Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning

As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framewor...

Full description

Saved in:
Bibliographic Details
Published inNature machine intelligence Vol. 5; no. 8; pp. 884 - 894
Main Authors Yang, Jenny, Soltan, Andrew A. S., Eyre, David W., Clifton, David A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2023
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2522-5839
2522-5839
DOI10.1038/s42256-023-00697-3

Cover

Abstract As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability. The tendency of machine learning algorithms to learn biases from training data calls for methods to mitigate unfairness before deployment to healthcare and other applications. Yang et al. propose a reinforcement-learning-based method for algorithmic bias mitigation and demonstrate it on COVID-19 screening and patient discharge prediction tasks.
AbstractList As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.The tendency of machine learning algorithms to learn biases from training data calls for methods to mitigate unfairness before deployment to healthcare and other applications. Yang et al. propose a reinforcement-learning-based method for algorithmic bias mitigation and demonstrate it on COVID-19 screening and patient discharge prediction tasks.
As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.
As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.
As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability. The tendency of machine learning algorithms to learn biases from training data calls for methods to mitigate unfairness before deployment to healthcare and other applications. Yang et al. propose a reinforcement-learning-based method for algorithmic bias mitigation and demonstrate it on COVID-19 screening and patient discharge prediction tasks.
Author Eyre, David W.
Soltan, Andrew A. S.
Clifton, David A.
Yang, Jenny
Author_xml – sequence: 1
  givenname: Jenny
  orcidid: 0000-0003-0352-8452
  surname: Yang
  fullname: Yang, Jenny
  email: jenny.yang@eng.ox.ac.uk
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
– sequence: 2
  givenname: Andrew A. S.
  orcidid: 0000-0003-2391-5361
  surname: Soltan
  fullname: Soltan, Andrew A. S.
  organization: John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, RDM Division of Cardiovascular Medicine, University of Oxford
– sequence: 3
  givenname: David W.
  orcidid: 0000-0001-5095-6367
  surname: Eyre
  fullname: Eyre, David W.
  organization: Big Data Institute, Nuffield Department of Population Health, University of Oxford
– sequence: 4
  givenname: David A.
  surname: Clifton
  fullname: Clifton, David A.
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford-Suzhou Centre for Advanced Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37615031$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuFDEURC0URMKQH2CBLLFh0-BnP1YoioAgRWIDa-uO-3aPI7c92N1E-XucmcmDLCJWtuRTpXLVa3IUYkBC3nL2kTPZfspKCF1XTMiKsbprKvmCnAgtRKVb2R09uh-T05yvGGOCK6WZekWOZVNzzSQ_IeOZH2Ny82Zylg7gUsCcKYSerh1kOrnZjTC7GOgQE7XeBWfB0wnsxgWkHiEFF0Z6XSxoj7ilCV0orMUJw3wPvCEvB_AZTw_nivz6-uXn-UV1-ePb9_Ozy8qqRs9VI7HhoPhadLXomK6lHVTfgtUcZKs7gbqAPXDEFvha2rZXArnWitd1jYNcEbn3XcIWbq7Be7NNboJ0Yzgzt82ZfXOmNGd2zRlZVJ_3qu2ynrC3JXmCB2UEZ_59CW5jxvinGKriJlRx-HBwSPH3gnk2k8sWvYeAcclGtLppNRdlkBV5_wS9iksKpZVbSnGh6p3hu8eR7rPcTVeAdg_YFHNOOBjr5t1UJaHzz39XPJH-V0eHZnOBw4jpIfYzqr9jQM7L
CitedBy_id crossref_primary_10_3389_frai_2024_1462819
crossref_primary_10_1038_s44259_023_00015_2
