Go beyond the limits of genetic algorithm in daily covariate selection practice

Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmacokinetics and pharmacodynamics Vol. 51; no. 2; pp. 109 - 121
Main Authors Ronchi, D., Tosca, E. M., Bartolucci, R., Magni, P.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1567-567X
1573-8744
1573-8744
DOI10.1007/s10928-023-09875-7

Cover

Abstract Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM.
AbstractList Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM.
Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM.Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM.
Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during model building is limited by the extremely high computational costs and convergence issues, both related to the number of models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained good results both in terms of selected covariates and fitness optimization, outperforming the SCM.
Author Ronchi, D.
Magni, P.
Tosca, E. M.
Bartolucci, R.
Author_xml – sequence: 1
  givenname: D.
  surname: Ronchi
  fullname: Ronchi, D.
  organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia
– sequence: 2
  givenname: E. M.
  surname: Tosca
  fullname: Tosca, E. M.
  organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia
– sequence: 3
  givenname: R.
  surname: Bartolucci
  fullname: Bartolucci, R.
  organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Clinical Pharmacology & Pharmacometrics, Janssen Research & Development
– sequence: 4
  givenname: P.
  surname: Magni
  fullname: Magni, P.
  email: paolo.magni@unipv.it
  organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37493851$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rVDEYhYNU7If-ARcScOPm1nzc3CQrkaK1UOhGwV3I5L53JiU3GZNMy_x7M85otYviIuSFnHN4z5NTdBRTBIReU3JOCZHvCyWaqY4w3hGtpOjkM3RCheSdkn1_tJsH2bXz_RidlnJLCB0EIy_QMZe95krQE3RzmfACtimOuK4ABz_7WnCa8BIiVO-wDcuUfV3N2Ec8Wh-22KU7m72tgAsEcNWniNfZtsHBS_R8sqHAq8N9hr59_vT14kt3fXN5dfHxunO9FLUbOJBp4oOQAqjWYgStRj5yB8opzpweFv2gRq0JaO0GOvWWt56j0Jb0vaP8DPF97iau7fbehmDW2c82bw0lZofH7PGYZjO_8BjZXB_2rvVmMcPoINZsH5zJevPvS_Qrs0x3LVAr1uJawrtDQk4_NlCqmX1xEIKNkDbFMNWzXrDWrEnfPpLepk2OjYppXcjABqV3Rd78vdKfXX5_UROovcDlVEqGyThf7Q5629CHp-uyR9b_YnQgW5o4LiE_rP2E6ye788UA
CitedBy_id crossref_primary_10_1007_s10928_024_09911_0
crossref_primary_10_1002_psp4_13306
Cites_doi 10.1208/s12248-012-9320-2
10.1007/s10928-021-09782-9
10.1021/acs.jcim.6b00136
10.1186/s12859-016-1415-9
10.1208/s12248-021-00593-x
10.1007/s10928-019-09635-6
10.1111/j.2044-8317.1992.tb00992.x
10.1007/s10928-006-9004-6
10.1111/bcp.14801
10.1007/s10928-017-9504-6
10.1002/psp4.12742
10.1111/bcp.12179
10.1002/psp4.12612
10.1002/cpt.1777
10.1016/j.ins.2014.02.062
10.1023/a:1011579109640
10.3390/pharmaceutics13071101
10.1002/cpt.1774
10.1007/s10928-021-09793-6
10.1007/BF01061469
10.1007/s10928-012-9258-0
10.1097/00000542-199701000-00004
10.1002/jcph.176
10.1002/psp4.12377
10.1007/s10928-007-9057-1
10.1162/evco.1996.4.4.361
10.2174/138161207780765954
10.1007/s10928-007-9077-x
10.1111/bcp.12451
10.1080/17460441.2021.1931114
10.1007/s10928-021-09757-w
10.1007/3-540-32444-5_2
10.1007/978-3-319-52156-5_2
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10928-023-09875-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)
MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1573-8744
EndPage 121
ExternalDocumentID 10.1007/s10928-023-09875-7
PMC10982092
37493851
10_1007_s10928_023_09875_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Università degli Studi di Pavia
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
LSO
M1P
M4Y
MA-
MK0
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z83
Z87
Z8O
Z8P
Z8Q
Z91
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7U9
7XB
8FK
H94
K9.
M7N
PKEHL
PQEST
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-63e0ff36575e1995de98d3d3ce8c832c96b468d990e99c61f4a3023d59a044c13
IEDL.DBID BENPR
ISSN 1567-567X
1573-8744
IngestDate Sun Oct 26 04:09:22 EDT 2025
Tue Sep 30 17:09:19 EDT 2025
Fri Sep 05 12:29:27 EDT 2025
Tue Oct 07 05:41:02 EDT 2025
Thu Aug 28 04:24:23 EDT 2025
Wed Oct 01 03:01:04 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Fri Feb 21 02:43:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Automatic model building
Population PK/PD model
Covariate selection
Genetic algorithm
Artificial intelligence
Machine learning
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-63e0ff36575e1995de98d3d3ce8c832c96b468d990e99c61f4a3023d59a044c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10928-023-09875-7.pdf
PMID 37493851
PQID 3020626891
PQPubID 55470
PageCount 13
ParticipantIDs unpaywall_primary_10_1007_s10928_023_09875_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10982092
proquest_miscellaneous_2842452365
proquest_journals_3020626891
pubmed_primary_37493851
crossref_citationtrail_10_1007_s10928_023_09875_7
crossref_primary_10_1007_s10928_023_09875_7
springer_journals_10_1007_s10928_023_09875_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of pharmacokinetics and pharmacodynamics
PublicationTitleAbbrev J Pharmacokinet Pharmacodyn
PublicationTitleAlternate J Pharmacokinet Pharmacodyn
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Derksen, Keselman (CR11) 1992; 45
Bies, Muldoon, Pollock, Manuck, Smith, Sale (CR29) 2006; 33
Ribba, Dudal, Lavé, Peck (CR22) 2020; 107
Minto (CR31) 1997; 86
Sibieude, Khandelwal, Girard, Hesthaven, Terranova (CR34) 2022; 49
Hutchinson (CR15) 2019; 8
Kowalski, Hutmacher (CR6) 2001; 28
CR14
Ismail (CR27) 2022; 49
Zhang, Chen, Liu, Luo, Tian, Li (CR21) 2017; 18
Mandema, Verotta, Sheiner (CR8) 1992; 20
Ahamadi (CR10) 2019; 46
CR33
CR32
McComb, Bies, Ramanathan (CR13) 2022; 88
Koch, Pfister, Daunhawer, Wilbaux, Wellmann, Vogt (CR23) 2020; 107
Haem, Harling, Ayatollahi, Zare, Karlsson (CR3) 2017; 44
Cortes-Ciriano (CR17) 2016; 56
Duch, Swaminathan, Meller (CR18) 2007; 13
Sale, Sherer (CR30) 2015; 79
Ribbing, Nyberg, Caster, Jonsson (CR2) 2007; 34
Ayral, SiAbdallah, Magnard, Chauvin (CR5) 2021; 10
Tosca, Bartolucci, Magni (CR19) 2021; 13
CR28
Cai, Zhang, Tung, Dai, Hao (CR36) 2014; 272
Joerger (CR1) 2012; 14
CR25
Lunn (CR4) 2008; 35
Chaturvedula, Sale, Lee (CR16) 2014; 54
Blickle, Thiele (CR35) 1996; 4
Tosca, Bartolucci, Magni, Poggesi (CR20) 2021; 16
Hutmacher, Kowalski (CR9) 2015; 79
Sherer (CR26) 2012; 39
Terranova, Venkatakrishnan, Benincosa (CR12) 2021; 23
Prague, Lavielle (CR7) 2022; 11
Sibieude, Khandelwal, Hesthaven, Girard, Terranova (CR24) 2021; 48
KG Kowalski (9875_CR6) 2001; 28
W Duch (9875_CR18) 2007; 13
N Terranova (9875_CR12) 2021; 23
DJ Lunn (9875_CR4) 2008; 35
L Hutchinson (9875_CR15) 2019; 8
E Sibieude (9875_CR34) 2022; 49
M Prague (9875_CR7) 2022; 11
MM Hutmacher (9875_CR9) 2015; 79
M Ahamadi (9875_CR10) 2019; 46
EM Tosca (9875_CR19) 2021; 13
9875_CR32
9875_CR33
R Cai (9875_CR36) 2014; 272
JW Mandema (9875_CR8) 1992; 20
A Chaturvedula (9875_CR16) 2014; 54
M McComb (9875_CR13) 2022; 88
9875_CR14
CF Minto (9875_CR31) 1997; 86
T Blickle (9875_CR35) 1996; 4
W Zhang (9875_CR21) 2017; 18
E Sibieude (9875_CR24) 2021; 48
G Koch (9875_CR23) 2020; 107
RR Bies (9875_CR29) 2006; 33
EM Tosca (9875_CR20) 2021; 16
E Haem (9875_CR3) 2017; 44
I Cortes-Ciriano (9875_CR17) 2016; 56
M Joerger (9875_CR1) 2012; 14
J Ribbing (9875_CR2) 2007; 34
G Ayral (9875_CR5) 2021; 10
S Derksen (9875_CR11) 1992; 45
EA Sherer (9875_CR26) 2012; 39
M Sale (9875_CR30) 2015; 79
9875_CR25
M Ismail (9875_CR27) 2022; 49
9875_CR28
B Ribba (9875_CR22) 2020; 107
References_xml – volume: 14
  start-page: 119
  issue: 1
  year: 2012
  end-page: 132
  ident: CR1
  article-title: Covariate pharmacokinetic model building in oncology and its potential clinical relevance
  publication-title: AAPS J
  doi: 10.1208/s12248-012-9320-2
– volume: 49
  start-page: 243
  issue: 2
  year: 2022
  end-page: 256
  ident: CR27
  article-title: Development of a genetic algorithm and NONMEM workbench for automating and improving population pharmacokinetic/pharmacodynamic model selection
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09782-9
– ident: CR14
– volume: 56
  start-page: 1576
  issue: 8
  year: 2016
  end-page: 1587
  ident: CR17
  article-title: Benchmarking the predictive power of ligand efficiency indices in QSAR
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00136
– volume: 18
  start-page: 18
  issue: 1
  year: 2017
  ident: CR21
  article-title: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-016-1415-9
– volume: 23
  start-page: 74
  issue: 4
  year: 2021
  ident: CR12
  article-title: Application of machine learning in translational medicine: current status and future opportunities
  publication-title: AAPS J
  doi: 10.1208/s12248-021-00593-x
– ident: CR33
– volume: 46
  start-page: 273
  issue: 3
  year: 2019
  end-page: 285
  ident: CR10
  article-title: Operating characteristics of stepwise covariate selection in pharmacometric modeling
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-019-09635-6
– volume: 45
  start-page: 265
  issue: 2
  year: 1992
  end-page: 282
  ident: CR11
  article-title: Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables
  publication-title: Br J Math Stat Psychol
  doi: 10.1111/j.2044-8317.1992.tb00992.x
– volume: 33
  start-page: 195
  issue: 2
  year: 2006
  end-page: 221
  ident: CR29
  article-title: A genetic algorithm-based, hybrid machine learning approach to model selection
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-006-9004-6
– volume: 88
  start-page: 1482
  issue: 4
  year: 2022
  end-page: 1499
  ident: CR13
  article-title: Machine learning in pharmacometrics: opportunities and challenges
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.14801
– volume: 44
  start-page: 55
  issue: 1
  year: 2017
  end-page: 66
  ident: CR3
  article-title: Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-017-9504-6
– volume: 11
  start-page: 161
  issue: 2
  year: 2022
  end-page: 172
  ident: CR7
  article-title: SAMBA: a novel method for fast automatic model building in nonlinear mixed-effects models
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12742
– ident: CR25
– volume: 79
  start-page: 28
  issue: 1
  year: 2015
  end-page: 39
  ident: CR30
  article-title: A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.12179
– volume: 10
  start-page: 318
  issue: 4
  year: 2021
  end-page: 329
  ident: CR5
  article-title: A novel method based on unbiased correlations tests for covariate selection in nonlinear mixed effects models: the COSSAC approach
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12612
– volume: 107
  start-page: 853
  issue: 4
  year: 2020
  end-page: 857
  ident: CR22
  article-title: Model-informed artificial intelligence: reinforcement learning for precision dosing
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1777
– volume: 272
  start-page: 29
  year: 2014
  end-page: 48
  ident: CR36
  article-title: A general framework of hierarchical clustering and its applications
  publication-title: Inf Sci Int J
  doi: 10.1016/j.ins.2014.02.062
– volume: 28
  start-page: 253
  issue: 3
  year: 2001
  end-page: 275
  ident: CR6
  article-title: Efficient screening of covariates in population models using Wald’s approximation to the likelihood ratio test
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1023/a:1011579109640
– volume: 13
  start-page: 1101
  issue: 7
  year: 2021
  ident: CR19
  article-title: Application of artificial neural networks to predict the intrinsic solubility of drug-like molecules
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13071101
– volume: 107
  start-page: 926
  issue: 4
  year: 2020
  end-page: 933
  ident: CR23
  article-title: Pharmacometrics and machine learning partner to advance clinical data analysis
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1774
– volume: 49
  start-page: 257
  issue: 2
  year: 2022
  end-page: 270
  ident: CR34
  article-title: Population pharmacokinetic model selection assisted by machine learning
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09793-6
– volume: 20
  start-page: 511
  issue: 5
  year: 1992
  end-page: 528
  ident: CR8
  article-title: Building population pharmacokinetic–pharmacodynamic models. I: models for covariate effects
  publication-title: J Pharmacokinet Biopharm
  doi: 10.1007/BF01061469
– volume: 39
  start-page: 393
  issue: 4
  year: 2012
  end-page: 414
  ident: CR26
  article-title: Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-012-9258-0
– volume: 86
  start-page: 10
  issue: 1
  year: 1997
  end-page: 23
  ident: CR31
  article-title: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199701000-00004
– volume: 54
  start-page: 141
  issue: 2
  year: 2014
  end-page: 149
  ident: CR16
  article-title: Genetic algorithm guided population pharmacokinetic model development for simvastatin, concurrently or non-concurrently co-administered with amlodipine
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.176
– volume: 8
  start-page: 131
  issue: 3
  year: 2019
  end-page: 134
  ident: CR15
  article-title: Models and machines: how deep learning will take clinical pharmacology to the next level
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12377
– volume: 34
  start-page: 485
  issue: 4
  year: 2007
  end-page: 517
  ident: CR2
  article-title: The lasso–a novel method for predictive covariate model building in nonlinear mixed effects models
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-007-9057-1
– ident: CR32
– volume: 4
  start-page: 361
  issue: 4
  year: 1996
  end-page: 394
  ident: CR35
  article-title: A comparison of selection schemes used in evolutionary algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.1996.4.4.361
– volume: 13
  start-page: 1497
  issue: 14
  year: 2007
  end-page: 1508
  ident: CR18
  article-title: Artificial intelligence approaches for rational drug design and discovery
  publication-title: Curr Pharm Des
  doi: 10.2174/138161207780765954
– volume: 35
  start-page: 85
  issue: 1
  year: 2008
  end-page: 100
  ident: CR4
  article-title: Automated covariate selection and Bayesian model averaging in population PK/PD models
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-007-9077-x
– volume: 79
  start-page: 132
  issue: 1
  year: 2015
  end-page: 147
  ident: CR9
  article-title: Covariate selection in pharmacometric analyses: a review of methods: covariate selection in pharmacometric analysis
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.12451
– ident: CR28
– volume: 16
  start-page: 1365
  issue: 11
  year: 2021
  end-page: 1390
  ident: CR20
  article-title: Modeling approaches for reducing safety-related attrition in drug discovery and development: a review on myelotoxicity, immunotoxicity, cardiovascular toxicity, and liver toxicity
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2021.1931114
– volume: 48
  start-page: 597
  issue: 4
  year: 2021
  end-page: 609
  ident: CR24
  article-title: Fast screening of covariates in population models empowered by machine learning
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09757-w
– volume: 8
  start-page: 131
  issue: 3
  year: 2019
  ident: 9875_CR15
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12377
– volume: 88
  start-page: 1482
  issue: 4
  year: 2022
  ident: 9875_CR13
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.14801
– ident: 9875_CR25
  doi: 10.1007/3-540-32444-5_2
– volume: 35
  start-page: 85
  issue: 1
  year: 2008
  ident: 9875_CR4
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-007-9077-x
– volume: 13
  start-page: 1101
  issue: 7
  year: 2021
  ident: 9875_CR19
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13071101
– volume: 54
  start-page: 141
  issue: 2
  year: 2014
  ident: 9875_CR16
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.176
– volume: 39
  start-page: 393
  issue: 4
  year: 2012
  ident: 9875_CR26
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-012-9258-0
– volume: 86
  start-page: 10
  issue: 1
  year: 1997
  ident: 9875_CR31
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199701000-00004
– volume: 4
  start-page: 361
  issue: 4
  year: 1996
  ident: 9875_CR35
  publication-title: Evol Comput
  doi: 10.1162/evco.1996.4.4.361
– volume: 44
  start-page: 55
  issue: 1
  year: 2017
  ident: 9875_CR3
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-017-9504-6
– volume: 49
  start-page: 257
  issue: 2
  year: 2022
  ident: 9875_CR34
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09793-6
– volume: 28
  start-page: 253
  issue: 3
  year: 2001
  ident: 9875_CR6
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1023/a:1011579109640
– volume: 49
  start-page: 243
  issue: 2
  year: 2022
  ident: 9875_CR27
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09782-9
– volume: 14
  start-page: 119
  issue: 1
  year: 2012
  ident: 9875_CR1
  publication-title: AAPS J
  doi: 10.1208/s12248-012-9320-2
– volume: 23
  start-page: 74
  issue: 4
  year: 2021
  ident: 9875_CR12
  publication-title: AAPS J
  doi: 10.1208/s12248-021-00593-x
– volume: 20
  start-page: 511
  issue: 5
  year: 1992
  ident: 9875_CR8
  publication-title: J Pharmacokinet Biopharm
  doi: 10.1007/BF01061469
– volume: 45
  start-page: 265
  issue: 2
  year: 1992
  ident: 9875_CR11
  publication-title: Br J Math Stat Psychol
  doi: 10.1111/j.2044-8317.1992.tb00992.x
– volume: 10
  start-page: 318
  issue: 4
  year: 2021
  ident: 9875_CR5
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12612
– ident: 9875_CR32
  doi: 10.1007/978-3-319-52156-5_2
– volume: 56
  start-page: 1576
  issue: 8
  year: 2016
  ident: 9875_CR17
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00136
– volume: 272
  start-page: 29
  year: 2014
  ident: 9875_CR36
  publication-title: Inf Sci Int J
  doi: 10.1016/j.ins.2014.02.062
– volume: 18
  start-page: 18
  issue: 1
  year: 2017
  ident: 9875_CR21
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-016-1415-9
– volume: 16
  start-page: 1365
  issue: 11
  year: 2021
  ident: 9875_CR20
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2021.1931114
– volume: 79
  start-page: 28
  issue: 1
  year: 2015
  ident: 9875_CR30
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.12179
– volume: 107
  start-page: 926
  issue: 4
  year: 2020
  ident: 9875_CR23
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1774
– volume: 107
  start-page: 853
  issue: 4
  year: 2020
  ident: 9875_CR22
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1777
– volume: 34
  start-page: 485
  issue: 4
  year: 2007
  ident: 9875_CR2
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-007-9057-1
– ident: 9875_CR14
– ident: 9875_CR33
– volume: 46
  start-page: 273
  issue: 3
  year: 2019
  ident: 9875_CR10
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-019-09635-6
– volume: 33
  start-page: 195
  issue: 2
  year: 2006
  ident: 9875_CR29
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-006-9004-6
– volume: 13
  start-page: 1497
  issue: 14
  year: 2007
  ident: 9875_CR18
  publication-title: Curr Pharm Des
  doi: 10.2174/138161207780765954
– volume: 79
  start-page: 132
  issue: 1
  year: 2015
  ident: 9875_CR9
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.12451
– ident: 9875_CR28
– volume: 11
  start-page: 161
  issue: 2
  year: 2022
  ident: 9875_CR7
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12742
– volume: 48
  start-page: 597
  issue: 4
  year: 2021
  ident: 9875_CR24
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09757-w
SSID ssj0016520
Score 2.3982182
Snippet Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model. Among the different available...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109
SubjectTerms Algorithms
Biochemistry
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Computer applications
Convergence
Exercise
Genetic algorithms
Original Paper
Pharmacodynamics
Pharmacokinetics
Pharmacology/Toxicology
Pharmacy
Problem solving
Remifentanil
Veterinary Medicine/Veterinary Science
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VegAOVfkopKXISIgLaykbO058rBAUIbVwAGlvkdcfsFJIENkF7b9nnGSzbEGoHHKy49geO_NG4_cMcMAY-lihMVLVcUg5IlyqEhNR9JwO8UKomfTc4T9_xdk1Px_Eg1Ymx3Nh_snfe4qb9BrKEaMhhscxTZbgMzopUSdmxXGXMRBxLcGI4UhC8Rm0BJm321h0Qq-Q5esDkl2WdA1WJsW9mj6pPH_hiE6_wpcWQZJfjcnX4ZMtNuDwspGgnvbI1ZxRVfXIIbmci1NPN-Hid0mGNWuFIPQjuec3VaR0BBeS5zMSld-UD6Px7R0ZFcSoUT4lunzEiBpBKanqW3PQlGTGrtqC69OTq-Mz2l6qQDVP4jEVzIbOMZ9vsZ6ebaxMDTNM21Tj7tZSDLlIDTopK6UWfceVv1fIxFKFnOs--wbLRVnYHSBe283yyKnE4X9AGqksAhDJDXPOCj0MoD-b5Uy3iuP-4os8m2sle8tk2H5WWyZLAjjq3rlv9Dberb07M17W7r0qw-6GGKalsh_AfleMu8anQlRhy0mVoVP2KWechgC2G1t3n2MJlwyBaADpwiroKnhF7sWSYnRbK3NjBxFRySiA3mzBzPv13jB63aL6j1F__1jrP2A1QiTWHDfaheXxw8T-RCQ1Hu7VW-gZnUURsg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN6EFmQk1AubbTZ2Hj5WLaVCouyhKy2nyPGjXRGSVZMFLb-ecV7bpagCcYgUyU5iO2PPNxp_nwHeUoo-NpQYqcrAcxkiXFdEynfRcxrEC56k3HKHP52Fp1P2cRbMtuC448LUu927lGTDabAqTXl1sFDm4BrxjVtlZZ-6HgbNgRuNsPgObIcBIvIBbE_PJodfaqlUXAfwmtX3EXWt2nvLnfnzizb90w3QeXPvZJ9AvQ93l_lCrH6ILLvmo052QHe9a7amfB0tq3Qkf_4m_Pi_3X8ID1oQSw4bq3sEWzp_DPuTRgV7NSTna1JXOST7ZLLWx149gc8fCpLWxBmC6JNklmJVksIQtGVLqSQiuyiu5tXlNzLPiRLzbEVk8R2DesTFpKwP7kFrIh3B6ylMT96fH5267bkOrmRRULkh1Z4x1KZ8tGWIK81jRRWVOpa4wEgepiyMFfpJzbkMx4YJe7SRCrjwGJNj-gwGeZHrF0CsvJxmvhGRwaWIKy40YiDOFDVGhzJ1YNz9zUS2ouf27I0sWcs127FM8P1JPZZJ5MC7_plFI_lxa-29zkiSdvqXCTbXw0gx5mMH3vTFOHFtNkbkuliWCeICm_XGYXDgeWNT_edoxDhFLOxAvGFtfQUrCr5Zks8va3FwbCCCOu47MOzsaN2u27ox7I33L3r98t-q78I9H8Fgs-NpDwbV1VK_QjBXpa_bufoLSbE-YQ
  priority: 102
  providerName: Unpaywall
Title Go beyond the limits of genetic algorithm in daily covariate selection practice
URI https://link.springer.com/article/10.1007/s10928-023-09875-7
https://www.ncbi.nlm.nih.gov/pubmed/37493851
https://www.proquest.com/docview/3020626891
https://www.proquest.com/docview/2842452365
https://pubmed.ncbi.nlm.nih.gov/PMC10982092
https://link.springer.com/content/pdf/10.1007/s10928-023-09875-7.pdf
UnpaywallVersion publishedVersion
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016520
  issn: 1573-8744
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016520
  issn: 1573-8744
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8744
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016520
  issn: 1573-8744
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fj9JAEJ7cwYP6YPx5Vk-yJuZepLF0ty37YAwQuIvGSsyRcE_Nsrv1SGqLFjT89872p-QS4gOQsAW6O7M73zL7fQPwllKMsb7Enar0HJshwrVFoFwbI2eMeMGRlBvu8JfQv1qwT0tveQJhzYUxxyrrNbFYqFUmzX_k7yniGgTfQz74uPlpm6pRJrtal9AQVWkF9aGQGDuFrmuUsTrQHU_D-bcmr-B7hVAjbloCGx_LikZTkem4UWt2qe3gRtyzg8NQdQd_3j1G2eRSH8C9XboR-z8iSf4JV7NH8LDCmWRUOsZjONHpE7iYl0LV-z65bnlXeZ9ckHkrYb1_Cl8vM7IquC0EASJJDAsqJ1lM0N0M65GI5DsOzvb2B1mnRIl1sicy-437boSuJC9q66DBSc3BegaL2fR6cmVXpRdsyQJva_tUO3FMTVZGGxK30nyoqKJSDyWuAZL7K-YPFYYyzbn0BzETpvqQ8rhwGJMD-hw6aZbqF0CMApxmbiyCGFcLrrjQCFM4UzSOtS9XFgzqUY5kpUtuymMkUauobCwT4fdHhWWiwIJ3zWc2pSrH0avPa-NF1QzNo9afLHjTNOPcMgkTkepsl0cYuk1iGofBgrPS1s3P0YBxinDVguGBFzQXGN3uw5Z0fVvod-MNIu7irgX92mHa-zrWjX7jVP_R65fHe_0K7ruIz8pDSOfQ2f7a6deIr7arHpwGy6AH3dFsPA7N6-XN52mvmkrYOvEn-LxwR_jeIpyPbv4CXeYmtQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IN4YCiwS9EIsHO_6sYcK8WhJaRsilEq5uZvddRvJtQNOqPzn-G3M-klUKeLSg092bK9ndvabzH7fALyhFNdYX2KmKj3HZohwbREo18aVM0a84EjKDXf4ZOgPTtm3iTfZgD8NF8Zsq2xiYhmoVSbNf-TvKeIaBN8h73-Y_7RN1yhTXW1aaIi6tYLaKyXGamLHkS6uMIXL9w6_oL3fuu7B_vjzwK67DNiSBd7C9ql24piaAoQ2fGWleaioolKHEt1dcn_K_FBh1NacS78fM2Ea7SiPC4cx2ad431uwxSjjmPxtfdofjn60dQzfK4UhMUkKbDwmNW2nJu9xow7tUtvBxN-zg9Wl8Rrevb5ts63d3oHtZToXxZVIkn-Wx4N7cLfGteRj5Yj3YUOnD2B3VAljFz0y7nheeY_sklEnmV08hO9fMzItuTQEASlJDOsqJ1lM0L0Ny5KI5ByNsbi4JLOUKDFLCiKz35jnI1QmednLBx2MNJyvR3B6I0Z4DJtpluqnQIzinGZuLIIYoxNXXGiERZwpGsfal1ML-s1XjmStg27acSRRp-BsLBPh_aPSMlFgwbv2N_NKBWTt1TuN8aI6IuRR578WvG5P41w2BRqR6myZRwgVTCEcP4MFTypbt4-jAeMU4bEF4YoXtBcYnfDVM-nsotQLxxdEnMddC3qNw3TvtW4Yvdap_mPUz9aP-hVsD8Ynx9Hx4fDoOdx2ERtWG6B2YHPxa6lfILZbTF_WE4jA2U3P2b8yXls0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiwS9EJWtb1-7QEhRAkthZJDK-VmNvugkYwdcELlv8avY9ZPokoRlx5ysuN4d2Z3v8nM9w3AS8bwjI0kRqoydGmACJeKWPkUT06DeMGVjFvu8Jfj6OA0-DQNp1vwp-PC2LLKbk-sN2pVSPsf-R5DXIPgO-HenmnLIib747eLn9R2kLKZ1q6dRuMiR7o6x_CtfHO4j7Z-5fvjDyfvD2jbYYDKIA6XNGLaNYbZ5IO2XGWleaKYYlInEl1d8mgWRInCHVtzLiPPBMI22VEhF24QSI_hc6_A1ZgxbssJ42kf7HlRWEtCYngUU_xMW8JOS9vjVhfaZ9TFkD-k8fqheAHpXizY7LO2N-H6Kl-I6lxk2T8H4_g23GoRLXnXuOAd2NL5XdidNJLY1YicDAyvckR2yWQQy67uwdePBZnVLBqCUJRklm9VksIQdGzLryQi-45Tvzz7QeY5UWKeVUQWvzHCR5BMyrqLD7oW6dhe9-H0UkzwALbzItePgFitOR34RsQG9yWuuNAIiHigmDE6kjMHvG6WU9kqoNtGHFk6aDdby6T4_LS2TBo78Lr_zqLR_9h4905nvLTdC8p08FwHXvSXcRXb1IzIdbEqUwQJNgWO0-DAw8bW_c-xOOAMgbEDyZoX9DdYhfD1K_n8rFYKxxdEhMd9B0adwwzvtWkYo96p_mPUjzeP-jlcw5Wafj48PnoCN3wEhU3l0w5sL3-t9FMEdcvZs3r1EPh22cv1L52jWM4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN6EFmQk1AubbTZ2Hj5WLaVCouyhKy2nyPGjXRGSVZMFLb-ecV7bpagCcYgUyU5iO2PPNxp_nwHeUoo-NpQYqcrAcxkiXFdEynfRcxrEC56k3HKHP52Fp1P2cRbMtuC448LUu927lGTDabAqTXl1sFDm4BrxjVtlZZ-6HgbNgRuNsPgObIcBIvIBbE_PJodfaqlUXAfwmtX3EXWt2nvLnfnzizb90w3QeXPvZJ9AvQ93l_lCrH6ILLvmo052QHe9a7amfB0tq3Qkf_4m_Pi_3X8ID1oQSw4bq3sEWzp_DPuTRgV7NSTna1JXOST7ZLLWx149gc8fCpLWxBmC6JNklmJVksIQtGVLqSQiuyiu5tXlNzLPiRLzbEVk8R2DesTFpKwP7kFrIh3B6ylMT96fH5267bkOrmRRULkh1Z4x1KZ8tGWIK81jRRWVOpa4wEgepiyMFfpJzbkMx4YJe7SRCrjwGJNj-gwGeZHrF0CsvJxmvhGRwaWIKy40YiDOFDVGhzJ1YNz9zUS2ouf27I0sWcs127FM8P1JPZZJ5MC7_plFI_lxa-29zkiSdvqXCTbXw0gx5mMH3vTFOHFtNkbkuliWCeICm_XGYXDgeWNT_edoxDhFLOxAvGFtfQUrCr5Zks8va3FwbCCCOu47MOzsaN2u27ox7I33L3r98t-q78I9H8Fgs-NpDwbV1VK_QjBXpa_bufoLSbE-YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Go+beyond+the+limits+of+genetic+algorithm+in+daily+covariate+selection+practice&rft.jtitle=Journal+of+pharmacokinetics+and+pharmacodynamics&rft.au=Ronchi%2C+D&rft.au=Tosca%2C+E+M&rft.au=Bartolucci%2C+R&rft.au=Magni%2C+P&rft.date=2024-04-01&rft.eissn=1573-8744&rft.volume=51&rft.issue=2&rft.spage=109&rft_id=info:doi/10.1007%2Fs10928-023-09875-7&rft_id=info%3Apmid%2F37493851&rft.externalDocID=37493851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-567X&client=summon