: 874 ident: CR1 article-title: Clinical importance of epicardial adipose tissue publication-title: Arch Med Sci AMS doi: 10.5114/aoms.2016.63259 – volume: 104 start-page: 108 year: 2018 end-page: 114 ident: CR30 article-title: Dual-layer spectral computed tomography: virtual non-contrast in comparison to true non-contrast images publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.05.007 – volume: 44 start-page: 987 year: 2021 end-page: 993 ident: CR9 article-title: Importance of epicardial adipose tissue localization using cardiac magnetic resonance imaging in patients with heart failure with mid-range and preserved ejection fraction publication-title: Clin Cardiol doi: 10.1002/clc.23644 – volume: 12 start-page: 558 year: 2022 ident: CR29 article-title: Virtual non-contrast reconstructions of photon-counting detector CT angiography datasets as substitutes for true non-contrast acquisitions in patients after EVAR—performance of a novel calcium-preserving reconstruction algorithm publication-title: Diagnostics doi: 10.3390/diagnostics12030558 – volume: 24 start-page: 660 year: 2017 end-page: 670 ident: CR12 article-title: Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events publication-title: Eur J Prev Cardiol doi: 10.1177/2047487316679524 – volume: 11 start-page: 2377 year: 2021 ident: CR31 article-title: Virtual non-contrast versus true non-contrast computed tomography: initial experiences with a photon counting scanner approved for clinical use publication-title: Diagnostics doi: 10.3390/diagnostics11122377 – ident: CR11 – volume: 278 start-page: 254 year: 2019 end-page: 260 ident: CR2 article-title: Epicardial adipose tissue and cardiovascular diseases publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2018.09.089 – volume: 121 start-page: 108732 year: 2019 ident: CR16 article-title: Quantification of epicardial adipose tissue by cardiac CT: influence of acquisition parameters and contrast enhancement publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.108732 – volume: 12 start-page: 558 year: 2022 ident: CR20 article-title: Virtual non-contrast reconstructions of photon-counting detector CT angiography datasets as substitutes for true non-contrast acquisitions in patients after EVAR—performance of a novel calcium-preserving reconstruction algorithm publication-title: Diagnostics doi: 10.3390/diagnostics12030558 – ident: CR34 – volume: 98 start-page: e16101 year: 2019 ident: CR27 article-title: Spectral CT in patients with acute thoracoabdominal bleeding—a safe technique to improve diagnostic confidence and reduce dose? publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000016101 – volume: 264 start-page: 700 year: 2012 end-page: 707 ident: CR28 article-title: Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography publication-title: Radiology doi: 10.1148/radiol.12112455 – volume: 140 start-page: 109741 year: 2021 ident: CR32 article-title: Dual-energy CT of the liver: true noncontrast vs. virtual noncontrast images derived from multiple phases for the diagnosis of fatty liver publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109741 – volume: 148 start-page: 110157 year: 2022 ident: CR3 article-title: Prognostic value of epicardial adipose tissue volume in combination with coronary plaque and flow assessment for the prediction of major adverse cardiac events publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2022.110157 – volume: 303 start-page: 130 year: 2021 ident: 9257_CR26 publication-title: Radiology doi: 10.1148/radiol.212579 – volume: 11 start-page: 2377 year: 2021 ident: 9257_CR31 publication-title: Diagnostics doi: 10.3390/diagnostics11122377 – ident: 9257_CR34 doi: 10.1016/j.acra.2022.04.021 – volume: 44 start-page: 987 year: 2021 ident: 9257_CR9 publication-title: Clin Cardiol doi: 10.1002/clc.23644 – volume: 98 start-page: e16101 year: 2019 ident: 9257_CR27 publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000016101 – volume: 32 start-page: 4243 year: 2022 ident: 9257_CR4 publication-title: Eur Radiol doi: 10.1007/s00330-021-08481-w – ident: 9257_CR21 doi: 10.1097/RLI.0000000000000868 – volume: 13 start-page: 864 year: 2017 ident: 9257_CR1 publication-title: Arch Med Sci AMS doi: 10.5114/aoms.2016.63259 – volume: 140 start-page: 109741 year: 2021 ident: 9257_CR32 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109741 – volume: 12 start-page: 67 year: 2018 ident: 9257_CR8 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2017.11.007 – volume: 47 start-page: e881 year: 2020 ident: 9257_CR22 publication-title: Med Phys doi: 10.1002/mp.14157 – volume: 278 start-page: 254 year: 2019 ident: 9257_CR2 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2018.09.089 – volume: 264 start-page: 700 year: 2012 ident: 9257_CR28 publication-title: Radiology doi: 10.1148/radiol.12112455 – volume: 12 start-page: 558 year: 2022 ident: 9257_CR29 publication-title: Diagnostics doi: 10.3390/diagnostics12030558 – volume: 24 start-page: 660 year: 2017 ident: 9257_CR12 publication-title: Eur J Prev Cardiol doi: 10.1177/2047487316679524 – volume: 79 start-page: 126 year: 2020 ident: 9257_CR18 publication-title: Phys Med doi: 10.1016/j.ejmp.2020.10.030 – volume: 211 start-page: 283 year: 1999 ident: 9257_CR25 publication-title: Radiology doi: 10.1148/radiology.211.1.r99ap15283 – volume: 30 start-page: 99 year: 2020 ident: 9257_CR10 publication-title: Nutr Metab Cardiovasc Dis doi: 10.1016/j.numecd.2019.08.007 – volume: 40 start-page: 97 year: 2005 ident: 9257_CR24 publication-title: Invest Radiol doi: 10.1097/00004424-200502000-00007 – volume: 88 start-page: 61 year: 2017 ident: 9257_CR33 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2017.01.002 – volume: 121 start-page: 108732 year: 2019 ident: 9257_CR16 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.108732 – volume: 12 start-page: 558 year: 2022 ident: 9257_CR20 publication-title: Diagnostics doi: 10.3390/diagnostics12030558 – volume: 12 start-page: e0183514 year: 2017 ident: 9257_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0183514 – volume: 275 start-page: 74 year: 2018 ident: 9257_CR17 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.05.013 – volume: 7 start-page: 3 year: 2013 ident: 9257_CR15 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2013.01.002 – volume: 104 start-page: 108 year: 2018 ident: 9257_CR30 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2018.05.007 – volume: 148 start-page: 110157 year: 2022 ident: 9257_CR3 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2022.110157 – volume: 102 start-page: 205 year: 2014 ident: 9257_CR5 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvu045 – volume: 197 start-page: 896 year: 2008 ident: 9257_CR7 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2007.08.016 – ident: 9257_CR11 doi: 10.1002/cphy.c160034 – ident: 9257_CR19 doi: 10.1148/radiol.213260 – volume: 143 start-page: 109902 year: 2021 ident: 9257_CR14 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109902 – volume: 5 start-page: 172 year: 2011 ident: 9257_CR23 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2011.03.009 – volume: 90 start-page: 6300 year: 2005 ident: 9257_CR6 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2005-1087 |
| SSID | ssj0009147 |
| Score | 2.5141973 |
| Snippet | Objectives
To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA... To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA)... ObjectivesTo assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2450 |
| SubjectTerms | Adipose tissue Adipose Tissue - diagnostic imaging Algorithms Angiography Attenuation Body fat Computed Tomography Datasets Diagnostic Radiology Euclidean geometry Histograms Humans Image contrast Image segmentation Imaging Internal Medicine Interventional Radiology Medicine Medicine & Public Health Neuroradiology Photons Radiation Radiation dosage Radiation measurement Radiology Rank tests Reproducibility of Results Retrospective Studies Tomography, X-Ray Computed - methods Ultrasound |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbpBvo4hL7SbpMUFXprRNe2ZFmHUrYhIRSylJJAbkaWJbKwtd21NyXX_vLOyI_tElhyloxHnk-jkWfmG0I-aqsUEp0zqcOM8UQbsIM2YFli4klmHZw5WOB8MYvPr_j3a3G9Q2Z9LQymVfY20RvqvDT4j_xziMgSYSzDr9Vvhl2jMLrat9DQXWuF_IunGHtEdkNkxhqR3W-nsx8_1zS8gW85Btf4hEmQsiuj8cV02NZswjC7faIAyCzePKru-Z_30yiHWOoz8mRVVPruj14s_juuzp6Tvc7PpNMWGC_Iji1ekscXXST9Ffk7HSg5aemorUBZiJUF1fm8KmtLG68SWhb0dr7EKhNalAXzqe26buj8F1iimuaA4FubUyxTodVN2fg5bf8JGGx8UIAa5EnQyzt6cjmlmJRa26Z-Ta7OTi9PzlnXj4EZLkXDpIPDX2GoUmTGRomA3a5UKIULAukCYbnhLo_QR1PgCQrtIie4M0ZxpXNro30yAkntW0ITm4RGZoo7uF6K2OgoCa1AZh8D4AnkmAT9p09NR1aOPTMW6UCz7NWVgrpSr640HpNPwzNVS9WxdfZhr9G027Z1ugbZmHwYhmHDYRRFF7Zc4RwOXh0Hx2xM3rQAGF4XxRz5_WEk2YDGMAHJvDdHivmNJ_VGLiwZByDXcY-itVzblnE8IO0Bq363fdUH5GkITlybmXRIRs1yZY_A6Wqy991O-gfTcSgO priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrQTlwDdloSAjcaPZbhI7jo-rQlUhteLQlcopchxbXbEk0cZbVI78csbOByxFFYizJ7u28zx-0cy8AXgjtRBO6DzgMsoDmkqFflCHQZ6qZJprg3eOK3A-OU2O5_TDOTvfgnd9LYzPdu9Dkm1Ng1NpKu1BXZiDofDNtSCbBi4TfSoQdEEyweFbsJ0wZOQj2J6ffpx98jJ7eJ658P0QkRlE6HVS2tXO_PmHNu-na6Tzeu7kEEC9C3fWZS2vvsrl8pc76ug-6H51bWrK58na5hP17Tfhx_9d_gO415FYMmtR9xC2dPkIbp90YfrH8H026H2SyhBdIxIcEJdEFou6ajSx_n2TqiSXi5UrYSFlVQY-b142liy-oJtrSIHH41IXxNXAkPqist6mbW6Bg9ZHHIhyIgxydUUOz2bEZbw22jZPYH70_uzwOOiaPQSKcmYDbpBZCBcHZbnSccrQlQgRcWbCkJuQaaqoKWJHAAXSTCZNbBg1SgkqZKF1_BRGOFP9DEiq00jxXFCD364sUTJOI82cbJBCZIZ8DGH_ijPVKaG7hhzLbNBw9huc4QZnfoOzZAxvh2fqVgfkRuu9HjlZ5xOaLHK-kUUJj8bwehjG0-xCNLLU1drZUKSMFFnfGHZboA1_FyfUNQ_AkXQDgoOBUwrfHCkXF14x3Alt8STEee334Po5r5uWsT8g-i9W_fzfzF_AToSMsU2D2oORXa31S2R4Nn_VHeAfdklGvA priority: 102 providerName: Unpaywall |
| Title | Assessment of epicardial adipose tissue on virtual non-contrast images derived from photon-counting detector coronary CTA datasets |
| URI | https://link.springer.com/article/10.1007/s00330-022-09257-6 https://www.ncbi.nlm.nih.gov/pubmed/36462042 https://www.proquest.com/docview/2787052672 https://www.proquest.com/docview/2746394102 https://pubmed.ncbi.nlm.nih.gov/PMC10017616 https://link.springer.com/content/pdf/10.1007/s00330-022-09257-6.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1432-1084 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdrC_t4GPteti5osLfVUNv6sB6dkLRsNJTRQPpkZFmigcw2sdPR1_3lu7Mdd1lH2V4ksCRb0p10J9_dT4R80lYpBDr3pA5Sj0XawD5ofS-NjDhOrQOZgwHOZzNxOmdfFnzRweRgLMwf9nsE-4QTt4c-58cK2MsTe-QAhJRoDLNifAuw6zPZBcX8vd2u4LmjTd51iuwto0_Io01e6psferX6TfhMn5GnndZI45bMz8kDm78gD886u_hL8jPuATZp4agtYeqR8iuqs2VZVJbWzQTTIqfXyzXGjFA493uNo7quarr8DvtKRTPgx2ubUQw6oeVVUTd12tskoLBufvFTg6gHen1DxxcxRRfTytbVKzKfTi7Gp153u4JnmOS1Jx2IcoWGR54aG0Yc1q5SgeTO96XzuWWGuSxEjUuBXse1Cx1nzhjFlM6sDV-TfeipfUtoZKPAyFQxB4dFLowOo8ByxOkxwAq-HBB_O_WJ6aDH8QaMVdKDJjfkSoBcSUOuRAzI575N2QJv3Fv7cEvRpFuEVRLgZsQDIYMB-dgXw_JBm4jObbHBOgx0NAZq1oC8aRmg_1woGKL1Q0m0wxp9BYTm3i3Jl1cNRDciW0nhQ7-Otlx026_7hnHUc9o_jPrd_739PXkcgIrW-h0dkv16vbEfQKWq0yHZkwsJaTQ9GZKDeDoazTA_ufw6gXw0mZ1_GzbrDdJ5EMOz-ew8vvwFN6QhXQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJjF4QPxeYYCR4IlFNIkdxw8TKmNTx9YKoU7aW-Y4jlapS0KTbuorfxh_G3duklJNqnjZs53Gzn13PvfuviPkgzJSItG5I5QXOyxUGuygcZ041EE3NimcOVjgPBgG_TP2_Zyfb5A_TS0MplU2NtEa6iTX-B_5Zw-Rxb1AeF-KXw52jcLoatNCQ9WtFZJ9SzFWF3acmPkNXOHK_eNvIO-Pnnd0ODroO3WXAUczwStHpHCkSQzA8VgbP-SAYSk9wVPXFanLDdMsTXz0PCT4N1ylfspZqrVkUiXG-PC798gW85mEy9_W18Phj59L2l_XtjjrSjArAr5KXbZji_ewjVrXwWz6rgTFcYLVo_GWv3s7bbON3T4k27OsUPMbNZn8czwePSaPar-W9hZAfEI2TPaU3B_Ukftn5HevpQCleUpNAeBAbE6oSsZFXhpaWQjQPKPX4ylWtdAszxybSq_Kio6vwPKVNAGNuTYJxbIYWlzmlZ2z6HcBg5UNQlCNvAxqOqcHox7FJNjSVOVzcnYnknlBNmGlZofQ0ISeFrFkKVxneaCVH3qGI5OQBrC6okPc5tNHuiZHxx4dk6ildbbiikBckRVXFHTIp_aZYkENsnb2biPRqDYTZbQEdYe8b4dBwTFqozKTz3AOAy-SgSPYIS8XAGhf5wcM-wnASLgCjXYCkoevjmTjS0sijtxbInBhXXsNipbrWreNvRZp_7HrV-t3_Y5s90eD0-j0eHjymjzwwIFcZEXtks1qOjNvwOGr4re1VlFycdeK_BcrFmOU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQocEK_CQgEjwYlG3SR2HB8QWrWsWkorDq3UW3AcW11pScIm22qv_Cx-HTPOY1lVWnHp2U5iZ74ZTzIz3xDyXhkpkejcEypIPRYrDXbQ-F4a62iYGgtnDhY4n5xGh-fs6wW_2CB_uloYTKvsbKIz1Fmh8R_5XoDI4kEkgj3bpkV8Pxh_Ln952EEKI61dO40GIsdmcQ2fb9WnowOQ9YcgGH852z_02g4DnmaC156wcJxJDL7xVJsw5oBfKQPBre8L63PDNLNZiF6HBN-GKxtazqzWkkmVGRPCfe-QuyIMJaYTiguxJPz1XXOzoQSDIuB9tAU7rmwPG6gNPcyjH0pQGS9aPRRveLo3Ezb7qO0Dcm-el2pxrabTfw7G8SPysPVo6aiB4GOyYfInZOukjdk_Jb9HPfknLSw1JcACUTmlKpuURWVo7YRPi5xeTWZYz0LzIvdcEr2qajr5CTavohnoypXJKBbE0PKyqN2cptMFDNYu_EA1MjKo2YLun40opr9Wpq6ekfNbkcs22YSVmheExiYOtEgls_AhyyOtwjgwHDmENMDUFwPid68-0S0tOnbnmCY9obMTVwLiSpy4kmhAPvbXlA0pyNrZO51Ek9ZAVMkSzgPyrh8G1cZ4jcpNMcc5DPxHBi7ggDxvANA_LowYdhKAkXgFGv0EpA1fHcknl44-HFm3ROTDunY7FC3XtW4buz3S_mPXL9fv-i3ZAvVNvh2dHr8i9wPwHJt0qB2yWc_m5jV4enX6xqkUJT9uW4f_AlncYS4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrQTlwDdloSAjcaPZbhI7jo-rQlUhteLQlcopchxbXbEk0cZbVI78csbOByxFFYizJ7u28zx-0cy8AXgjtRBO6DzgMsoDmkqFflCHQZ6qZJprg3eOK3A-OU2O5_TDOTvfgnd9LYzPdu9Dkm1Ng1NpKu1BXZiDofDNtSCbBi4TfSoQdEEyweFbsJ0wZOQj2J6ffpx98jJ7eJ658P0QkRlE6HVS2tXO_PmHNu-na6Tzeu7kEEC9C3fWZS2vvsrl8pc76ug-6H51bWrK58na5hP17Tfhx_9d_gO415FYMmtR9xC2dPkIbp90YfrH8H026H2SyhBdIxIcEJdEFou6ajSx_n2TqiSXi5UrYSFlVQY-b142liy-oJtrSIHH41IXxNXAkPqist6mbW6Bg9ZHHIhyIgxydUUOz2bEZbw22jZPYH70_uzwOOiaPQSKcmYDbpBZCBcHZbnSccrQlQgRcWbCkJuQaaqoKWJHAAXSTCZNbBg1SgkqZKF1_BRGOFP9DEiq00jxXFCD364sUTJOI82cbJBCZIZ8DGH_ijPVKaG7hhzLbNBw9huc4QZnfoOzZAxvh2fqVgfkRuu9HjlZ5xOaLHK-kUUJj8bwehjG0-xCNLLU1drZUKSMFFnfGHZboA1_FyfUNQ_AkXQDgoOBUwrfHCkXF14x3Alt8STEee334Po5r5uWsT8g-i9W_fzfzF_AToSMsU2D2oORXa31S2R4Nn_VHeAfdklGvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+epicardial+adipose+tissue+on+virtual+non-contrast+images+derived+from+photon-counting+detector+coronary+CTA+datasets&rft.jtitle=European+radiology&rft.au=Risch%2C+Franka&rft.au=Schwarz%2C+Florian&rft.au=Braun%2C+Franziska&rft.au=Bette%2C+Stefanie&rft.date=2023-04-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=33&rft.issue=4&rft.spage=2450&rft_id=info:doi/10.1007%2Fs00330-022-09257-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon |