Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framewor...
Saved in:
| Published in | Nature machine intelligence Vol. 5; no. 8; pp. 884 - 894 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.08.2023
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2522-5839 2522-5839 |
| DOI | 10.1038/s42256-023-00697-3 |
Cover
| Abstract | As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.
The tendency of machine learning algorithms to learn biases from training data calls for methods to mitigate unfairness before deployment to healthcare and other applications. Yang et al. propose a reinforcement-learning-based method for algorithmic bias mitigation and demonstrate it on COVID-19 screening and patient discharge prediction tasks. |
|---|---|
| AbstractList | As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.The tendency of machine learning algorithms to learn biases from training data calls for methods to mitigate unfairness before deployment to healthcare and other applications. Yang et al. propose a reinforcement-learning-based method for algorithmic bias mitigation and demonstrate it on COVID-19 screening and patient discharge prediction tasks. As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability. As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability. As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability. The tendency of machine learning algorithms to learn biases from training data calls for methods to mitigate unfairness before deployment to healthcare and other applications. Yang et al. propose a reinforcement-learning-based method for algorithmic bias mitigation and demonstrate it on COVID-19 screening and patient discharge prediction tasks. |
| Author | Eyre, David W. Soltan, Andrew A. S. Clifton, David A. Yang, Jenny |
| Author_xml | – sequence: 1 givenname: Jenny orcidid: 0000-0003-0352-8452 surname: Yang fullname: Yang, Jenny email: jenny.yang@eng.ox.ac.uk organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford – sequence: 2 givenname: Andrew A. S. orcidid: 0000-0003-2391-5361 surname: Soltan fullname: Soltan, Andrew A. S. organization: John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, RDM Division of Cardiovascular Medicine, University of Oxford – sequence: 3 givenname: David W. orcidid: 0000-0001-5095-6367 surname: Eyre fullname: Eyre, David W. organization: Big Data Institute, Nuffield Department of Population Health, University of Oxford – sequence: 4 givenname: David A. surname: Clifton fullname: Clifton, David A. organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford-Suzhou Centre for Advanced Research |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37615031$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctuFDEURC0URMKQH2CBLLFh0-BnP1YoioAgRWIDa-uO-3aPI7c92N1E-XucmcmDLCJWtuRTpXLVa3IUYkBC3nL2kTPZfspKCF1XTMiKsbprKvmCnAgtRKVb2R09uh-T05yvGGOCK6WZekWOZVNzzSQ_IeOZH2Ny82Zylg7gUsCcKYSerh1kOrnZjTC7GOgQE7XeBWfB0wnsxgWkHiEFF0Z6XSxoj7ilCV0orMUJw3wPvCEvB_AZTw_nivz6-uXn-UV1-ePb9_Ozy8qqRs9VI7HhoPhadLXomK6lHVTfgtUcZKs7gbqAPXDEFvha2rZXArnWitd1jYNcEbn3XcIWbq7Be7NNboJ0Yzgzt82ZfXOmNGd2zRlZVJ_3qu2ynrC3JXmCB2UEZ_59CW5jxvinGKriJlRx-HBwSPH3gnk2k8sWvYeAcclGtLppNRdlkBV5_wS9iksKpZVbSnGh6p3hu8eR7rPcTVeAdg_YFHNOOBjr5t1UJaHzz39XPJH-V0eHZnOBw4jpIfYzqr9jQM7L |
| CitedBy_id | crossref_primary_10_3389_frai_2024_1462819 crossref_primary_10_1038_s44259_023_00015_2 crossref_primary_10_1016_j_compbiomed_2024_108781 crossref_primary_10_1136_bmjopen_2024_087588 crossref_primary_10_1016_j_patcog_2024_111264 crossref_primary_10_3389_fpsyg_2024_1395668 crossref_primary_10_1038_s44222_024_00263_5 crossref_primary_10_1016_j_jmoldx_2025_01_005 crossref_primary_10_1177_17562848251321915 crossref_primary_10_1039_D3DD00256J crossref_primary_10_1038_s41467_024_52618_6 crossref_primary_10_1016_j_measen_2024_101241 crossref_primary_10_1038_s41598_024_64210_5 crossref_primary_10_1080_19427867_2024_2379703 crossref_primary_10_2139_ssrn_3785882 crossref_primary_10_1097_CM9_0000000000003302 crossref_primary_10_3390_electronics13193909 crossref_primary_10_1016_j_hroo_2024_09_010 crossref_primary_10_1007_s10994_023_06481_z crossref_primary_10_1007_s12597_024_00860_3 crossref_primary_10_1287_mnsc_2022_03888 crossref_primary_10_1007_s40264_024_01505_6 crossref_primary_10_1038_s41591_024_02885_z crossref_primary_10_1007_s11883_024_01210_w crossref_primary_10_1016_j_csbj_2023_12_006 crossref_primary_10_1038_s41746_024_01276_5 crossref_primary_10_1007_s44206_024_00142_x crossref_primary_10_1016_j_jclinepi_2024_111606 crossref_primary_10_1093_ced_llae112 crossref_primary_10_3390_diagnostics15050648 crossref_primary_10_1016_j_imu_2025_101627 crossref_primary_10_2196_55913 crossref_primary_10_1007_s10140_024_02270_w crossref_primary_10_1038_s41467_025_58055_3 crossref_primary_10_1007_s41666_024_00163_8 crossref_primary_10_3390_electricity4040020 crossref_primary_10_1038_s41467_024_52310_9 crossref_primary_10_1109_ACCESS_2024_3509353 |
| Cites_doi | 10.1161/01.CIR.101.23.e215 10.1371/journal.pmed.1001918 10.1038/sdata.2018.178 10.1016/S2589-7500(20)30274-0 10.1136/bmjopen-2019-035635 10.1038/s41591-021-01595-0 10.1056/NEJMsa1507092 10.1007/s10198-017-0891-9 10.1371/journal.pone.0235424 10.1136/bmjopen-2017-018307 10.1007/s10489-020-01637-z 10.1007/BF00115009 10.1096/fj.202001700RR 10.1016/j.amjcard.2010.06.014 10.1038/s41746-020-0304-9 10.1038/s41746-022-00614-9 10.1136/eb-2014-101946 10.11613/BM.2013.003 10.1038/s41746-023-00805-y 10.48550/arXiv.1701.07274 10.1109/ADPRL.2011.5967372 10.1609/aaai.v30i1.10295 10.48550/arXiv.2205.12070 10.48550/arXiv.1807.00199 10.1145/3178876.3186133 10.48550/arXiv.1707.00075 10.12688/wellcomeopenres.16342.1 10.1109/IJCNN.2018.8489066 10.5281/zenodo.8083841 10.24433/CO.0541626.v1 10.1145/2090236.2090255 10.1016/S2589-7500(21)00272-7 10.1145/3278721.3278779 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7SC 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s42256-023-00697-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Computer Science Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2522-5839 |
| EndPage | 894 |
| ExternalDocumentID | 10.1038/s42256-023-00697-3 PMC10442224 37615031 10_1038_s42256_023_00697_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust (Wellcome) grantid: 0009350 funderid: 100004440 – fundername: European Union’s Horizon 2020 research and innovation programme (Grant agreement: 955681, MOIRA) – fundername: Oxford National Institute of Research (NIHR) Biomedical Research Campus (BRC) (Award: ACF-2020-13-015) – fundername: Robertson Foundation Fellowship – fundername: Wellcome Trust – fundername: ; – fundername: ; grantid: 0009350 |
| GroupedDBID | 0R~ 88I AAEEF AARCD AAYZH ABJNI ABUWG ACBWK ADBBV AFKRA AFSHS AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ C6C CCPQU DWQXO EBS EJD FSGXE GNUQQ HCIFZ K7- M2P NNMJJ ODYON RNT SIXXV SNYQT SOJ TBHMF AAYXX AFANA ATHPR CITATION NFIDA O9- PHGZM PHGZT PQGLB PUEGO NPM 3V. 7SC 7XB 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI Q9U 7X8 AGSTI 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-73e71a41b296290563cf4d8ac51a38592e5c47da1ee8a1b3c8d42e15541666ef3 |
| IEDL.DBID | C6C |
| ISSN | 2522-5839 |
| IngestDate | Sun Oct 26 04:14:54 EDT 2025 Tue Sep 30 17:12:04 EDT 2025 Thu Oct 02 16:57:22 EDT 2025 Wed Jul 16 16:39:35 EDT 2025 Mon Jul 21 05:43:25 EDT 2025 Wed Oct 01 01:51:49 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 Fri Feb 21 02:37:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Translational research Medical ethics Diagnosis |
| Language | English |
| License | The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-73e71a41b296290563cf4d8ac51a38592e5c47da1ee8a1b3c8d42e15541666ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2391-5361 0000-0001-5095-6367 0000-0003-0352-8452 |
| OpenAccessLink | https://doi.org/10.1038%2Fs42256-023-00697-3 |
| PMID | 37615031 |
| PQID | 2854124624 |
| PQPubID | 5342773 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1038_s42256_023_00697_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10442224 proquest_miscellaneous_2857851258 proquest_journals_2854124624 pubmed_primary_37615031 crossref_citationtrail_10_1038_s42256_023_00697_3 crossref_primary_10_1038_s42256_023_00697_3 springer_journals_10_1038_s42256_023_00697_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: Basingstoke |
| PublicationTitle | Nature machine intelligence |
| PublicationTitleAbbrev | Nat Mach Intell |
| PublicationTitleAlternate | Nat Mach Intell |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Dong (CR18) 2020; 10 Bradley (CR14) 2010; 106 Oh (CR13) 2015; 12 CR16 Yang, Soltan, Clifton (CR19) 2022; 5 CR38 Yang, Soltan, Eyre, Yang, Clifton (CR3) 2023; 6 CR37 CR36 CR35 Miller (CR39) 2020; 34 Manrai (CR12) 2016; 375 CR34 Goldberger (CR32) 2000; 101 Smith, Noble (CR9) 2014; 17 CR10 Sheikhalishahi, Balaraman, Osmani (CR28) 2020; 15 Seyyed-Kalantari, Zhang, McDermott, Chen, Ghassemi (CR1) 2021; 27 Alston, Peterson, Jacobs, Allender, Nichols (CR15) 2017; 7 Pollard (CR31) 2018; 5 Ali, Salehnejad, Mansur (CR17) 2018; 19 CR4 CR6 CR5 Simundic (CR8) 2013; 23 CR7 Lin, Chen, Qi (CR25) 2020; 50 Chen, Szolovits, Ghassemi (CR11) 2019; 21 CR27 CR26 Soltan (CR30) 2021; 3 Mehrabi, Morstatter, Saxena, Lerman, Galstyan (CR2) 2021; 54 CR24 CR23 CR22 CR21 CR20 CR41 CR40 Paulus, Kent (CR29) 2020; 3 Sutton (CR33) 1988; 3 697_CR41 697_CR40 J Smith (697_CR9) 2014; 17 697_CR27 N Mehrabi (697_CR2) 2021; 54 697_CR26 697_CR24 697_CR23 697_CR22 697_CR21 697_CR20 IY Chen (697_CR11) 2019; 21 SS Oh (697_CR13) 2015; 12 JK Paulus (697_CR29) 2020; 3 AK Manrai (697_CR12) 2016; 375 S Sheikhalishahi (697_CR28) 2020; 15 EH Bradley (697_CR14) 2010; 106 E Lin (697_CR25) 2020; 50 L Alston (697_CR15) 2017; 7 L Seyyed-Kalantari (697_CR1) 2021; 27 M Ali (697_CR17) 2018; 19 697_CR16 697_CR38 AL Goldberger (697_CR32) 2000; 101 697_CR37 697_CR36 697_CR35 E Dong (697_CR18) 2020; 10 697_CR34 TJ Pollard (697_CR31) 2018; 5 697_CR10 AM Simundic (697_CR8) 2013; 23 J Yang (697_CR3) 2023; 6 AA Soltan (697_CR30) 2021; 3 697_CR7 697_CR6 697_CR5 697_CR4 J Yang (697_CR19) 2022; 5 RS Sutton (697_CR33) 1988; 3 TE Miller (697_CR39) 2020; 34 |
| References_xml | – ident: CR22 – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: CR32 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 12 start-page: e1001918 year: 2015 ident: CR13 article-title: Diversity in clinical and biomedical research: a promise yet to be fulfilled publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001918 – volume: 5 start-page: 180178 year: 2018 ident: CR31 article-title: The eICU Collaborative Research Database, a freely available multi-center database for critical care research publication-title: Sci. Data doi: 10.1038/sdata.2018.178 – ident: CR4 – ident: CR16 – volume: 3 start-page: e78 year: 2021 end-page: e87 ident: CR30 article-title: Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30274-0 – ident: CR37 – ident: CR10 – volume: 10 start-page: e035635 year: 2020 ident: CR18 article-title: Differences in regional distribution and inequality in health-resource allocation at hospital and primary health centre levels: a longitudinal study in Shanghai, China publication-title: BMJ Open doi: 10.1136/bmjopen-2019-035635 – volume: 27 start-page: 2176 year: 2021 end-page: 2182 ident: CR1 article-title: Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations publication-title: Nat. Med. doi: 10.1038/s41591-021-01595-0 – volume: 375 start-page: 655 year: 2016 end-page: 665 ident: CR12 article-title: Genetic misdiagnoses and the potential for health disparities publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa1507092 – volume: 19 start-page: 385 year: 2018 end-page: 408 ident: CR17 article-title: Hospital heterogeneity: what drives the quality of health care publication-title: Eur. J. Health Econ. doi: 10.1007/s10198-017-0891-9 – volume: 15 start-page: e0235424 year: 2020 ident: CR28 article-title: Benchmarking machine learning models on multi-centre eICU critical care dataset publication-title: PLoS ONE doi: 10.1371/journal.pone.0235424 – ident: CR35 – ident: CR6 – volume: 7 start-page: e018307 year: 2017 ident: CR15 article-title: Quantifying the role of modifiable risk factors in the differences in cardiovascular disease mortality rates between metropolitan and rural populations in Australia: a macrosimulation modelling study publication-title: BMJ Open doi: 10.1136/bmjopen-2017-018307 – ident: CR40 – ident: CR27 – volume: 50 start-page: 2488 year: 2020 end-page: 2502 ident: CR25 article-title: Deep reinforcement learning for imbalanced classification publication-title: Appl. Intell. doi: 10.1007/s10489-020-01637-z – ident: CR23 – volume: 3 start-page: 9 year: 1988 end-page: 44 ident: CR33 article-title: Learning to predict by the methods of temporal differences publication-title: Mach. Learn. doi: 10.1007/BF00115009 – volume: 34 start-page: 13877 year: 2020 end-page: 13884 ident: CR39 article-title: Clinical sensitivity and interpretation of PCR and serological COVID-19 diagnostics for patients presenting to the hospital publication-title: FASEB J. doi: 10.1096/fj.202001700RR – ident: CR21 – volume: 21 start-page: 167 year: 2019 end-page: 179 ident: CR11 article-title: Can AI help reduce disparities in general medical and mental health care? publication-title: Am. Med. Assoc. J. Ethics – volume: 106 start-page: 1108 year: 2010 end-page: 1112 ident: CR14 article-title: Variation in hospital mortality rates for patients with acute myocardial infarction publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2010.06.014 – ident: CR38 – volume: 3 start-page: 99 year: 2020 ident: CR29 article-title: Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-0304-9 – volume: 5 start-page: 69 year: 2022 ident: CR19 article-title: Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening publication-title: npj Digit. Med. doi: 10.1038/s41746-022-00614-9 – ident: CR34 – ident: CR36 – volume: 17 start-page: 100 year: 2014 end-page: 101 ident: CR9 article-title: Bias in research publication-title: Evidence-Based Nurs. doi: 10.1136/eb-2014-101946 – volume: 54 start-page: 115 year: 2021 ident: CR2 article-title: A survey on bias and fairness in machine learning publication-title: ACM Comput. Surv. – ident: CR5 – ident: CR7 – volume: 23 start-page: 12 year: 2013 end-page: 15 ident: CR8 article-title: Bias in research publication-title: Biochem. Med. doi: 10.11613/BM.2013.003 – ident: CR41 – ident: CR26 – volume: 6 year: 2023 ident: CR3 article-title: An adversarial training framework for mitigating algorithmic biases in clinical machine learning publication-title: NPJ Digit. Med. doi: 10.1038/s41746-023-00805-y – ident: CR24 – ident: CR20 – ident: 697_CR23 doi: 10.48550/arXiv.1701.07274 – volume: 19 start-page: 385 year: 2018 ident: 697_CR17 publication-title: Eur. J. Health Econ. doi: 10.1007/s10198-017-0891-9 – volume: 27 start-page: 2176 year: 2021 ident: 697_CR1 publication-title: Nat. Med. doi: 10.1038/s41591-021-01595-0 – ident: 697_CR24 doi: 10.1109/ADPRL.2011.5967372 – ident: 697_CR36 doi: 10.1609/aaai.v30i1.10295 – volume: 23 start-page: 12 year: 2013 ident: 697_CR8 publication-title: Biochem. Med. doi: 10.11613/BM.2013.003 – ident: 697_CR26 doi: 10.48550/arXiv.2205.12070 – volume: 21 start-page: 167 year: 2019 ident: 697_CR11 publication-title: Am. Med. Assoc. J. Ethics – volume: 375 start-page: 655 year: 2016 ident: 697_CR12 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa1507092 – ident: 697_CR21 doi: 10.48550/arXiv.1807.00199 – ident: 697_CR34 – ident: 697_CR5 doi: 10.1145/3178876.3186133 – ident: 697_CR16 – ident: 697_CR20 doi: 10.48550/arXiv.1707.00075 – ident: 697_CR38 doi: 10.12688/wellcomeopenres.16342.1 – volume: 101 start-page: e215 year: 2000 ident: 697_CR32 publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 17 start-page: 100 year: 2014 ident: 697_CR9 publication-title: Evidence-Based Nurs. doi: 10.1136/eb-2014-101946 – ident: 697_CR37 doi: 10.1109/IJCNN.2018.8489066 – volume: 3 start-page: 99 year: 2020 ident: 697_CR29 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-0304-9 – ident: 697_CR41 doi: 10.5281/zenodo.8083841 – ident: 697_CR22 – volume: 50 start-page: 2488 year: 2020 ident: 697_CR25 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01637-z – volume: 54 start-page: 115 year: 2021 ident: 697_CR2 publication-title: ACM Comput. Surv. – volume: 106 start-page: 1108 year: 2010 ident: 697_CR14 publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2010.06.014 – ident: 697_CR40 doi: 10.24433/CO.0541626.v1 – volume: 15 start-page: e0235424 year: 2020 ident: 697_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0235424 – volume: 3 start-page: 9 year: 1988 ident: 697_CR33 publication-title: Mach. Learn. doi: 10.1007/BF00115009 – ident: 697_CR10 – volume: 34 start-page: 13877 year: 2020 ident: 697_CR39 publication-title: FASEB J. doi: 10.1096/fj.202001700RR – ident: 697_CR35 – volume: 7 start-page: e018307 year: 2017 ident: 697_CR15 publication-title: BMJ Open doi: 10.1136/bmjopen-2017-018307 – ident: 697_CR4 doi: 10.1145/2090236.2090255 – volume: 6 year: 2023 ident: 697_CR3 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-023-00805-y – volume: 10 start-page: e035635 year: 2020 ident: 697_CR18 publication-title: BMJ Open doi: 10.1136/bmjopen-2019-035635 – ident: 697_CR27 doi: 10.1016/S2589-7500(21)00272-7 – volume: 3 start-page: e78 year: 2021 ident: 697_CR30 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30274-0 – ident: 697_CR7 – volume: 5 start-page: 69 year: 2022 ident: 697_CR19 publication-title: npj Digit. Med. doi: 10.1038/s41746-022-00614-9 – volume: 5 start-page: 180178 year: 2018 ident: 697_CR31 publication-title: Sci. Data doi: 10.1038/sdata.2018.178 – ident: 697_CR6 doi: 10.1145/3278721.3278779 – volume: 12 start-page: e1001918 year: 2015 ident: 697_CR13 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001918 |
| SSID | ssj0002144504 |
| Score | 2.5087204 |
| Snippet | As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 884 |
| SubjectTerms | 692/308/575 692/700/139 692/700/3935 Algorithms Artificial intelligence Bias Classification COVID-19 Data acquisition Data collection Deep learning Demography Electronic health records Emergency medical services Engineering Ethnicity Health care Hospitals Machine learning Methods Patients Recidivism Training |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_O3oP6IIpf0VNW8M0L12R3m82DyCl3HIJFxIN7C5PNtFdo03ptEf97ZzYfZzkovgUy-djM7O4v8_EbgPf8X4wobVLRDjE2dpLEWA4ptn6k9cTm5AI7_7fx6OLSfL2yVwcw7mphJK2yWxPDQl0tvfjIT6TSj_eiUWo-rX7F0jVKoqtdCw1sWytUHwPF2D04TIUZawCHn8_G33_0XhchCLND01bPDLU7WRu2aMnD1bGw9vKM292h7sDOu9mTfQj1Idzf1iv88xvn8392qfPH8KiFl-q0sYcncED1U5iezqc8lM31YuaVBHBkeVNYV6qc4VotZg3PxrJWjGBVVyupFiHPklTbWGKqxGerKqKVuqFAuOqDb7EXeAaX52c_v1zEbYOF2JvMbuJMU5agSco0H6U5QyHtJ6Zy6G2C2tk8JcuCFSZEDpNSe1eZlASBSLCRJvo5DOplTS9BsS1gZsuM4Y03SFIw6_jA5loj3z2LIOk-auFb9nFpgjEvQhRcu6JRRMGKKIIiCh3Bh_6aVcO9sVf6qNNV0c7DdXFrNRG860_zDJKwCNa03AaZjHFnal0ELxrV9o_j5ZcRs04icDtK7wWEnXv3TD27Dizd_J8r7jV-8HFnH7fvtW8Yx70N_ceoX-0f9Wt4kAbTlozFIxhsbrb0hlHUpnzbTo2_cuMZhg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gF4YEN8BcZkJN5YShPbifNYoU3TpE08UDGeoovjdNHatGpTIfjrOTsfUDZN21skn-PYOds_--5-B_CRzsWINk0qyhH6QhaBj9nI-FJHnBcyMcqx859fRKcTcXYpL3cg6mJhnNO-o7R0y3TnHfZ5LUjxrLss9y25Lk2M4TIvHsFuJAmDD2B3cvF1_MNmkpP2dEXbfhshM-Lqlsrbu9ANaHnTQ7I3kz6Fx5tqib9-4mz2z050sgffuz40DijXw02dDfXv_-gdH97JfXjWglM2biSfw46pXsB0PJsuVmV9NS81s-YfuzgyrHKWlbhm87Jh6VhUjPAv6yIt2dx5aRrWpqWYMnvjy3JjlmxlHF2rdjeTvcBLmJwcf_ty6rfpGXwtYln7MTdxgCLIwiQKEwJSXBciV6hlgFzJJDSSBHMMjFEYZFyrXITG4hdrqjQFfwWDalGZN8BIkzCWWUzgSAs0NtxW0YNMOEd6e-xB0P2uVLfc5TaFxix1NnSu0mboUhq61A1dyj341NdZNswdd0ofdFqQtrN4ndroUsI_USg8-NAX0_yzRhWszGLjZGJCraFUHrxulKZvjhZvwts88EBtqVMvYLm9t0uq8spxfNMp2V7OUcNHneb9_a67unHUa-c9ev32YeLv4EnolNP6Px7AoF5tzHvCZHV22E7APyPtMFc priority: 102 providerName: Unpaywall |
| Title | Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning |
| URI | https://link.springer.com/article/10.1038/s42256-023-00697-3 https://www.ncbi.nlm.nih.gov/pubmed/37615031 https://www.proquest.com/docview/2854124624 https://www.proquest.com/docview/2857851258 https://pubmed.ncbi.nlm.nih.gov/PMC10442224 https://www.nature.com/articles/s42256-023-00697-3.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2522-5839 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002144504 issn: 2522-5839 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_68bD2oWzt2rlrgwZ9a8xiS7Llxyw0K4OFUhronsxZVtJA4oQmYey_30n-WEOgdG82OkmW72T_pNP9DuCK1sWINk0qyg76Qo4CH7OO8aWOOB_JxCjHzv9zEN0OxY9H-bgD7ToWZsN_76i7l4JMzh6U5b6l1aUpsQv7igzT5ivoRb1mR8WSf8mOqCJjqPLX7aqbf58tSLl9MrJxjx7Cu3WxwD-_cTp98Qfqv4ejCjqybqnrD7BjimM4fEEoeALj7nQ8p-X-02yimXXV2A8ZwyJn2QSXbDYpGTXmBSOsyuqoSDZzJyoNq1JIjJndnWW5MQv2bBy1qna7iI3ARxj2bx56t36VSsHXIpYrP-YmDlAEWZhEYUKgh-uRyBVqGSBXMgmNJMEcA2MUBhnXKhehsVjDuhXNiJ_CXjEvzCdgpHWMZRYTkNECjQ2NVXQhE86RWo89COpXnOqKZ9ymu5imzt_NVVqqJSW1pE4tKffguqmzKFk2XpW-qDWXVjNumdpIUMIqUSg8-NIU01yxDhAszHztZGJCmKFUHpyVim66ow8tYWMeeKA2TKARsDzcmyXF5MnxcdOK1m6kUcft2lr-Pddrw2g3FvWGUZ__X-uf4SB0hm_PKl7A3up5bS4JP62yFuyq_vcW7H-7Gdzdt9wkorvh4K776y8nmxUK |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IBCPGgosEpyo1di7G68PFSrQKqVthFAr9WbG600aKXFCk6jqn-O3MbOxXaJKEZfeLHn82J2Z3dl5fAPwgc7FiNwmFXULQ6V7UYh5y4XatqXs6dQZj85_2m13ztX3C32xBn_qWhhOq6zXRL9QF2PLPvJdrvSjvagdq8-T3yF3jeLoat1CA6vWCsWehxirCjuO3c01HeGme0ffiN8f4_jw4OxrJ6y6DIRWJXoWJtIlEaooj9N2nJI9IG1PFQatjlAancZOE2GBkXMGo1xaU6jY8TbMETfXk_TeB7ChpErp8Lfx5aD742fj5WFAMt1SVbVOS5rdqSIN4rxfGTJKMGn48o54x8y9m63ZhGwfwea8nODNNQ6H_-yKh0_gcWXOiv2F_D2FNVc-g_7-sE9TN7scDazggBEvpwLLQuQDnIrRYIHrMS4FWcyirs0UI5_X6UTVyKIv2EcsCucm4sp5gFfrfZkNwXM4v5epfgHr5bh0WyBI9jDReULmlFXouEDX0IVOpUR6exJAVE9qZiu0c266Mcx81F2abMGIjBiReUZkMoBPzTOTBdbHSurtmldZpffT7FZKA3jf3CaN5TAMlm489zQJ2bmxNgG8XLC2-Rwt92ShyygAs8T0hoDRwJfvlINLjwpO52p259GHd2r5uP2vVcPYaWToP0b9avWo38Fm5-z0JDs56h6_hoexF3POltyG9dnV3L0hC26Wv63URMCv-9bMv6wfVY4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7mEDACBtgJHhiUZvYbpyHCU0bZWMw8cCkvRnHcbpKbVrWVtP-Nf467pyPrZpU8bK3SLl82Hdnn-_jdwAf8FxsDLVJNbJrQiGLKDRZ14XS9jgvZOqUR-f_cdo7OhPfzuX5GvxtamEorbJZE_1CnU8s-cg7VOmHe1EvFp2iTov4edj_PP0TUgcpirQ27TQqETlx11d4fJvtHR8irz_Gcf_Lr4OjsO4wEFqRyHmYcJdERkRZnPbiFG0BbguRK2NlZLiSaewkEuYmck6ZKONW5SJ2tAVTtM0VHN_7AB4mhOJOVer9r61_h6DIZFfUdTpdrjozgbpDGb88JHxg1O3lvfCOgXs3T7MN1m7A40U5NddXZjS6tR_2n8Jmbciy_UrynsGaK5_DYH80wImaX4yHllGoiBZSZsqcZUMzY-NhhegxKRnayqypymRjn9HpWN3CYsDIO8xy56bs0nloV-u9mC3BCzi7l4l-CevlpHSvgKHUmURmCRpSVhhHpbkKL2TKucG3JwFEzaRqW-OcU7uNkfbxdq50xQiNjNCeEZoH8Kl9ZlqhfKyk3ml4pWuNn-kb-QzgfXsbdZUCMKZ0k4WnSdDCjaUKYKtibfs5XOjRNudRAGqJ6S0B4YAv3ymHFx4PHE_U5MjDD-828nHzX6uGsdvK0H-M-vXqUb-DR6iP-vvx6ck2PIm9lFOa5A6szy8X7g2abvPsrdcRBr_vWyn_AUnzUyg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gF4YEN8BcZkJN5YShPbifNYoU3TpE08UDGeoovjdNHatGpTIfjrOTsfUDZN21skn-PYOds_--5-B_CRzsWINk0qyhH6QhaBj9nI-FJHnBcyMcqx859fRKcTcXYpL3cg6mJhnNO-o7R0y3TnHfZ5LUjxrLss9y25Lk2M4TIvHsFuJAmDD2B3cvF1_MNmkpP2dEXbfhshM-Lqlsrbu9ANaHnTQ7I3kz6Fx5tqib9-4mz2z050sgffuz40DijXw02dDfXv_-gdH97JfXjWglM2biSfw46pXsB0PJsuVmV9NS81s-YfuzgyrHKWlbhm87Jh6VhUjPAv6yIt2dx5aRrWpqWYMnvjy3JjlmxlHF2rdjeTvcBLmJwcf_ty6rfpGXwtYln7MTdxgCLIwiQKEwJSXBciV6hlgFzJJDSSBHMMjFEYZFyrXITG4hdrqjQFfwWDalGZN8BIkzCWWUzgSAs0NtxW0YNMOEd6e-xB0P2uVLfc5TaFxix1NnSu0mboUhq61A1dyj341NdZNswdd0ofdFqQtrN4ndroUsI_USg8-NAX0_yzRhWszGLjZGJCraFUHrxulKZvjhZvwts88EBtqVMvYLm9t0uq8spxfNMp2V7OUcNHneb9_a67unHUa-c9ev32YeLv4EnolNP6Px7AoF5tzHvCZHV22E7APyPtMFc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+fairness+and+bias+mitigation+for+clinical+machine+learning+with+deep+reinforcement+learning&rft.jtitle=Nature+machine+intelligence&rft.au=Yang%2C+Jenny&rft.au=Soltan%2C+Andrew+A.+S.&rft.au=Eyre%2C+David+W.&rft.au=Clifton%2C+David+A.&rft.date=2023-08-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2522-5839&rft.volume=5&rft.issue=8&rft.spage=884&rft.epage=894&rft_id=info:doi/10.1038%2Fs42256-023-00697-3&rft.externalDocID=10_1038_s42256_023_00697_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon |