Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second
Wide-field-of-view microscopy that can resolve three-dimensional (3D) information at high speed and spatial resolution is particularly desirable for studying the behaviour of freely moving organisms. However, it is challenging to design an optical instrument that optimizes all these properties simul...
Saved in:
| Published in | Nature photonics Vol. 17; no. 5; pp. 442 - 450 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.05.2023
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1749-4885 1749-4893 1749-4893 |
| DOI | 10.1038/s41566-023-01171-7 |
Cover
| Abstract | Wide-field-of-view microscopy that can resolve three-dimensional (3D) information at high speed and spatial resolution is particularly desirable for studying the behaviour of freely moving organisms. However, it is challenging to design an optical instrument that optimizes all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising speed and throughput. Here we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over a 135 cm
2
area, achieving up to 230 frames per second at a spatiotemporal throughput exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with several collections of freely behaving organisms: ants, fruit flies and zebrafish larvae.
3D-RAPID, a scalable computational microscope using 54 cameras, records 3D topographic videos of freely moving organisms over an area of 135 cm
2
at a spatial resolution of tens of micrometres and at a throughput exceeding 5 gigapixels per second. |
|---|---|
| AbstractList | Wide field of view microscopy that can resolve 3D information at high speed and spatial resolution is highly desirable for studying the behaviour of freely moving model organisms. However, it is challenging to design an optical instrument that optimises all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising on speed and throughput. Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over an area of 135 cm2, achieving up to 230 frames per second at spatiotemporal throughputs exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The resulting reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with collections of several freely behaving organisms, including ants, fruit flies, and zebrafish larvae. Wide-field-of-view microscopy that can resolve three-dimensional (3D) information at high speed and spatial resolution is particularly desirable for studying the behaviour of freely moving organisms. However, it is challenging to design an optical instrument that optimizes all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising speed and throughput. Here we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over a 135 cm 2 area, achieving up to 230 frames per second at a spatiotemporal throughput exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with several collections of freely behaving organisms: ants, fruit flies and zebrafish larvae. 3D-RAPID, a scalable computational microscope using 54 cameras, records 3D topographic videos of freely moving organisms over an area of 135 cm 2 at a spatial resolution of tens of micrometres and at a throughput exceeding 5 gigapixels per second. Wide-field-of-view microscopy that can resolve three-dimensional (3D) information at high speed and spatial resolution is particularly desirable for studying the behaviour of freely moving organisms. However, it is challenging to design an optical instrument that optimizes all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising speed and throughput. Here we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over a 135 cm2 area, achieving up to 230 frames per second at a spatiotemporal throughput exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with several collections of freely behaving organisms: ants, fruit flies and zebrafish larvae.3D-RAPID, a scalable computational microscope using 54 cameras, records 3D topographic videos of freely moving organisms over an area of 135 cm2 at a spatial resolution of tens of micrometres and at a throughput exceeding 5 gigapixels per second. Wide field of view microscopy that can resolve 3D information at high speed and spatial resolution is highly desirable for studying the behaviour of freely moving model organisms. However, it is challenging to design an optical instrument that optimises all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising on speed and throughput. Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over an area of 135 cm2, achieving up to 230 frames per second at spatiotemporal throughputs exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The resulting reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with collections of several freely behaving organisms, including ants, fruit flies, and zebrafish larvae.Wide field of view microscopy that can resolve 3D information at high speed and spatial resolution is highly desirable for studying the behaviour of freely moving model organisms. However, it is challenging to design an optical instrument that optimises all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising on speed and throughput. Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over an area of 135 cm2, achieving up to 230 frames per second at spatiotemporal throughputs exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The resulting reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with collections of several freely behaving organisms, including ants, fruit flies, and zebrafish larvae. |
| Author | Bechtel, John P. Zhou, Kevin C. Bègue, Aurélien Jönsson, Joakim Doman, Thomas Saliu, Veton Bagnat, Michel Konda, Pavan C. Cook, Clare B. Kim, Kanghyun Horstmeyer, Roarke Reamey, Paul Zheng, Maxwell Bagwell, Jennifer Harfouche, Mark McCarroll, Matthew Cooke, Colin L. Park, Jaehee Kreiss, Lucas Horstmeyer, Gregor |
| AuthorAffiliation | 4 Department of Cell Biology, Duke University, Durham, NC 27710, USA 5 Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA 3 Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA 2 Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA 1 Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA 6 Current affiliation: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA |
| AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA – name: 6 Current affiliation: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA – name: 2 Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA – name: 5 Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA – name: 4 Department of Cell Biology, Duke University, Durham, NC 27710, USA – name: 3 Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA |
| Author_xml | – sequence: 1 givenname: Kevin C. orcidid: 0000-0002-0351-8812 surname: Zhou fullname: Zhou, Kevin C. email: kevinczhou@berkeley.edu organization: Department of Biomedical Engineering, Duke University, Ramona Optics Inc., Department of Electrical Engineering and Computer Sciences, University of California – sequence: 2 givenname: Mark surname: Harfouche fullname: Harfouche, Mark organization: Ramona Optics Inc – sequence: 3 givenname: Colin L. surname: Cooke fullname: Cooke, Colin L. organization: Department of Electrical and Computer Engineering, Duke University – sequence: 4 givenname: Jaehee surname: Park fullname: Park, Jaehee organization: Ramona Optics Inc – sequence: 5 givenname: Pavan C. surname: Konda fullname: Konda, Pavan C. organization: Department of Biomedical Engineering, Duke University – sequence: 6 givenname: Lucas orcidid: 0000-0002-7749-0015 surname: Kreiss fullname: Kreiss, Lucas organization: Department of Biomedical Engineering, Duke University – sequence: 7 givenname: Kanghyun surname: Kim fullname: Kim, Kanghyun organization: Department of Biomedical Engineering, Duke University – sequence: 8 givenname: Joakim surname: Jönsson fullname: Jönsson, Joakim organization: Department of Biomedical Engineering, Duke University – sequence: 9 givenname: Thomas surname: Doman fullname: Doman, Thomas organization: Ramona Optics Inc – sequence: 10 givenname: Paul surname: Reamey fullname: Reamey, Paul organization: Ramona Optics Inc – sequence: 11 givenname: Veton surname: Saliu fullname: Saliu, Veton organization: Ramona Optics Inc – sequence: 12 givenname: Clare B. orcidid: 0000-0001-8832-5149 surname: Cook fullname: Cook, Clare B. organization: Department of Biomedical Engineering, Duke University, Ramona Optics Inc – sequence: 13 givenname: Maxwell surname: Zheng fullname: Zheng, Maxwell organization: Ramona Optics Inc – sequence: 14 givenname: John P. orcidid: 0000-0002-6931-8047 surname: Bechtel fullname: Bechtel, John P. organization: Ramona Optics Inc – sequence: 15 givenname: Aurélien orcidid: 0000-0002-6863-2210 surname: Bègue fullname: Bègue, Aurélien organization: Ramona Optics Inc – sequence: 16 givenname: Matthew surname: McCarroll fullname: McCarroll, Matthew organization: Department of Pharmaceutical Chemistry, University of California – sequence: 17 givenname: Jennifer surname: Bagwell fullname: Bagwell, Jennifer organization: Department of Cell Biology, Duke University – sequence: 18 givenname: Gregor surname: Horstmeyer fullname: Horstmeyer, Gregor organization: Ramona Optics Inc – sequence: 19 givenname: Michel surname: Bagnat fullname: Bagnat, Michel organization: Department of Cell Biology, Duke University – sequence: 20 givenname: Roarke surname: Horstmeyer fullname: Horstmeyer, Roarke email: roarke.w.horstmeyer@duke.edu organization: Department of Biomedical Engineering, Duke University, Ramona Optics Inc., Department of Electrical and Computer Engineering, Duke University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37808252$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkTuP1DAUhSO0iH3AH6BAlmhoAn4ktlMhtDyllaCA2vI418GLYwc7GRh-PR4yDLDFisqWfM7xud89r05CDFBVDwl-SjCTz3JDWs5rTFmNCRGkFneqMyKarm5kx06Od9meVuc5X2Pcso7Se9UpExJL2tKz6ssHnbT34N0P6JGJ47TMenYxaI_YS7R1PUQ0OpNiNnHaoWiRTQB-h8a4dWFAMQ06uDxmpGc0Ln52kwc0uEFP7jv4jCZIKIOJob9f3bXaZ3hwOC-qT69ffbx8W1-9f_Pu8sVVbRrRzjW3xGjLqdWWNro0FoT23AgsebuxgpBNbwnj0G0M3ljbUmxYYyQ2HWmBUmAXFVtzlzDp3bcynpqSG3XaKYLVHp1a0amCTv1Cp0RxPV9d07IZoTcQ5kLm6IzaqX9fgvushrgtgW1LOd4nPDkkpPh1gTyr0WUD3usAccmKStFIJjllRfr4hvQ6LqlA36tw13W863BRPfq70rHL7_UVAV0F-_3kBPb_BpU3TMatOy9jOX-79UA2l3_CAOlP7VtcPwFtBNC7 |
| CitedBy_id | crossref_primary_10_1038_s41566_024_01422_1 crossref_primary_10_1021_acschemneuro_4c00426 crossref_primary_10_1002_lpor_202400498 crossref_primary_10_1364_OE_520677 crossref_primary_10_1038_s44303_024_00042_2 crossref_primary_10_1364_OE_532032 crossref_primary_10_1021_cbmi_3c00054 crossref_primary_10_1038_s41928_024_01261_6 crossref_primary_10_3788_CJL240730 crossref_primary_10_1364_BOE_547944 crossref_primary_10_1038_s41551_023_01155_6 crossref_primary_10_1002_adem_202402559 crossref_primary_10_1186_s40537_024_00901_0 |
| Cites_doi | 10.1242/jeb.192.1.95 10.1038/s41566-019-0474-7 10.1038/nphoton.2013.187 10.3389/fncir.2013.00131 10.1038/s41566-019-0548-6 10.1016/j.tips.2013.12.002 10.1098/rspb.2017.0308 10.3389/fncir.2013.00110 10.4155/fmc.12.115 10.3389/fncir.2015.00039 10.7554/eLife.51975 10.1038/nrn2839 10.3389/fnsys.2011.00101 10.1364/AOP.417102 10.1039/C9MD00099B 10.1038/s41467-019-11936-w 10.1038/nrd4627 10.1016/0030-4018(69)90052-2 10.1016/j.cub.2019.11.026 10.1016/j.cub.2016.12.003 10.1126/science.1257998 10.1242/jeb.142281 10.1016/S0161-813X(03)00021-4 10.1145/1073204.1073259 10.7554/eLife.48571 10.1038/s41467-022-29177-9 10.1364/BOE.6.003179 10.1038/s41586-020-2239-3 10.1364/AO.28.004996 10.1016/S0263-2241(96)00065-6 10.1117/1.AP.3.4.044001 10.1126/science.1183090 10.1126/science.1957169 10.1038/nmeth.3866 10.1364/OPTICA.454860 10.1038/nprot.2006.287 10.1038/ncomms8288 10.1038/s41467-021-26748-0 10.1038/s41586-021-03259-y 10.5858/arpa.2019-0569-OA 10.1364/AOP.3.000128 10.1038/s41592-022-01466-7 10.1016/bs.ctdb.2016.10.007 10.1124/pr.110.003293 10.3389/fnmol.2018.00294 10.1364/OPTICA.6.001211 10.7554/eLife.12741 10.1038/nmeth.1310 10.1007/s10278-020-00351-z 10.7554/eLife.45839 10.1038/nature11150 10.1109/CVPR46437.2021.00745 10.1038/s41551-022-00849-7 10.1364/OPTICA.478010 10.7554/eLife.74988 10.1109/ICPR.1994.576402 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION NPM 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41566-023-01171-7 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1749-4893 |
| EndPage | 450 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10552607 PMC10552607 37808252 10_1038_s41566_023_01171_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK132120 – fundername: NCI NIH HHS grantid: R44 CA250877 – fundername: NIBIB NIH HHS grantid: R43 EB030979 – fundername: NIH HHS grantid: R44 OD024879 |
| GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACSTC ACUHS ADBBV AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFRAH AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARAPS ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NFIDA NNMJJ O9- ODYON P2P P62 PHGZM PHGZT PQGLB Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX CITATION PUEGO 5BI AAEEF AAZLF AGHTU NPM 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 AGSTI 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-6f1caf62faf24a392712d6c70865bf711bdf136e9bc0bff520c34c80c915e22e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1749-4885 1749-4893 |
| IngestDate | Sun Oct 26 04:05:44 EDT 2025 Tue Sep 30 17:11:28 EDT 2025 Wed Oct 01 10:21:31 EDT 2025 Sat Aug 23 12:52:40 EDT 2025 Wed Feb 19 02:08:12 EST 2025 Wed Oct 01 03:48:14 EDT 2025 Thu Apr 24 22:55:26 EDT 2025 Mon Jul 21 06:06:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | parallelized microscopy self-supervised learning behavioral imaging 3D imaging computational microscopy camera array |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-6f1caf62faf24a392712d6c70865bf711bdf136e9bc0bff520c34c80c915e22e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 KCZ and RH conceived the idea and initiated the research. KCZ developed the algorithms and theory, with the help of CLC, JP, PCK, and RH. KCZ wrote the code for and performed 3D video reconstruction and stitching, animal tracking, and data analysis. MH, TD, PR, VS, CBC, MZ, and RH developed the MCAM hardware and acquisition software. KCZ acquired and analyzed the biological data, with the help of JPB, JB, AB, GH, and RH. MM, JB and MB provided input and supervision on biological experiments. TD and KCZ created the supplementary videos. KCZ wrote the manuscript and created the figures, with input from all authors. RH supervised the research. Author contributions |
| ORCID | 0000-0002-7749-0015 0000-0002-0351-8812 0000-0002-6863-2210 0000-0001-8832-5149 0000-0002-6931-8047 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10552607/pdf/nihms-1931684.pdf |
| PMID | 37808252 |
| PQID | 2809996990 |
| PQPubID | 546300 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1038_s41566_023_01171_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10552607 proquest_miscellaneous_2874838623 proquest_journals_2809996990 pubmed_primary_37808252 crossref_primary_10_1038_s41566_023_01171_7 crossref_citationtrail_10_1038_s41566_023_01171_7 springer_journals_10_1038_s41566_023_01171_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature photonics |
| PublicationTitleAbbrev | Nat. Photon |
| PublicationTitleAlternate | Nat Photonics |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Muto, Kawakami (CR22) 2013; 7 Bellen, Tong, Tsuda (CR1) 2010; 11 Rihel (CR11) 2010; 327 Patterson, Abraham, MacIver, McLean (CR21) 2013; 216 MacRae, Peterson (CR7) 2015; 14 CR39 Shamble, Hoy, Cohen, Beatus (CR33) 2017; 284 Riemensberger (CR49) 2020; 581 Huang (CR40) 1991; 254 Ehrlich, Schoppik (CR31) 2019; 8 Lin, Wu, Zheng, Dai (CR45) 2015; 6 Aguilar, Torres, Lope (CR53) 1996; 18 Fan (CR46) 2019; 13 Dunn (CR18) 2016; 5 Lohmann (CR24) 1989; 28 Günel (CR34) 2019; 8 Qian (CR51) 2022; 13 Kalueff, Stewart, Gerlai (CR3) 2014; 35 Mathias, Saxena, Mumm (CR13) 2012; 4 Harpaz, Nguyen, Bahl, Engert (CR15) 2021; 12 McCarroll (CR12) 2019; 10 Reinhardt, Blickhan (CR60) 2014; 217 Lobato-Rios (CR35) 2022; 19 CR47 Robie, Seagraves, Egnor, Branson (CR17) 2017; 220 Dankert, Wang, Hoopfer, Anderson, Perona (CR16) 2009; 6 Kumar, Gupta, Gupta (CR27) 2020; 33 Pandey, Nichols (CR5) 2011; 63 Maitra, Ciesla (CR8) 2019; 10 Jiang, Karpf, Jalali (CR48) 2020; 14 Geng (CR52) 2011; 3 Borowsky (CR28) 2020; 144 Zheng, Horstmeyer, Yang (CR26) 2013; 7 Akitake (CR32) 2015; 6 Brady (CR44) 2012; 486 CR58 CR57 CR56 CR55 CR54 Chowdhury (CR37) 2019; 6 Zhou, Qian, Dhalla, Farsiu, Izatt (CR41) 2021; 13 Grover, Katsuki, Greenspan (CR29) 2016; 13 Johnson (CR19) 2020; 30 Park, Brady, Zheng, Tian, Gao (CR25) 2021; 3 Ehrlich, Schoppik (CR30) 2017; 27 Rogers (CR50) 2021; 590 Oliveira (CR2) 2013; 7 Hirsch (CR9) 2003; 24 Chen (CR38) 2014; 346 Bolton (CR23) 2019; 8 Bambino, Chu (CR10) 2017; 124 Bianco, Kampff, Engert (CR20) 2011; 5 Sakai, Ijaz, Hoffman (CR6) 2018; 11 Dreosti, Lopes, Kampff, Wilson (CR4) 2015; 9 Zhou (CR42) 2022; 9 CR61 Wright, Krause (CR14) 2006; 1 Wolf (CR36) 1969; 1 Wilburn (CR43) 2005; 24 Zollikofer (CR59) 1994; 192 G Zheng (1171_CR26) 2013; 7 L Reinhardt (1171_CR60) 2014; 217 J-J Aguilar (1171_CR53) 1996; 18 D Wright (1171_CR14) 2006; 1 J Fan (1171_CR46) 2019; 13 AD Bolton (1171_CR23) 2019; 8 J Geng (1171_CR52) 2011; 3 DE Ehrlich (1171_CR31) 2019; 8 CA MacRae (1171_CR7) 2015; 14 J Rihel (1171_CR11) 2010; 327 J Park (1171_CR25) 2021; 3 1171_CR39 R Harpaz (1171_CR15) 2021; 12 V Lobato-Rios (1171_CR35) 2022; 19 AV Kalueff (1171_CR3) 2014; 35 C Rogers (1171_CR50) 2021; 590 BW Patterson (1171_CR21) 2013; 216 D Huang (1171_CR40) 1991; 254 B-C Chen (1171_CR38) 2014; 346 1171_CR61 RE Johnson (1171_CR19) 2020; 30 RF Oliveira (1171_CR2) 2013; 7 B Akitake (1171_CR32) 2015; 6 E Dreosti (1171_CR4) 2015; 9 H Dankert (1171_CR16) 2009; 6 J Riemensberger (1171_CR49) 2020; 581 IH Bianco (1171_CR20) 2011; 5 U Maitra (1171_CR8) 2019; 10 AD Borowsky (1171_CR28) 2020; 144 HJ Bellen (1171_CR1) 2010; 11 PS Shamble (1171_CR33) 2017; 284 HV Hirsch (1171_CR9) 2003; 24 KC Zhou (1171_CR42) 2022; 9 KC Zhou (1171_CR41) 2021; 13 1171_CR54 AA Robie (1171_CR17) 2017; 220 X Lin (1171_CR45) 2015; 6 1171_CR56 1171_CR55 1171_CR58 1171_CR57 MN McCarroll (1171_CR12) 2019; 10 E Wolf (1171_CR36) 1969; 1 R Qian (1171_CR51) 2022; 13 A Muto (1171_CR22) 2013; 7 JR Mathias (1171_CR13) 2012; 4 S Günel (1171_CR34) 2019; 8 Y Jiang (1171_CR48) 2020; 14 DJ Brady (1171_CR44) 2012; 486 C Zollikofer (1171_CR59) 1994; 192 DE Ehrlich (1171_CR30) 2017; 27 B Wilburn (1171_CR43) 2005; 24 D Grover (1171_CR29) 2016; 13 TW Dunn (1171_CR18) 2016; 5 S Chowdhury (1171_CR37) 2019; 6 C Sakai (1171_CR6) 2018; 11 AW Lohmann (1171_CR24) 1989; 28 UB Pandey (1171_CR5) 2011; 63 1171_CR47 K Bambino (1171_CR10) 2017; 124 N Kumar (1171_CR27) 2020; 33 36713250 - ArXiv. 2023 Jan 19:arXiv:2301.08351v1. |
| References_xml | – volume: 192 start-page: 95 year: 1994 end-page: 106 ident: CR59 article-title: Stepping patterns in ants – influence of speed and curvature publication-title: J. Exp. Biol. doi: 10.1242/jeb.192.1.95 – volume: 13 start-page: 809 year: 2019 end-page: 816 ident: CR46 article-title: Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution publication-title: Nat. Photonics doi: 10.1038/s41566-019-0474-7 – volume: 7 start-page: 739 year: 2013 end-page: 745 ident: CR26 article-title: Wide-field, high-resolution Fourier ptychographic microscopy publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.187 – volume: 7 start-page: 131 year: 2013 ident: CR2 article-title: Mind the fish: zebrafish as a model in cognitive social neuroscience publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00131 – ident: CR39 – volume: 14 start-page: 14 year: 2020 end-page: 18 ident: CR48 article-title: Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera publication-title: Nat. Photonics doi: 10.1038/s41566-019-0548-6 – volume: 35 start-page: 63 year: 2014 end-page: 75 ident: CR3 article-title: Zebrafish as an emerging model for studying complex brain disorders publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2013.12.002 – volume: 284 start-page: 20170308 year: 2017 ident: CR33 article-title: Walking like an ant: a quantitative and experimental approach to understanding locomotor mimicry in the jumping spider publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2017.0308 – volume: 7 start-page: 110 year: 2013 ident: CR22 article-title: Prey capture in zebrafish larvae serves as a model to study cognitive functions publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00110 – volume: 4 start-page: 1811 year: 2012 end-page: 1822 ident: CR13 article-title: Advances in zebrafish chemical screening technologies publication-title: Future Med. Chem. doi: 10.4155/fmc.12.115 – volume: 9 start-page: 39 year: 2015 ident: CR4 article-title: Development of social behavior in young zebrafish publication-title: Front. Neural Circuits doi: 10.3389/fncir.2015.00039 – volume: 8 start-page: 51975 year: 2019 ident: CR23 article-title: Elements of a stochastic 3D prediction engine in larval zebrafish prey capture publication-title: Elife doi: 10.7554/eLife.51975 – ident: CR54 – ident: CR61 – ident: CR58 – volume: 11 start-page: 514 year: 2010 end-page: 522 ident: CR1 article-title: 100 years of research and its impact on vertebrate neuroscience: a history lesson for the future publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2839 – volume: 5 start-page: 101 year: 2011 ident: CR20 article-title: Prey capture behavior evoked by simple visual stimuli in larval zebrafish publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00101 – volume: 13 start-page: 462 year: 2021 end-page: 514 ident: CR41 article-title: Unified k-space theory of optical coherence tomography publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.417102 – volume: 10 start-page: 867 year: 2019 end-page: 879 ident: CR8 article-title: Using as a platform for drug discovery from natural products in Parkinson’s disease publication-title: Medchemcomm doi: 10.1039/C9MD00099B – volume: 10 start-page: 4078 year: 2019 ident: CR12 article-title: Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation publication-title: Nat. Commun. doi: 10.1038/s41467-019-11936-w – volume: 14 start-page: 721 year: 2015 end-page: 731 ident: CR7 article-title: Zebrafish as tools for drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4627 – volume: 1 start-page: 153 year: 1969 end-page: 156 ident: CR36 article-title: Three-dimensional structure determination of semi-transparent objects from holographic data publication-title: Opt. Commun. doi: 10.1016/0030-4018(69)90052-2 – volume: 30 start-page: 70 year: 2020 end-page: 82 ident: CR19 article-title: Probabilistic models of larval zebrafish behavior reveal structure on many scales publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.11.026 – ident: CR57 – volume: 27 start-page: 334 year: 2017 end-page: 344 ident: CR30 article-title: Control of movement initiation underlies the development of balance publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.12.003 – volume: 346 start-page: 1257998 year: 2014 ident: CR38 article-title: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution publication-title: Science doi: 10.1126/science.1257998 – volume: 220 start-page: 25 year: 2017 end-page: 34 ident: CR17 article-title: Machine vision methods for analyzing social interactions publication-title: J. Exp. Biol. doi: 10.1242/jeb.142281 – volume: 24 start-page: 435 year: 2003 end-page: 442 ident: CR9 article-title: Behavioral effects of chronic exposure to low levels of lead in publication-title: Neurotoxicology doi: 10.1016/S0161-813X(03)00021-4 – volume: 24 start-page: 765 year: 2005 end-page: 776 ident: CR43 article-title: High performance imaging using large camera arrays publication-title: ACM Trans. Graph. doi: 10.1145/1073204.1073259 – volume: 8 start-page: 48571 year: 2019 ident: CR34 article-title: DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult publication-title: Elife doi: 10.7554/eLife.48571 – volume: 13 year: 2022 ident: CR51 article-title: Video-rate high-precision time-frequency multiplexed 3D coherent ranging publication-title: Nat. Commun. doi: 10.1038/s41467-022-29177-9 – volume: 6 start-page: 3179 year: 2015 end-page: 3189 ident: CR45 article-title: Camera array based light field microscopy publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.003179 – volume: 581 start-page: 164 year: 2020 end-page: 170 ident: CR49 article-title: Massively parallel coherent laser ranging using a soliton microcomb publication-title: Nature doi: 10.1038/s41586-020-2239-3 – volume: 28 start-page: 4996 year: 1989 end-page: 4998 ident: CR24 article-title: Scaling laws for lens systems publication-title: Appl. Opt. doi: 10.1364/AO.28.004996 – ident: CR47 – volume: 18 start-page: 193 year: 1996 end-page: 200 ident: CR53 article-title: Stereo vision for 3D measurement: accuracy analysis, calibration and industrial applications publication-title: Measurement doi: 10.1016/S0263-2241(96)00065-6 – volume: 3 start-page: 044001 year: 2021 ident: CR25 article-title: Review of bio-optical imaging systems with a high space–bandwidth product publication-title: Adv. Photonics doi: 10.1117/1.AP.3.4.044001 – volume: 327 start-page: 348 year: 2010 end-page: 351 ident: CR11 article-title: Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation publication-title: Science doi: 10.1126/science.1183090 – ident: CR56 – volume: 254 start-page: 1178 year: 1991 end-page: 1181 ident: CR40 article-title: Optical coherence tomography publication-title: Science doi: 10.1126/science.1957169 – volume: 13 start-page: 569 year: 2016 end-page: 572 ident: CR29 article-title: Flyception: imaging brain activity in freely walking fruit flies publication-title: Nat. Methods doi: 10.1038/nmeth.3866 – volume: 217 start-page: 2358 year: 2014 end-page: 2370 ident: CR60 article-title: Level locomotion in wood ants: evidence for grounded running publication-title: J. Exp. Biol. – volume: 9 start-page: 593 year: 2022 end-page: 601 ident: CR42 article-title: Computational 3D microscopy with optical coherence refraction tomography publication-title: Optica doi: 10.1364/OPTICA.454860 – volume: 1 start-page: 1828 year: 2006 end-page: 1831 ident: CR14 article-title: Repeated measures of shoaling tendency in zebrafish ( ) and other small teleost fishes publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.287 – volume: 6 start-page: 7288 year: 2015 ident: CR32 article-title: Coordination and fine motor control depend on TRP publication-title: Nat. Commun. doi: 10.1038/ncomms8288 – volume: 12 start-page: 6578 year: 2021 ident: CR15 article-title: Precise visuomotor transformations underlying collective behavior in larval zebrafish publication-title: Nat. Commun. doi: 10.1038/s41467-021-26748-0 – volume: 216 start-page: 3071 year: 2013 end-page: 3083 ident: CR21 article-title: Visually guided gradation of prey capture movements in larval zebrafish publication-title: J. Exp. Biol. – volume: 590 start-page: 256 year: 2021 end-page: 261 ident: CR50 article-title: A universal 3D imaging sensor on a silicon photonics platform publication-title: Nature doi: 10.1038/s41586-021-03259-y – volume: 144 start-page: 1245 year: 2020 end-page: 1253 ident: CR28 article-title: Digital whole slide imaging compared with light microscopy for primary diagnosis in surgical pathology a multicenter, double-blinded, randomized study of 2045 cases publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2019-0569-OA – volume: 3 start-page: 128 year: 2011 end-page: 160 ident: CR52 article-title: Structured-light 3D surface imaging: a tutorial publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.3.000128 – volume: 19 start-page: 620 year: 2022 end-page: 627 ident: CR35 article-title: NeuroMechFly, a neuromechanical model of adult publication-title: Nat. Methods doi: 10.1038/s41592-022-01466-7 – ident: CR55 – volume: 124 start-page: 331 year: 2017 end-page: 367 ident: CR10 article-title: Zebrafish in toxicology and environmental health publication-title: Curr. Top. Dev. Biol. doi: 10.1016/bs.ctdb.2016.10.007 – volume: 63 start-page: 411 year: 2011 end-page: 436 ident: CR5 article-title: Human disease models in and the role of the fly in therapeutic drug discovery publication-title: Pharmacol. Rev. doi: 10.1124/pr.110.003293 – volume: 11 start-page: 294 year: 2018 ident: CR6 article-title: Zebrafish models of neurodevelopmental disorders: past, present, and future publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00294 – volume: 6 start-page: 1211 year: 2019 end-page: 1219 ident: CR37 article-title: High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images publication-title: Optica doi: 10.1364/OPTICA.6.001211 – volume: 5 start-page: 12741 year: 2016 ident: CR18 article-title: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion publication-title: Elife doi: 10.7554/eLife.12741 – volume: 6 start-page: 297 year: 2009 end-page: 303 ident: CR16 article-title: Automated monitoring and analysis of social behavior in publication-title: Nat. Methods doi: 10.1038/nmeth.1310 – volume: 33 start-page: 1034 year: 2020 end-page: 1040 ident: CR27 article-title: Whole slide imaging (WSI) in pathology: current perspectives and future directions publication-title: J. Digit. Imaging doi: 10.1007/s10278-020-00351-z – volume: 8 start-page: 45839 year: 2019 ident: CR31 article-title: A primal role for the vestibular sense in the development of coordinated locomotion publication-title: Elife doi: 10.7554/eLife.45839 – volume: 486 start-page: 386 year: 2012 end-page: 389 ident: CR44 article-title: Multiscale gigapixel photography publication-title: Nature doi: 10.1038/nature11150 – volume: 6 start-page: 297 year: 2009 ident: 1171_CR16 publication-title: Nat. Methods doi: 10.1038/nmeth.1310 – ident: 1171_CR57 doi: 10.1109/CVPR46437.2021.00745 – volume: 8 start-page: 45839 year: 2019 ident: 1171_CR31 publication-title: Elife doi: 10.7554/eLife.45839 – ident: 1171_CR39 doi: 10.1038/s41551-022-00849-7 – volume: 7 start-page: 110 year: 2013 ident: 1171_CR22 publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00110 – volume: 1 start-page: 153 year: 1969 ident: 1171_CR36 publication-title: Opt. Commun. doi: 10.1016/0030-4018(69)90052-2 – volume: 13 start-page: 569 year: 2016 ident: 1171_CR29 publication-title: Nat. Methods doi: 10.1038/nmeth.3866 – volume: 5 start-page: 101 year: 2011 ident: 1171_CR20 publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00101 – volume: 590 start-page: 256 year: 2021 ident: 1171_CR50 publication-title: Nature doi: 10.1038/s41586-021-03259-y – volume: 7 start-page: 739 year: 2013 ident: 1171_CR26 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.187 – volume: 14 start-page: 721 year: 2015 ident: 1171_CR7 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4627 – volume: 254 start-page: 1178 year: 1991 ident: 1171_CR40 publication-title: Science doi: 10.1126/science.1957169 – volume: 24 start-page: 765 year: 2005 ident: 1171_CR43 publication-title: ACM Trans. Graph. doi: 10.1145/1073204.1073259 – volume: 30 start-page: 70 year: 2020 ident: 1171_CR19 publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.11.026 – volume: 486 start-page: 386 year: 2012 ident: 1171_CR44 publication-title: Nature doi: 10.1038/nature11150 – volume: 216 start-page: 3071 year: 2013 ident: 1171_CR21 publication-title: J. Exp. Biol. – volume: 24 start-page: 435 year: 2003 ident: 1171_CR9 publication-title: Neurotoxicology doi: 10.1016/S0161-813X(03)00021-4 – volume: 11 start-page: 294 year: 2018 ident: 1171_CR6 publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00294 – ident: 1171_CR55 doi: 10.1364/OPTICA.478010 – volume: 346 start-page: 1257998 year: 2014 ident: 1171_CR38 publication-title: Science doi: 10.1126/science.1257998 – volume: 18 start-page: 193 year: 1996 ident: 1171_CR53 publication-title: Measurement doi: 10.1016/S0263-2241(96)00065-6 – ident: 1171_CR47 doi: 10.7554/eLife.74988 – volume: 8 start-page: 51975 year: 2019 ident: 1171_CR23 publication-title: Elife doi: 10.7554/eLife.51975 – volume: 6 start-page: 1211 year: 2019 ident: 1171_CR37 publication-title: Optica doi: 10.1364/OPTICA.6.001211 – volume: 3 start-page: 128 year: 2011 ident: 1171_CR52 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.3.000128 – volume: 9 start-page: 39 year: 2015 ident: 1171_CR4 publication-title: Front. Neural Circuits doi: 10.3389/fncir.2015.00039 – volume: 284 start-page: 20170308 year: 2017 ident: 1171_CR33 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2017.0308 – volume: 217 start-page: 2358 year: 2014 ident: 1171_CR60 publication-title: J. Exp. Biol. – volume: 63 start-page: 411 year: 2011 ident: 1171_CR5 publication-title: Pharmacol. Rev. doi: 10.1124/pr.110.003293 – volume: 6 start-page: 7288 year: 2015 ident: 1171_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms8288 – volume: 28 start-page: 4996 year: 1989 ident: 1171_CR24 publication-title: Appl. Opt. doi: 10.1364/AO.28.004996 – volume: 35 start-page: 63 year: 2014 ident: 1171_CR3 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2013.12.002 – volume: 14 start-page: 14 year: 2020 ident: 1171_CR48 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0548-6 – volume: 13 year: 2022 ident: 1171_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29177-9 – volume: 144 start-page: 1245 year: 2020 ident: 1171_CR28 publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2019-0569-OA – volume: 8 start-page: 48571 year: 2019 ident: 1171_CR34 publication-title: Elife doi: 10.7554/eLife.48571 – volume: 220 start-page: 25 year: 2017 ident: 1171_CR17 publication-title: J. Exp. Biol. doi: 10.1242/jeb.142281 – volume: 581 start-page: 164 year: 2020 ident: 1171_CR49 publication-title: Nature doi: 10.1038/s41586-020-2239-3 – volume: 1 start-page: 1828 year: 2006 ident: 1171_CR14 publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.287 – ident: 1171_CR54 – volume: 4 start-page: 1811 year: 2012 ident: 1171_CR13 publication-title: Future Med. Chem. doi: 10.4155/fmc.12.115 – volume: 13 start-page: 462 year: 2021 ident: 1171_CR41 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.417102 – volume: 13 start-page: 809 year: 2019 ident: 1171_CR46 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0474-7 – volume: 6 start-page: 3179 year: 2015 ident: 1171_CR45 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.003179 – volume: 7 start-page: 131 year: 2013 ident: 1171_CR2 publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00131 – volume: 33 start-page: 1034 year: 2020 ident: 1171_CR27 publication-title: J. Digit. Imaging doi: 10.1007/s10278-020-00351-z – volume: 327 start-page: 348 year: 2010 ident: 1171_CR11 publication-title: Science doi: 10.1126/science.1183090 – volume: 192 start-page: 95 year: 1994 ident: 1171_CR59 publication-title: J. Exp. Biol. doi: 10.1242/jeb.192.1.95 – volume: 10 start-page: 867 year: 2019 ident: 1171_CR8 publication-title: Medchemcomm doi: 10.1039/C9MD00099B – volume: 124 start-page: 331 year: 2017 ident: 1171_CR10 publication-title: Curr. Top. Dev. Biol. doi: 10.1016/bs.ctdb.2016.10.007 – volume: 5 start-page: 12741 year: 2016 ident: 1171_CR18 publication-title: Elife doi: 10.7554/eLife.12741 – volume: 9 start-page: 593 year: 2022 ident: 1171_CR42 publication-title: Optica doi: 10.1364/OPTICA.454860 – volume: 27 start-page: 334 year: 2017 ident: 1171_CR30 publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.12.003 – ident: 1171_CR58 – volume: 19 start-page: 620 year: 2022 ident: 1171_CR35 publication-title: Nat. Methods doi: 10.1038/s41592-022-01466-7 – volume: 10 start-page: 4078 year: 2019 ident: 1171_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11936-w – ident: 1171_CR56 doi: 10.1109/ICPR.1994.576402 – volume: 11 start-page: 514 year: 2010 ident: 1171_CR1 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2839 – volume: 12 start-page: 6578 year: 2021 ident: 1171_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26748-0 – ident: 1171_CR61 – volume: 3 start-page: 044001 year: 2021 ident: 1171_CR25 publication-title: Adv. Photonics doi: 10.1117/1.AP.3.4.044001 – reference: 36713250 - ArXiv. 2023 Jan 19:arXiv:2301.08351v1. |
| SSID | ssj0053922 |
| Score | 2.551689 |
| Snippet | Wide-field-of-view microscopy that can resolve three-dimensional (3D) information at high speed and spatial resolution is particularly desirable for studying... Wide field of view microscopy that can resolve 3D information at high speed and spatial resolution is highly desirable for studying the behaviour of freely... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 442 |
| SubjectTerms | 631/1647/245/2226 631/1647/328 639/624/1075/1083 639/624/1107/328 639/624/1107/510 Algorithms Applied and Technical Physics Arrays Cameras Computer applications Design optimization Frames per second Image acquisition Image reconstruction Larvae Microscopy Neural networks Optical instruments Optical properties Organisms Parallel processing Physics Physics and Astronomy Quantum Physics Redundancy Spatial discrimination Spatial resolution Topography Video Zebrafish |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48H4ECjISN2o1sZM4OSDEo1WFxKpCVOotmjh2WbGbhM2uYPn12I6Tsqq04ho7SuyZ8cx4Hh_Aa50ZpZykOZUqlDQ2KoNiVRq5Sllcca0q7Rppf5mmp-fx54vkYg-mQy2MTasczkR3UFeNtHfkRyyztkxqDs937U9qUaNsdHWA0EAPrVC9dS3GbsA-s52xJrD_4Xh69nU4mxNjDbC-RDKnhnUTX0YT8uyoc64MNTqM2j5pERXbquqa_Xk9jXKMpd6Gm-u6xc0vnM__UVcn9-COtzPJ-54x7sOeqh_AXW9zEi_R3UP4cYZLC6cyn_0xz6XDePD3g4R_IrZKryELm7Vn61c2pNFEL5Wab8jC3UWQHhaqW3QEV2RITySXs0tsZ7-N4iWtWpLOut3VIzg_Of728ZR6AAYqY5GsaKojiTplGjWL0eydiFiVSmHcoKTUIorKSkc8VXkpw1LrhIWSxzILZR4lijHFH8Okbmr1FAgas5IJVEwhxqHiOWqRVAwjZCmWYRZANOx1IX13cguSMS9clJxnRU-fwtCncPQpRABvxnfavjfHztkHAwkLL6ddccVVAbwah42E2bAJ1qpZ2zkizrjx_HgAT3qKj5_jIrM-Ngsg2-KFcYLt3r09Us--uy7eFpnUOJPmvw4Htrn6r13LOBxZ6z9W_Wz3qp_DLeY43mZwHsBktVyrF8bKWpUvvej8BRtbJE4 priority: 102 providerName: ProQuest |
| Title | Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second |
| URI | https://link.springer.com/article/10.1038/s41566-023-01171-7 https://www.ncbi.nlm.nih.gov/pubmed/37808252 https://www.proquest.com/docview/2809996990 https://www.proquest.com/docview/2874838623 https://pubmed.ncbi.nlm.nih.gov/PMC10552607 https://pmc.ncbi.nlm.nih.gov/articles/PMC10552607/pdf/nihms-1931684.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1749-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053922 issn: 1749-4885 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1749-4893 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0053922 issn: 1749-4885 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1749-4893 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0053922 issn: 1749-4885 databaseCode: 8FG dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD7a2gfggXEbBEZlJN5Y2sTO9bEd6yakVRWi0niKHMfeqiVp1bSC7tdznNsokyaQeEqUHCdx8tnnO_G5AHxUASpl1wtNIS1hOqgyTJ7EOK486iRMyUSVibQvJt75zPly6V7uwVkTC7PM8CoinvfzNOvn8-vSt7LxERtML050QUfk4P5gmagBCmSFiRzE9gKnj0f2oeu5SMo70J1NpsPvVThkaCJM3bv9kNXhMxYLBkVpwpiou0ydH802_V0VdY933nefbNdQn8CjTb7k2x88TX9TU-MDuG47WHqn3PQ367gvbv_I_fgf3sAzeFpTWTKsGj2HPZm_gIOa1pJ60ihews2Ur3TFlnR-i8dFWUai_gVJ2GeiAwEXJNOOgTpEZksWiqiVlOmWZOXvDlJVniqygvA1aTwgydX8ii_nP1G3k6VckUJb9skrmI1Pv52cm3WNB1M4vrs2PWULrjyquKIOR7Lm2zTxhI-Wlhsr37bjRNnMk2EsrFgpl1qCOSKwRGi7klLJDqGTL3L5BghH5kp9Lqnk3LEkC7ny3YRym1OPx1ZggN181kjUCdB1HY40KhfiWRBVUIgQClEJhcg34FPbZlml_3hQ-qhBS1RPBUVEA03CPdT6BnxoT-Mg1iszPJeLjZbxnYChcckMeF2Bq70d8wNtxlMDgh3YtQI6QfjuGQRFmSi8QYoBxw1C757roW4ctyj-i16__Tfxd_CYloNNO40eQWe92sj3SOzWcQ_2g_FZD7rD8Wg0we3odDL92quH8i9ORUtZ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48H4stGAkOFGriZ3noUKUttrSdlWhVuotOI5dVuwmYbOrsvw4fhvjxElZVVpx6TV2Hs687Zn5AN7pCI2yH8RUKkdSD00GFVmKchUwL-NaZbpupH0yCPrn3pcL_2IF_rS1MCatstWJtaLOCmn2yLdZZHyZAJXnx_InNahR5nS1hdAQFloh26lbjNnCjiM1v8IQrto53EN6v2fsYP_sc59alAEqvdCf0kC7UuiAaaGZJ9BdCF2WBTJEX99Pdei6aaZdHqg4lU6qtc8cyT0ZOTJ2fcWY4vjcO7DmcS_G4G9td39w-rW1BT4-jjUlmTFFUfFt2Y7Do-2qDp0o2kxq-rK5NFw0jTf83Ztpm93Z7T1Yn-WlmF-J0egf83jwEO5bv5Z8ahjxEayo_DE8sD4usRqkegI_TsXEwLeMhr_xuqwxJex-JOF7xFQFFmRssgRNvcycFJroiVKjORnXex-kgaGqxhURU9KmQ5LL4aUoh7_Q0JNSTUhlwvzsKZzfCimewWpe5OoFEIFuLAuFYkoIz1E8Fjr0MyZcwQKROlEP3PZfJ9J2QzegHKOkPpXnUdLQJ0H6JDV9krAHH7p7yqYXyNLZGy0JE6sXquSai3vwthtGiTbHNCJXxczMCb2IY6TJe_C8oXj3Oh5GJqZnPYgWeKGbYLqFL47kw-9113CDhIrBK37XVss219-1bBlbHWv9x6pfLl_1G1jvn50cJ8eHg6NXcJfV3G-yRzdgdTqZqU308KbpaytGBL7dtuT-BQRnYbY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw-NMYEo8Db0ZggJHgxKwmdhInB4QQpWwMph2YtFvmOPaolialaTXKT-PX8TmvUU2quOwaO46d7-3vBfDaRCiUgzCmSruK-igyqMxSpKuQ-Rk3OjN1Ie1vB-Hukf_lODjegD9dLowNq-x4Ys2os1LZO_IBi6wuEyLzHJg2LOJwOHo__UltBynrae3aaTQosq-X52i-Ve_2hgjrN4yNPn3_uEvbDgNU-SKY09B4SpqQGWmYL1FVEB7LQiVQzw9SIzwvzYzHQx2nyk2NCZiruK8iV8VeoBnTHNe9BteFreJus9RHnzspEOBirEnGjCkSSdAm7Lg8GlS10URRWlJbkc2jYlUoXtJ0Lwds9l7b23BzUUzl8lzm-T-CcXQP7rQaLfnQoOB92NDFA7jbarek5R3VQzg7lDPbuCUf_8bnqu4m0d5EEj4kNh-wJBMbH2gzZZakNMTMtM6XZFLfepCmAVU1qYicky4QkpyOT-V0_AtFPJnqGamsgZ89gqMrAcRj2CzKQj8BIlGBZUJqpqX0Xc1jaUSQMelJFsrUjRzwun-dqLYOum3HkSe1P55HSQOfBOGT1PBJhANv-3emTRWQtbO3OxAmLUeokgv8deBVP4y0bB00stDlws4RfsTRxuQObDUQ7z_HRWSteeZAtIIL_QRbJ3x1pBj_qOuF2x6oaLbivnY6tLnY17pj7PSo9R-nfrr-1C_hBtJr8nXvYP8Z3GI18tuw0W3YnM8W-jmqdvP0RU1DBE6ummj_AlExX1A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QE4UN4ECjISN-rdxE7i5FgVSoXUag-sVE6R49jtqkk22uwKtr-ecV5lqVSBxC2KJw8nnz3f2PMA-GAiVMpBGFOlXUV9VBlUZimOq5D5GTc6M00i7dOz8GTmfz0PznfgSx8LUxV4F5XOx2VejMv5ZeNb2fuITaanR7agI3JwMakyM0GBoqbIQbww8sd45h7shgGS8hHszs6mh9_bcMiYIkyDm-OYd-EzLo8mdWPCUNRd1OZH86jYVlG3eOdt98lhD_Uh3F-Xldz8kHn-m5o63oPLoYONd8rVeL1Kx-r6j9yP_-ELPIZHHZUlh-1FT2BHl09hr6O1pJs06mdwNZVLW7Eln1_jedWUkeiWIAn_RGwg4IIU1jHQhshsyMIQs9Q635CiWe4gbeWpuqiJXJHeA5JczC9kNf-Jup1Ueklqa9lnz2F2_Pnb0QntajxQ5YtgRUPjKWlCZqRhvkSyJjyWhUqgpRWkRnhemhmPhzpOlZsaEzBXcV9Froq9QDOm-QsYlYtSvwIikbkyITXTUvqu5rE0IsiY9CQLZepGDnj9b01UlwDd1uHIk2YjnkdJC4UEoZA0UEiEAx-Ha6o2_ced0vs9WpJuKqgTFlkSHqLWd-D90IyD2O7MyFIv1lZG-BFH45I78LIF1_A4LiJrxjMHoi3YDQI2Qfh2C4KiSRTeI8WBgx6hN-91VzcOBhT_Ra9f_5v4G3jAmsFmnUb3YbRarvVbJHar9F03aH8BCmdHXQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallelized+computational+3D+video+microscopy+of+freely+moving+organisms+at+multiple+gigapixels+per+second&rft.jtitle=Nature+photonics&rft.au=Zhou%2C+Kevin+C.&rft.au=Harfouche%2C+Mark&rft.au=Cooke%2C+Colin+L.&rft.au=Park%2C+Jaehee&rft.date=2023-05-01&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=17&rft.issue=5&rft.spage=442&rft.epage=450&rft_id=info:doi/10.1038%2Fs41566-023-01171-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41566_023_01171_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |