Machine learning for microbiologists

Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used i...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Microbiology Vol. 22; no. 4; pp. 191 - 205
Main Authors Asnicar, Francesco, Thomas, Andrew Maltez, Passerini, Andrea, Waldron, Levi, Segata, Nicola
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2024
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1740-1526
1740-1534
1740-1534
DOI10.1038/s41579-023-00984-1

Cover

Abstract Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities. In this Review, Segata, Waldron and colleagues discuss important key concepts of machine learning that are relevant to microbiologists and provide them with a set of tools essential to apply machine learning in microbiology research.
AbstractList Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.In this Review, Segata, Waldron and colleagues discuss important key concepts of machine learning that are relevant to microbiologists and provide them with a set of tools essential to apply machine learning in microbiology research.
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities. In this Review, Segata, Waldron and colleagues discuss important key concepts of machine learning that are relevant to microbiologists and provide them with a set of tools essential to apply machine learning in microbiology research.
Author Asnicar, Francesco
Segata, Nicola
Thomas, Andrew Maltez
Passerini, Andrea
Waldron, Levi
AuthorAffiliation 2 Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
5 These authors contributed equally: Francesco Asnicar, Andrew Maltez Thomas
4 Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
1 Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
3 Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA
AuthorAffiliation_xml – name: 2 Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
– name: 4 Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
– name: 3 Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA
– name: 1 Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
– name: 5 These authors contributed equally: Francesco Asnicar, Andrew Maltez Thomas
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0003-3732-1468
  surname: Asnicar
  fullname: Asnicar, Francesco
  organization: Department of Cellular, Computational and Integrative Biology, University of Trento
– sequence: 2
  givenname: Andrew Maltez
  orcidid: 0000-0001-5789-3354
  surname: Thomas
  fullname: Thomas, Andrew Maltez
  organization: Department of Cellular, Computational and Integrative Biology, University of Trento
– sequence: 3
  givenname: Andrea
  surname: Passerini
  fullname: Passerini, Andrea
  organization: Department of Information Engineering and Computer Science, University of Trento
– sequence: 4
  givenname: Levi
  orcidid: 0000-0003-2725-0694
  surname: Waldron
  fullname: Waldron, Levi
  email: levi.waldron@sph.cuny.edu
  organization: Department of Cellular, Computational and Integrative Biology, University of Trento, Department of Epidemiology and Biostatistics, City University of New York
– sequence: 5
  givenname: Nicola
  orcidid: 0000-0002-1583-5794
  surname: Segata
  fullname: Segata, Nicola
  email: nicola.segata@unitn.it
  organization: Department of Cellular, Computational and Integrative Biology, University of Trento, Department of Experimental Oncology, European Institute of Oncology IRCCS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37968359$$D View this record in MEDLINE/PubMed
BookMark eNqNkD1PHDEYhC1ExGf-AAU6KRRpNvhzbVcoQklAAtFAbXm9rw-jPfuwd4P49zG5AwIFSuVX8jOjmdlFmzFFQOiA4G8EM3VcOBFSN5iyBmOteEM20A6RHDdEML75ctN2G-2WcocxFULSLbTNpG4VE3oHHV1adxsizAawOYY4n_mUZ4vgcupCGtI8lLHso0_eDgU-r989dPPzx_XpWXNx9ev89PtF47gUYyOcolIL22rPdAeCu9Zzy1mvtO0AK0-1B90zIaDvfdf1IAXvVGuVA-k5ZXuIrXynuLSPD3YYzDKHhc2PhmDz1NmsOpva2fztbEhVnaxUy6lbQO8gjtm-KpMN5u1PDLdmnn4bQrTCGrPq8HXtkNP9BGU0i1AcDIONkKZiqNJY1ukwr-iXd-hdmnKsqxiqhWypaomq1OG_kV6yPO9eAbUC6s6lZPDGhdGOIT0lDMPHdek76X9ttF62VDjOIb_G_kD1B5JNtqQ
CitedBy_id crossref_primary_10_1038_s44298_024_00074_w
crossref_primary_10_3390_polym16243565
crossref_primary_10_1016_j_tim_2024_08_011
crossref_primary_10_3390_foods14020245
crossref_primary_10_1021_acs_iecr_4c02344
crossref_primary_10_1186_s12866_024_03709_3
crossref_primary_10_1016_j_pmatsci_2025_101426
crossref_primary_10_1080_29933935_2024_2376543
crossref_primary_10_3390_synbio3010002
crossref_primary_10_1038_s41579_024_01076_4
crossref_primary_10_20517_mrr_2023_52
crossref_primary_10_1093_bioadv_vbae013
crossref_primary_10_1186_s12859_024_05977_2
crossref_primary_10_1093_nsr_nwae325
crossref_primary_10_1038_s41598_025_85908_0
crossref_primary_10_1186_s12934_024_02322_3
crossref_primary_10_1186_s12967_024_05802_7
crossref_primary_10_1016_j_cell_2025_01_038
crossref_primary_10_1093_infdis_jiae348
crossref_primary_10_1038_s41564_024_01875_8
crossref_primary_10_1080_20002297_2025_2451921
crossref_primary_10_3390_microorganisms12071274
crossref_primary_10_1016_j_tim_2024_07_003
crossref_primary_10_1007_s10916_024_02089_5
crossref_primary_10_1038_s41564_024_01858_9
crossref_primary_10_1016_j_watres_2024_122650
crossref_primary_10_1016_j_bios_2025_117399
crossref_primary_10_3390_app15010400
crossref_primary_10_1088_2632_2153_ad55a5
crossref_primary_10_1038_s41564_024_01870_z
crossref_primary_10_3390_su162310458
crossref_primary_10_1016_j_csbj_2025_01_006
crossref_primary_10_1016_j_trac_2025_118162
crossref_primary_10_1097_JS9_0000000000001762
crossref_primary_10_1016_j_psep_2024_05_052
crossref_primary_10_3390_antibiotics13090821
crossref_primary_10_3389_fmicb_2024_1469543
crossref_primary_10_1371_journal_pcbi_1012579
crossref_primary_10_1016_j_micres_2024_127857
crossref_primary_10_1186_s12885_024_13161_1
crossref_primary_10_1007_s44307_024_00018_8
crossref_primary_10_1038_s42003_024_06093_w
crossref_primary_10_1016_j_xcrm_2024_101759
crossref_primary_10_1038_s42003_024_06629_0
crossref_primary_10_1093_bioadv_vbaf045
crossref_primary_10_1149_1945_7111_ad6b4a
crossref_primary_10_1016_j_csite_2024_105210
crossref_primary_10_1126_science_ado8548
crossref_primary_10_1016_j_rineng_2024_103007
crossref_primary_10_1016_j_cell_2024_06_018
crossref_primary_10_3389_fcimb_2024_1499203
crossref_primary_10_1016_j_engappai_2024_108958
crossref_primary_10_3390_w16243618
crossref_primary_10_1016_j_jhazmat_2024_134953
crossref_primary_10_1021_acsami_4c07043
crossref_primary_10_1016_j_afres_2025_100711
crossref_primary_10_1038_s42003_024_07059_8
crossref_primary_10_3390_math12172717
Cites_doi 10.1111/1462-2920.13362
10.1126/science.aan3706
10.1158/1940-6207.CAPR-14-0129
10.1038/nmeth.4458
10.1073/pnas.0914005107
10.1038/s41564-019-0664-6
10.3389/fmicb.2021.635781
10.3389/fmicb.2017.02224
10.1038/nature08821
10.1126/science.aaw2619
10.1371/journal.pcbi.1004977
10.1111/jgh.14040
10.7717/peerj.2584
10.1038/s41586-020-2881-9
10.7554/eLife.67667
10.1093/femsre/fuab015
10.1038/nature14447
10.1038/nmeth.3945
10.1021/cb5003015
10.1038/nbt.4314
10.1038/s41586-020-2095-1
10.1038/nmeth.4468
10.1016/j.annepidem.2019.03.006
10.1038/s41591-022-01695-5
10.1016/j.annepidem.2004.07.025
10.1038/nature09944
10.1038/s41586-018-0386-6
10.1038/nature12506
10.1038/s41591-018-0164-x
10.1007/978-0-387-09823-4
10.1038/s41591-019-0405-7
10.1038/nmeth.3968
10.1038/nbt.3988
10.1016/j.cub.2015.01.014
10.1002/wics.101
10.1038/s41564-017-0072-8
10.1038/s41591-021-01619-9
10.1093/bioinformatics/btv683
10.1093/bioinformatics/btq461
10.1371/journal.pone.0036466
10.1038/nature11450
10.1126/science.abb5920
10.1038/nature15766
10.1038/s41587-020-0603-3
10.1038/ismej.2010.58
10.1128/mSystems.00101-16
10.1371/journal.pcbi.1002863
10.1186/s40168-018-0401-z
10.1038/nbt.3981
10.1038/s41591-019-0458-7
10.1038/nature11234
10.7717/peerj.1603
10.1093/nar/gkh131
10.1038/s41591-022-01964-3
10.1038/nature11053
10.1016/j.ebiom.2017.10.005
10.1126/science.aan4236
10.1093/bioinformatics/btv737
10.1111/j.1467-9868.2008.00674.x
10.1186/s13059-020-02042-y
10.1038/s41591-020-01183-8
10.1016/j.chom.2013.07.012
10.1126/science.aba5257
10.1093/biostatistics/kxy044
10.1093/femsre/fuaa062
10.1186/2047-217X-2-16
10.1186/s12859-016-1423-9
10.1038/s41467-019-12171-z
10.1016/j.cell.2019.01.001
10.1101/gr.085464.108
10.1023/A:1012487302797
10.1146/annurev-biodatasci-080917-013343
10.1038/s41591-019-0406-6
10.1016/j.chom.2018.01.003
10.1038/nmeth976
10.1038/s41591-022-01913-0
10.1128/mSystems.00123-17
10.1038/nature14486
10.1038/s41591-022-01698-2
10.1073/pnas.1002611107
10.1093/bioinformatics/btq619
10.1093/nar/gkz654
10.1136/gutjnl-2016-312766
10.1128/AEM.00062-07
10.1038/ncomms13219
10.1109/UBMK.2018.8566487
10.1146/annurev-statistics-010814-020351
10.1093/nar/gku830
10.1126/science.abf3363
10.1016/j.patcog.2008.08.001
10.1016/j.chom.2014.09.013
10.1093/bioinformatics/btl158
10.1093/bioinformatics/btu279
10.1371/journal.pcbi.1006258
10.1038/s41564-020-0729-6
10.1038/s41467-018-06634-y
10.1136/gutjnl-2015-309800
10.1093/jnci/dju048
10.1038/nbt.3353
10.1073/pnas.0409727102
10.1016/j.chom.2013.07.007
10.1136/gutjnl-2017-314814
10.1080/01621459.2022.2116331
10.1371/journal.pone.0100335
10.15252/msb.20145645
10.1006/jcss.1997.1504
10.1186/s13059-021-02306-1
10.2105/AJPH.2018.304337
10.1128/mBio.00434-20
10.1038/s41522-020-00155-7
10.3390/biology9120453
10.1038/s41467-021-22962-y
10.1186/1471-2105-12-328
10.1007/978-1-4614-7138-7
10.1136/gutjnl-2021-324755
ContentType Journal Article
Copyright Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. Springer Nature Limited.
Copyright_xml – notice: Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7RV
7U9
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41579-023-00984-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1740-1534
EndPage 205
ExternalDocumentID oai:iris.unitn.it:11572/400731
PMC11980903
37968359
10_1038_s41579_023_00984_1
Genre Journal Article
Review
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA230551
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
88I
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
ITC
LGEZI
LK8
LOTEE
M0L
M1P
M2P
M7P
MM.
N9A
NADUK
NAPCQ
NNMJJ
NXXTH
O9-
ODYON
P2P
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
PHGZT
7QL
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PHGZM
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
AGSTI
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-5c82795a69f39be54c6f4a43d89abe08f29fe9d355eddfbbde754b86a8ce7f423
IEDL.DBID 7X7
ISSN 1740-1526
1740-1534
IngestDate Wed Aug 20 00:19:09 EDT 2025
Tue Sep 30 17:04:17 EDT 2025
Wed Oct 01 13:11:00 EDT 2025
Sat Aug 23 12:58:00 EDT 2025
Fri Apr 11 01:31:31 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Wed Oct 01 02:31:48 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2023. Springer Nature Limited.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-5c82795a69f39be54c6f4a43d89abe08f29fe9d355eddfbbde754b86a8ce7f423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
N.S., F.A. and A.M.T. contributed equally to all aspects of the article. A.P. contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. L.W. contributed substantially to discussion of the content, writing, and review and/or editing of the manuscript before submission.
Author contributions
ORCID 0000-0002-1583-5794
0000-0001-5789-3354
0000-0003-3732-1468
0000-0003-2725-0694
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41579-023-00984-1#citeas
PMID 37968359
PQID 2957628618
PQPubID 27584
PageCount 15
ParticipantIDs unpaywall_primary_10_1038_s41579_023_00984_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11980903
proquest_miscellaneous_2890755704
proquest_journals_2957628618
pubmed_primary_37968359
crossref_citationtrail_10_1038_s41579_023_00984_1
crossref_primary_10_1038_s41579_023_00984_1
springer_journals_10_1038_s41579_023_00984_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Microbiology
PublicationTitleAbbrev Nat Rev Microbiol
PublicationTitleAlternate Nat Rev Microbiol
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BlattmanSBJiangWOikonomouPTavazoieSProkaryotic single-cell RNA sequencing by in situ combinatorial indexingNat. Microbiol.20205119212011:CAS:528:DC%2BB3cXhtVSis7rE324514728330242
JainCRodriguez-RLMPhillippyAMKonstantinidisKTAluruSHigh throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundariesNat. Commun.201892018NatCo...9.5114J305048556269478
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer Science & Business Media, 2009).
WeimannAFrom genomes to phenotypes: Traitar, the microbial trait analyzermSystems20161e00101e00116280668165192078This work uses machine learning to predict 67 microbial phenotypic traits from genome sequences, facilitating the analysis of large-scale microbial genomic data.
DavarDFecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patientsScience20213715956022021Sci...371..595D1:CAS:528:DC%2BB3MXjsFCrs7s%3D335421318097968
IaniroGVariability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseasesNat. Med.202228191319231:CAS:528:DC%2BB38XisVWnsrjJ361096379499858This study uses machine learning to develop predictive models for selecting optimal donors for faecal microbiota transplantation, making personalized microbiome-targeted treatments more effective.
KavvasESMachine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistanceNat. Commun.201892018NatCo...9.4306K303334836193043
TopçuoğluBDLesniakNARuffinMT4th WiensJSchlossPDA framework for effective application of machine learning to microbiome-based classification problemsmBio202011e0043420325181827373189This work focuses on applying machine learning to microbiome data for disease prediction, highlighting the important trade-off between model complexity and interpretability, and emphasizing the need for rigorous methodology towards more reproducible machine learning usage in microbiome research.
KartalEA faecal microbiota signature with high specificity for pancreatic cancerGut202271135913721:CAS:528:DC%2BB38XitFaisbbJ35260444
DerosaLIntestinal Akkermansia muciniphila predicts overall survival in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies: results a phase II studyJ. Clin. Orthod.20213990199019
FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.1997551191391473055
KuchinaAMicrobial single-cell RNA sequencing by split-pool barcodingScience2021371eaba52571:CAS:528:DC%2BB3MXkslymsLs%3D33335020
DavisJJAntimicrobial resistance prediction in PATRIC and RASTSci. Rep.201662016NatSR...627930D1:CAS:528:DC%2BC28XhtVSks7nE272976834906388
LeeKACross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanomaNat. Med.2022285355441:CAS:528:DC%2BB38XlsVGgsr4%3D352287518938272
HernánMAThe C-word: scientific euphemisms do not improve causal inference from observational dataAm. J. Public. Health2018108616619295656595888052This work emphasizes the importance of using the term ‘causal’, in particular when analysing data from observational studies, and highlights the need to distinguish between association and causation and address confounding factors properly.
YachidaSMetagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancerNat. Med.2019259689761:CAS:528:DC%2BC1MXhtFGisbrI31171880
ZellerGPotential of fecal microbiota for early-stage detection of colorectal cancerMol. Syst. Biol.201410766254327774299606
WongSHQuantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasiaGut201766144114481:CAS:528:DC%2BC1cXitVektbjM27797940
HuaJTembeWDDoughertyERPerformance of feature-selection methods in the classification of high-dimension dataPattern Recognit.2009424094242009PatRe..42..409H
YatsunenkoTHuman gut microbiome viewed across age and geographyNature20124862222272012Natur.486..222Y1:CAS:528:DC%2BC38Xos1emtLc%3D226996113376388
CosteaPIEnterotypes in the landscape of gut microbial community compositionNat. Microbiol.201838161:CAS:528:DC%2BC2sXitVSmtLvK29255284
SinhaRAssessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortiumNat. Biotechnol.201735107710861:CAS:528:DC%2BC2sXhsFylurvE289678855839636
Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2022).
VervierKMahéPTournoudMVeyrierasJ-BVertJ-PLarge-scale machine learning for metagenomics sequence classificationBioinformatics201632102310321:CAS:528:DC%2BC28XhtlWiurrI26589281This work introduces a machine learning-based approach for tackling the taxonomic binning step, using a supervised approach that balances accuracy and speed and outperforms alignment-based methods.
SonesonCGersterSDelorenziMBatch effect confounding leads to strong bias in performance estimates obtained by cross-validationPLoS ONE201492014PLoSO...9j0335S249676364072626
KosticADFusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironmentCell Host Microbe2013142072151:CAS:528:DC%2BC3sXht1yhsLfE239541593772512
GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.200246389422
AbdiHWilliamsLJPrincipal component analysisWiley Interdiscip. Rev. Comput. Stat.20102433459
WeisCDirect antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learningNat. Med.2022281641741:CAS:528:DC%2BB38Xotlagug%3D%3D35013613
Hacılar, H., Nalbantoğlu, O. U. & Bakir-Güngör, B. in 2018 3rd Int. Conf. Computer Science and Engineering (UBMK) 434–438 (IEEE, 2018).
GeierBSpatial metabolomics of in situ host–microbe interactions at the micrometre scaleNat. Microbiol.202054985101:CAS:528:DC%2BB3cXislCjur0%3D32015496
SczyrbaACritical assessment of metagenome interpretation — a benchmark of metagenomics softwareNat. Methods201714106310711:CAS:528:DC%2BC2sXhsFylu77E289678885903868
HeYRegional variation limits applications of healthy gut microbiome reference ranges and disease modelsNat. Med.201824153215351:CAS:528:DC%2BC1cXhsF2nsrvI30150716
TonkovicPLiterature on applied machine learning in metagenomic classification: a scoping reviewBiology20209453333169217763105
SmillieCSStrain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantationCell Host Microbe201823229240.e51:CAS:528:DC%2BC1cXivVSlsr0%3D294476968318347
KonstantinidisKTTiedjeJMGenomic insights that advance the species definition for prokaryotesProc. Natl Acad. Sci. USA2005102256725722005PNAS..102.2567K1:CAS:528:DC%2BD2MXhvFKiurc%3D15701695549018
AnantharamanKThousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer systemNat. Commun.201672016NatCo...713219A1:CAS:528:DC%2BC28XhslGrt77L277749855079060
BerminghamMLApplication of high-dimensional feature selection: evaluation for genomic prediction in manSci. Rep.201552015NatSR...510312B1:CAS:528:DC%2BC2MXhtFyht7rL259888414437376
DiazNNKrauseLGoesmannANiehausKNattkemperTWTACOA — taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approachBMC Bioinformatics200910192107742653487
Rodriguez-RLMJainCConradREAluruSKonstantinidisKTReply to: ‘Re-evaluating the evidence for a universal genetic boundary among microbial species’Nat. Commun.2021122021NatCo..12.4060R1:CAS:528:DC%2BB3MXhsFOnsrnO342341158263725
RoutyBGut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumorsScience201835991972018Sci...359...91R1:CAS:528:DC%2BC1cXjslOrsw%3D%3D29097494
KorenOA guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasetsPLoS Comput. Biol.201391:CAS:528:DC%2BC3sXivVehs74%3D233262253542080
NguyenN-PWarnowTPopMWhiteBA perspective on 16S rRNA operational taxonomic unit clustering using sequence similarityNPJ Biofilms Microbiomes20162287212435515256
Vázquez-BaezaYPirrungMGonzalezAKnightREMPeror: a tool for visualizing high-throughput microbial community dataGigascience20132242800614076506
RognesTFlouriTNicholsBQuinceCMahéFVSEARCH: a versatile open source tool for metagenomicsPeerJ20164277811705075697
ForslundKDisentangling type 2 diabetes and metformin treatment signatures in the human gut microbiotaNature20155282622661:CAS:528:DC%2BC2MXhvFemsbjN266336284681099This study underlines the importance of considering the influence of medication in machine learning-based microbiome analysis. In particular, it shows the effects of metformin on the gut microbiome of individuals with type 2 diabetes, highlighting the need to distinguish microbial signatures of diseases from medication.
AngeBASymonsJMSchwabMHowellEGeyhAGeneralizability in epidemiology: an investigation within the context of heart failure studiesAnn. Epidemiol.200414600601
ProbstAJGenomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrationsEnviron. Microbiol.2017194594741:CAS:528:DC%2BC2sXjt1Gktrs%3D27112493
RadovicMGhalwashMFilipovicNObradovicZMinimum redundancy maximum relevance feature selection approach for temporal gene expression dataBMC Bioinformatics201718280494135209828
CalderoneALicataLCesareniGVirusMentha: a new resource for virus–host protein interactionsNucleic Acids Res.201543D588D5921:CAS:528:DC%2BC2sXhtV2itr7K25217587
RahmanSFOlmMRMorowitzMJBanfieldJFMachine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiomemSystems20183e00123e002171:CAS:528:DC%2BC1MXisVentbvK293591955758725
RiesterMRisk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samplesJ. Natl Cancer Inst.2014106dju048247008034580556
RosenGLReichenbergerERRosenfe
P Ghensi (984_CR30) 2020; 6
SICJ Palma (984_CR41) 2018; 8
CS Smillie (984_CR43) 2018; 23
JA McCulloch (984_CR35) 2022; 28
RC Edgar (984_CR53) 2010; 26
H Li (984_CR88) 2015; 2
J Wirbel (984_CR130) 2021; 22
E Le Chatelier (984_CR87) 2013; 500
A Kuchina (984_CR80) 2021; 371
SB Blattman (984_CR84) 2020; 5
MR Rubinstein (984_CR96) 2013; 14
E Pasolli (984_CR28) 2016; 12
CS Murray (984_CR59) 2021; 12
J Rousk (984_CR82) 2010; 4
Q Wang (984_CR7) 2007; 73
H Jeckel (984_CR85) 2020; 45
F Asnicar (984_CR33) 2021; 21
M Arumugam (984_CR45) 2011; 473
BA Ange (984_CR109) 2004; 14
KA Lee (984_CR34) 2022; 28
A Salosensaari (984_CR31) 2021; 12
D Knights (984_CR48) 2014; 16
SH Wong (984_CR93) 2017; 66
C Soneson (984_CR113) 2014; 9
Y Freund (984_CR21) 1997; 55
G Arango-Argoty (984_CR17) 2018; 6
E Pasolli (984_CR55) 2019; 176
JS Suchodolski (984_CR74) 2012; 7
VM Howick (984_CR79) 2019; 365
AD Kostic (984_CR95) 2013; 14
R Sinha (984_CR112) 2017; 35
C Bernau (984_CR116) 2014; 30
KR Patil (984_CR11) 2012; 7
D Moradigaravand (984_CR19) 2018; 14
PI Costea (984_CR49) 2018; 3
J Hua (984_CR98) 2009; 42
J Fan (984_CR99) 2008; 70
A Sczyrba (984_CR15) 2017; 14
R Bourgon (984_CR97) 2010; 107
C Chen (984_CR67) 2021; 12
C Vanni (984_CR69) 2022; 11
G Zeller (984_CR91) 2014; 10
J Qin (984_CR66) 2010; 464
K Forslund (984_CR102) 2015; 528
L Xiao (984_CR65) 2015; 33
SF Rahman (984_CR20) 2018; 3
I Gregor (984_CR12) 2016; 4
GD Hannigan (984_CR23) 2019; 47
ES Kavvas (984_CR18) 2018; 9
T Yatsunenko (984_CR81) 2012; 486
N Karcher (984_CR51) 2020; 21
984_CR106
984_CR103
M Steinegger (984_CR68) 2017; 35
DH Parks (984_CR8) 2011; 12
D Davar (984_CR39) 2021; 371
Y-H Xie (984_CR94) 2017; 25
J Qin (984_CR29) 2012; 490
Human Microbiome Project Consortium. (984_CR64) 2012; 486
GD Poore (984_CR27) 2020; 579
J Ravel (984_CR46) 2011; 108
R Méheust (984_CR121) 2019; 10
BD Topçuoğlu (984_CR6) 2020; 11
I Guyon (984_CR100) 2002; 46
984_CR4
J Lever (984_CR108) 2016; 13
984_CR3
GL Rosen (984_CR9) 2011; 27
984_CR2
984_CR1
Q Feng (984_CR119) 2015; 6
C Weis (984_CR129) 2022; 28
A Renson (984_CR111) 2019; 35
LM Rodriguez-R (984_CR60) 2021; 12
H Abdi (984_CR72) 2010; 2
NN Diaz (984_CR14) 2009; 10
I Vujkovic-Cvijin (984_CR131) 2020; 587
M Bahram (984_CR62) 2018; 560
EN Baruch (984_CR40) 2021; 371
F-E Eid (984_CR127) 2015; 32
TD Davis (984_CR73) 2014; 9
Y Zhang (984_CR115) 2018; 21
GB Gloor (984_CR89) 2017; 8
R Apweiler (984_CR70) 2004; 32
L Derosa (984_CR38) 2021; 39
E Kartal (984_CR32) 2022; 71
A Calderone (984_CR128) 2015; 43
J Lever (984_CR107) 2016; 13
B Routy (984_CR36) 2018; 359
PDeep Baldi (984_CR22) 2018; 1
C Jain (984_CR58) 2018; 9
S Yachida (984_CR105) 2019; 25
AM Thomas (984_CR25) 2019; 25
E Becht (984_CR78) 2018; 37
P Tonkovic (984_CR118) 2020; 9
M Riester (984_CR114) 2014; 106
B Flemer (984_CR104) 2018; 67
A Spang (984_CR63) 2015; 521
984_CR50
M Radovic (984_CR101) 2017; 18
JJ Davis (984_CR16) 2016; 6
W Li (984_CR61) 2006; 22
B Geier (984_CR86) 2020; 5
O Koren (984_CR47) 2013; 9
M Hamady (984_CR52) 2009; 19
K Anantharaman (984_CR123) 2016; 7
J Yu (984_CR126) 2017; 66
E Pasolli (984_CR120) 2017; 14
SJ Goodswen (984_CR5) 2021; 45
TSB Schmidt (984_CR44) 2022; 28
CT Brown (984_CR122) 2015; 523
AC McHardy (984_CR10) 2007; 4
A Almeida (984_CR71) 2021; 39
V Gopalakrishnan (984_CR37) 2018; 359
K Aagaard (984_CR83) 2012; 7
L van der Maaten (984_CR77) 2008; 9
Y He (984_CR110) 2018; 24
AJ Probst (984_CR125) 2017; 19
N-P Nguyen (984_CR57) 2016; 2
T Mishiro (984_CR75) 2018; 33
J Wirbel (984_CR26) 2019; 25
CJ Castelle (984_CR124) 2015; 25
ML Bermingham (984_CR90) 2015; 5
MA Hernán (984_CR132) 2018; 108
A Weimann (984_CR24) 2016; 1
G Ianiro (984_CR42) 2022; 28
K Vervier (984_CR13) 2016; 32
Y Vázquez-Baeza (984_CR76) 2013; 2
I Moreno-Indias (984_CR117) 2021; 12
KT Konstantinidis (984_CR56) 2005; 102
JP Zackular (984_CR92) 2014; 7
T Rognes (984_CR54) 2016; 4
References_xml – reference: MurrayCSGaoYWuMRe-evaluating the evidence for a universal genetic boundary among microbial speciesNat. Commun.2021122021NatCo..12.4059M1:CAS:528:DC%2BB3MXhsFOnsrbI342341298263626
– reference: VanniCUnifying the known and unknown microbial coding sequence spaceeLife202211353568919132574
– reference: ForslundKDisentangling type 2 diabetes and metformin treatment signatures in the human gut microbiotaNature20155282622661:CAS:528:DC%2BC2MXhvFemsbjN266336284681099This study underlines the importance of considering the influence of medication in machine learning-based microbiome analysis. In particular, it shows the effects of metformin on the gut microbiome of individuals with type 2 diabetes, highlighting the need to distinguish microbial signatures of diseases from medication.
– reference: YatsunenkoTHuman gut microbiome viewed across age and geographyNature20124862222272012Natur.486..222Y1:CAS:528:DC%2BC38Xos1emtLc%3D226996113376388
– reference: RouskJSoil bacterial and fungal communities across a pH gradient in an arable soilISME J.201041340135120445636
– reference: Vázquez-BaezaYPirrungMGonzalezAKnightREMPeror: a tool for visualizing high-throughput microbial community dataGigascience20132242800614076506
– reference: SinhaRAssessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortiumNat. Biotechnol.201735107710861:CAS:528:DC%2BC2sXhsFylurvE289678855839636
– reference: KarcherNAnalysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptationsGenome Biol.2020211:CAS:528:DC%2BB3cXhtFemtbjI325132347278147
– reference: RiesterMRisk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samplesJ. Natl Cancer Inst.2014106dju048247008034580556
– reference: KavvasESMachine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistanceNat. Commun.201892018NatCo...9.4306K303334836193043
– reference: HuaJTembeWDDoughertyERPerformance of feature-selection methods in the classification of high-dimension dataPattern Recognit.2009424094242009PatRe..42..409H
– reference: CalderoneALicataLCesareniGVirusMentha: a new resource for virus–host protein interactionsNucleic Acids Res.201543D588D5921:CAS:528:DC%2BC2sXhtV2itr7K25217587
– reference: PalmaSICJMachine learning for the meta-analyses of microbial pathogens’ volatile signaturesSci. Rep.201882018NatSR...8.3360P294638855820279
– reference: AngeBASymonsJMSchwabMHowellEGeyhAGeneralizability in epidemiology: an investigation within the context of heart failure studiesAnn. Epidemiol.200414600601
– reference: ApweilerRUniProt: the universal protein knowledgebaseNucleic Acids Res.200432D115D1191:CAS:528:DC%2BD3sXhtVSru7vK14681372308865
– reference: WirbelJMeta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancerNat. Med.2019256796891:CAS:528:DC%2BC1MXosFGqur0%3D309365477984229
– reference: KonstantinidisKTTiedjeJMGenomic insights that advance the species definition for prokaryotesProc. Natl Acad. Sci. USA2005102256725722005PNAS..102.2567K1:CAS:528:DC%2BD2MXhvFKiurc%3D15701695549018
– reference: MéheustRBursteinDCastelleCJBanfieldJFThe distinction of CPR bacteria from other bacteria based on protein family contentNat. Commun.2019102019NatCo..10.4173M315198916744442
– reference: LiWGodzikAcd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequencesBioinformatics200622165816591:CAS:528:DC%2BD28XmsVent7s%3D16731699
– reference: WongSHQuantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasiaGut201766144114481:CAS:528:DC%2BC1cXitVektbjM27797940
– reference: HamadyMKnightRMicrobial community profiling for human microbiome projects: tools, techniques, and challengesGenome Res200919114111521:CAS:528:DC%2BD1MXosVCktL8%3D193837633776646
– reference: BahramMStructure and function of the global topsoil microbiomeNature20185602332372018Natur.560..233B1:CAS:528:DC%2BC1cXhsVensrjE30069051
– reference: DavisJJAntimicrobial resistance prediction in PATRIC and RASTSci. Rep.201662016NatSR...627930D1:CAS:528:DC%2BC28XhtVSks7nE272976834906388
– reference: SchmidtTSBDrivers and determinants of strain dynamics following fecal microbiota transplantationNat. Med.202228190219121:CAS:528:DC%2BB38XisVWnsrjO361096369499871
– reference: Moreno-IndiasIStatistical and machine learning techniques in human microbiome studies: contemporary challenges and solutionsFront. Microbiol.202112635781336927717937616This work highlights the growing importance of statistical and machine learning techniques in human microbiome studies and challenges posed by the heterogeneity of microbiome data, and emphasizes the potential of machine learning in disease diagnosis, biomarker identification and prediction while addressing issues such as data standardization, overfitting and model interpretability.
– reference: HowickVMThe Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycleScience2019365eaaw26191:CAS:528:DC%2BC1MXhs1CjtLjL314397627056351
– reference: BourgonRGentlemanRHuberWIndependent filtering increases detection power for high-throughput experimentsProc. Natl Acad. Sci. USA2010107954695512010PNAS..107.9546B1:CAS:528:DC%2BC3cXntFGqsrc%3D204603102906865
– reference: Le ChatelierERichness of human gut microbiome correlates with metabolic markersNature201350054154623985870
– reference: JeckelHDrescherKAdvances and opportunities in image analysis of bacterial cells and communitiesFEMS Microbiol. Rev.202045fuaa0628371272
– reference: ThomasAMMetagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradationNat. Med.2019256676781:CAS:528:DC%2BC1MXosFGqu74%3D309365489533319
– reference: ChenCExpanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiomeNat. Commun.2021122021NatCo..12.1106C1:CAS:528:DC%2BB3MXksFSms70%3D335975147889623
– reference: GhensiPStrong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomicsNPJ Biofilms Microbiomes202061:CAS:528:DC%2BB3cXitlCqtbnN331279017603341
– reference: TonkovicPLiterature on applied machine learning in metagenomic classification: a scoping reviewBiology20209453333169217763105
– reference: ProbstAJGenomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrationsEnviron. Microbiol.2017194594741:CAS:528:DC%2BC2sXjt1Gktrs%3D27112493
– reference: KartalEA faecal microbiota signature with high specificity for pancreatic cancerGut202271135913721:CAS:528:DC%2BB38XitFaisbbJ35260444
– reference: LeverJKrzywinskiMAltmanNClassification evaluationNat. Methods2016136036041:CAS:528:DC%2BC28Xhs1ejtb7NThis work highlights the importance of selecting the appropriate evaluation metrics when assessing the performances of classification models in the context of medical diagnosis. It also emphasizes the impact of class imbalance and the use of specific metrics in cases of imbalanced data sets.
– reference: MishiroTOral microbiome alterations of healthy volunteers with proton pump inhibitorJ. Gastroenterol. Hepatol.201833105910661:CAS:528:DC%2BC1cXot1Cgur0%3D29105152
– reference: RadovicMGhalwashMFilipovicNObradovicZMinimum redundancy maximum relevance feature selection approach for temporal gene expression dataBMC Bioinformatics201718280494135209828
– reference: BernauCCross-study validation for the assessment of prediction algorithmsBioinformatics201430i105i1121:CAS:528:DC%2BC2cXpvFCqsLY%3D249319734058929
– reference: RavelJVaginal microbiome of reproductive-age womenProc. Natl Acad. Sci. USA2011108468046872011PNAS..108.4680R1:CAS:528:DC%2BC3MXjvVCrs7g%3D20534435
– reference: SczyrbaACritical assessment of metagenome interpretation — a benchmark of metagenomics softwareNat. Methods201714106310711:CAS:528:DC%2BC2sXhsFylu77E289678885903868
– reference: ArumugamMEnterotypes of the human gut microbiomeNature20114731741801:CAS:528:DC%2BC3MXkvFeisLo%3D215089583728647
– reference: TopçuoğluBDLesniakNARuffinMT4th WiensJSchlossPDA framework for effective application of machine learning to microbiome-based classification problemsmBio202011e0043420325181827373189This work focuses on applying machine learning to microbiome data for disease prediction, highlighting the important trade-off between model complexity and interpretability, and emphasizing the need for rigorous methodology towards more reproducible machine learning usage in microbiome research.
– reference: XiaoLA catalog of the mouse gut metagenomeNat. Biotechnol.201533110311081:CAS:528:DC%2BC2MXhsFersLzP26414350
– reference: MoradigaravandDPrediction of antibiotic resistance in Escherichia coli from large-scale pan-genome dataPLoS Comput. Biol.201814305505646310291
– reference: ZellerGPotential of fecal microbiota for early-stage detection of colorectal cancerMol. Syst. Biol.201410766254327774299606
– reference: LeverJKrzywinskiMAltmanNModel selection and overfittingNat. Methods2016137037041:CAS:528:DC%2BC28Xhs1ejtb%2FPThis work highlights the importance of accurately assessing model performance to not fall into overfitting problems. Approaches that consider validation sets, test sets and cross-validation are extremely important especially when dealing with limited data.
– reference: FengQGut microbiome development along the colorectal adenoma–carcinoma sequenceNat. Commun.201562015NatCo...6.6528F1:CAS:528:DC%2BC2MXotlGksrs%3D25758642
– reference: BerminghamMLApplication of high-dimensional feature selection: evaluation for genomic prediction in manSci. Rep.201552015NatSR...510312B1:CAS:528:DC%2BC2MXhtFyht7rL259888414437376
– reference: HeYRegional variation limits applications of healthy gut microbiome reference ranges and disease modelsNat. Med.201824153215351:CAS:528:DC%2BC1cXhsF2nsrvI30150716
– reference: BaldiPDeepLearning in biomedical data scienceAnnu. Rev. Biomed. Data Sci.20181181205
– reference: WeimannAFrom genomes to phenotypes: Traitar, the microbial trait analyzermSystems20161e00101e00116280668165192078This work uses machine learning to predict 67 microbial phenotypic traits from genome sequences, facilitating the analysis of large-scale microbial genomic data.
– reference: AlmeidaAA unified catalog of 204,938 reference genomes from the human gut microbiomeNat. Biotechnol.2021391051141:CAS:528:DC%2BB3cXhsVWgtL%2FN32690973
– reference: Hacılar, H., Nalbantoğlu, O. U. & Bakir-Güngör, B. in 2018 3rd Int. Conf. Computer Science and Engineering (UBMK) 434–438 (IEEE, 2018).
– reference: BechtEDimensionality reduction for visualizing single-cell data using UMAPNat. Biotechnol.2018373844
– reference: PasolliEAccessible, curated metagenomic data through ExperimentHubNat. Methods20171410231:CAS:528:DC%2BC2sXhslCms7%2FF290881295862039
– reference: KorenOA guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasetsPLoS Comput. Biol.201391:CAS:528:DC%2BC3sXivVehs74%3D233262253542080
– reference: PasolliEExtensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyleCell2019176114
– reference: McHardyACMartínHGTsirigosAHugenholtzPRigoutsosIAccurate phylogenetic classification of variable-length DNA fragmentsNat. Methods2007463721:CAS:528:DC%2BD28XhtlGktbzO17179938
– reference: FanJLvJSure independence screening for ultrahigh dimensional feature spaceJ. R. Stat. Soc. Ser. B Stat. Methodol.2008708499112530322
– reference: BlattmanSBJiangWOikonomouPTavazoieSProkaryotic single-cell RNA sequencing by in situ combinatorial indexingNat. Microbiol.20205119212011:CAS:528:DC%2BB3cXhtVSis7rE324514728330242
– reference: RahmanSFOlmMRMorowitzMJBanfieldJFMachine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiomemSystems20183e00123e002171:CAS:528:DC%2BC1MXisVentbvK293591955758725
– reference: SalosensaariATaxonomic signatures of cause-specific mortality risk in human gut microbiomeNat. Commun.2021122021NatCo..12.2671S1:CAS:528:DC%2BB3MXhtFWgtL7F339761768113604
– reference: KosticADFusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironmentCell Host Microbe2013142072151:CAS:528:DC%2BC3sXht1yhsLfE239541593772512
– reference: WangQGarrityGMTiedjeJMColeJRNaive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomyAppl. Environ. Microbiol.200773526152672007ApEnM..73.5261W1:CAS:528:DC%2BD2sXpsleqtrc%3D175866641950982
– reference: SuchodolskiJSThe fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel diseasePLoS ONE201272012PLoSO...751907S1:CAS:528:DC%2BC3sXmtVSktw%3D%3D233005773530590
– reference: QinJA metagenome-wide association study of gut microbiota in type 2 diabetesNature201249055602012Natur.490...55Q1:CAS:528:DC%2BC38XhsVaqt7fJ23023125
– reference: SmillieCSStrain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantationCell Host Microbe201823229240.e51:CAS:528:DC%2BC1cXivVSlsr0%3D294476968318347
– reference: BaruchENFecal microbiota transplant promotes response in immunotherapy-refractory melanoma patientsScience20213716026092021Sci...371..602B1:CAS:528:DC%2BB3MXjsFCrsro%3D33303685
– reference: ZackularJPRogersMAMRuffinMT4thSchlossPDThe human gut microbiome as a screening tool for colorectal cancerCancer Prev. Res.20147111211211:CAS:528:DC%2BC2cXhvVyjur3J
– reference: EdgarRCSearch and clustering orders of magnitude faster than BLASTBioinformatics201026246024611:CAS:528:DC%2BC3cXht1WhtbzM20709691
– reference: PooreGDMicrobiome analyses of blood and tissues suggest cancer diagnostic approachNature20205795675742020Natur.579..567P1:CAS:528:DC%2BB3cXkslGgtbk%3D322142447500457
– reference: DavarDFecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patientsScience20213715956022021Sci...371..595D1:CAS:528:DC%2BB3MXjsFCrs7s%3D335421318097968
– reference: GoodswenSJMachine learning and applications in microbiologyFEMS Microbiol. Rev.202145fuab0151:CAS:528:DC%2BB38XhslWnurfO337243788498514
– reference: GloorGBMacklaimJMPawlowsky-GlahnVEgozcueJJMicrobiome datasets are compositional: and this is not optionalFront. Microbiol.201782224291878375695134
– reference: ZhangYBernauCParmigianiGWaldronLThe impact of different sources of heterogeneity on loss of accuracy from genomic prediction modelsBiostatistics20182125326841333597868050This work examines the impact of different types of heterogeneity on the validation accuracy of omics-based prediction models across data sets and provides insights into the challenges of validating prediction models in the presence of study heterogeneity.
– reference: CastelleCJGenomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cyclingCurr. Biol.2015256907011:CAS:528:DC%2BC2MXjt1amtro%3D25702576
– reference: RoutyBGut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumorsScience201835991972018Sci...359...91R1:CAS:528:DC%2BC1cXjslOrsw%3D%3D29097494
– reference: KuchinaAMicrobial single-cell RNA sequencing by split-pool barcodingScience2021371eaba52571:CAS:528:DC%2BB3MXkslymsLs%3D33335020
– reference: LeeKACross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanomaNat. Med.2022285355441:CAS:528:DC%2BB38XlsVGgsr4%3D352287518938272
– reference: HanniganGDA deep learning genome-mining strategy for biosynthetic gene cluster predictionNucleic Acids Res.2019471:CAS:528:DC%2BB3cXhtVSkt7jI314001126765103
– reference: Maimon, O. & Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook (Springer, 2010).
– reference: FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.1997551191391473055
– reference: Rodriguez-RLMJainCConradREAluruSKonstantinidisKTReply to: ‘Re-evaluating the evidence for a universal genetic boundary among microbial species’Nat. Commun.2021122021NatCo..12.4060R1:CAS:528:DC%2BB3MXhsFOnsrnO342341158263725
– reference: AnantharamanKThousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer systemNat. Commun.201672016NatCo...713219A1:CAS:528:DC%2BC28XhslGrt77L277749855079060
– reference: FlemerBThe oral microbiota in colorectal cancer is distinctive and predictiveGut201867145414631:CAS:528:DC%2BC1MXhvVKlsLs%3D28988196
– reference: BrownCTUnusual biology across a group comprising more than 15% of domain bacteriaNature20155232082112015Natur.523..208B1:CAS:528:DC%2BC2MXht1entr7J26083755
– reference: van der MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.2008925792605
– reference: PatilKRRouneLMcHardyACThe PhyloPythiaS web server for taxonomic assignment of metagenome sequencesPLoS ONE201272012PLoSO...738581P1:CAS:528:DC%2BC38XpsVWgtLs%3D227456713380018
– reference: RosenGLReichenbergerERRosenfeldAMNBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic readsBioinformatics2011271271291:CAS:528:DC%2BC3cXhs1ajurvM21062764
– reference: RubinsteinMRFusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesinCell Host Microbe2013141952061:CAS:528:DC%2BC3sXht1yhsr3N239541583770529
– reference: RognesTFlouriTNicholsBQuinceCMahéFVSEARCH: a versatile open source tool for metagenomicsPeerJ20164277811705075697
– reference: Gao, L. L., Bien, J. & Witten, D. Selective inference for hierarchical clustering. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2022.2116331 (2022).
– reference: QinJA human gut microbial gene catalogue established by metagenomic sequencingNature201046459651:CAS:528:DC%2BC3cXislahsLc%3D202036033779803
– reference: WeisCDirect antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learningNat. Med.2022281641741:CAS:528:DC%2BB38Xotlagug%3D%3D35013613
– reference: KnightsDRethinking ‘enterotypes’Cell Host Microbe2014164334371:CAS:528:DC%2BC2cXhs1KltL3N252993295558460
– reference: GregorIDrögeJSchirmerMQuinceCMcHardyACPhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomesPeerJ20164268706094748697
– reference: McCullochJAIntestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1Nat. Med.2022285455561:CAS:528:DC%2BB38XlsVGgsr0%3D3522875210246505
– reference: Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer Science & Business Media, 2009).
– reference: RensonASociodemographic variation in the oral microbiomeAnn. Epidemiol.2019357380.e2311518866626698
– reference: Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2022).
– reference: Vujkovic-CvijinIHost variables confound gut microbiota studies of human diseaseNature20205874484542020Natur.587..448V1:CAS:528:DC%2BB3cXit1Ggt7jN331493067677204
– reference: AbdiHWilliamsLJPrincipal component analysisWiley Interdiscip. Rev. Comput. Stat.20102433459
– reference: DavisTDGerryCJTanDSGeneral platform for systematic quantitative evaluation of small-molecule permeability in bacteriaACS Chem. Biol.20149253525441:CAS:528:DC%2BC2cXhsV2hurzP251986564245172
– reference: AagaardKA metagenomic approach to characterization of the vaginal microbiome signature in pregnancyPLoS ONE201272012PLoSO...736466A1:CAS:528:DC%2BC38XptVOjs78%3D227198323374618
– reference: GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.200246389422
– reference: Arango-ArgotyGDeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic dataMicrobiome20186293910445796597
– reference: GopalakrishnanVGut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patientsScience2018359971032018Sci...359...97G1:CAS:528:DC%2BC1cXjslOrsA%3D%3D29097493
– reference: YuJMetagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancerGut20176670781:CAS:528:DC%2BC1cXmtVSg26408641
– reference: YachidaSMetagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancerNat. Med.2019259689761:CAS:528:DC%2BC1MXhtFGisbrI31171880
– reference: AsnicarFMicrobiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individualsNat. Med.202121321332
– reference: VervierKMahéPTournoudMVeyrierasJ-BVertJ-PLarge-scale machine learning for metagenomics sequence classificationBioinformatics201632102310321:CAS:528:DC%2BC28XhtlWiurrI26589281This work introduces a machine learning-based approach for tackling the taxonomic binning step, using a supervised approach that balances accuracy and speed and outperforms alignment-based methods.
– reference: SonesonCGersterSDelorenziMBatch effect confounding leads to strong bias in performance estimates obtained by cross-validationPLoS ONE201492014PLoSO...9j0335S249676364072626
– reference: PasolliETruongDTMalikFWaldronLSegataNMachine learning meta-analysis of large metagenomic datasets: tools and biological insightsPLoS Comput. Biol.2016122016PLSCB..12E4977P274002794939962
– reference: James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: with Applications in R (Springer Science & Business Media, 2013).
– reference: IaniroGVariability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseasesNat. Med.202228191319231:CAS:528:DC%2BB38XisVWnsrjJ361096379499858This study uses machine learning to develop predictive models for selecting optimal donors for faecal microbiota transplantation, making personalized microbiome-targeted treatments more effective.
– reference: Human Microbiome Project Consortium.Structure, function and diversity of the healthy human microbiomeNature20124862072142012Natur.486..207T
– reference: SteineggerMSödingJMMseqs2 enables sensitive protein sequence searching for the analysis of massive data setsNat. Biotechnol.201735102610281:CAS:528:DC%2BC2sXhs1GqsLzE29035372
– reference: SpangAComplex archaea that bridge the gap between prokaryotes and eukaryotesNature20155211731792015Natur.521..173S1:CAS:528:DC%2BC2MXnvFWjs70%3D259457394444528
– reference: XieY-HFecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studiesEBioMedicine20172532401:CAS:528:DC%2BB3MXhsVCqtbbL290333695704049
– reference: GeierBSpatial metabolomics of in situ host–microbe interactions at the micrometre scaleNat. Microbiol.202054985101:CAS:528:DC%2BB3cXislCjur0%3D32015496
– reference: LiHMicrobiome, metagenomics, and high-dimensional compositional data analysisAnnu. Rev. Stat. Appl.201527394
– reference: NguyenN-PWarnowTPopMWhiteBA perspective on 16S rRNA operational taxonomic unit clustering using sequence similarityNPJ Biofilms Microbiomes20162287212435515256
– reference: HernánMAThe C-word: scientific euphemisms do not improve causal inference from observational dataAm. J. Public. Health2018108616619295656595888052This work emphasizes the importance of using the term ‘causal’, in particular when analysing data from observational studies, and highlights the need to distinguish between association and causation and address confounding factors properly.
– reference: DerosaLIntestinal Akkermansia muciniphila predicts overall survival in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies: results a phase II studyJ. Clin. Orthod.20213990199019
– reference: WirbelJMicrobiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolboxGenome Biol.202122337850708008609
– reference: JainCRodriguez-RLMPhillippyAMKonstantinidisKTAluruSHigh throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundariesNat. Commun.201892018NatCo...9.5114J305048556269478
– reference: DiazNNKrauseLGoesmannANiehausKNattkemperTWTACOA — taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approachBMC Bioinformatics200910192107742653487
– reference: CosteaPIEnterotypes in the landscape of gut microbial community compositionNat. Microbiol.201838161:CAS:528:DC%2BC2sXitVSmtLvK29255284
– reference: ParksDHMacDonaldNJBeikoRGClassifying short genomic fragments from novel lineages using composition and homologyBMC Bioinformatics2011121:CAS:528:DC%2BC3MXhtFCktbvP218277053173459
– reference: EidF-EElHefnawiMHeathLSDeNovo: virus–host sequence-based protein–protein interaction predictionBioinformatics2015321144115026677965
– reference: Bishop, C. M. Pattern recognition and machine learning (Springer, 2006).
– volume: 19
  start-page: 459
  year: 2017
  ident: 984_CR125
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13362
– volume: 359
  start-page: 91
  year: 2018
  ident: 984_CR36
  publication-title: Science
  doi: 10.1126/science.aan3706
– volume: 7
  start-page: 1112
  year: 2014
  ident: 984_CR92
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-14-0129
– volume: 14
  start-page: 1063
  year: 2017
  ident: 984_CR15
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4458
– volume: 107
  start-page: 9546
  year: 2010
  ident: 984_CR97
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0914005107
– volume: 5
  start-page: 498
  year: 2020
  ident: 984_CR86
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-019-0664-6
– volume: 12
  start-page: 635781
  year: 2021
  ident: 984_CR117
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.635781
– volume: 8
  start-page: 2224
  year: 2017
  ident: 984_CR89
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02224
– volume: 464
  start-page: 59
  year: 2010
  ident: 984_CR66
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 365
  start-page: eaaw2619
  year: 2019
  ident: 984_CR79
  publication-title: Science
  doi: 10.1126/science.aaw2619
– volume: 12
  year: 2016
  ident: 984_CR28
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004977
– volume: 33
  start-page: 1059
  year: 2018
  ident: 984_CR75
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.14040
– volume: 4
  year: 2016
  ident: 984_CR54
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– volume: 9
  start-page: 2579
  year: 2008
  ident: 984_CR77
  publication-title: J. Mach. Learn. Res.
– volume: 587
  start-page: 448
  year: 2020
  ident: 984_CR131
  publication-title: Nature
  doi: 10.1038/s41586-020-2881-9
– volume: 11
  year: 2022
  ident: 984_CR69
  publication-title: eLife
  doi: 10.7554/eLife.67667
– volume: 45
  start-page: fuab015
  year: 2021
  ident: 984_CR5
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuab015
– volume: 521
  start-page: 173
  year: 2015
  ident: 984_CR63
  publication-title: Nature
  doi: 10.1038/nature14447
– volume: 13
  start-page: 603
  year: 2016
  ident: 984_CR108
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3945
– volume: 9
  start-page: 2535
  year: 2014
  ident: 984_CR73
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb5003015
– volume: 37
  start-page: 38
  year: 2018
  ident: 984_CR78
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4314
– volume: 579
  start-page: 567
  year: 2020
  ident: 984_CR27
  publication-title: Nature
  doi: 10.1038/s41586-020-2095-1
– volume: 14
  start-page: 1023
  year: 2017
  ident: 984_CR120
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4468
– ident: 984_CR2
– volume: 35
  start-page: 73
  year: 2019
  ident: 984_CR111
  publication-title: Ann. Epidemiol.
  doi: 10.1016/j.annepidem.2019.03.006
– volume: 28
  start-page: 535
  year: 2022
  ident: 984_CR34
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01695-5
– volume: 14
  start-page: 600
  year: 2004
  ident: 984_CR109
  publication-title: Ann. Epidemiol.
  doi: 10.1016/j.annepidem.2004.07.025
– volume: 473
  start-page: 174
  year: 2011
  ident: 984_CR45
  publication-title: Nature
  doi: 10.1038/nature09944
– volume: 39
  start-page: 9019
  year: 2021
  ident: 984_CR38
  publication-title: J. Clin. Orthod.
– volume: 560
  start-page: 233
  year: 2018
  ident: 984_CR62
  publication-title: Nature
  doi: 10.1038/s41586-018-0386-6
– volume: 500
  start-page: 541
  year: 2013
  ident: 984_CR87
  publication-title: Nature
  doi: 10.1038/nature12506
– volume: 7
  year: 2012
  ident: 984_CR11
  publication-title: PLoS ONE
– volume: 24
  start-page: 1532
  year: 2018
  ident: 984_CR110
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0164-x
– ident: 984_CR106
  doi: 10.1007/978-0-387-09823-4
– volume: 25
  start-page: 667
  year: 2019
  ident: 984_CR25
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0405-7
– volume: 13
  start-page: 703
  year: 2016
  ident: 984_CR107
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3968
– volume: 35
  start-page: 1026
  year: 2017
  ident: 984_CR68
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3988
– volume: 25
  start-page: 690
  year: 2015
  ident: 984_CR124
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.01.014
– volume: 2
  start-page: 433
  year: 2010
  ident: 984_CR72
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.101
– ident: 984_CR1
– volume: 3
  start-page: 8
  year: 2018
  ident: 984_CR49
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0072-8
– volume: 28
  start-page: 164
  year: 2022
  ident: 984_CR129
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01619-9
– volume: 32
  start-page: 1023
  year: 2016
  ident: 984_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv683
– volume: 26
  start-page: 2460
  year: 2010
  ident: 984_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– volume: 5
  year: 2015
  ident: 984_CR90
  publication-title: Sci. Rep.
– volume: 10
  year: 2009
  ident: 984_CR14
  publication-title: BMC Bioinformatics
– volume: 7
  year: 2012
  ident: 984_CR83
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036466
– volume: 490
  start-page: 55
  year: 2012
  ident: 984_CR29
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 371
  start-page: 602
  year: 2021
  ident: 984_CR40
  publication-title: Science
  doi: 10.1126/science.abb5920
– volume: 528
  start-page: 262
  year: 2015
  ident: 984_CR102
  publication-title: Nature
  doi: 10.1038/nature15766
– volume: 39
  start-page: 105
  year: 2021
  ident: 984_CR71
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0603-3
– volume: 4
  start-page: 1340
  year: 2010
  ident: 984_CR82
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.58
– volume: 1
  start-page: e00101
  year: 2016
  ident: 984_CR24
  publication-title: mSystems
  doi: 10.1128/mSystems.00101-16
– volume: 9
  year: 2013
  ident: 984_CR47
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002863
– volume: 6
  year: 2018
  ident: 984_CR17
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0401-z
– volume: 35
  start-page: 1077
  year: 2017
  ident: 984_CR112
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3981
– volume: 25
  start-page: 968
  year: 2019
  ident: 984_CR105
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0458-7
– volume: 486
  start-page: 207
  year: 2012
  ident: 984_CR64
  publication-title: Nature
  doi: 10.1038/nature11234
– volume: 4
  year: 2016
  ident: 984_CR12
  publication-title: PeerJ
  doi: 10.7717/peerj.1603
– ident: 984_CR4
– volume: 32
  start-page: D115
  year: 2004
  ident: 984_CR70
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh131
– volume: 28
  start-page: 1913
  year: 2022
  ident: 984_CR42
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01964-3
– volume: 486
  start-page: 222
  year: 2012
  ident: 984_CR81
  publication-title: Nature
  doi: 10.1038/nature11053
– volume: 25
  start-page: 32
  year: 2017
  ident: 984_CR94
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.10.005
– volume: 12
  year: 2021
  ident: 984_CR59
  publication-title: Nat. Commun.
– volume: 359
  start-page: 97
  year: 2018
  ident: 984_CR37
  publication-title: Science
  doi: 10.1126/science.aan4236
– volume: 32
  start-page: 1144
  year: 2015
  ident: 984_CR127
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv737
– volume: 70
  start-page: 849
  year: 2008
  ident: 984_CR99
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2008.00674.x
– volume: 21
  year: 2020
  ident: 984_CR51
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02042-y
– volume: 21
  start-page: 321
  year: 2021
  ident: 984_CR33
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01183-8
– volume: 14
  start-page: 195
  year: 2013
  ident: 984_CR96
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.07.012
– volume: 371
  start-page: eaba5257
  year: 2021
  ident: 984_CR80
  publication-title: Science
  doi: 10.1126/science.aba5257
– volume: 21
  start-page: 253
  year: 2018
  ident: 984_CR115
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxy044
– volume: 45
  start-page: fuaa062
  year: 2020
  ident: 984_CR85
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuaa062
– volume: 2
  year: 2013
  ident: 984_CR76
  publication-title: Gigascience
  doi: 10.1186/2047-217X-2-16
– volume: 18
  year: 2017
  ident: 984_CR101
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1423-9
– volume: 10
  year: 2019
  ident: 984_CR121
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12171-z
– volume: 176
  start-page: 1
  year: 2019
  ident: 984_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.001
– volume: 19
  start-page: 1141
  year: 2009
  ident: 984_CR52
  publication-title: Genome Res
  doi: 10.1101/gr.085464.108
– volume: 46
  start-page: 389
  year: 2002
  ident: 984_CR100
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 1
  start-page: 181
  year: 2018
  ident: 984_CR22
  publication-title: Annu. Rev. Biomed. Data Sci.
  doi: 10.1146/annurev-biodatasci-080917-013343
– volume: 25
  start-page: 679
  year: 2019
  ident: 984_CR26
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0406-6
– volume: 23
  start-page: 229
  year: 2018
  ident: 984_CR43
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.01.003
– volume: 4
  start-page: 63
  year: 2007
  ident: 984_CR10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth976
– volume: 28
  start-page: 1902
  year: 2022
  ident: 984_CR44
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01913-0
– volume: 3
  start-page: e00123
  year: 2018
  ident: 984_CR20
  publication-title: mSystems
  doi: 10.1128/mSystems.00123-17
– volume: 7
  year: 2012
  ident: 984_CR74
  publication-title: PLoS ONE
– volume: 12
  year: 2021
  ident: 984_CR60
  publication-title: Nat. Commun.
– volume: 523
  start-page: 208
  year: 2015
  ident: 984_CR122
  publication-title: Nature
  doi: 10.1038/nature14486
– volume: 28
  start-page: 545
  year: 2022
  ident: 984_CR35
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01698-2
– volume: 108
  start-page: 4680
  year: 2011
  ident: 984_CR46
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1002611107
– volume: 27
  start-page: 127
  year: 2011
  ident: 984_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq619
– volume: 47
  year: 2019
  ident: 984_CR23
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz654
– volume: 66
  start-page: 1441
  year: 2017
  ident: 984_CR93
  publication-title: Gut
  doi: 10.1136/gutjnl-2016-312766
– volume: 73
  start-page: 5261
  year: 2007
  ident: 984_CR7
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-07
– volume: 7
  year: 2016
  ident: 984_CR123
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13219
– volume: 6
  year: 2016
  ident: 984_CR16
  publication-title: Sci. Rep.
– volume: 8
  year: 2018
  ident: 984_CR41
  publication-title: Sci. Rep.
– ident: 984_CR103
  doi: 10.1109/UBMK.2018.8566487
– volume: 2
  start-page: 73
  year: 2015
  ident: 984_CR88
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-010814-020351
– volume: 43
  start-page: D588
  year: 2015
  ident: 984_CR128
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku830
– volume: 371
  start-page: 595
  year: 2021
  ident: 984_CR39
  publication-title: Science
  doi: 10.1126/science.abf3363
– volume: 12
  year: 2021
  ident: 984_CR67
  publication-title: Nat. Commun.
– volume: 42
  start-page: 409
  year: 2009
  ident: 984_CR98
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.08.001
– volume: 16
  start-page: 433
  year: 2014
  ident: 984_CR48
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.09.013
– volume: 22
  start-page: 1658
  year: 2006
  ident: 984_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 30
  start-page: i105
  year: 2014
  ident: 984_CR116
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu279
– volume: 14
  year: 2018
  ident: 984_CR19
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006258
– volume: 5
  start-page: 1192
  year: 2020
  ident: 984_CR84
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0729-6
– volume: 9
  year: 2018
  ident: 984_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06634-y
– volume: 66
  start-page: 70
  year: 2017
  ident: 984_CR126
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309800
– volume: 106
  start-page: dju048
  year: 2014
  ident: 984_CR114
  publication-title: J. Natl Cancer Inst.
  doi: 10.1093/jnci/dju048
– volume: 33
  start-page: 1103
  year: 2015
  ident: 984_CR65
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3353
– volume: 102
  start-page: 2567
  year: 2005
  ident: 984_CR56
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0409727102
– volume: 14
  start-page: 207
  year: 2013
  ident: 984_CR95
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.07.007
– volume: 67
  start-page: 1454
  year: 2018
  ident: 984_CR104
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314814
– ident: 984_CR50
  doi: 10.1080/01621459.2022.2116331
– volume: 9
  year: 2014
  ident: 984_CR113
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0100335
– volume: 9
  year: 2018
  ident: 984_CR58
  publication-title: Nat. Commun.
– volume: 6
  year: 2015
  ident: 984_CR119
  publication-title: Nat. Commun.
– volume: 10
  start-page: 766
  year: 2014
  ident: 984_CR91
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145645
– volume: 55
  start-page: 119
  year: 1997
  ident: 984_CR21
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 22
  year: 2021
  ident: 984_CR130
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02306-1
– volume: 108
  start-page: 616
  year: 2018
  ident: 984_CR132
  publication-title: Am. J. Public. Health
  doi: 10.2105/AJPH.2018.304337
– volume: 11
  start-page: e00434
  year: 2020
  ident: 984_CR6
  publication-title: mBio
  doi: 10.1128/mBio.00434-20
– volume: 6
  year: 2020
  ident: 984_CR30
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/s41522-020-00155-7
– volume: 9
  start-page: 453
  year: 2020
  ident: 984_CR118
  publication-title: Biology
  doi: 10.3390/biology9120453
– volume: 12
  year: 2021
  ident: 984_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22962-y
– volume: 12
  year: 2011
  ident: 984_CR8
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-328
– ident: 984_CR3
  doi: 10.1007/978-1-4614-7138-7
– volume: 71
  start-page: 1359
  year: 2022
  ident: 984_CR32
  publication-title: Gut
  doi: 10.1136/gutjnl-2021-324755
– volume: 2
  year: 2016
  ident: 984_CR57
  publication-title: NPJ Biofilms Microbiomes
SSID ssj0025572
Score 2.6830525
SecondaryResourceType review_article
Snippet Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms 631/114/1305
631/114/2397
631/326
Algorithms
Antibiotic resistance
Antibiotics
Antimicrobial agents
Biomedical and Life Sciences
Classification
Clustering
Computer science
Drug resistance
Feature selection
Genes
Genomes
Humans
Infectious Diseases
Learning algorithms
Life Sciences
Machine Learning
Medical Microbiology
Microbiology
Microbiomes
Microbiota
Oncology
Parasitology
Review Article
Software
Taxonomy
Tuberculosis
Virology
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ_gESM-CKhoFU2JvEmx2_1-JAZCTCA8eAn60uynEs9CvLsY_OudfsKJIehb004_ZnZ25red2RmAbSaYi87jsoR7ljEb0Q4GNIYmSkqdQnsY6s3JR8ficMw-nPLTa62-mqT9pqRlY6b77LB3U3Q0UmfoYbK6BCbLyBuHmMxM78GyqGNLI1geH5_sfWo3QOYZ-iVxdUxZt2Emp-ovz1p0SjeQ5s2EySFq-hAezKsLc_nTTCbXHNPBKnzuWWrzUb7tzmd21_36o9rjf_G8Bo86uJrutcTrsBSqx3C_bWB5-QS2j5pczJB2zSe-pIiB0-9nQ3UnVKLpUxgf7H98f5h1fRcyxySfZdypQmpuhI5U28CZE5EZRr3SxoZcxULHoD0ileB9tNYHyZlVwigXZER8tgGj6rwKzyG1Bk9K4hGHROZJYS3Pcx-pICKEGIoESC_40nVFyeveGJOyCY5TVbZCKFEIZSOEkiTwdrjnoi3JcSv1Zj-eZTc9p2WhcZlVKEFUAlvDZZxYdbTEVOF8jjRKI5ziMmcJPGuHf3gdlVogdNUJqAXFGAjqot2LV6qzr03xbkK0qv-NJbDT69DVd93Gxs6gZ3fg-sW_kb-ElQLBWpuRtAmj2Y95eIVga2Zfd9PqN85LIQM
  priority: 102
  providerName: Unpaywall
Title Machine learning for microbiologists
URI https://link.springer.com/article/10.1038/s41579-023-00984-1
https://www.ncbi.nlm.nih.gov/pubmed/37968359
https://www.proquest.com/docview/2957628618
https://www.proquest.com/docview/2890755704
https://pubmed.ncbi.nlm.nih.gov/PMC11980903
https://www.nature.com/articles/s41579-023-00984-1#citeas
UnpaywallVersion submittedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1740-1534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025572
  issn: 1740-1526
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1740-1534
  dateEnd: 20241004
  omitProxy: true
  ssIdentifier: ssj0025572
  issn: 1740-1526
  databaseCode: 7X7
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1740-1534
  dateEnd: 20241004
  omitProxy: true
  ssIdentifier: ssj0025572
  issn: 1740-1526
  databaseCode: BENPR
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-2lrHuYR_dunnrigd9W039IcnS00hKQxk0lLFA9mT0uRUyJ1sSRv_7nWzZWSiEvVhgydi6O939pDvfAZwSRrTTBrcl1JCEKId60KIylK4sCs1RH1r_c_L1mF1NyOcpnYYDt2UIq-x0YqOozVz7M_LzXCAyzjnL-KfFr8RXjfLe1VBC4yHsZwhVvFSX082Gi9KmeBOC7jRBO8XCTzNpwc-XaLhKkaDFSnxKTZJk24bpHtq8HzTZe06fwON1vZB3f-Rs9o9xGj2HpwFVxoNWDF7AA1sfwqO2zuTdITzrajfEYSm_hNPrJorSxqFsxPcY0Wv887bPy4TsX76Cyejy68VVEiomJJqUdJVQzfNSUMmEK4SylGjmiCSF4UIqm3KXC2eFQYxhjXFKGVtSojiTXNvSIbI6gr16Xts3ECuJN8vMIIJwxGS5UjRNjStYxqx1No8g68hV6ZBO3Fe1mFWNW7vgVUviCklcNSSusgg-9s8s2mQaO0cfd1yowsJaVhsxiOBD341Lwvs5ZG3naxzDccfvU4uRCF63TOtfV5SCIegUEfAtdvYDfLrt7Z769keTdhsljPtTrQjOOs5vvmvXNM566fiPWb_dPet3cJAjrGpjh45hb_V7bd8jLFqpk0b28covshPYH4yGwzG2w8vxzRdsJ-Obwbe_JSgMtQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRahw4FFegQJBKicaNfHbB4QQUG1pt6dW2luIYxsqLdmF3VW1f4rfyDivZVVpxaXX2FHieX72jGcA9plgpS8tbku4ZQkzHu2gQ2NYeElpqdAeunA5eXgmBhfs64iPtuBPdxcmpFV2NrE21HZShjPyQ6IRGRMlMvVh-isJXaNCdLVrodGIxYlbXuGWbfb--DPy9y0hR1_OPw2StqtAUjLJ5wkvFZGaF0J7qo3jrBSeFYxapQvjUuWJ9k5b9MPOWm-MdZIzo0ShSic9C4UO0OTfYjRloVa_HK02eJzXzaIQ5KcJ-kXRXtJJqTqcoaOUOkEPmYQSnizJ1h3hNXR7PUmzj9TehZ1FNS2WV8V4_I8zPHoA91oUG39sxO4hbLlqF243fS2Xu3C_6xURt6bjEewP66xNF7dtKr7HiJbjn5d9HSgUt9ljuLgRWj6B7WpSuWcQmwIfyswiYvHMZsQYnqbWU5EJ57wjEWQdufKyLV8eumiM8zqMTlXekDhHEuc1ifMsgnf9O9OmeMfG2XsdF_JWkWf5SuwieNMPowqGuEpRuckC5yiNwIvLlEXwtGFa_zkqtUCQqyNQa-zsJ4Ty3usj1eWPusx3lmkVTtEiOOg4v_qvTcs46KXjP1b9fPOqX8PO4Hx4mp8en528gDsEIV2Tt7QH2_PfC_cSIdncvKr1IIZvN614fwFPk0YI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRbwOPMorUCBI5UStTeL3ASFEWbWUVhyotLcQxzZUWrILu6tq_xq_jnFey6rSikuvsaPE8_zsGc8A7DHBSl9a3JZwywgzHu2gQ2NYeElpqdAeunA5-eRUHJ6xTyM-2oI_3V2YkFbZ2cTaUNtJGc7IB5lGZJwpkaqBb9MivhwM301_kdBBKkRau3YajYgcu-UFbt9mb48OkNevs2z48euHQ9J2GCAlk3xOeKkyqXkhtKfaOM5K4VnBqFW6MC5RPtPeaYs-2VnrjbFOcmaUKFTppGeh6AGa_2uSMhrSyeRotdnjvG4chYA_IegjRXthJ6FqMEOnKTVBb0lCOU9G0nWneAnpXk7Y7KO2t-HmopoWy4tiPP7HMQ7vwZ0W0cbvGxG8D1uu2oHrTY_L5Q7c7fpGxK0ZeQB7J3UGp4vblhXfY0TO8c_zviYUit7sIZxdCS0fwXY1qdwTiE2BD2VqEb14ZtPMGJ4k1lORCue8yyJIO3LlZVvKPHTUGOd1SJ2qvCFxjiTOaxLnaQRv-nemTSGPjbN3Oy7krVLP8pUIRvCqH0Z1DDGWonKTBc5RGkEYlwmL4HHDtP5zVGqBgFdHoNbY2U8Ipb7XR6rzH3XJ7zTVKpyoRbDfcX71X5uWsd9Lx3-s-unmVb-EG6hy-eej0-NncCtDdNekMO3C9vz3wj1HdDY3L2o1iOHbVevdX63VSkM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ_gESM-CKhoFU2JvEmx2_1-JAZCTCA8eAn60uynEs9CvLsY_OudfsKJIehb004_ZnZ25red2RmAbSaYi87jsoR7ljEb0Q4GNIYmSkqdQnsY6s3JR8ficMw-nPLTa62-mqT9pqRlY6b77LB3U3Q0UmfoYbK6BCbLyBuHmMxM78GyqGNLI1geH5_sfWo3QOYZ-iVxdUxZt2Emp-ovz1p0SjeQ5s2EySFq-hAezKsLc_nTTCbXHNPBKnzuWWrzUb7tzmd21_36o9rjf_G8Bo86uJrutcTrsBSqx3C_bWB5-QS2j5pczJB2zSe-pIiB0-9nQ3UnVKLpUxgf7H98f5h1fRcyxySfZdypQmpuhI5U28CZE5EZRr3SxoZcxULHoD0ileB9tNYHyZlVwigXZER8tgGj6rwKzyG1Bk9K4hGHROZJYS3Pcx-pICKEGIoESC_40nVFyeveGJOyCY5TVbZCKFEIZSOEkiTwdrjnoi3JcSv1Zj-eZTc9p2WhcZlVKEFUAlvDZZxYdbTEVOF8jjRKI5ziMmcJPGuHf3gdlVogdNUJqAXFGAjqot2LV6qzr03xbkK0qv-NJbDT69DVd93Gxs6gZ3fg-sW_kb-ElQLBWpuRtAmj2Y95eIVga2Zfd9PqN85LIQM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+microbiologists&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Asnicar%2C+Francesco&rft.au=Thomas%2C+Andrew+Maltez&rft.au=Passerini%2C+Andrea&rft.au=Waldron%2C+Levi&rft.date=2024-04-01&rft.issn=1740-1526&rft.eissn=1740-1534&rft.volume=22&rft.issue=4&rft.spage=191&rft.epage=205&rft_id=info:doi/10.1038%2Fs41579-023-00984-1&rft_id=info%3Apmid%2F37968359&rft.externalDocID=PMC11980903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon