Machine learning for microbiologists
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used i...
Saved in:
Published in | Nature reviews. Microbiology Vol. 22; no. 4; pp. 191 - 205 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1740-1526 1740-1534 1740-1534 |
DOI | 10.1038/s41579-023-00984-1 |
Cover
Abstract | Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.
In this Review, Segata, Waldron and colleagues discuss important key concepts of machine learning that are relevant to microbiologists and provide them with a set of tools essential to apply machine learning in microbiology research. |
---|---|
AbstractList | Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.In this Review, Segata, Waldron and colleagues discuss important key concepts of machine learning that are relevant to microbiologists and provide them with a set of tools essential to apply machine learning in microbiology research. Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities. Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities. Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities. In this Review, Segata, Waldron and colleagues discuss important key concepts of machine learning that are relevant to microbiologists and provide them with a set of tools essential to apply machine learning in microbiology research. |
Author | Asnicar, Francesco Segata, Nicola Thomas, Andrew Maltez Passerini, Andrea Waldron, Levi |
AuthorAffiliation | 2 Department of Information Engineering and Computer Science, University of Trento, Trento, Italy 5 These authors contributed equally: Francesco Asnicar, Andrew Maltez Thomas 4 Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy 1 Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy 3 Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA |
AuthorAffiliation_xml | – name: 2 Department of Information Engineering and Computer Science, University of Trento, Trento, Italy – name: 4 Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy – name: 3 Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA – name: 1 Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy – name: 5 These authors contributed equally: Francesco Asnicar, Andrew Maltez Thomas |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0003-3732-1468 surname: Asnicar fullname: Asnicar, Francesco organization: Department of Cellular, Computational and Integrative Biology, University of Trento – sequence: 2 givenname: Andrew Maltez orcidid: 0000-0001-5789-3354 surname: Thomas fullname: Thomas, Andrew Maltez organization: Department of Cellular, Computational and Integrative Biology, University of Trento – sequence: 3 givenname: Andrea surname: Passerini fullname: Passerini, Andrea organization: Department of Information Engineering and Computer Science, University of Trento – sequence: 4 givenname: Levi orcidid: 0000-0003-2725-0694 surname: Waldron fullname: Waldron, Levi email: levi.waldron@sph.cuny.edu organization: Department of Cellular, Computational and Integrative Biology, University of Trento, Department of Epidemiology and Biostatistics, City University of New York – sequence: 5 givenname: Nicola orcidid: 0000-0002-1583-5794 surname: Segata fullname: Segata, Nicola email: nicola.segata@unitn.it organization: Department of Cellular, Computational and Integrative Biology, University of Trento, Department of Experimental Oncology, European Institute of Oncology IRCCS |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37968359$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkD1PHDEYhC1ExGf-AAU6KRRpNvhzbVcoQklAAtFAbXm9rw-jPfuwd4P49zG5AwIFSuVX8jOjmdlFmzFFQOiA4G8EM3VcOBFSN5iyBmOteEM20A6RHDdEML75ctN2G-2WcocxFULSLbTNpG4VE3oHHV1adxsizAawOYY4n_mUZ4vgcupCGtI8lLHso0_eDgU-r989dPPzx_XpWXNx9ev89PtF47gUYyOcolIL22rPdAeCu9Zzy1mvtO0AK0-1B90zIaDvfdf1IAXvVGuVA-k5ZXuIrXynuLSPD3YYzDKHhc2PhmDz1NmsOpva2fztbEhVnaxUy6lbQO8gjtm-KpMN5u1PDLdmnn4bQrTCGrPq8HXtkNP9BGU0i1AcDIONkKZiqNJY1ukwr-iXd-hdmnKsqxiqhWypaomq1OG_kV6yPO9eAbUC6s6lZPDGhdGOIT0lDMPHdek76X9ttF62VDjOIb_G_kD1B5JNtqQ |
CitedBy_id | crossref_primary_10_1038_s44298_024_00074_w crossref_primary_10_3390_polym16243565 crossref_primary_10_1016_j_tim_2024_08_011 crossref_primary_10_3390_foods14020245 crossref_primary_10_1021_acs_iecr_4c02344 crossref_primary_10_1186_s12866_024_03709_3 crossref_primary_10_1016_j_pmatsci_2025_101426 crossref_primary_10_1080_29933935_2024_2376543 crossref_primary_10_3390_synbio3010002 crossref_primary_10_1038_s41579_024_01076_4 crossref_primary_10_20517_mrr_2023_52 crossref_primary_10_1093_bioadv_vbae013 crossref_primary_10_1186_s12859_024_05977_2 crossref_primary_10_1093_nsr_nwae325 crossref_primary_10_1038_s41598_025_85908_0 crossref_primary_10_1186_s12934_024_02322_3 crossref_primary_10_1186_s12967_024_05802_7 crossref_primary_10_1016_j_cell_2025_01_038 crossref_primary_10_1093_infdis_jiae348 crossref_primary_10_1038_s41564_024_01875_8 crossref_primary_10_1080_20002297_2025_2451921 crossref_primary_10_3390_microorganisms12071274 crossref_primary_10_1016_j_tim_2024_07_003 crossref_primary_10_1007_s10916_024_02089_5 crossref_primary_10_1038_s41564_024_01858_9 crossref_primary_10_1016_j_watres_2024_122650 crossref_primary_10_1016_j_bios_2025_117399 crossref_primary_10_3390_app15010400 crossref_primary_10_1088_2632_2153_ad55a5 crossref_primary_10_1038_s41564_024_01870_z crossref_primary_10_3390_su162310458 crossref_primary_10_1016_j_csbj_2025_01_006 crossref_primary_10_1016_j_trac_2025_118162 crossref_primary_10_1097_JS9_0000000000001762 crossref_primary_10_1016_j_psep_2024_05_052 crossref_primary_10_3390_antibiotics13090821 crossref_primary_10_3389_fmicb_2024_1469543 crossref_primary_10_1371_journal_pcbi_1012579 crossref_primary_10_1016_j_micres_2024_127857 crossref_primary_10_1186_s12885_024_13161_1 crossref_primary_10_1007_s44307_024_00018_8 crossref_primary_10_1038_s42003_024_06093_w crossref_primary_10_1016_j_xcrm_2024_101759 crossref_primary_10_1038_s42003_024_06629_0 crossref_primary_10_1093_bioadv_vbaf045 crossref_primary_10_1149_1945_7111_ad6b4a crossref_primary_10_1016_j_csite_2024_105210 crossref_primary_10_1126_science_ado8548 crossref_primary_10_1016_j_rineng_2024_103007 crossref_primary_10_1016_j_cell_2024_06_018 crossref_primary_10_3389_fcimb_2024_1499203 crossref_primary_10_1016_j_engappai_2024_108958 crossref_primary_10_3390_w16243618 crossref_primary_10_1016_j_jhazmat_2024_134953 crossref_primary_10_1021_acsami_4c07043 crossref_primary_10_1016_j_afres_2025_100711 crossref_primary_10_1038_s42003_024_07059_8 crossref_primary_10_3390_math12172717 |
Cites_doi | 10.1111/1462-2920.13362 10.1126/science.aan3706 10.1158/1940-6207.CAPR-14-0129 10.1038/nmeth.4458 10.1073/pnas.0914005107 10.1038/s41564-019-0664-6 10.3389/fmicb.2021.635781 10.3389/fmicb.2017.02224 10.1038/nature08821 10.1126/science.aaw2619 10.1371/journal.pcbi.1004977 10.1111/jgh.14040 10.7717/peerj.2584 10.1038/s41586-020-2881-9 10.7554/eLife.67667 10.1093/femsre/fuab015 10.1038/nature14447 10.1038/nmeth.3945 10.1021/cb5003015 10.1038/nbt.4314 10.1038/s41586-020-2095-1 10.1038/nmeth.4468 10.1016/j.annepidem.2019.03.006 10.1038/s41591-022-01695-5 10.1016/j.annepidem.2004.07.025 10.1038/nature09944 10.1038/s41586-018-0386-6 10.1038/nature12506 10.1038/s41591-018-0164-x 10.1007/978-0-387-09823-4 10.1038/s41591-019-0405-7 10.1038/nmeth.3968 10.1038/nbt.3988 10.1016/j.cub.2015.01.014 10.1002/wics.101 10.1038/s41564-017-0072-8 10.1038/s41591-021-01619-9 10.1093/bioinformatics/btv683 10.1093/bioinformatics/btq461 10.1371/journal.pone.0036466 10.1038/nature11450 10.1126/science.abb5920 10.1038/nature15766 10.1038/s41587-020-0603-3 10.1038/ismej.2010.58 10.1128/mSystems.00101-16 10.1371/journal.pcbi.1002863 10.1186/s40168-018-0401-z 10.1038/nbt.3981 10.1038/s41591-019-0458-7 10.1038/nature11234 10.7717/peerj.1603 10.1093/nar/gkh131 10.1038/s41591-022-01964-3 10.1038/nature11053 10.1016/j.ebiom.2017.10.005 10.1126/science.aan4236 10.1093/bioinformatics/btv737 10.1111/j.1467-9868.2008.00674.x 10.1186/s13059-020-02042-y 10.1038/s41591-020-01183-8 10.1016/j.chom.2013.07.012 10.1126/science.aba5257 10.1093/biostatistics/kxy044 10.1093/femsre/fuaa062 10.1186/2047-217X-2-16 10.1186/s12859-016-1423-9 10.1038/s41467-019-12171-z 10.1016/j.cell.2019.01.001 10.1101/gr.085464.108 10.1023/A:1012487302797 10.1146/annurev-biodatasci-080917-013343 10.1038/s41591-019-0406-6 10.1016/j.chom.2018.01.003 10.1038/nmeth976 10.1038/s41591-022-01913-0 10.1128/mSystems.00123-17 10.1038/nature14486 10.1038/s41591-022-01698-2 10.1073/pnas.1002611107 10.1093/bioinformatics/btq619 10.1093/nar/gkz654 10.1136/gutjnl-2016-312766 10.1128/AEM.00062-07 10.1038/ncomms13219 10.1109/UBMK.2018.8566487 10.1146/annurev-statistics-010814-020351 10.1093/nar/gku830 10.1126/science.abf3363 10.1016/j.patcog.2008.08.001 10.1016/j.chom.2014.09.013 10.1093/bioinformatics/btl158 10.1093/bioinformatics/btu279 10.1371/journal.pcbi.1006258 10.1038/s41564-020-0729-6 10.1038/s41467-018-06634-y 10.1136/gutjnl-2015-309800 10.1093/jnci/dju048 10.1038/nbt.3353 10.1073/pnas.0409727102 10.1016/j.chom.2013.07.007 10.1136/gutjnl-2017-314814 10.1080/01621459.2022.2116331 10.1371/journal.pone.0100335 10.15252/msb.20145645 10.1006/jcss.1997.1504 10.1186/s13059-021-02306-1 10.2105/AJPH.2018.304337 10.1128/mBio.00434-20 10.1038/s41522-020-00155-7 10.3390/biology9120453 10.1038/s41467-021-22962-y 10.1186/1471-2105-12-328 10.1007/978-1-4614-7138-7 10.1136/gutjnl-2021-324755 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. Springer Nature Limited. |
Copyright_xml | – notice: Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. Springer Nature Limited. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7RV 7U9 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M2P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY |
DOI | 10.1038/s41579-023-00984-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISSN | 1740-1534 |
EndPage | 205 |
ExternalDocumentID | oai:iris.unitn.it:11572/400731 PMC11980903 37968359 10_1038_s41579_023_00984_1 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA230551 |
GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 88I 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1J DB5 DU5 DWQXO EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR ITC LGEZI LK8 LOTEE M0L M1P M2P M7P MM. N9A NADUK NAPCQ NNMJJ NXXTH O9- ODYON P2P PCBAR PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNR RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PUEGO CGR CUY CVF ECM EIF NPM PHGZT 7QL 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PHGZM PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 AGSTI 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c475t-5c82795a69f39be54c6f4a43d89abe08f29fe9d355eddfbbde754b86a8ce7f423 |
IEDL.DBID | 7X7 |
ISSN | 1740-1526 1740-1534 |
IngestDate | Wed Aug 20 00:19:09 EDT 2025 Tue Sep 30 17:04:17 EDT 2025 Wed Oct 01 13:11:00 EDT 2025 Sat Aug 23 12:58:00 EDT 2025 Fri Apr 11 01:31:31 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Wed Oct 01 02:31:48 EDT 2025 Fri Feb 21 02:38:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2023. Springer Nature Limited. other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-5c82795a69f39be54c6f4a43d89abe08f29fe9d355eddfbbde754b86a8ce7f423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 N.S., F.A. and A.M.T. contributed equally to all aspects of the article. A.P. contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. L.W. contributed substantially to discussion of the content, writing, and review and/or editing of the manuscript before submission. Author contributions |
ORCID | 0000-0002-1583-5794 0000-0001-5789-3354 0000-0003-3732-1468 0000-0003-2725-0694 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41579-023-00984-1#citeas |
PMID | 37968359 |
PQID | 2957628618 |
PQPubID | 27584 |
PageCount | 15 |
ParticipantIDs | unpaywall_primary_10_1038_s41579_023_00984_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11980903 proquest_miscellaneous_2890755704 proquest_journals_2957628618 pubmed_primary_37968359 crossref_citationtrail_10_1038_s41579_023_00984_1 crossref_primary_10_1038_s41579_023_00984_1 springer_journals_10_1038_s41579_023_00984_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Microbiology |
PublicationTitleAbbrev | Nat Rev Microbiol |
PublicationTitleAlternate | Nat Rev Microbiol |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | BlattmanSBJiangWOikonomouPTavazoieSProkaryotic single-cell RNA sequencing by in situ combinatorial indexingNat. Microbiol.20205119212011:CAS:528:DC%2BB3cXhtVSis7rE324514728330242 JainCRodriguez-RLMPhillippyAMKonstantinidisKTAluruSHigh throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundariesNat. Commun.201892018NatCo...9.5114J305048556269478 Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer Science & Business Media, 2009). WeimannAFrom genomes to phenotypes: Traitar, the microbial trait analyzermSystems20161e00101e00116280668165192078This work uses machine learning to predict 67 microbial phenotypic traits from genome sequences, facilitating the analysis of large-scale microbial genomic data. DavarDFecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patientsScience20213715956022021Sci...371..595D1:CAS:528:DC%2BB3MXjsFCrs7s%3D335421318097968 IaniroGVariability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseasesNat. Med.202228191319231:CAS:528:DC%2BB38XisVWnsrjJ361096379499858This study uses machine learning to develop predictive models for selecting optimal donors for faecal microbiota transplantation, making personalized microbiome-targeted treatments more effective. KavvasESMachine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistanceNat. Commun.201892018NatCo...9.4306K303334836193043 TopçuoğluBDLesniakNARuffinMT4th WiensJSchlossPDA framework for effective application of machine learning to microbiome-based classification problemsmBio202011e0043420325181827373189This work focuses on applying machine learning to microbiome data for disease prediction, highlighting the important trade-off between model complexity and interpretability, and emphasizing the need for rigorous methodology towards more reproducible machine learning usage in microbiome research. KartalEA faecal microbiota signature with high specificity for pancreatic cancerGut202271135913721:CAS:528:DC%2BB38XitFaisbbJ35260444 DerosaLIntestinal Akkermansia muciniphila predicts overall survival in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies: results a phase II studyJ. Clin. Orthod.20213990199019 FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.1997551191391473055 KuchinaAMicrobial single-cell RNA sequencing by split-pool barcodingScience2021371eaba52571:CAS:528:DC%2BB3MXkslymsLs%3D33335020 DavisJJAntimicrobial resistance prediction in PATRIC and RASTSci. Rep.201662016NatSR...627930D1:CAS:528:DC%2BC28XhtVSks7nE272976834906388 LeeKACross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanomaNat. Med.2022285355441:CAS:528:DC%2BB38XlsVGgsr4%3D352287518938272 HernánMAThe C-word: scientific euphemisms do not improve causal inference from observational dataAm. J. Public. Health2018108616619295656595888052This work emphasizes the importance of using the term ‘causal’, in particular when analysing data from observational studies, and highlights the need to distinguish between association and causation and address confounding factors properly. YachidaSMetagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancerNat. Med.2019259689761:CAS:528:DC%2BC1MXhtFGisbrI31171880 ZellerGPotential of fecal microbiota for early-stage detection of colorectal cancerMol. Syst. Biol.201410766254327774299606 WongSHQuantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasiaGut201766144114481:CAS:528:DC%2BC1cXitVektbjM27797940 HuaJTembeWDDoughertyERPerformance of feature-selection methods in the classification of high-dimension dataPattern Recognit.2009424094242009PatRe..42..409H YatsunenkoTHuman gut microbiome viewed across age and geographyNature20124862222272012Natur.486..222Y1:CAS:528:DC%2BC38Xos1emtLc%3D226996113376388 CosteaPIEnterotypes in the landscape of gut microbial community compositionNat. Microbiol.201838161:CAS:528:DC%2BC2sXitVSmtLvK29255284 SinhaRAssessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortiumNat. Biotechnol.201735107710861:CAS:528:DC%2BC2sXhsFylurvE289678855839636 Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2022). VervierKMahéPTournoudMVeyrierasJ-BVertJ-PLarge-scale machine learning for metagenomics sequence classificationBioinformatics201632102310321:CAS:528:DC%2BC28XhtlWiurrI26589281This work introduces a machine learning-based approach for tackling the taxonomic binning step, using a supervised approach that balances accuracy and speed and outperforms alignment-based methods. SonesonCGersterSDelorenziMBatch effect confounding leads to strong bias in performance estimates obtained by cross-validationPLoS ONE201492014PLoSO...9j0335S249676364072626 KosticADFusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironmentCell Host Microbe2013142072151:CAS:528:DC%2BC3sXht1yhsLfE239541593772512 GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.200246389422 AbdiHWilliamsLJPrincipal component analysisWiley Interdiscip. Rev. Comput. Stat.20102433459 WeisCDirect antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learningNat. Med.2022281641741:CAS:528:DC%2BB38Xotlagug%3D%3D35013613 Hacılar, H., Nalbantoğlu, O. U. & Bakir-Güngör, B. in 2018 3rd Int. Conf. Computer Science and Engineering (UBMK) 434–438 (IEEE, 2018). GeierBSpatial metabolomics of in situ host–microbe interactions at the micrometre scaleNat. Microbiol.202054985101:CAS:528:DC%2BB3cXislCjur0%3D32015496 SczyrbaACritical assessment of metagenome interpretation — a benchmark of metagenomics softwareNat. Methods201714106310711:CAS:528:DC%2BC2sXhsFylu77E289678885903868 HeYRegional variation limits applications of healthy gut microbiome reference ranges and disease modelsNat. Med.201824153215351:CAS:528:DC%2BC1cXhsF2nsrvI30150716 TonkovicPLiterature on applied machine learning in metagenomic classification: a scoping reviewBiology20209453333169217763105 SmillieCSStrain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantationCell Host Microbe201823229240.e51:CAS:528:DC%2BC1cXivVSlsr0%3D294476968318347 KonstantinidisKTTiedjeJMGenomic insights that advance the species definition for prokaryotesProc. Natl Acad. Sci. USA2005102256725722005PNAS..102.2567K1:CAS:528:DC%2BD2MXhvFKiurc%3D15701695549018 AnantharamanKThousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer systemNat. Commun.201672016NatCo...713219A1:CAS:528:DC%2BC28XhslGrt77L277749855079060 BerminghamMLApplication of high-dimensional feature selection: evaluation for genomic prediction in manSci. Rep.201552015NatSR...510312B1:CAS:528:DC%2BC2MXhtFyht7rL259888414437376 DiazNNKrauseLGoesmannANiehausKNattkemperTWTACOA — taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approachBMC Bioinformatics200910192107742653487 Rodriguez-RLMJainCConradREAluruSKonstantinidisKTReply to: ‘Re-evaluating the evidence for a universal genetic boundary among microbial species’Nat. Commun.2021122021NatCo..12.4060R1:CAS:528:DC%2BB3MXhsFOnsrnO342341158263725 RoutyBGut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumorsScience201835991972018Sci...359...91R1:CAS:528:DC%2BC1cXjslOrsw%3D%3D29097494 KorenOA guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasetsPLoS Comput. Biol.201391:CAS:528:DC%2BC3sXivVehs74%3D233262253542080 NguyenN-PWarnowTPopMWhiteBA perspective on 16S rRNA operational taxonomic unit clustering using sequence similarityNPJ Biofilms Microbiomes20162287212435515256 Vázquez-BaezaYPirrungMGonzalezAKnightREMPeror: a tool for visualizing high-throughput microbial community dataGigascience20132242800614076506 RognesTFlouriTNicholsBQuinceCMahéFVSEARCH: a versatile open source tool for metagenomicsPeerJ20164277811705075697 ForslundKDisentangling type 2 diabetes and metformin treatment signatures in the human gut microbiotaNature20155282622661:CAS:528:DC%2BC2MXhvFemsbjN266336284681099This study underlines the importance of considering the influence of medication in machine learning-based microbiome analysis. In particular, it shows the effects of metformin on the gut microbiome of individuals with type 2 diabetes, highlighting the need to distinguish microbial signatures of diseases from medication. AngeBASymonsJMSchwabMHowellEGeyhAGeneralizability in epidemiology: an investigation within the context of heart failure studiesAnn. Epidemiol.200414600601 ProbstAJGenomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrationsEnviron. Microbiol.2017194594741:CAS:528:DC%2BC2sXjt1Gktrs%3D27112493 RadovicMGhalwashMFilipovicNObradovicZMinimum redundancy maximum relevance feature selection approach for temporal gene expression dataBMC Bioinformatics201718280494135209828 CalderoneALicataLCesareniGVirusMentha: a new resource for virus–host protein interactionsNucleic Acids Res.201543D588D5921:CAS:528:DC%2BC2sXhtV2itr7K25217587 RahmanSFOlmMRMorowitzMJBanfieldJFMachine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiomemSystems20183e00123e002171:CAS:528:DC%2BC1MXisVentbvK293591955758725 RiesterMRisk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samplesJ. Natl Cancer Inst.2014106dju048247008034580556 RosenGLReichenbergerERRosenfe P Ghensi (984_CR30) 2020; 6 SICJ Palma (984_CR41) 2018; 8 CS Smillie (984_CR43) 2018; 23 JA McCulloch (984_CR35) 2022; 28 RC Edgar (984_CR53) 2010; 26 H Li (984_CR88) 2015; 2 J Wirbel (984_CR130) 2021; 22 E Le Chatelier (984_CR87) 2013; 500 A Kuchina (984_CR80) 2021; 371 SB Blattman (984_CR84) 2020; 5 MR Rubinstein (984_CR96) 2013; 14 E Pasolli (984_CR28) 2016; 12 CS Murray (984_CR59) 2021; 12 J Rousk (984_CR82) 2010; 4 Q Wang (984_CR7) 2007; 73 H Jeckel (984_CR85) 2020; 45 F Asnicar (984_CR33) 2021; 21 M Arumugam (984_CR45) 2011; 473 BA Ange (984_CR109) 2004; 14 KA Lee (984_CR34) 2022; 28 A Salosensaari (984_CR31) 2021; 12 D Knights (984_CR48) 2014; 16 SH Wong (984_CR93) 2017; 66 C Soneson (984_CR113) 2014; 9 Y Freund (984_CR21) 1997; 55 G Arango-Argoty (984_CR17) 2018; 6 E Pasolli (984_CR55) 2019; 176 JS Suchodolski (984_CR74) 2012; 7 VM Howick (984_CR79) 2019; 365 AD Kostic (984_CR95) 2013; 14 R Sinha (984_CR112) 2017; 35 C Bernau (984_CR116) 2014; 30 KR Patil (984_CR11) 2012; 7 D Moradigaravand (984_CR19) 2018; 14 PI Costea (984_CR49) 2018; 3 J Hua (984_CR98) 2009; 42 J Fan (984_CR99) 2008; 70 A Sczyrba (984_CR15) 2017; 14 R Bourgon (984_CR97) 2010; 107 C Chen (984_CR67) 2021; 12 C Vanni (984_CR69) 2022; 11 G Zeller (984_CR91) 2014; 10 J Qin (984_CR66) 2010; 464 K Forslund (984_CR102) 2015; 528 L Xiao (984_CR65) 2015; 33 SF Rahman (984_CR20) 2018; 3 I Gregor (984_CR12) 2016; 4 GD Hannigan (984_CR23) 2019; 47 ES Kavvas (984_CR18) 2018; 9 T Yatsunenko (984_CR81) 2012; 486 N Karcher (984_CR51) 2020; 21 984_CR106 984_CR103 M Steinegger (984_CR68) 2017; 35 DH Parks (984_CR8) 2011; 12 D Davar (984_CR39) 2021; 371 Y-H Xie (984_CR94) 2017; 25 J Qin (984_CR29) 2012; 490 Human Microbiome Project Consortium. (984_CR64) 2012; 486 GD Poore (984_CR27) 2020; 579 J Ravel (984_CR46) 2011; 108 R Méheust (984_CR121) 2019; 10 BD Topçuoğlu (984_CR6) 2020; 11 I Guyon (984_CR100) 2002; 46 984_CR4 J Lever (984_CR108) 2016; 13 984_CR3 GL Rosen (984_CR9) 2011; 27 984_CR2 984_CR1 Q Feng (984_CR119) 2015; 6 C Weis (984_CR129) 2022; 28 A Renson (984_CR111) 2019; 35 LM Rodriguez-R (984_CR60) 2021; 12 H Abdi (984_CR72) 2010; 2 NN Diaz (984_CR14) 2009; 10 I Vujkovic-Cvijin (984_CR131) 2020; 587 M Bahram (984_CR62) 2018; 560 EN Baruch (984_CR40) 2021; 371 F-E Eid (984_CR127) 2015; 32 TD Davis (984_CR73) 2014; 9 Y Zhang (984_CR115) 2018; 21 GB Gloor (984_CR89) 2017; 8 R Apweiler (984_CR70) 2004; 32 L Derosa (984_CR38) 2021; 39 E Kartal (984_CR32) 2022; 71 A Calderone (984_CR128) 2015; 43 J Lever (984_CR107) 2016; 13 B Routy (984_CR36) 2018; 359 PDeep Baldi (984_CR22) 2018; 1 C Jain (984_CR58) 2018; 9 S Yachida (984_CR105) 2019; 25 AM Thomas (984_CR25) 2019; 25 E Becht (984_CR78) 2018; 37 P Tonkovic (984_CR118) 2020; 9 M Riester (984_CR114) 2014; 106 B Flemer (984_CR104) 2018; 67 A Spang (984_CR63) 2015; 521 984_CR50 M Radovic (984_CR101) 2017; 18 JJ Davis (984_CR16) 2016; 6 W Li (984_CR61) 2006; 22 B Geier (984_CR86) 2020; 5 O Koren (984_CR47) 2013; 9 M Hamady (984_CR52) 2009; 19 K Anantharaman (984_CR123) 2016; 7 J Yu (984_CR126) 2017; 66 E Pasolli (984_CR120) 2017; 14 SJ Goodswen (984_CR5) 2021; 45 TSB Schmidt (984_CR44) 2022; 28 CT Brown (984_CR122) 2015; 523 AC McHardy (984_CR10) 2007; 4 A Almeida (984_CR71) 2021; 39 V Gopalakrishnan (984_CR37) 2018; 359 K Aagaard (984_CR83) 2012; 7 L van der Maaten (984_CR77) 2008; 9 Y He (984_CR110) 2018; 24 AJ Probst (984_CR125) 2017; 19 N-P Nguyen (984_CR57) 2016; 2 T Mishiro (984_CR75) 2018; 33 J Wirbel (984_CR26) 2019; 25 CJ Castelle (984_CR124) 2015; 25 ML Bermingham (984_CR90) 2015; 5 MA Hernán (984_CR132) 2018; 108 A Weimann (984_CR24) 2016; 1 G Ianiro (984_CR42) 2022; 28 K Vervier (984_CR13) 2016; 32 Y Vázquez-Baeza (984_CR76) 2013; 2 I Moreno-Indias (984_CR117) 2021; 12 KT Konstantinidis (984_CR56) 2005; 102 JP Zackular (984_CR92) 2014; 7 T Rognes (984_CR54) 2016; 4 |
References_xml | – reference: MurrayCSGaoYWuMRe-evaluating the evidence for a universal genetic boundary among microbial speciesNat. Commun.2021122021NatCo..12.4059M1:CAS:528:DC%2BB3MXhsFOnsrbI342341298263626 – reference: VanniCUnifying the known and unknown microbial coding sequence spaceeLife202211353568919132574 – reference: ForslundKDisentangling type 2 diabetes and metformin treatment signatures in the human gut microbiotaNature20155282622661:CAS:528:DC%2BC2MXhvFemsbjN266336284681099This study underlines the importance of considering the influence of medication in machine learning-based microbiome analysis. In particular, it shows the effects of metformin on the gut microbiome of individuals with type 2 diabetes, highlighting the need to distinguish microbial signatures of diseases from medication. – reference: YatsunenkoTHuman gut microbiome viewed across age and geographyNature20124862222272012Natur.486..222Y1:CAS:528:DC%2BC38Xos1emtLc%3D226996113376388 – reference: RouskJSoil bacterial and fungal communities across a pH gradient in an arable soilISME J.201041340135120445636 – reference: Vázquez-BaezaYPirrungMGonzalezAKnightREMPeror: a tool for visualizing high-throughput microbial community dataGigascience20132242800614076506 – reference: SinhaRAssessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortiumNat. Biotechnol.201735107710861:CAS:528:DC%2BC2sXhsFylurvE289678855839636 – reference: KarcherNAnalysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptationsGenome Biol.2020211:CAS:528:DC%2BB3cXhtFemtbjI325132347278147 – reference: RiesterMRisk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samplesJ. Natl Cancer Inst.2014106dju048247008034580556 – reference: KavvasESMachine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistanceNat. Commun.201892018NatCo...9.4306K303334836193043 – reference: HuaJTembeWDDoughertyERPerformance of feature-selection methods in the classification of high-dimension dataPattern Recognit.2009424094242009PatRe..42..409H – reference: CalderoneALicataLCesareniGVirusMentha: a new resource for virus–host protein interactionsNucleic Acids Res.201543D588D5921:CAS:528:DC%2BC2sXhtV2itr7K25217587 – reference: PalmaSICJMachine learning for the meta-analyses of microbial pathogens’ volatile signaturesSci. Rep.201882018NatSR...8.3360P294638855820279 – reference: AngeBASymonsJMSchwabMHowellEGeyhAGeneralizability in epidemiology: an investigation within the context of heart failure studiesAnn. Epidemiol.200414600601 – reference: ApweilerRUniProt: the universal protein knowledgebaseNucleic Acids Res.200432D115D1191:CAS:528:DC%2BD3sXhtVSru7vK14681372308865 – reference: WirbelJMeta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancerNat. Med.2019256796891:CAS:528:DC%2BC1MXosFGqur0%3D309365477984229 – reference: KonstantinidisKTTiedjeJMGenomic insights that advance the species definition for prokaryotesProc. Natl Acad. Sci. USA2005102256725722005PNAS..102.2567K1:CAS:528:DC%2BD2MXhvFKiurc%3D15701695549018 – reference: MéheustRBursteinDCastelleCJBanfieldJFThe distinction of CPR bacteria from other bacteria based on protein family contentNat. Commun.2019102019NatCo..10.4173M315198916744442 – reference: LiWGodzikAcd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequencesBioinformatics200622165816591:CAS:528:DC%2BD28XmsVent7s%3D16731699 – reference: WongSHQuantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasiaGut201766144114481:CAS:528:DC%2BC1cXitVektbjM27797940 – reference: HamadyMKnightRMicrobial community profiling for human microbiome projects: tools, techniques, and challengesGenome Res200919114111521:CAS:528:DC%2BD1MXosVCktL8%3D193837633776646 – reference: BahramMStructure and function of the global topsoil microbiomeNature20185602332372018Natur.560..233B1:CAS:528:DC%2BC1cXhsVensrjE30069051 – reference: DavisJJAntimicrobial resistance prediction in PATRIC and RASTSci. Rep.201662016NatSR...627930D1:CAS:528:DC%2BC28XhtVSks7nE272976834906388 – reference: SchmidtTSBDrivers and determinants of strain dynamics following fecal microbiota transplantationNat. Med.202228190219121:CAS:528:DC%2BB38XisVWnsrjO361096369499871 – reference: Moreno-IndiasIStatistical and machine learning techniques in human microbiome studies: contemporary challenges and solutionsFront. Microbiol.202112635781336927717937616This work highlights the growing importance of statistical and machine learning techniques in human microbiome studies and challenges posed by the heterogeneity of microbiome data, and emphasizes the potential of machine learning in disease diagnosis, biomarker identification and prediction while addressing issues such as data standardization, overfitting and model interpretability. – reference: HowickVMThe Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycleScience2019365eaaw26191:CAS:528:DC%2BC1MXhs1CjtLjL314397627056351 – reference: BourgonRGentlemanRHuberWIndependent filtering increases detection power for high-throughput experimentsProc. Natl Acad. Sci. USA2010107954695512010PNAS..107.9546B1:CAS:528:DC%2BC3cXntFGqsrc%3D204603102906865 – reference: Le ChatelierERichness of human gut microbiome correlates with metabolic markersNature201350054154623985870 – reference: JeckelHDrescherKAdvances and opportunities in image analysis of bacterial cells and communitiesFEMS Microbiol. Rev.202045fuaa0628371272 – reference: ThomasAMMetagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradationNat. Med.2019256676781:CAS:528:DC%2BC1MXosFGqu74%3D309365489533319 – reference: ChenCExpanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiomeNat. Commun.2021122021NatCo..12.1106C1:CAS:528:DC%2BB3MXksFSms70%3D335975147889623 – reference: GhensiPStrong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomicsNPJ Biofilms Microbiomes202061:CAS:528:DC%2BB3cXitlCqtbnN331279017603341 – reference: TonkovicPLiterature on applied machine learning in metagenomic classification: a scoping reviewBiology20209453333169217763105 – reference: ProbstAJGenomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrationsEnviron. Microbiol.2017194594741:CAS:528:DC%2BC2sXjt1Gktrs%3D27112493 – reference: KartalEA faecal microbiota signature with high specificity for pancreatic cancerGut202271135913721:CAS:528:DC%2BB38XitFaisbbJ35260444 – reference: LeverJKrzywinskiMAltmanNClassification evaluationNat. Methods2016136036041:CAS:528:DC%2BC28Xhs1ejtb7NThis work highlights the importance of selecting the appropriate evaluation metrics when assessing the performances of classification models in the context of medical diagnosis. It also emphasizes the impact of class imbalance and the use of specific metrics in cases of imbalanced data sets. – reference: MishiroTOral microbiome alterations of healthy volunteers with proton pump inhibitorJ. Gastroenterol. Hepatol.201833105910661:CAS:528:DC%2BC1cXot1Cgur0%3D29105152 – reference: RadovicMGhalwashMFilipovicNObradovicZMinimum redundancy maximum relevance feature selection approach for temporal gene expression dataBMC Bioinformatics201718280494135209828 – reference: BernauCCross-study validation for the assessment of prediction algorithmsBioinformatics201430i105i1121:CAS:528:DC%2BC2cXpvFCqsLY%3D249319734058929 – reference: RavelJVaginal microbiome of reproductive-age womenProc. Natl Acad. Sci. USA2011108468046872011PNAS..108.4680R1:CAS:528:DC%2BC3MXjvVCrs7g%3D20534435 – reference: SczyrbaACritical assessment of metagenome interpretation — a benchmark of metagenomics softwareNat. Methods201714106310711:CAS:528:DC%2BC2sXhsFylu77E289678885903868 – reference: ArumugamMEnterotypes of the human gut microbiomeNature20114731741801:CAS:528:DC%2BC3MXkvFeisLo%3D215089583728647 – reference: TopçuoğluBDLesniakNARuffinMT4th WiensJSchlossPDA framework for effective application of machine learning to microbiome-based classification problemsmBio202011e0043420325181827373189This work focuses on applying machine learning to microbiome data for disease prediction, highlighting the important trade-off between model complexity and interpretability, and emphasizing the need for rigorous methodology towards more reproducible machine learning usage in microbiome research. – reference: XiaoLA catalog of the mouse gut metagenomeNat. Biotechnol.201533110311081:CAS:528:DC%2BC2MXhsFersLzP26414350 – reference: MoradigaravandDPrediction of antibiotic resistance in Escherichia coli from large-scale pan-genome dataPLoS Comput. Biol.201814305505646310291 – reference: ZellerGPotential of fecal microbiota for early-stage detection of colorectal cancerMol. Syst. Biol.201410766254327774299606 – reference: LeverJKrzywinskiMAltmanNModel selection and overfittingNat. Methods2016137037041:CAS:528:DC%2BC28Xhs1ejtb%2FPThis work highlights the importance of accurately assessing model performance to not fall into overfitting problems. Approaches that consider validation sets, test sets and cross-validation are extremely important especially when dealing with limited data. – reference: FengQGut microbiome development along the colorectal adenoma–carcinoma sequenceNat. Commun.201562015NatCo...6.6528F1:CAS:528:DC%2BC2MXotlGksrs%3D25758642 – reference: BerminghamMLApplication of high-dimensional feature selection: evaluation for genomic prediction in manSci. Rep.201552015NatSR...510312B1:CAS:528:DC%2BC2MXhtFyht7rL259888414437376 – reference: HeYRegional variation limits applications of healthy gut microbiome reference ranges and disease modelsNat. Med.201824153215351:CAS:528:DC%2BC1cXhsF2nsrvI30150716 – reference: BaldiPDeepLearning in biomedical data scienceAnnu. Rev. Biomed. Data Sci.20181181205 – reference: WeimannAFrom genomes to phenotypes: Traitar, the microbial trait analyzermSystems20161e00101e00116280668165192078This work uses machine learning to predict 67 microbial phenotypic traits from genome sequences, facilitating the analysis of large-scale microbial genomic data. – reference: AlmeidaAA unified catalog of 204,938 reference genomes from the human gut microbiomeNat. Biotechnol.2021391051141:CAS:528:DC%2BB3cXhsVWgtL%2FN32690973 – reference: Hacılar, H., Nalbantoğlu, O. U. & Bakir-Güngör, B. in 2018 3rd Int. Conf. Computer Science and Engineering (UBMK) 434–438 (IEEE, 2018). – reference: BechtEDimensionality reduction for visualizing single-cell data using UMAPNat. Biotechnol.2018373844 – reference: PasolliEAccessible, curated metagenomic data through ExperimentHubNat. Methods20171410231:CAS:528:DC%2BC2sXhslCms7%2FF290881295862039 – reference: KorenOA guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasetsPLoS Comput. Biol.201391:CAS:528:DC%2BC3sXivVehs74%3D233262253542080 – reference: PasolliEExtensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyleCell2019176114 – reference: McHardyACMartínHGTsirigosAHugenholtzPRigoutsosIAccurate phylogenetic classification of variable-length DNA fragmentsNat. Methods2007463721:CAS:528:DC%2BD28XhtlGktbzO17179938 – reference: FanJLvJSure independence screening for ultrahigh dimensional feature spaceJ. R. Stat. Soc. Ser. B Stat. Methodol.2008708499112530322 – reference: BlattmanSBJiangWOikonomouPTavazoieSProkaryotic single-cell RNA sequencing by in situ combinatorial indexingNat. Microbiol.20205119212011:CAS:528:DC%2BB3cXhtVSis7rE324514728330242 – reference: RahmanSFOlmMRMorowitzMJBanfieldJFMachine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiomemSystems20183e00123e002171:CAS:528:DC%2BC1MXisVentbvK293591955758725 – reference: SalosensaariATaxonomic signatures of cause-specific mortality risk in human gut microbiomeNat. Commun.2021122021NatCo..12.2671S1:CAS:528:DC%2BB3MXhtFWgtL7F339761768113604 – reference: KosticADFusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironmentCell Host Microbe2013142072151:CAS:528:DC%2BC3sXht1yhsLfE239541593772512 – reference: WangQGarrityGMTiedjeJMColeJRNaive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomyAppl. Environ. Microbiol.200773526152672007ApEnM..73.5261W1:CAS:528:DC%2BD2sXpsleqtrc%3D175866641950982 – reference: SuchodolskiJSThe fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel diseasePLoS ONE201272012PLoSO...751907S1:CAS:528:DC%2BC3sXmtVSktw%3D%3D233005773530590 – reference: QinJA metagenome-wide association study of gut microbiota in type 2 diabetesNature201249055602012Natur.490...55Q1:CAS:528:DC%2BC38XhsVaqt7fJ23023125 – reference: SmillieCSStrain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantationCell Host Microbe201823229240.e51:CAS:528:DC%2BC1cXivVSlsr0%3D294476968318347 – reference: BaruchENFecal microbiota transplant promotes response in immunotherapy-refractory melanoma patientsScience20213716026092021Sci...371..602B1:CAS:528:DC%2BB3MXjsFCrsro%3D33303685 – reference: ZackularJPRogersMAMRuffinMT4thSchlossPDThe human gut microbiome as a screening tool for colorectal cancerCancer Prev. Res.20147111211211:CAS:528:DC%2BC2cXhvVyjur3J – reference: EdgarRCSearch and clustering orders of magnitude faster than BLASTBioinformatics201026246024611:CAS:528:DC%2BC3cXht1WhtbzM20709691 – reference: PooreGDMicrobiome analyses of blood and tissues suggest cancer diagnostic approachNature20205795675742020Natur.579..567P1:CAS:528:DC%2BB3cXkslGgtbk%3D322142447500457 – reference: DavarDFecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patientsScience20213715956022021Sci...371..595D1:CAS:528:DC%2BB3MXjsFCrs7s%3D335421318097968 – reference: GoodswenSJMachine learning and applications in microbiologyFEMS Microbiol. Rev.202145fuab0151:CAS:528:DC%2BB38XhslWnurfO337243788498514 – reference: GloorGBMacklaimJMPawlowsky-GlahnVEgozcueJJMicrobiome datasets are compositional: and this is not optionalFront. Microbiol.201782224291878375695134 – reference: ZhangYBernauCParmigianiGWaldronLThe impact of different sources of heterogeneity on loss of accuracy from genomic prediction modelsBiostatistics20182125326841333597868050This work examines the impact of different types of heterogeneity on the validation accuracy of omics-based prediction models across data sets and provides insights into the challenges of validating prediction models in the presence of study heterogeneity. – reference: CastelleCJGenomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cyclingCurr. Biol.2015256907011:CAS:528:DC%2BC2MXjt1amtro%3D25702576 – reference: RoutyBGut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumorsScience201835991972018Sci...359...91R1:CAS:528:DC%2BC1cXjslOrsw%3D%3D29097494 – reference: KuchinaAMicrobial single-cell RNA sequencing by split-pool barcodingScience2021371eaba52571:CAS:528:DC%2BB3MXkslymsLs%3D33335020 – reference: LeeKACross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanomaNat. Med.2022285355441:CAS:528:DC%2BB38XlsVGgsr4%3D352287518938272 – reference: HanniganGDA deep learning genome-mining strategy for biosynthetic gene cluster predictionNucleic Acids Res.2019471:CAS:528:DC%2BB3cXhtVSkt7jI314001126765103 – reference: Maimon, O. & Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook (Springer, 2010). – reference: FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.1997551191391473055 – reference: Rodriguez-RLMJainCConradREAluruSKonstantinidisKTReply to: ‘Re-evaluating the evidence for a universal genetic boundary among microbial species’Nat. Commun.2021122021NatCo..12.4060R1:CAS:528:DC%2BB3MXhsFOnsrnO342341158263725 – reference: AnantharamanKThousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer systemNat. Commun.201672016NatCo...713219A1:CAS:528:DC%2BC28XhslGrt77L277749855079060 – reference: FlemerBThe oral microbiota in colorectal cancer is distinctive and predictiveGut201867145414631:CAS:528:DC%2BC1MXhvVKlsLs%3D28988196 – reference: BrownCTUnusual biology across a group comprising more than 15% of domain bacteriaNature20155232082112015Natur.523..208B1:CAS:528:DC%2BC2MXht1entr7J26083755 – reference: van der MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.2008925792605 – reference: PatilKRRouneLMcHardyACThe PhyloPythiaS web server for taxonomic assignment of metagenome sequencesPLoS ONE201272012PLoSO...738581P1:CAS:528:DC%2BC38XpsVWgtLs%3D227456713380018 – reference: RosenGLReichenbergerERRosenfeldAMNBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic readsBioinformatics2011271271291:CAS:528:DC%2BC3cXhs1ajurvM21062764 – reference: RubinsteinMRFusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesinCell Host Microbe2013141952061:CAS:528:DC%2BC3sXht1yhsr3N239541583770529 – reference: RognesTFlouriTNicholsBQuinceCMahéFVSEARCH: a versatile open source tool for metagenomicsPeerJ20164277811705075697 – reference: Gao, L. L., Bien, J. & Witten, D. Selective inference for hierarchical clustering. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2022.2116331 (2022). – reference: QinJA human gut microbial gene catalogue established by metagenomic sequencingNature201046459651:CAS:528:DC%2BC3cXislahsLc%3D202036033779803 – reference: WeisCDirect antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learningNat. Med.2022281641741:CAS:528:DC%2BB38Xotlagug%3D%3D35013613 – reference: KnightsDRethinking ‘enterotypes’Cell Host Microbe2014164334371:CAS:528:DC%2BC2cXhs1KltL3N252993295558460 – reference: GregorIDrögeJSchirmerMQuinceCMcHardyACPhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomesPeerJ20164268706094748697 – reference: McCullochJAIntestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1Nat. Med.2022285455561:CAS:528:DC%2BB38XlsVGgsr0%3D3522875210246505 – reference: Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer Science & Business Media, 2009). – reference: RensonASociodemographic variation in the oral microbiomeAnn. Epidemiol.2019357380.e2311518866626698 – reference: Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2022). – reference: Vujkovic-CvijinIHost variables confound gut microbiota studies of human diseaseNature20205874484542020Natur.587..448V1:CAS:528:DC%2BB3cXit1Ggt7jN331493067677204 – reference: AbdiHWilliamsLJPrincipal component analysisWiley Interdiscip. Rev. Comput. Stat.20102433459 – reference: DavisTDGerryCJTanDSGeneral platform for systematic quantitative evaluation of small-molecule permeability in bacteriaACS Chem. Biol.20149253525441:CAS:528:DC%2BC2cXhsV2hurzP251986564245172 – reference: AagaardKA metagenomic approach to characterization of the vaginal microbiome signature in pregnancyPLoS ONE201272012PLoSO...736466A1:CAS:528:DC%2BC38XptVOjs78%3D227198323374618 – reference: GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach. Learn.200246389422 – reference: Arango-ArgotyGDeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic dataMicrobiome20186293910445796597 – reference: GopalakrishnanVGut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patientsScience2018359971032018Sci...359...97G1:CAS:528:DC%2BC1cXjslOrsA%3D%3D29097493 – reference: YuJMetagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancerGut20176670781:CAS:528:DC%2BC1cXmtVSg26408641 – reference: YachidaSMetagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancerNat. Med.2019259689761:CAS:528:DC%2BC1MXhtFGisbrI31171880 – reference: AsnicarFMicrobiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individualsNat. Med.202121321332 – reference: VervierKMahéPTournoudMVeyrierasJ-BVertJ-PLarge-scale machine learning for metagenomics sequence classificationBioinformatics201632102310321:CAS:528:DC%2BC28XhtlWiurrI26589281This work introduces a machine learning-based approach for tackling the taxonomic binning step, using a supervised approach that balances accuracy and speed and outperforms alignment-based methods. – reference: SonesonCGersterSDelorenziMBatch effect confounding leads to strong bias in performance estimates obtained by cross-validationPLoS ONE201492014PLoSO...9j0335S249676364072626 – reference: PasolliETruongDTMalikFWaldronLSegataNMachine learning meta-analysis of large metagenomic datasets: tools and biological insightsPLoS Comput. Biol.2016122016PLSCB..12E4977P274002794939962 – reference: James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: with Applications in R (Springer Science & Business Media, 2013). – reference: IaniroGVariability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseasesNat. Med.202228191319231:CAS:528:DC%2BB38XisVWnsrjJ361096379499858This study uses machine learning to develop predictive models for selecting optimal donors for faecal microbiota transplantation, making personalized microbiome-targeted treatments more effective. – reference: Human Microbiome Project Consortium.Structure, function and diversity of the healthy human microbiomeNature20124862072142012Natur.486..207T – reference: SteineggerMSödingJMMseqs2 enables sensitive protein sequence searching for the analysis of massive data setsNat. Biotechnol.201735102610281:CAS:528:DC%2BC2sXhs1GqsLzE29035372 – reference: SpangAComplex archaea that bridge the gap between prokaryotes and eukaryotesNature20155211731792015Natur.521..173S1:CAS:528:DC%2BC2MXnvFWjs70%3D259457394444528 – reference: XieY-HFecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studiesEBioMedicine20172532401:CAS:528:DC%2BB3MXhsVCqtbbL290333695704049 – reference: GeierBSpatial metabolomics of in situ host–microbe interactions at the micrometre scaleNat. Microbiol.202054985101:CAS:528:DC%2BB3cXislCjur0%3D32015496 – reference: LiHMicrobiome, metagenomics, and high-dimensional compositional data analysisAnnu. Rev. Stat. Appl.201527394 – reference: NguyenN-PWarnowTPopMWhiteBA perspective on 16S rRNA operational taxonomic unit clustering using sequence similarityNPJ Biofilms Microbiomes20162287212435515256 – reference: HernánMAThe C-word: scientific euphemisms do not improve causal inference from observational dataAm. J. Public. Health2018108616619295656595888052This work emphasizes the importance of using the term ‘causal’, in particular when analysing data from observational studies, and highlights the need to distinguish between association and causation and address confounding factors properly. – reference: DerosaLIntestinal Akkermansia muciniphila predicts overall survival in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies: results a phase II studyJ. Clin. Orthod.20213990199019 – reference: WirbelJMicrobiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolboxGenome Biol.202122337850708008609 – reference: JainCRodriguez-RLMPhillippyAMKonstantinidisKTAluruSHigh throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundariesNat. Commun.201892018NatCo...9.5114J305048556269478 – reference: DiazNNKrauseLGoesmannANiehausKNattkemperTWTACOA — taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approachBMC Bioinformatics200910192107742653487 – reference: CosteaPIEnterotypes in the landscape of gut microbial community compositionNat. Microbiol.201838161:CAS:528:DC%2BC2sXitVSmtLvK29255284 – reference: ParksDHMacDonaldNJBeikoRGClassifying short genomic fragments from novel lineages using composition and homologyBMC Bioinformatics2011121:CAS:528:DC%2BC3MXhtFCktbvP218277053173459 – reference: EidF-EElHefnawiMHeathLSDeNovo: virus–host sequence-based protein–protein interaction predictionBioinformatics2015321144115026677965 – reference: Bishop, C. M. Pattern recognition and machine learning (Springer, 2006). – volume: 19 start-page: 459 year: 2017 ident: 984_CR125 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13362 – volume: 359 start-page: 91 year: 2018 ident: 984_CR36 publication-title: Science doi: 10.1126/science.aan3706 – volume: 7 start-page: 1112 year: 2014 ident: 984_CR92 publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-14-0129 – volume: 14 start-page: 1063 year: 2017 ident: 984_CR15 publication-title: Nat. Methods doi: 10.1038/nmeth.4458 – volume: 107 start-page: 9546 year: 2010 ident: 984_CR97 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0914005107 – volume: 5 start-page: 498 year: 2020 ident: 984_CR86 publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0664-6 – volume: 12 start-page: 635781 year: 2021 ident: 984_CR117 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.635781 – volume: 8 start-page: 2224 year: 2017 ident: 984_CR89 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02224 – volume: 464 start-page: 59 year: 2010 ident: 984_CR66 publication-title: Nature doi: 10.1038/nature08821 – volume: 365 start-page: eaaw2619 year: 2019 ident: 984_CR79 publication-title: Science doi: 10.1126/science.aaw2619 – volume: 12 year: 2016 ident: 984_CR28 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004977 – volume: 33 start-page: 1059 year: 2018 ident: 984_CR75 publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.14040 – volume: 4 year: 2016 ident: 984_CR54 publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 9 start-page: 2579 year: 2008 ident: 984_CR77 publication-title: J. Mach. Learn. Res. – volume: 587 start-page: 448 year: 2020 ident: 984_CR131 publication-title: Nature doi: 10.1038/s41586-020-2881-9 – volume: 11 year: 2022 ident: 984_CR69 publication-title: eLife doi: 10.7554/eLife.67667 – volume: 45 start-page: fuab015 year: 2021 ident: 984_CR5 publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuab015 – volume: 521 start-page: 173 year: 2015 ident: 984_CR63 publication-title: Nature doi: 10.1038/nature14447 – volume: 13 start-page: 603 year: 2016 ident: 984_CR108 publication-title: Nat. Methods doi: 10.1038/nmeth.3945 – volume: 9 start-page: 2535 year: 2014 ident: 984_CR73 publication-title: ACS Chem. Biol. doi: 10.1021/cb5003015 – volume: 37 start-page: 38 year: 2018 ident: 984_CR78 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4314 – volume: 579 start-page: 567 year: 2020 ident: 984_CR27 publication-title: Nature doi: 10.1038/s41586-020-2095-1 – volume: 14 start-page: 1023 year: 2017 ident: 984_CR120 publication-title: Nat. Methods doi: 10.1038/nmeth.4468 – ident: 984_CR2 – volume: 35 start-page: 73 year: 2019 ident: 984_CR111 publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2019.03.006 – volume: 28 start-page: 535 year: 2022 ident: 984_CR34 publication-title: Nat. Med. doi: 10.1038/s41591-022-01695-5 – volume: 14 start-page: 600 year: 2004 ident: 984_CR109 publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2004.07.025 – volume: 473 start-page: 174 year: 2011 ident: 984_CR45 publication-title: Nature doi: 10.1038/nature09944 – volume: 39 start-page: 9019 year: 2021 ident: 984_CR38 publication-title: J. Clin. Orthod. – volume: 560 start-page: 233 year: 2018 ident: 984_CR62 publication-title: Nature doi: 10.1038/s41586-018-0386-6 – volume: 500 start-page: 541 year: 2013 ident: 984_CR87 publication-title: Nature doi: 10.1038/nature12506 – volume: 7 year: 2012 ident: 984_CR11 publication-title: PLoS ONE – volume: 24 start-page: 1532 year: 2018 ident: 984_CR110 publication-title: Nat. Med. doi: 10.1038/s41591-018-0164-x – ident: 984_CR106 doi: 10.1007/978-0-387-09823-4 – volume: 25 start-page: 667 year: 2019 ident: 984_CR25 publication-title: Nat. Med. doi: 10.1038/s41591-019-0405-7 – volume: 13 start-page: 703 year: 2016 ident: 984_CR107 publication-title: Nat. Methods doi: 10.1038/nmeth.3968 – volume: 35 start-page: 1026 year: 2017 ident: 984_CR68 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3988 – volume: 25 start-page: 690 year: 2015 ident: 984_CR124 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.01.014 – volume: 2 start-page: 433 year: 2010 ident: 984_CR72 publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.101 – ident: 984_CR1 – volume: 3 start-page: 8 year: 2018 ident: 984_CR49 publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0072-8 – volume: 28 start-page: 164 year: 2022 ident: 984_CR129 publication-title: Nat. Med. doi: 10.1038/s41591-021-01619-9 – volume: 32 start-page: 1023 year: 2016 ident: 984_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv683 – volume: 26 start-page: 2460 year: 2010 ident: 984_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 5 year: 2015 ident: 984_CR90 publication-title: Sci. Rep. – volume: 10 year: 2009 ident: 984_CR14 publication-title: BMC Bioinformatics – volume: 7 year: 2012 ident: 984_CR83 publication-title: PLoS ONE doi: 10.1371/journal.pone.0036466 – volume: 490 start-page: 55 year: 2012 ident: 984_CR29 publication-title: Nature doi: 10.1038/nature11450 – volume: 371 start-page: 602 year: 2021 ident: 984_CR40 publication-title: Science doi: 10.1126/science.abb5920 – volume: 528 start-page: 262 year: 2015 ident: 984_CR102 publication-title: Nature doi: 10.1038/nature15766 – volume: 39 start-page: 105 year: 2021 ident: 984_CR71 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0603-3 – volume: 4 start-page: 1340 year: 2010 ident: 984_CR82 publication-title: ISME J. doi: 10.1038/ismej.2010.58 – volume: 1 start-page: e00101 year: 2016 ident: 984_CR24 publication-title: mSystems doi: 10.1128/mSystems.00101-16 – volume: 9 year: 2013 ident: 984_CR47 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002863 – volume: 6 year: 2018 ident: 984_CR17 publication-title: Microbiome doi: 10.1186/s40168-018-0401-z – volume: 35 start-page: 1077 year: 2017 ident: 984_CR112 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3981 – volume: 25 start-page: 968 year: 2019 ident: 984_CR105 publication-title: Nat. Med. doi: 10.1038/s41591-019-0458-7 – volume: 486 start-page: 207 year: 2012 ident: 984_CR64 publication-title: Nature doi: 10.1038/nature11234 – volume: 4 year: 2016 ident: 984_CR12 publication-title: PeerJ doi: 10.7717/peerj.1603 – ident: 984_CR4 – volume: 32 start-page: D115 year: 2004 ident: 984_CR70 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh131 – volume: 28 start-page: 1913 year: 2022 ident: 984_CR42 publication-title: Nat. Med. doi: 10.1038/s41591-022-01964-3 – volume: 486 start-page: 222 year: 2012 ident: 984_CR81 publication-title: Nature doi: 10.1038/nature11053 – volume: 25 start-page: 32 year: 2017 ident: 984_CR94 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.10.005 – volume: 12 year: 2021 ident: 984_CR59 publication-title: Nat. Commun. – volume: 359 start-page: 97 year: 2018 ident: 984_CR37 publication-title: Science doi: 10.1126/science.aan4236 – volume: 32 start-page: 1144 year: 2015 ident: 984_CR127 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv737 – volume: 70 start-page: 849 year: 2008 ident: 984_CR99 publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2008.00674.x – volume: 21 year: 2020 ident: 984_CR51 publication-title: Genome Biol. doi: 10.1186/s13059-020-02042-y – volume: 21 start-page: 321 year: 2021 ident: 984_CR33 publication-title: Nat. Med. doi: 10.1038/s41591-020-01183-8 – volume: 14 start-page: 195 year: 2013 ident: 984_CR96 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.07.012 – volume: 371 start-page: eaba5257 year: 2021 ident: 984_CR80 publication-title: Science doi: 10.1126/science.aba5257 – volume: 21 start-page: 253 year: 2018 ident: 984_CR115 publication-title: Biostatistics doi: 10.1093/biostatistics/kxy044 – volume: 45 start-page: fuaa062 year: 2020 ident: 984_CR85 publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuaa062 – volume: 2 year: 2013 ident: 984_CR76 publication-title: Gigascience doi: 10.1186/2047-217X-2-16 – volume: 18 year: 2017 ident: 984_CR101 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1423-9 – volume: 10 year: 2019 ident: 984_CR121 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12171-z – volume: 176 start-page: 1 year: 2019 ident: 984_CR55 publication-title: Cell doi: 10.1016/j.cell.2019.01.001 – volume: 19 start-page: 1141 year: 2009 ident: 984_CR52 publication-title: Genome Res doi: 10.1101/gr.085464.108 – volume: 46 start-page: 389 year: 2002 ident: 984_CR100 publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 1 start-page: 181 year: 2018 ident: 984_CR22 publication-title: Annu. Rev. Biomed. Data Sci. doi: 10.1146/annurev-biodatasci-080917-013343 – volume: 25 start-page: 679 year: 2019 ident: 984_CR26 publication-title: Nat. Med. doi: 10.1038/s41591-019-0406-6 – volume: 23 start-page: 229 year: 2018 ident: 984_CR43 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.01.003 – volume: 4 start-page: 63 year: 2007 ident: 984_CR10 publication-title: Nat. Methods doi: 10.1038/nmeth976 – volume: 28 start-page: 1902 year: 2022 ident: 984_CR44 publication-title: Nat. Med. doi: 10.1038/s41591-022-01913-0 – volume: 3 start-page: e00123 year: 2018 ident: 984_CR20 publication-title: mSystems doi: 10.1128/mSystems.00123-17 – volume: 7 year: 2012 ident: 984_CR74 publication-title: PLoS ONE – volume: 12 year: 2021 ident: 984_CR60 publication-title: Nat. Commun. – volume: 523 start-page: 208 year: 2015 ident: 984_CR122 publication-title: Nature doi: 10.1038/nature14486 – volume: 28 start-page: 545 year: 2022 ident: 984_CR35 publication-title: Nat. Med. doi: 10.1038/s41591-022-01698-2 – volume: 108 start-page: 4680 year: 2011 ident: 984_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1002611107 – volume: 27 start-page: 127 year: 2011 ident: 984_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq619 – volume: 47 year: 2019 ident: 984_CR23 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz654 – volume: 66 start-page: 1441 year: 2017 ident: 984_CR93 publication-title: Gut doi: 10.1136/gutjnl-2016-312766 – volume: 73 start-page: 5261 year: 2007 ident: 984_CR7 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00062-07 – volume: 7 year: 2016 ident: 984_CR123 publication-title: Nat. Commun. doi: 10.1038/ncomms13219 – volume: 6 year: 2016 ident: 984_CR16 publication-title: Sci. Rep. – volume: 8 year: 2018 ident: 984_CR41 publication-title: Sci. Rep. – ident: 984_CR103 doi: 10.1109/UBMK.2018.8566487 – volume: 2 start-page: 73 year: 2015 ident: 984_CR88 publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-010814-020351 – volume: 43 start-page: D588 year: 2015 ident: 984_CR128 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku830 – volume: 371 start-page: 595 year: 2021 ident: 984_CR39 publication-title: Science doi: 10.1126/science.abf3363 – volume: 12 year: 2021 ident: 984_CR67 publication-title: Nat. Commun. – volume: 42 start-page: 409 year: 2009 ident: 984_CR98 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.08.001 – volume: 16 start-page: 433 year: 2014 ident: 984_CR48 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.09.013 – volume: 22 start-page: 1658 year: 2006 ident: 984_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 30 start-page: i105 year: 2014 ident: 984_CR116 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu279 – volume: 14 year: 2018 ident: 984_CR19 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006258 – volume: 5 start-page: 1192 year: 2020 ident: 984_CR84 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0729-6 – volume: 9 year: 2018 ident: 984_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06634-y – volume: 66 start-page: 70 year: 2017 ident: 984_CR126 publication-title: Gut doi: 10.1136/gutjnl-2015-309800 – volume: 106 start-page: dju048 year: 2014 ident: 984_CR114 publication-title: J. Natl Cancer Inst. doi: 10.1093/jnci/dju048 – volume: 33 start-page: 1103 year: 2015 ident: 984_CR65 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3353 – volume: 102 start-page: 2567 year: 2005 ident: 984_CR56 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0409727102 – volume: 14 start-page: 207 year: 2013 ident: 984_CR95 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.07.007 – volume: 67 start-page: 1454 year: 2018 ident: 984_CR104 publication-title: Gut doi: 10.1136/gutjnl-2017-314814 – ident: 984_CR50 doi: 10.1080/01621459.2022.2116331 – volume: 9 year: 2014 ident: 984_CR113 publication-title: PLoS ONE doi: 10.1371/journal.pone.0100335 – volume: 9 year: 2018 ident: 984_CR58 publication-title: Nat. Commun. – volume: 6 year: 2015 ident: 984_CR119 publication-title: Nat. Commun. – volume: 10 start-page: 766 year: 2014 ident: 984_CR91 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20145645 – volume: 55 start-page: 119 year: 1997 ident: 984_CR21 publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 22 year: 2021 ident: 984_CR130 publication-title: Genome Biol. doi: 10.1186/s13059-021-02306-1 – volume: 108 start-page: 616 year: 2018 ident: 984_CR132 publication-title: Am. J. Public. Health doi: 10.2105/AJPH.2018.304337 – volume: 11 start-page: e00434 year: 2020 ident: 984_CR6 publication-title: mBio doi: 10.1128/mBio.00434-20 – volume: 6 year: 2020 ident: 984_CR30 publication-title: NPJ Biofilms Microbiomes doi: 10.1038/s41522-020-00155-7 – volume: 9 start-page: 453 year: 2020 ident: 984_CR118 publication-title: Biology doi: 10.3390/biology9120453 – volume: 12 year: 2021 ident: 984_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22962-y – volume: 12 year: 2011 ident: 984_CR8 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-328 – ident: 984_CR3 doi: 10.1007/978-1-4614-7138-7 – volume: 71 start-page: 1359 year: 2022 ident: 984_CR32 publication-title: Gut doi: 10.1136/gutjnl-2021-324755 – volume: 2 year: 2016 ident: 984_CR57 publication-title: NPJ Biofilms Microbiomes |
SSID | ssj0025572 |
Score | 2.6830525 |
SecondaryResourceType | review_article |
Snippet | Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 191 |
SubjectTerms | 631/114/1305 631/114/2397 631/326 Algorithms Antibiotic resistance Antibiotics Antimicrobial agents Biomedical and Life Sciences Classification Clustering Computer science Drug resistance Feature selection Genes Genomes Humans Infectious Diseases Learning algorithms Life Sciences Machine Learning Medical Microbiology Microbiology Microbiomes Microbiota Oncology Parasitology Review Article Software Taxonomy Tuberculosis Virology |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ_gESM-CKhoFU2JvEmx2_1-JAZCTCA8eAn60uynEs9CvLsY_OudfsKJIehb004_ZnZ25red2RmAbSaYi87jsoR7ljEb0Q4GNIYmSkqdQnsY6s3JR8ficMw-nPLTa62-mqT9pqRlY6b77LB3U3Q0UmfoYbK6BCbLyBuHmMxM78GyqGNLI1geH5_sfWo3QOYZ-iVxdUxZt2Emp-ovz1p0SjeQ5s2EySFq-hAezKsLc_nTTCbXHNPBKnzuWWrzUb7tzmd21_36o9rjf_G8Bo86uJrutcTrsBSqx3C_bWB5-QS2j5pczJB2zSe-pIiB0-9nQ3UnVKLpUxgf7H98f5h1fRcyxySfZdypQmpuhI5U28CZE5EZRr3SxoZcxULHoD0ileB9tNYHyZlVwigXZER8tgGj6rwKzyG1Bk9K4hGHROZJYS3Pcx-pICKEGIoESC_40nVFyeveGJOyCY5TVbZCKFEIZSOEkiTwdrjnoi3JcSv1Zj-eZTc9p2WhcZlVKEFUAlvDZZxYdbTEVOF8jjRKI5ziMmcJPGuHf3gdlVogdNUJqAXFGAjqot2LV6qzr03xbkK0qv-NJbDT69DVd93Gxs6gZ3fg-sW_kb-ElQLBWpuRtAmj2Y95eIVga2Zfd9PqN85LIQM priority: 102 providerName: Unpaywall |
Title | Machine learning for microbiologists |
URI | https://link.springer.com/article/10.1038/s41579-023-00984-1 https://www.ncbi.nlm.nih.gov/pubmed/37968359 https://www.proquest.com/docview/2957628618 https://www.proquest.com/docview/2890755704 https://pubmed.ncbi.nlm.nih.gov/PMC11980903 https://www.nature.com/articles/s41579-023-00984-1#citeas |
UnpaywallVersion | submittedVersion |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1740-1534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025572 issn: 1740-1526 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1740-1534 dateEnd: 20241004 omitProxy: true ssIdentifier: ssj0025572 issn: 1740-1526 databaseCode: 7X7 dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1740-1534 dateEnd: 20241004 omitProxy: true ssIdentifier: ssj0025572 issn: 1740-1526 databaseCode: BENPR dateStart: 20031001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-2lrHuYR_dunnrigd9W039IcnS00hKQxk0lLFA9mT0uRUyJ1sSRv_7nWzZWSiEvVhgydi6O939pDvfAZwSRrTTBrcl1JCEKId60KIylK4sCs1RH1r_c_L1mF1NyOcpnYYDt2UIq-x0YqOozVz7M_LzXCAyzjnL-KfFr8RXjfLe1VBC4yHsZwhVvFSX082Gi9KmeBOC7jRBO8XCTzNpwc-XaLhKkaDFSnxKTZJk24bpHtq8HzTZe06fwON1vZB3f-Rs9o9xGj2HpwFVxoNWDF7AA1sfwqO2zuTdITzrajfEYSm_hNPrJorSxqFsxPcY0Wv887bPy4TsX76Cyejy68VVEiomJJqUdJVQzfNSUMmEK4SylGjmiCSF4UIqm3KXC2eFQYxhjXFKGVtSojiTXNvSIbI6gr16Xts3ECuJN8vMIIJwxGS5UjRNjStYxqx1No8g68hV6ZBO3Fe1mFWNW7vgVUviCklcNSSusgg-9s8s2mQaO0cfd1yowsJaVhsxiOBD341Lwvs5ZG3naxzDccfvU4uRCF63TOtfV5SCIegUEfAtdvYDfLrt7Z769keTdhsljPtTrQjOOs5vvmvXNM566fiPWb_dPet3cJAjrGpjh45hb_V7bd8jLFqpk0b28covshPYH4yGwzG2w8vxzRdsJ-Obwbe_JSgMtQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRahw4FFegQJBKicaNfHbB4QQUG1pt6dW2luIYxsqLdmF3VW1f4rfyDivZVVpxaXX2FHieX72jGcA9plgpS8tbku4ZQkzHu2gQ2NYeElpqdAeunA5eXgmBhfs64iPtuBPdxcmpFV2NrE21HZShjPyQ6IRGRMlMvVh-isJXaNCdLVrodGIxYlbXuGWbfb--DPy9y0hR1_OPw2StqtAUjLJ5wkvFZGaF0J7qo3jrBSeFYxapQvjUuWJ9k5b9MPOWm-MdZIzo0ShSic9C4UO0OTfYjRloVa_HK02eJzXzaIQ5KcJ-kXRXtJJqTqcoaOUOkEPmYQSnizJ1h3hNXR7PUmzj9TehZ1FNS2WV8V4_I8zPHoA91oUG39sxO4hbLlqF243fS2Xu3C_6xURt6bjEewP66xNF7dtKr7HiJbjn5d9HSgUt9ljuLgRWj6B7WpSuWcQmwIfyswiYvHMZsQYnqbWU5EJ57wjEWQdufKyLV8eumiM8zqMTlXekDhHEuc1ifMsgnf9O9OmeMfG2XsdF_JWkWf5SuwieNMPowqGuEpRuckC5yiNwIvLlEXwtGFa_zkqtUCQqyNQa-zsJ4Ty3usj1eWPusx3lmkVTtEiOOg4v_qvTcs46KXjP1b9fPOqX8PO4Hx4mp8en528gDsEIV2Tt7QH2_PfC_cSIdncvKr1IIZvN614fwFPk0YI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRbwOPMorUCBI5UStTeL3ASFEWbWUVhyotLcQxzZUWrILu6tq_xq_jnFey6rSikuvsaPE8_zsGc8A7DHBSl9a3JZwywgzHu2gQ2NYeElpqdAeunA5-eRUHJ6xTyM-2oI_3V2YkFbZ2cTaUNtJGc7IB5lGZJwpkaqBb9MivhwM301_kdBBKkRau3YajYgcu-UFbt9mb48OkNevs2z48euHQ9J2GCAlk3xOeKkyqXkhtKfaOM5K4VnBqFW6MC5RPtPeaYs-2VnrjbFOcmaUKFTppGeh6AGa_2uSMhrSyeRotdnjvG4chYA_IegjRXthJ6FqMEOnKTVBb0lCOU9G0nWneAnpXk7Y7KO2t-HmopoWy4tiPP7HMQ7vwZ0W0cbvGxG8D1uu2oHrTY_L5Q7c7fpGxK0ZeQB7J3UGp4vblhXfY0TO8c_zviYUit7sIZxdCS0fwXY1qdwTiE2BD2VqEb14ZtPMGJ4k1lORCue8yyJIO3LlZVvKPHTUGOd1SJ2qvCFxjiTOaxLnaQRv-nemTSGPjbN3Oy7krVLP8pUIRvCqH0Z1DDGWonKTBc5RGkEYlwmL4HHDtP5zVGqBgFdHoNbY2U8Ipb7XR6rzH3XJ7zTVKpyoRbDfcX71X5uWsd9Lx3-s-unmVb-EG6hy-eej0-NncCtDdNekMO3C9vz3wj1HdDY3L2o1iOHbVevdX63VSkM |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ_gESM-CKhoFU2JvEmx2_1-JAZCTCA8eAn60uynEs9CvLsY_OudfsKJIehb004_ZnZ25red2RmAbSaYi87jsoR7ljEb0Q4GNIYmSkqdQnsY6s3JR8ficMw-nPLTa62-mqT9pqRlY6b77LB3U3Q0UmfoYbK6BCbLyBuHmMxM78GyqGNLI1geH5_sfWo3QOYZ-iVxdUxZt2Emp-ovz1p0SjeQ5s2EySFq-hAezKsLc_nTTCbXHNPBKnzuWWrzUb7tzmd21_36o9rjf_G8Bo86uJrutcTrsBSqx3C_bWB5-QS2j5pczJB2zSe-pIiB0-9nQ3UnVKLpUxgf7H98f5h1fRcyxySfZdypQmpuhI5U28CZE5EZRr3SxoZcxULHoD0ileB9tNYHyZlVwigXZER8tgGj6rwKzyG1Bk9K4hGHROZJYS3Pcx-pICKEGIoESC_40nVFyeveGJOyCY5TVbZCKFEIZSOEkiTwdrjnoi3JcSv1Zj-eZTc9p2WhcZlVKEFUAlvDZZxYdbTEVOF8jjRKI5ziMmcJPGuHf3gdlVogdNUJqAXFGAjqot2LV6qzr03xbkK0qv-NJbDT69DVd93Gxs6gZ3fg-sW_kb-ElQLBWpuRtAmj2Y95eIVga2Zfd9PqN85LIQM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+microbiologists&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Asnicar%2C+Francesco&rft.au=Thomas%2C+Andrew+Maltez&rft.au=Passerini%2C+Andrea&rft.au=Waldron%2C+Levi&rft.date=2024-04-01&rft.issn=1740-1526&rft.eissn=1740-1534&rft.volume=22&rft.issue=4&rft.spage=191&rft.epage=205&rft_id=info:doi/10.1038%2Fs41579-023-00984-1&rft_id=info%3Apmid%2F37968359&rft.externalDocID=PMC11980903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon |