Go beyond the limits of genetic algorithm in daily covariate selection practice
Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process...
Saved in:
| Published in | Journal of pharmacokinetics and pharmacodynamics Vol. 51; no. 2; pp. 109 - 121 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1567-567X 1573-8744 1573-8744 |
| DOI | 10.1007/s10928-023-09875-7 |
Cover
| Abstract | Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used.
However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution.
The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM. |
|---|---|
| AbstractList | Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM. Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM.Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM. Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM. |
| Author | Ronchi, D. Magni, P. Tosca, E. M. Bartolucci, R. |
| Author_xml | – sequence: 1 givenname: D. surname: Ronchi fullname: Ronchi, D. organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia – sequence: 2 givenname: E. M. surname: Tosca fullname: Tosca, E. M. organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia – sequence: 3 givenname: R. surname: Bartolucci fullname: Bartolucci, R. organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Clinical Pharmacology & Pharmacometrics, Janssen Research & Development – sequence: 4 givenname: P. surname: Magni fullname: Magni, P. email: paolo.magni@unipv.it organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37493851$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1rVDEYhYNU7If-ARcScOPm1nzc3CQrkaK1UOhGwV3I5L53JiU3GZNMy_x7M85otYviIuSFnHN4z5NTdBRTBIReU3JOCZHvCyWaqY4w3hGtpOjkM3RCheSdkn1_tJsH2bXz_RidlnJLCB0EIy_QMZe95krQE3RzmfACtimOuK4ABz_7WnCa8BIiVO-wDcuUfV3N2Ec8Wh-22KU7m72tgAsEcNWniNfZtsHBS_R8sqHAq8N9hr59_vT14kt3fXN5dfHxunO9FLUbOJBp4oOQAqjWYgStRj5yB8opzpweFv2gRq0JaO0GOvWWt56j0Jb0vaP8DPF97iau7fbehmDW2c82bw0lZofH7PGYZjO_8BjZXB_2rvVmMcPoINZsH5zJevPvS_Qrs0x3LVAr1uJawrtDQk4_NlCqmX1xEIKNkDbFMNWzXrDWrEnfPpLepk2OjYppXcjABqV3Rd78vdKfXX5_UROovcDlVEqGyThf7Q5629CHp-uyR9b_YnQgW5o4LiE_rP2E6ye788UA |
| CitedBy_id | crossref_primary_10_1007_s10928_024_09911_0 crossref_primary_10_1002_psp4_13306 |
| Cites_doi | 10.1208/s12248-012-9320-2 10.1007/s10928-021-09782-9 10.1021/acs.jcim.6b00136 10.1186/s12859-016-1415-9 10.1208/s12248-021-00593-x 10.1007/s10928-019-09635-6 10.1111/j.2044-8317.1992.tb00992.x 10.1007/s10928-006-9004-6 10.1111/bcp.14801 10.1007/s10928-017-9504-6 10.1002/psp4.12742 10.1111/bcp.12179 10.1002/psp4.12612 10.1002/cpt.1777 10.1016/j.ins.2014.02.062 10.1023/a:1011579109640 10.3390/pharmaceutics13071101 10.1002/cpt.1774 10.1007/s10928-021-09793-6 10.1007/BF01061469 10.1007/s10928-012-9258-0 10.1097/00000542-199701000-00004 10.1002/jcph.176 10.1002/psp4.12377 10.1007/s10928-007-9057-1 10.1162/evco.1996.4.4.361 10.2174/138161207780765954 10.1007/s10928-007-9077-x 10.1111/bcp.12451 10.1080/17460441.2021.1931114 10.1007/s10928-021-09757-w 10.1007/3-540-32444-5_2 10.1007/978-3-319-52156-5_2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH H94 K9. M0S M1P M7N PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s10928-023-09875-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1573-8744 |
| EndPage | 121 |
| ExternalDocumentID | 10.1007/s10928-023-09875-7 PMC10982092 37493851 10_1007_s10928_023_09875_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Università degli Studi di Pavia |
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN B-. BA0 BDATZ BENPR BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WJK WK8 YLTOR Z45 Z7U Z7V Z7W Z83 Z87 Z8O Z8P Z8Q Z91 ZMTXR ZOVNA AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7U9 7XB 8FK H94 K9. M7N PKEHL PQEST PQUKI 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-63e0ff36575e1995de98d3d3ce8c832c96b468d990e99c61f4a3023d59a044c13 |
| IEDL.DBID | BENPR |
| ISSN | 1567-567X 1573-8744 |
| IngestDate | Sun Oct 26 04:09:22 EDT 2025 Tue Sep 30 17:09:19 EDT 2025 Fri Sep 05 12:29:27 EDT 2025 Tue Oct 07 05:41:02 EDT 2025 Thu Aug 28 04:24:23 EDT 2025 Wed Oct 01 03:01:04 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Fri Feb 21 02:43:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Automatic model building Population PK/PD model Covariate selection Genetic algorithm Artificial intelligence Machine learning |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-63e0ff36575e1995de98d3d3ce8c832c96b468d990e99c61f4a3023d59a044c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10928-023-09875-7.pdf |
| PMID | 37493851 |
| PQID | 3020626891 |
| PQPubID | 55470 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1007_s10928_023_09875_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10982092 proquest_miscellaneous_2842452365 proquest_journals_3020626891 pubmed_primary_37493851 crossref_citationtrail_10_1007_s10928_023_09875_7 crossref_primary_10_1007_s10928_023_09875_7 springer_journals_10_1007_s10928_023_09875_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of pharmacokinetics and pharmacodynamics |
| PublicationTitleAbbrev | J Pharmacokinet Pharmacodyn |
| PublicationTitleAlternate | J Pharmacokinet Pharmacodyn |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Derksen, Keselman (CR11) 1992; 45 Bies, Muldoon, Pollock, Manuck, Smith, Sale (CR29) 2006; 33 Ribba, Dudal, Lavé, Peck (CR22) 2020; 107 Minto (CR31) 1997; 86 Sibieude, Khandelwal, Girard, Hesthaven, Terranova (CR34) 2022; 49 Hutchinson (CR15) 2019; 8 Kowalski, Hutmacher (CR6) 2001; 28 CR14 Ismail (CR27) 2022; 49 Zhang, Chen, Liu, Luo, Tian, Li (CR21) 2017; 18 Mandema, Verotta, Sheiner (CR8) 1992; 20 Ahamadi (CR10) 2019; 46 CR33 CR32 McComb, Bies, Ramanathan (CR13) 2022; 88 Koch, Pfister, Daunhawer, Wilbaux, Wellmann, Vogt (CR23) 2020; 107 Haem, Harling, Ayatollahi, Zare, Karlsson (CR3) 2017; 44 Cortes-Ciriano (CR17) 2016; 56 Duch, Swaminathan, Meller (CR18) 2007; 13 Sale, Sherer (CR30) 2015; 79 Ribbing, Nyberg, Caster, Jonsson (CR2) 2007; 34 Ayral, SiAbdallah, Magnard, Chauvin (CR5) 2021; 10 Tosca, Bartolucci, Magni (CR19) 2021; 13 CR28 Cai, Zhang, Tung, Dai, Hao (CR36) 2014; 272 Joerger (CR1) 2012; 14 CR25 Lunn (CR4) 2008; 35 Chaturvedula, Sale, Lee (CR16) 2014; 54 Blickle, Thiele (CR35) 1996; 4 Tosca, Bartolucci, Magni, Poggesi (CR20) 2021; 16 Hutmacher, Kowalski (CR9) 2015; 79 Sherer (CR26) 2012; 39 Terranova, Venkatakrishnan, Benincosa (CR12) 2021; 23 Prague, Lavielle (CR7) 2022; 11 Sibieude, Khandelwal, Hesthaven, Girard, Terranova (CR24) 2021; 48 KG Kowalski (9875_CR6) 2001; 28 W Duch (9875_CR18) 2007; 13 N Terranova (9875_CR12) 2021; 23 DJ Lunn (9875_CR4) 2008; 35 L Hutchinson (9875_CR15) 2019; 8 E Sibieude (9875_CR34) 2022; 49 M Prague (9875_CR7) 2022; 11 MM Hutmacher (9875_CR9) 2015; 79 M Ahamadi (9875_CR10) 2019; 46 EM Tosca (9875_CR19) 2021; 13 9875_CR32 9875_CR33 R Cai (9875_CR36) 2014; 272 JW Mandema (9875_CR8) 1992; 20 A Chaturvedula (9875_CR16) 2014; 54 M McComb (9875_CR13) 2022; 88 9875_CR14 CF Minto (9875_CR31) 1997; 86 T Blickle (9875_CR35) 1996; 4 W Zhang (9875_CR21) 2017; 18 E Sibieude (9875_CR24) 2021; 48 G Koch (9875_CR23) 2020; 107 RR Bies (9875_CR29) 2006; 33 EM Tosca (9875_CR20) 2021; 16 E Haem (9875_CR3) 2017; 44 I Cortes-Ciriano (9875_CR17) 2016; 56 M Joerger (9875_CR1) 2012; 14 J Ribbing (9875_CR2) 2007; 34 G Ayral (9875_CR5) 2021; 10 S Derksen (9875_CR11) 1992; 45 EA Sherer (9875_CR26) 2012; 39 M Sale (9875_CR30) 2015; 79 9875_CR25 M Ismail (9875_CR27) 2022; 49 9875_CR28 B Ribba (9875_CR22) 2020; 107 |
| References_xml | – volume: 14 start-page: 119 issue: 1 year: 2012 end-page: 132 ident: CR1 article-title: Covariate pharmacokinetic model building in oncology and its potential clinical relevance publication-title: AAPS J doi: 10.1208/s12248-012-9320-2 – volume: 49 start-page: 243 issue: 2 year: 2022 end-page: 256 ident: CR27 article-title: Development of a genetic algorithm and NONMEM workbench for automating and improving population pharmacokinetic/pharmacodynamic model selection publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09782-9 – ident: CR14 – volume: 56 start-page: 1576 issue: 8 year: 2016 end-page: 1587 ident: CR17 article-title: Benchmarking the predictive power of ligand efficiency indices in QSAR publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00136 – volume: 18 start-page: 18 issue: 1 year: 2017 ident: CR21 article-title: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data publication-title: BMC Bioinf doi: 10.1186/s12859-016-1415-9 – volume: 23 start-page: 74 issue: 4 year: 2021 ident: CR12 article-title: Application of machine learning in translational medicine: current status and future opportunities publication-title: AAPS J doi: 10.1208/s12248-021-00593-x – ident: CR33 – volume: 46 start-page: 273 issue: 3 year: 2019 end-page: 285 ident: CR10 article-title: Operating characteristics of stepwise covariate selection in pharmacometric modeling publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-019-09635-6 – volume: 45 start-page: 265 issue: 2 year: 1992 end-page: 282 ident: CR11 article-title: Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables publication-title: Br J Math Stat Psychol doi: 10.1111/j.2044-8317.1992.tb00992.x – volume: 33 start-page: 195 issue: 2 year: 2006 end-page: 221 ident: CR29 article-title: A genetic algorithm-based, hybrid machine learning approach to model selection publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-006-9004-6 – volume: 88 start-page: 1482 issue: 4 year: 2022 end-page: 1499 ident: CR13 article-title: Machine learning in pharmacometrics: opportunities and challenges publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.14801 – volume: 44 start-page: 55 issue: 1 year: 2017 end-page: 66 ident: CR3 article-title: Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-017-9504-6 – volume: 11 start-page: 161 issue: 2 year: 2022 end-page: 172 ident: CR7 article-title: SAMBA: a novel method for fast automatic model building in nonlinear mixed-effects models publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12742 – ident: CR25 – volume: 79 start-page: 28 issue: 1 year: 2015 end-page: 39 ident: CR30 article-title: A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.12179 – volume: 10 start-page: 318 issue: 4 year: 2021 end-page: 329 ident: CR5 article-title: A novel method based on unbiased correlations tests for covariate selection in nonlinear mixed effects models: the COSSAC approach publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12612 – volume: 107 start-page: 853 issue: 4 year: 2020 end-page: 857 ident: CR22 article-title: Model-informed artificial intelligence: reinforcement learning for precision dosing publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.1777 – volume: 272 start-page: 29 year: 2014 end-page: 48 ident: CR36 article-title: A general framework of hierarchical clustering and its applications publication-title: Inf Sci Int J doi: 10.1016/j.ins.2014.02.062 – volume: 28 start-page: 253 issue: 3 year: 2001 end-page: 275 ident: CR6 article-title: Efficient screening of covariates in population models using Wald’s approximation to the likelihood ratio test publication-title: J Pharmacokinet Pharmacodyn doi: 10.1023/a:1011579109640 – volume: 13 start-page: 1101 issue: 7 year: 2021 ident: CR19 article-title: Application of artificial neural networks to predict the intrinsic solubility of drug-like molecules publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13071101 – volume: 107 start-page: 926 issue: 4 year: 2020 end-page: 933 ident: CR23 article-title: Pharmacometrics and machine learning partner to advance clinical data analysis publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.1774 – volume: 49 start-page: 257 issue: 2 year: 2022 end-page: 270 ident: CR34 article-title: Population pharmacokinetic model selection assisted by machine learning publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09793-6 – volume: 20 start-page: 511 issue: 5 year: 1992 end-page: 528 ident: CR8 article-title: Building population pharmacokinetic–pharmacodynamic models. I: models for covariate effects publication-title: J Pharmacokinet Biopharm doi: 10.1007/BF01061469 – volume: 39 start-page: 393 issue: 4 year: 2012 end-page: 414 ident: CR26 article-title: Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-012-9258-0 – volume: 86 start-page: 10 issue: 1 year: 1997 end-page: 23 ident: CR31 article-title: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil publication-title: Anesthesiology doi: 10.1097/00000542-199701000-00004 – volume: 54 start-page: 141 issue: 2 year: 2014 end-page: 149 ident: CR16 article-title: Genetic algorithm guided population pharmacokinetic model development for simvastatin, concurrently or non-concurrently co-administered with amlodipine publication-title: J Clin Pharmacol doi: 10.1002/jcph.176 – volume: 8 start-page: 131 issue: 3 year: 2019 end-page: 134 ident: CR15 article-title: Models and machines: how deep learning will take clinical pharmacology to the next level publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12377 – volume: 34 start-page: 485 issue: 4 year: 2007 end-page: 517 ident: CR2 article-title: The lasso–a novel method for predictive covariate model building in nonlinear mixed effects models publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-007-9057-1 – ident: CR32 – volume: 4 start-page: 361 issue: 4 year: 1996 end-page: 394 ident: CR35 article-title: A comparison of selection schemes used in evolutionary algorithms publication-title: Evol Comput doi: 10.1162/evco.1996.4.4.361 – volume: 13 start-page: 1497 issue: 14 year: 2007 end-page: 1508 ident: CR18 article-title: Artificial intelligence approaches for rational drug design and discovery publication-title: Curr Pharm Des doi: 10.2174/138161207780765954 – volume: 35 start-page: 85 issue: 1 year: 2008 end-page: 100 ident: CR4 article-title: Automated covariate selection and Bayesian model averaging in population PK/PD models publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-007-9077-x – volume: 79 start-page: 132 issue: 1 year: 2015 end-page: 147 ident: CR9 article-title: Covariate selection in pharmacometric analyses: a review of methods: covariate selection in pharmacometric analysis publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.12451 – ident: CR28 – volume: 16 start-page: 1365 issue: 11 year: 2021 end-page: 1390 ident: CR20 article-title: Modeling approaches for reducing safety-related attrition in drug discovery and development: a review on myelotoxicity, immunotoxicity, cardiovascular toxicity, and liver toxicity publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2021.1931114 – volume: 48 start-page: 597 issue: 4 year: 2021 end-page: 609 ident: CR24 article-title: Fast screening of covariates in population models empowered by machine learning publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09757-w – volume: 8 start-page: 131 issue: 3 year: 2019 ident: 9875_CR15 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12377 – volume: 88 start-page: 1482 issue: 4 year: 2022 ident: 9875_CR13 publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.14801 – ident: 9875_CR25 doi: 10.1007/3-540-32444-5_2 – volume: 35 start-page: 85 issue: 1 year: 2008 ident: 9875_CR4 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-007-9077-x – volume: 13 start-page: 1101 issue: 7 year: 2021 ident: 9875_CR19 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13071101 – volume: 54 start-page: 141 issue: 2 year: 2014 ident: 9875_CR16 publication-title: J Clin Pharmacol doi: 10.1002/jcph.176 – volume: 39 start-page: 393 issue: 4 year: 2012 ident: 9875_CR26 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-012-9258-0 – volume: 86 start-page: 10 issue: 1 year: 1997 ident: 9875_CR31 publication-title: Anesthesiology doi: 10.1097/00000542-199701000-00004 – volume: 4 start-page: 361 issue: 4 year: 1996 ident: 9875_CR35 publication-title: Evol Comput doi: 10.1162/evco.1996.4.4.361 – volume: 44 start-page: 55 issue: 1 year: 2017 ident: 9875_CR3 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-017-9504-6 – volume: 49 start-page: 257 issue: 2 year: 2022 ident: 9875_CR34 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09793-6 – volume: 28 start-page: 253 issue: 3 year: 2001 ident: 9875_CR6 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1023/a:1011579109640 – volume: 49 start-page: 243 issue: 2 year: 2022 ident: 9875_CR27 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09782-9 – volume: 14 start-page: 119 issue: 1 year: 2012 ident: 9875_CR1 publication-title: AAPS J doi: 10.1208/s12248-012-9320-2 – volume: 23 start-page: 74 issue: 4 year: 2021 ident: 9875_CR12 publication-title: AAPS J doi: 10.1208/s12248-021-00593-x – volume: 20 start-page: 511 issue: 5 year: 1992 ident: 9875_CR8 publication-title: J Pharmacokinet Biopharm doi: 10.1007/BF01061469 – volume: 45 start-page: 265 issue: 2 year: 1992 ident: 9875_CR11 publication-title: Br J Math Stat Psychol doi: 10.1111/j.2044-8317.1992.tb00992.x – volume: 10 start-page: 318 issue: 4 year: 2021 ident: 9875_CR5 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12612 – ident: 9875_CR32 doi: 10.1007/978-3-319-52156-5_2 – volume: 56 start-page: 1576 issue: 8 year: 2016 ident: 9875_CR17 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00136 – volume: 272 start-page: 29 year: 2014 ident: 9875_CR36 publication-title: Inf Sci Int J doi: 10.1016/j.ins.2014.02.062 – volume: 18 start-page: 18 issue: 1 year: 2017 ident: 9875_CR21 publication-title: BMC Bioinf doi: 10.1186/s12859-016-1415-9 – volume: 16 start-page: 1365 issue: 11 year: 2021 ident: 9875_CR20 publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2021.1931114 – volume: 79 start-page: 28 issue: 1 year: 2015 ident: 9875_CR30 publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.12179 – volume: 107 start-page: 926 issue: 4 year: 2020 ident: 9875_CR23 publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.1774 – volume: 107 start-page: 853 issue: 4 year: 2020 ident: 9875_CR22 publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.1777 – volume: 34 start-page: 485 issue: 4 year: 2007 ident: 9875_CR2 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-007-9057-1 – ident: 9875_CR14 – ident: 9875_CR33 – volume: 46 start-page: 273 issue: 3 year: 2019 ident: 9875_CR10 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-019-09635-6 – volume: 33 start-page: 195 issue: 2 year: 2006 ident: 9875_CR29 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-006-9004-6 – volume: 13 start-page: 1497 issue: 14 year: 2007 ident: 9875_CR18 publication-title: Curr Pharm Des doi: 10.2174/138161207780765954 – volume: 79 start-page: 132 issue: 1 year: 2015 ident: 9875_CR9 publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.12451 – ident: 9875_CR28 – volume: 11 start-page: 161 issue: 2 year: 2022 ident: 9875_CR7 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12742 – volume: 48 start-page: 597 issue: 4 year: 2021 ident: 9875_CR24 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09757-w |
| SSID | ssj0016520 |
| Score | 2.3982182 |
| Snippet | Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109 |
| SubjectTerms | Algorithms Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computer applications Convergence Exercise Genetic algorithms Original Paper Pharmacodynamics Pharmacokinetics Pharmacology/Toxicology Pharmacy Problem solving Remifentanil Veterinary Medicine/Veterinary Science |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VegAOVfkopKXISIgLaykbO058rBAUIbVwAGlvkdcfsFJIENkF7b9nnGSzbEGoHHKy49geO_NG4_cMcMAY-lihMVLVcUg5IlyqEhNR9JwO8UKomfTc4T9_xdk1Px_Eg1Ymx3Nh_snfe4qb9BrKEaMhhscxTZbgMzopUSdmxXGXMRBxLcGI4UhC8Rm0BJm321h0Qq-Q5esDkl2WdA1WJsW9mj6pPH_hiE6_wpcWQZJfjcnX4ZMtNuDwspGgnvbI1ZxRVfXIIbmci1NPN-Hid0mGNWuFIPQjuec3VaR0BBeS5zMSld-UD6Px7R0ZFcSoUT4lunzEiBpBKanqW3PQlGTGrtqC69OTq-Mz2l6qQDVP4jEVzIbOMZ9vsZ6ebaxMDTNM21Tj7tZSDLlIDTopK6UWfceVv1fIxFKFnOs--wbLRVnYHSBe283yyKnE4X9AGqksAhDJDXPOCj0MoD-b5Uy3iuP-4os8m2sle8tk2H5WWyZLAjjq3rlv9Dberb07M17W7r0qw-6GGKalsh_AfleMu8anQlRhy0mVoVP2KWechgC2G1t3n2MJlwyBaADpwiroKnhF7sWSYnRbK3NjBxFRySiA3mzBzPv13jB63aL6j1F__1jrP2A1QiTWHDfaheXxw8T-RCQ1Hu7VW-gZnUURsg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN6EFmQk1AubbTZ2Hj5WLaVCouyhKy2nyPGjXRGSVZMFLb-ecV7bpagCcYgUyU5iO2PPNxp_nwHeUoo-NpQYqcrAcxkiXFdEynfRcxrEC56k3HKHP52Fp1P2cRbMtuC448LUu927lGTDabAqTXl1sFDm4BrxjVtlZZ-6HgbNgRuNsPgObIcBIvIBbE_PJodfaqlUXAfwmtX3EXWt2nvLnfnzizb90w3QeXPvZJ9AvQ93l_lCrH6ILLvmo052QHe9a7amfB0tq3Qkf_4m_Pi_3X8ID1oQSw4bq3sEWzp_DPuTRgV7NSTna1JXOST7ZLLWx149gc8fCpLWxBmC6JNklmJVksIQtGVLqSQiuyiu5tXlNzLPiRLzbEVk8R2DesTFpKwP7kFrIh3B6ylMT96fH5267bkOrmRRULkh1Z4x1KZ8tGWIK81jRRWVOpa4wEgepiyMFfpJzbkMx4YJe7SRCrjwGJNj-gwGeZHrF0CsvJxmvhGRwaWIKy40YiDOFDVGhzJ1YNz9zUS2ouf27I0sWcs127FM8P1JPZZJ5MC7_plFI_lxa-29zkiSdvqXCTbXw0gx5mMH3vTFOHFtNkbkuliWCeICm_XGYXDgeWNT_edoxDhFLOxAvGFtfQUrCr5Zks8va3FwbCCCOu47MOzsaN2u27ox7I33L3r98t-q78I9H8Fgs-NpDwbV1VK_QjBXpa_bufoLSbE-YQ priority: 102 providerName: Unpaywall |
| Title | Go beyond the limits of genetic algorithm in daily covariate selection practice |
| URI | https://link.springer.com/article/10.1007/s10928-023-09875-7 https://www.ncbi.nlm.nih.gov/pubmed/37493851 https://www.proquest.com/docview/3020626891 https://www.proquest.com/docview/2842452365 https://pubmed.ncbi.nlm.nih.gov/PMC10982092 https://link.springer.com/content/pdf/10.1007/s10928-023-09875-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-8744 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016520 issn: 1573-8744 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-8744 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016520 issn: 1573-8744 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-8744 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016520 issn: 1573-8744 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fj9JAEJ7cwYP6YPx5Vk-yJuZepLF0ty37YAwQuIvGSsyRcE_Nsrv1SGqLFjT89872p-QS4gOQsAW6O7M73zL7fQPwllKMsb7Enar0HJshwrVFoFwbI2eMeMGRlBvu8JfQv1qwT0tveQJhzYUxxyrrNbFYqFUmzX_k7yniGgTfQz74uPlpm6pRJrtal9AQVWkF9aGQGDuFrmuUsTrQHU_D-bcmr-B7hVAjbloCGx_LikZTkem4UWt2qe3gRtyzg8NQdQd_3j1G2eRSH8C9XboR-z8iSf4JV7NH8LDCmWRUOsZjONHpE7iYl0LV-z65bnlXeZ9ckHkrYb1_Cl8vM7IquC0EASJJDAsqJ1lM0N0M65GI5DsOzvb2B1mnRIl1sicy-437boSuJC9q66DBSc3BegaL2fR6cmVXpRdsyQJva_tUO3FMTVZGGxK30nyoqKJSDyWuAZL7K-YPFYYyzbn0BzETpvqQ8rhwGJMD-hw6aZbqF0CMApxmbiyCGFcLrrjQCFM4UzSOtS9XFgzqUY5kpUtuymMkUauobCwT4fdHhWWiwIJ3zWc2pSrH0avPa-NF1QzNo9afLHjTNOPcMgkTkepsl0cYuk1iGofBgrPS1s3P0YBxinDVguGBFzQXGN3uw5Z0fVvod-MNIu7irgX92mHa-zrWjX7jVP_R65fHe_0K7ruIz8pDSOfQ2f7a6deIr7arHpwGy6AH3dFsPA7N6-XN52mvmkrYOvEn-LxwR_jeIpyPbv4CXeYmtQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IN4YCiwS9EIsHO_6sYcK8WhJaRsilEq5uZvddRvJtQNOqPzn-G3M-klUKeLSg092bK9ndvabzH7fALyhFNdYX2KmKj3HZohwbREo18aVM0a84EjKDXf4ZOgPTtm3iTfZgD8NF8Zsq2xiYhmoVSbNf-TvKeIaBN8h73-Y_7RN1yhTXW1aaIi6tYLaKyXGamLHkS6uMIXL9w6_oL3fuu7B_vjzwK67DNiSBd7C9ql24piaAoQ2fGWleaioolKHEt1dcn_K_FBh1NacS78fM2Ea7SiPC4cx2ad431uwxSjjmPxtfdofjn60dQzfK4UhMUkKbDwmNW2nJu9xow7tUtvBxN-zg9Wl8Rrevb5ts63d3oHtZToXxZVIkn-Wx4N7cLfGteRj5Yj3YUOnD2B3VAljFz0y7nheeY_sklEnmV08hO9fMzItuTQEASlJDOsqJ1lM0L0Ny5KI5ByNsbi4JLOUKDFLCiKz35jnI1QmednLBx2MNJyvR3B6I0Z4DJtpluqnQIzinGZuLIIYoxNXXGiERZwpGsfal1ML-s1XjmStg27acSRRp-BsLBPh_aPSMlFgwbv2N_NKBWTt1TuN8aI6IuRR578WvG5P41w2BRqR6myZRwgVTCEcP4MFTypbt4-jAeMU4bEF4YoXtBcYnfDVM-nsotQLxxdEnMddC3qNw3TvtW4Yvdap_mPUz9aP-hVsD8Ynx9Hx4fDoOdx2ERtWG6B2YHPxa6lfILZbTF_WE4jA2U3P2b8yXls0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiwS9EJWtb1-7QEhRAkthZJDK-VmNvugkYwdcELlv8avY9ZPokoRlx5ysuN4d2Z3v8nM9w3AS8bwjI0kRqoydGmACJeKWPkUT06DeMGVjFvu8Jfj6OA0-DQNp1vwp-PC2LLKbk-sN2pVSPsf-R5DXIPgO-HenmnLIib747eLn9R2kLKZ1q6dRuMiR7o6x_CtfHO4j7Z-5fvjDyfvD2jbYYDKIA6XNGLaNYbZ5IO2XGWleaKYYlInEl1d8mgWRInCHVtzLiPPBMI22VEhF24QSI_hc6_A1ZgxbssJ42kf7HlRWEtCYngUU_xMW8JOS9vjVhfaZ9TFkD-k8fqheAHpXizY7LO2N-H6Kl-I6lxk2T8H4_g23GoRLXnXuOAd2NL5XdidNJLY1YicDAyvckR2yWQQy67uwdePBZnVLBqCUJRklm9VksIQdGzLryQi-45Tvzz7QeY5UWKeVUQWvzHCR5BMyrqLD7oW6dhe9-H0UkzwALbzItePgFitOR34RsQG9yWuuNAIiHigmDE6kjMHvG6WU9kqoNtGHFk6aDdby6T4_LS2TBo78Lr_zqLR_9h4905nvLTdC8p08FwHXvSXcRXb1IzIdbEqUwQJNgWO0-DAw8bW_c-xOOAMgbEDyZoX9DdYhfD1K_n8rFYKxxdEhMd9B0adwwzvtWkYo96p_mPUjzeP-jlcw5Wafj48PnoCN3wEhU3l0w5sL3-t9FMEdcvZs3r1EPh22cv1L52jWM4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN6EFmQk1AubbTZ2Hj5WLaVCouyhKy2nyPGjXRGSVZMFLb-ecV7bpagCcYgUyU5iO2PPNxp_nwHeUoo-NpQYqcrAcxkiXFdEynfRcxrEC56k3HKHP52Fp1P2cRbMtuC448LUu927lGTDabAqTXl1sFDm4BrxjVtlZZ-6HgbNgRuNsPgObIcBIvIBbE_PJodfaqlUXAfwmtX3EXWt2nvLnfnzizb90w3QeXPvZJ9AvQ93l_lCrH6ILLvmo052QHe9a7amfB0tq3Qkf_4m_Pi_3X8ID1oQSw4bq3sEWzp_DPuTRgV7NSTna1JXOST7ZLLWx149gc8fCpLWxBmC6JNklmJVksIQtGVLqSQiuyiu5tXlNzLPiRLzbEVk8R2DesTFpKwP7kFrIh3B6ylMT96fH5267bkOrmRRULkh1Z4x1KZ8tGWIK81jRRWVOpa4wEgepiyMFfpJzbkMx4YJe7SRCrjwGJNj-gwGeZHrF0CsvJxmvhGRwaWIKy40YiDOFDVGhzJ1YNz9zUS2ouf27I0sWcs127FM8P1JPZZJ5MC7_plFI_lxa-29zkiSdvqXCTbXw0gx5mMH3vTFOHFtNkbkuliWCeICm_XGYXDgeWNT_edoxDhFLOxAvGFtfQUrCr5Zks8va3FwbCCCOu47MOzsaN2u27ox7I33L3r98t-q78I9H8Fgs-NpDwbV1VK_QjBXpa_bufoLSbE-YQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Go+beyond+the+limits+of+genetic+algorithm+in+daily+covariate+selection+practice&rft.jtitle=Journal+of+pharmacokinetics+and+pharmacodynamics&rft.au=Ronchi%2C+D&rft.au=Tosca%2C+E+M&rft.au=Bartolucci%2C+R&rft.au=Magni%2C+P&rft.date=2024-04-01&rft.eissn=1573-8744&rft.volume=51&rft.issue=2&rft.spage=109&rft_id=info:doi/10.1007%2Fs10928-023-09875-7&rft_id=info%3Apmid%2F37493851&rft.externalDocID=37493851 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-567X&client=summon |