crossref_primary_10_1016_j_compbiomed_2024_108781
crossref_primary_10_1136_bmjopen_2024_087588
crossref_primary_10_1016_j_patcog_2024_111264
crossref_primary_10_3389_fpsyg_2024_1395668
crossref_primary_10_1038_s44222_024_00263_5
crossref_primary_10_1016_j_jmoldx_2025_01_005
crossref_primary_10_1177_17562848251321915
crossref_primary_10_1039_D3DD00256J
crossref_primary_10_1038_s41467_024_52618_6
crossref_primary_10_1016_j_measen_2024_101241
crossref_primary_10_1038_s41598_024_64210_5
crossref_primary_10_1080_19427867_2024_2379703
crossref_primary_10_2139_ssrn_3785882
crossref_primary_10_1097_CM9_0000000000003302
crossref_primary_10_3390_electronics13193909
crossref_primary_10_1016_j_hroo_2024_09_010
crossref_primary_10_1007_s10994_023_06481_z
crossref_primary_10_1007_s12597_024_00860_3
crossref_primary_10_1287_mnsc_2022_03888
crossref_primary_10_1007_s40264_024_01505_6
crossref_primary_10_1038_s41591_024_02885_z
crossref_primary_10_1007_s11883_024_01210_w
crossref_primary_10_1016_j_csbj_2023_12_006
crossref_primary_10_1038_s41746_024_01276_5
crossref_primary_10_1007_s44206_024_00142_x
crossref_primary_10_1016_j_jclinepi_2024_111606
crossref_primary_10_1093_ced_llae112
crossref_primary_10_3390_diagnostics15050648
crossref_primary_10_1016_j_imu_2025_101627
crossref_primary_10_2196_55913
crossref_primary_10_1007_s10140_024_02270_w
crossref_primary_10_1038_s41467_025_58055_3
crossref_primary_10_1007_s41666_024_00163_8
crossref_primary_10_3390_electricity4040020
crossref_primary_10_1038_s41467_024_52310_9
crossref_primary_10_1109_ACCESS_2024_3509353
Cites_doi 10.1161/01.CIR.101.23.e215
10.1371/journal.pmed.1001918
10.1038/sdata.2018.178
10.1016/S2589-7500(20)30274-0
10.1136/bmjopen-2019-035635
10.1038/s41591-021-01595-0
10.1056/NEJMsa1507092
10.1007/s10198-017-0891-9
10.1371/journal.pone.0235424
10.1136/bmjopen-2017-018307
10.1007/s10489-020-01637-z
10.1007/BF00115009
10.1096/fj.202001700RR
10.1016/j.amjcard.2010.06.014
10.1038/s41746-020-0304-9
10.1038/s41746-022-00614-9
10.1136/eb-2014-101946
10.11613/BM.2013.003
10.1038/s41746-023-00805-y
10.48550/arXiv.1701.07274
10.1109/ADPRL.2011.5967372
10.1609/aaai.v30i1.10295
10.48550/arXiv.2205.12070
10.48550/arXiv.1807.00199
10.1145/3178876.3186133
10.48550/arXiv.1707.00075
10.12688/wellcomeopenres.16342.1
10.1109/IJCNN.2018.8489066
10.5281/zenodo.8083841
10.24433/CO.0541626.v1
10.1145/2090236.2090255
10.1016/S2589-7500(21)00272-7
10.1145/3278721.3278779
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s42256-023-00697-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Computer Science Database
CrossRef
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-5839
EndPage 894
ExternalDocumentID 10.1038/s42256-023-00697-3
PMC10442224
37615031
10_1038_s42256_023_00697_3
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust (Wellcome)
  grantid: 0009350
  funderid: 100004440
– fundername: European Union’s Horizon 2020 research and innovation programme (Grant agreement: 955681, MOIRA)
– fundername: Oxford National Institute of Research (NIHR) Biomedical Research Campus (BRC) (Award: ACF-2020-13-015)
– fundername: Robertson Foundation Fellowship
– fundername: Wellcome Trust
– fundername: ;
– fundername: ;
  grantid: 0009350
GroupedDBID 0R~
88I
AAEEF
AARCD
AAYZH
ABJNI
ABUWG
ACBWK
ADBBV
AFKRA
AFSHS
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
C6C
CCPQU
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
K7-
M2P
NNMJJ
ODYON
RNT
SIXXV
SNYQT
SOJ
TBHMF
AAYXX
AFANA
ATHPR
CITATION
NFIDA
O9-
PHGZM
PHGZT
PQGLB
PUEGO
NPM
3V.
7SC
7XB
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
AGSTI
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-73e71a41b296290563cf4d8ac51a38592e5c47da1ee8a1b3c8d42e15541666ef3
IEDL.DBID C6C
ISSN 2522-5839
IngestDate Sun Oct 26 04:14:54 EDT 2025
Tue Sep 30 17:12:04 EDT 2025
Thu Oct 02 16:57:22 EDT 2025
Wed Jul 16 16:39:35 EDT 2025
Mon Jul 21 05:43:25 EDT 2025
Wed Oct 01 01:51:49 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Translational research
Medical ethics
Diagnosis
Language English
License The Author(s) 2023.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-73e71a41b296290563cf4d8ac51a38592e5c47da1ee8a1b3c8d42e15541666ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2391-5361
0000-0001-5095-6367
0000-0003-0352-8452
OpenAccessLink https://doi.org/10.1038%2Fs42256-023-00697-3
PMID 37615031
PQID 2854124624
PQPubID 5342773
PageCount 11
ParticipantIDs unpaywall_primary_10_1038_s42256_023_00697_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10442224
proquest_miscellaneous_2857851258
proquest_journals_2854124624
pubmed_primary_37615031
crossref_citationtrail_10_1038_s42256_023_00697_3
crossref_primary_10_1038_s42256_023_00697_3
springer_journals_10_1038_s42256_023_00697_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Basingstoke
PublicationTitle Nature machine intelligence
PublicationTitleAbbrev Nat Mach Intell
PublicationTitleAlternate Nat Mach Intell
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Dong (CR18) 2020; 10
Bradley (CR14) 2010; 106
Oh (CR13) 2015; 12
CR16
Yang, Soltan, Clifton (CR19) 2022; 5
CR38
Yang, Soltan, Eyre, Yang, Clifton (CR3) 2023; 6
CR37
CR36
CR35
Miller (CR39) 2020; 34
Manrai (CR12) 2016; 375
CR34
Goldberger (CR32) 2000; 101
Smith, Noble (CR9) 2014; 17
CR10
Sheikhalishahi, Balaraman, Osmani (CR28) 2020; 15
Seyyed-Kalantari, Zhang, McDermott, Chen, Ghassemi (CR1) 2021; 27
Alston, Peterson, Jacobs, Allender, Nichols (CR15) 2017; 7
Pollard (CR31) 2018; 5
Ali, Salehnejad, Mansur (CR17) 2018; 19
CR4
CR6
CR5
Simundic (CR8) 2013; 23
CR7
Lin, Chen, Qi (CR25) 2020; 50
Chen, Szolovits, Ghassemi (CR11) 2019; 21
CR27
CR26
Soltan (CR30) 2021; 3
Mehrabi, Morstatter, Saxena, Lerman, Galstyan (CR2) 2021; 54
CR24
CR23
CR22
CR21
CR20
CR41
CR40
Paulus, Kent (CR29) 2020; 3
Sutton (CR33) 1988; 3
697_CR41
697_CR40
J Smith (697_CR9) 2014; 17
697_CR27
N Mehrabi (697_CR2) 2021; 54
697_CR26
697_CR24
697_CR23
697_CR22
697_CR21
697_CR20
IY Chen (697_CR11) 2019; 21
SS Oh (697_CR13) 2015; 12
JK Paulus (697_CR29) 2020; 3
AK Manrai (697_CR12) 2016; 375
S Sheikhalishahi (697_CR28) 2020; 15
EH Bradley (697_CR14) 2010; 106
E Lin (697_CR25) 2020; 50
L Alston (697_CR15) 2017; 7
L Seyyed-Kalantari (697_CR1) 2021; 27
M Ali (697_CR17) 2018; 19
697_CR16
697_CR38
AL Goldberger (697_CR32) 2000; 101
697_CR37
697_CR36
697_CR35
E Dong (697_CR18) 2020; 10
697_CR34
TJ Pollard (697_CR31) 2018; 5
697_CR10
AM Simundic (697_CR8) 2013; 23
J Yang (697_CR3) 2023; 6
AA Soltan (697_CR30) 2021; 3
697_CR7
697_CR6
697_CR5
697_CR4
J Yang (697_CR19) 2022; 5
RS Sutton (697_CR33) 1988; 3
TE Miller (697_CR39) 2020; 34
References_xml – ident: CR22
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: CR32
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 12
  start-page: e1001918
  year: 2015
  ident: CR13
  article-title: Diversity in clinical and biomedical research: a promise yet to be fulfilled
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001918
– volume: 5
  start-page: 180178
  year: 2018
  ident: CR31
  article-title: The eICU Collaborative Research Database, a freely available multi-center database for critical care research
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.178
– ident: CR4
– ident: CR16
– volume: 3
  start-page: e78
  year: 2021
  end-page: e87
  ident: CR30
  article-title: Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30274-0
– ident: CR37
– ident: CR10
– volume: 10
  start-page: e035635
  year: 2020
  ident: CR18
  article-title: Differences in regional distribution and inequality in health-resource allocation at hospital and primary health centre levels: a longitudinal study in Shanghai, China
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-035635
– volume: 27
  start-page: 2176
  year: 2021
  end-page: 2182
  ident: CR1
  article-title: Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01595-0
– volume: 375
  start-page: 655
  year: 2016
  end-page: 665
  ident: CR12
  article-title: Genetic misdiagnoses and the potential for health disparities
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa1507092
– volume: 19
  start-page: 385
  year: 2018
  end-page: 408
  ident: CR17
  article-title: Hospital heterogeneity: what drives the quality of health care
  publication-title: Eur. J. Health Econ.
  doi: 10.1007/s10198-017-0891-9
– volume: 15
  start-page: e0235424
  year: 2020
  ident: CR28
  article-title: Benchmarking machine learning models on multi-centre eICU critical care dataset
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0235424
– ident: CR35
– ident: CR6
– volume: 7
  start-page: e018307
  year: 2017
  ident: CR15
  article-title: Quantifying the role of modifiable risk factors in the differences in cardiovascular disease mortality rates between metropolitan and rural populations in Australia: a macrosimulation modelling study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-018307
– ident: CR40
– ident: CR27
– volume: 50
  start-page: 2488
  year: 2020
  end-page: 2502
  ident: CR25
  article-title: Deep reinforcement learning for imbalanced classification
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01637-z
– ident: CR23
– volume: 3
  start-page: 9
  year: 1988
  end-page: 44
  ident: CR33
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Mach. Learn.
  doi: 10.1007/BF00115009
– volume: 34
  start-page: 13877
  year: 2020
  end-page: 13884
  ident: CR39
  article-title: Clinical sensitivity and interpretation of PCR and serological COVID-19 diagnostics for patients presenting to the hospital
  publication-title: FASEB J.
  doi: 10.1096/fj.202001700RR
– ident: CR21
– volume: 21
  start-page: 167
  year: 2019
  end-page: 179
  ident: CR11
  article-title: Can AI help reduce disparities in general medical and mental health care?
  publication-title: Am. Med. Assoc. J. Ethics
– volume: 106
  start-page: 1108
  year: 2010
  end-page: 1112
  ident: CR14
  article-title: Variation in hospital mortality rates for patients with acute myocardial infarction
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2010.06.014
– ident: CR38
– volume: 3
  start-page: 99
  year: 2020
  ident: CR29
  article-title: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-0304-9
– volume: 5
  start-page: 69
  year: 2022
  ident: CR19
  article-title: Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-022-00614-9
– ident: CR34
– ident: CR36
– volume: 17
  start-page: 100
  year: 2014
  end-page: 101
  ident: CR9
  article-title: Bias in research
  publication-title: Evidence-Based Nurs.
  doi: 10.1136/eb-2014-101946
– volume: 54
  start-page: 115
  year: 2021
  ident: CR2
  article-title: A survey on bias and fairness in machine learning
  publication-title: ACM Comput. Surv.
– ident: CR5
– ident: CR7
– volume: 23
  start-page: 12
  year: 2013
  end-page: 15
  ident: CR8
  article-title: Bias in research
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2013.003
– ident: CR41
– ident: CR26
– volume: 6
  year: 2023
  ident: CR3
  article-title: An adversarial training framework for mitigating algorithmic biases in clinical machine learning
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-023-00805-y
– ident: CR24
– ident: CR20
– ident: 697_CR23
  doi: 10.48550/arXiv.1701.07274
– volume: 19
  start-page: 385
  year: 2018
  ident: 697_CR17
  publication-title: Eur. J. Health Econ.
  doi: 10.1007/s10198-017-0891-9
– volume: 27
  start-page: 2176
  year: 2021
  ident: 697_CR1
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01595-0
– ident: 697_CR24
  doi: 10.1109/ADPRL.2011.5967372
– ident: 697_CR36
  doi: 10.1609/aaai.v30i1.10295
– volume: 23
  start-page: 12
  year: 2013
  ident: 697_CR8
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2013.003
– ident: 697_CR26
  doi: 10.48550/arXiv.2205.12070
– volume: 21
  start-page: 167
  year: 2019
  ident: 697_CR11
  publication-title: Am. Med. Assoc. J. Ethics
– volume: 375
  start-page: 655
  year: 2016
  ident: 697_CR12
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa1507092
– ident: 697_CR21
  doi: 10.48550/arXiv.1807.00199
– ident: 697_CR34
– ident: 697_CR5
  doi: 10.1145/3178876.3186133
– ident: 697_CR16
– ident: 697_CR20
  doi: 10.48550/arXiv.1707.00075
– ident: 697_CR38
  doi: 10.12688/wellcomeopenres.16342.1
– volume: 101
  start-page: e215
  year: 2000
  ident: 697_CR32
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 17
  start-page: 100
  year: 2014
  ident: 697_CR9
  publication-title: Evidence-Based Nurs.
  doi: 10.1136/eb-2014-101946
– ident: 697_CR37
  doi: 10.1109/IJCNN.2018.8489066
– volume: 3
  start-page: 99
  year: 2020
  ident: 697_CR29
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-0304-9
– ident: 697_CR41
  doi: 10.5281/zenodo.8083841
– ident: 697_CR22
– volume: 50
  start-page: 2488
  year: 2020
  ident: 697_CR25
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01637-z
– volume: 54
  start-page: 115
  year: 2021
  ident: 697_CR2
  publication-title: ACM Comput. Surv.
– volume: 106
  start-page: 1108
  year: 2010
  ident: 697_CR14
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2010.06.014
– ident: 697_CR40
  doi: 10.24433/CO.0541626.v1
– volume: 15
  start-page: e0235424
  year: 2020
  ident: 697_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0235424
– volume: 3
  start-page: 9
  year: 1988
  ident: 697_CR33
  publication-title: Mach. Learn.
  doi: 10.1007/BF00115009
– ident: 697_CR10
– volume: 34
  start-page: 13877
  year: 2020
  ident: 697_CR39
  publication-title: FASEB J.
  doi: 10.1096/fj.202001700RR
– ident: 697_CR35
– volume: 7
  start-page: e018307
  year: 2017
  ident: 697_CR15
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-018307
– ident: 697_CR4
  doi: 10.1145/2090236.2090255
– volume: 6
  year: 2023
  ident: 697_CR3
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-023-00805-y
– volume: 10
  start-page: e035635
  year: 2020
  ident: 697_CR18
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-035635
– ident: 697_CR27
  doi: 10.1016/S2589-7500(21)00272-7
– volume: 3
  start-page: e78
  year: 2021
  ident: 697_CR30
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30274-0
– ident: 697_CR7
– volume: 5
  start-page: 69
  year: 2022
  ident: 697_CR19
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-022-00614-9
– volume: 5
  start-page: 180178
  year: 2018
  ident: 697_CR31
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.178
– ident: 697_CR6
  doi: 10.1145/3278721.3278779
– volume: 12
  start-page: e1001918
  year: 2015
  ident: 697_CR13
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001918
SSID ssj0002144504
Score 2.5087204
Snippet As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 884
SubjectTerms 692/308/575
692/700/139
692/700/3935
Algorithms
Artificial intelligence
Bias
Classification
COVID-19
Data acquisition
Data collection
Deep learning
Demography
Electronic health records
Emergency medical services
Engineering
Ethnicity
Health care
Hospitals
Machine learning
Methods
Patients
Recidivism
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_O3oP6IIpf0VNW8M0L12R3m82DyCl3HIJFxIN7C5PNtFdo03ptEf97ZzYfZzkovgUy-djM7O4v8_EbgPf8X4wobVLRDjE2dpLEWA4ptn6k9cTm5AI7_7fx6OLSfL2yVwcw7mphJK2yWxPDQl0tvfjIT6TSj_eiUWo-rX7F0jVKoqtdCw1sWytUHwPF2D04TIUZawCHn8_G33_0XhchCLND01bPDLU7WRu2aMnD1bGw9vKM292h7sDOu9mTfQj1Idzf1iv88xvn8392qfPH8KiFl-q0sYcncED1U5iezqc8lM31YuaVBHBkeVNYV6qc4VotZg3PxrJWjGBVVyupFiHPklTbWGKqxGerKqKVuqFAuOqDb7EXeAaX52c_v1zEbYOF2JvMbuJMU5agSco0H6U5QyHtJ6Zy6G2C2tk8JcuCFSZEDpNSe1eZlASBSLCRJvo5DOplTS9BsS1gZsuM4Y03SFIw6_jA5loj3z2LIOk-auFb9nFpgjEvQhRcu6JRRMGKKIIiCh3Bh_6aVcO9sVf6qNNV0c7DdXFrNRG860_zDJKwCNa03AaZjHFnal0ELxrV9o_j5ZcRs04icDtK7wWEnXv3TD27Dizd_J8r7jV-8HFnH7fvtW8Yx70N_ceoX-0f9Wt4kAbTlozFIxhsbrb0hlHUpnzbTo2_cuMZhg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gF4YEN8BcZkJN5YShPbifNYoU3TpE08UDGeoovjdNHatGpTIfjrOTsfUDZN21skn-PYOds_--5-B_CRzsWINk0qyhH6QhaBj9nI-FJHnBcyMcqx859fRKcTcXYpL3cg6mJhnNO-o7R0y3TnHfZ5LUjxrLss9y25Lk2M4TIvHsFuJAmDD2B3cvF1_MNmkpP2dEXbfhshM-Lqlsrbu9ANaHnTQ7I3kz6Fx5tqib9-4mz2z050sgffuz40DijXw02dDfXv_-gdH97JfXjWglM2biSfw46pXsB0PJsuVmV9NS81s-YfuzgyrHKWlbhm87Jh6VhUjPAv6yIt2dx5aRrWpqWYMnvjy3JjlmxlHF2rdjeTvcBLmJwcf_ty6rfpGXwtYln7MTdxgCLIwiQKEwJSXBciV6hlgFzJJDSSBHMMjFEYZFyrXITG4hdrqjQFfwWDalGZN8BIkzCWWUzgSAs0NtxW0YNMOEd6e-xB0P2uVLfc5TaFxix1NnSu0mboUhq61A1dyj341NdZNswdd0ofdFqQtrN4ndroUsI_USg8-NAX0_yzRhWszGLjZGJCraFUHrxulKZvjhZvwts88EBtqVMvYLm9t0uq8spxfNMp2V7OUcNHneb9_a67unHUa-c9ev32YeLv4EnolNP6Px7AoF5tzHvCZHV22E7APyPtMFc
  priority: 102
  providerName: Unpaywall
Title Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
URI https://link.springer.com/article/10.1038/s42256-023-00697-3
https://www.ncbi.nlm.nih.gov/pubmed/37615031
https://www.proquest.com/docview/2854124624
https://www.proquest.com/docview/2857851258
https://pubmed.ncbi.nlm.nih.gov/PMC10442224
https://www.nature.com/articles/s42256-023-00697-3.pdf
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2522-5839
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002144504
  issn: 2522-5839
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_68bD2oWzt2rlrgwZ9a8xiS7Llxyw0K4OFUhronsxZVtJA4oQmYey_30n-WEOgdG82OkmW72T_pNP9DuCK1sWINk0qyg76Qo4CH7OO8aWOOB_JxCjHzv9zEN0OxY9H-bgD7ToWZsN_76i7l4JMzh6U5b6l1aUpsQv7igzT5ivoRb1mR8WSf8mOqCJjqPLX7aqbf58tSLl9MrJxjx7Cu3WxwD-_cTp98Qfqv4ejCjqybqnrD7BjimM4fEEoeALj7nQ8p-X-02yimXXV2A8ZwyJn2QSXbDYpGTXmBSOsyuqoSDZzJyoNq1JIjJndnWW5MQv2bBy1qna7iI3ARxj2bx56t36VSsHXIpYrP-YmDlAEWZhEYUKgh-uRyBVqGSBXMgmNJMEcA2MUBhnXKhehsVjDuhXNiJ_CXjEvzCdgpHWMZRYTkNECjQ2NVXQhE86RWo89COpXnOqKZ9ymu5imzt_NVVqqJSW1pE4tKffguqmzKFk2XpW-qDWXVjNumdpIUMIqUSg8-NIU01yxDhAszHztZGJCmKFUHpyVim66ow8tYWMeeKA2TKARsDzcmyXF5MnxcdOK1m6kUcft2lr-Pddrw2g3FvWGUZ__X-uf4SB0hm_PKl7A3up5bS4JP62yFuyq_vcW7H-7Gdzdt9wkorvh4K776y8nmxUK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IBCPGgosEpyo1di7G68PFSrQKqVthFAr9WbG600aKXFCk6jqn-O3MbOxXaJKEZfeLHn82J2Z3dl5fAPwgc7FiNwmFXULQ6V7UYh5y4XatqXs6dQZj85_2m13ztX3C32xBn_qWhhOq6zXRL9QF2PLPvJdrvSjvagdq8-T3yF3jeLoat1CA6vWCsWehxirCjuO3c01HeGme0ffiN8f4_jw4OxrJ6y6DIRWJXoWJtIlEaooj9N2nJI9IG1PFQatjlAancZOE2GBkXMGo1xaU6jY8TbMETfXk_TeB7ChpErp8Lfx5aD742fj5WFAMt1SVbVOS5rdqSIN4rxfGTJKMGn48o54x8y9m63ZhGwfwea8nODNNQ6H_-yKh0_gcWXOiv2F_D2FNVc-g_7-sE9TN7scDazggBEvpwLLQuQDnIrRYIHrMS4FWcyirs0UI5_X6UTVyKIv2EcsCucm4sp5gFfrfZkNwXM4v5epfgHr5bh0WyBI9jDReULmlFXouEDX0IVOpUR6exJAVE9qZiu0c266Mcx81F2abMGIjBiReUZkMoBPzTOTBdbHSurtmldZpffT7FZKA3jf3CaN5TAMlm489zQJ2bmxNgG8XLC2-Rwt92ShyygAs8T0hoDRwJfvlINLjwpO52p259GHd2r5uP2vVcPYaWToP0b9avWo38Fm5-z0JDs56h6_hoexF3POltyG9dnV3L0hC26Wv63URMCv-9bMv6wfVY4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7mEDACBtgJHhiUZvYbpyHCU0bZWMw8cCkvRnHcbpKbVrWVtP-Nf467pyPrZpU8bK3SLl82Hdnn-_jdwAf8FxsDLVJNbJrQiGLKDRZ14XS9jgvZOqUR-f_cdo7OhPfzuX5GvxtamEorbJZE_1CnU8s-cg7VOmHe1EvFp2iTov4edj_PP0TUgcpirQ27TQqETlx11d4fJvtHR8irz_Gcf_Lr4OjsO4wEFqRyHmYcJdERkRZnPbiFG0BbguRK2NlZLiSaewkEuYmck6ZKONW5SJ2tAVTtM0VHN_7AB4mhOJOVer9r61_h6DIZFfUdTpdrjozgbpDGb88JHxg1O3lvfCOgXs3T7MN1m7A40U5NddXZjS6tR_2n8Jmbciy_UrynsGaK5_DYH80wImaX4yHllGoiBZSZsqcZUMzY-NhhegxKRnayqypymRjn9HpWN3CYsDIO8xy56bs0nloV-u9mC3BCzi7l4l-CevlpHSvgKHUmURmCRpSVhhHpbkKL2TKucG3JwFEzaRqW-OcU7uNkfbxdq50xQiNjNCeEZoH8Kl9ZlqhfKyk3ml4pWuNn-kb-QzgfXsbdZUCMKZ0k4WnSdDCjaUKYKtibfs5XOjRNudRAGqJ6S0B4YAv3ymHFx4PHE_U5MjDD-828nHzX6uGsdvK0H-M-vXqUb-DR6iP-vvx6ck2PIm9lFOa5A6szy8X7g2abvPsrdcRBr_vWyn_AUnzUyg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gF4YEN8BcZkJN5YShPbifNYoU3TpE08UDGeoovjdNHatGpTIfjrOTsfUDZN21skn-PYOds_--5-B_CRzsWINk0qyhH6QhaBj9nI-FJHnBcyMcqx859fRKcTcXYpL3cg6mJhnNO-o7R0y3TnHfZ5LUjxrLss9y25Lk2M4TIvHsFuJAmDD2B3cvF1_MNmkpP2dEXbfhshM-Lqlsrbu9ANaHnTQ7I3kz6Fx5tqib9-4mz2z050sgffuz40DijXw02dDfXv_-gdH97JfXjWglM2biSfw46pXsB0PJsuVmV9NS81s-YfuzgyrHKWlbhm87Jh6VhUjPAv6yIt2dx5aRrWpqWYMnvjy3JjlmxlHF2rdjeTvcBLmJwcf_ty6rfpGXwtYln7MTdxgCLIwiQKEwJSXBciV6hlgFzJJDSSBHMMjFEYZFyrXITG4hdrqjQFfwWDalGZN8BIkzCWWUzgSAs0NtxW0YNMOEd6e-xB0P2uVLfc5TaFxix1NnSu0mboUhq61A1dyj341NdZNswdd0ofdFqQtrN4ndroUsI_USg8-NAX0_yzRhWszGLjZGJCraFUHrxulKZvjhZvwts88EBtqVMvYLm9t0uq8spxfNMp2V7OUcNHneb9_a67unHUa-c9ev32YeLv4EnolNP6Px7AoF5tzHvCZHV22E7APyPtMFc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+fairness+and+bias+mitigation+for+clinical+machine+learning+with+deep+reinforcement+learning&rft.jtitle=Nature+machine+intelligence&rft.au=Yang%2C+Jenny&rft.au=Soltan%2C+Andrew+A.+S.&rft.au=Eyre%2C+David+W.&rft.au=Clifton%2C+David+A.&rft.date=2023-08-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2522-5839&rft.volume=5&rft.issue=8&rft.spage=884&rft.epage=894&rft_id=info:doi/10.1038%2Fs42256-023-00697-3&rft.externalDocID=10_1038_s42256_023_00697_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon