Inferring global exponents in subsampled neural systems

In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents ma...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 28; no. 8; p. 113049
Main Authors Conte, Davide, de Candia, Antonio
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2025.113049

Cover

Abstract In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system. [Display omitted] •Neural activity exhibits avalanche dynamics with power-law size and duration distributions•Subsampling alters these distributions and biases estimates of critical exponents•Exponents governing power spectrum and DFA remain stable under subsampling•This robustness enables inferring global critical exponents reliably from partial data Natural sciences; Biological sciences; Neural networks
AbstractList In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system. [Display omitted] •Neural activity exhibits avalanche dynamics with power-law size and duration distributions•Subsampling alters these distributions and biases estimates of critical exponents•Exponents governing power spectrum and DFA remain stable under subsampling•This robustness enables inferring global critical exponents reliably from partial data Natural sciences; Biological sciences; Neural networks
In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system.
In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don't depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system.In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don't depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system.
In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system. • Neural activity exhibits avalanche dynamics with power-law size and duration distributions • Subsampling alters these distributions and biases estimates of critical exponents • Exponents governing power spectrum and DFA remain stable under subsampling • This robustness enables inferring global critical exponents reliably from partial data Natural sciences; Biological sciences; Neural networks
ArticleNumber 113049
Author Conte, Davide
de Candia, Antonio
Author_xml – sequence: 1
  givenname: Davide
  surname: Conte
  fullname: Conte, Davide
  email: davide.conte@unicampania.it
  organization: Department of Mathematics & Physics, University of Campania “Luigi Vanvitelli”, viale Lincoln 5, 81100 Caserta, Italy
– sequence: 2
  givenname: Antonio
  surname: de Candia
  fullname: de Candia, Antonio
  email: antonio.decandia@unina.it
  organization: Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40727941$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctq3DAUFSWheTQ_0EXxspuZ6mXLgkAooU0HAt0ka6HH1VSDLU0lOzR_X02chmRTEEjongf3nDN0FFMEhD4SvCaYdF9261BsWFNM2zUhDHP5Dp3StpcrjDk9evU-QRel7DDGtB4uu_fohGNBheTkFIlN9JBziNtmOySjhwb-7KtTnEoTYlNmU_S4H8A1EeZcx-WxTDCWD-jY66HAxfN9ju6_f7u7_rG6_Xmzuf56u7JctNOqtYID9n3vW2OcZKApYGGNdQ53uqXUa99707VScC-EF5Z6bolmVLTEW8bO0WbRdUnv1D6HUedHlXRQTx8pb5XOU7ADKCONBU9txxjljGLNiPPW8V4Kor3zVetq0drPZgRn65J1ozeibycx_FLb9KAIZZjhrq8Kn58Vcvo9Q5nUWFuAYdAR0lwUo4wz0veSV-in12YvLv-irwC6AGxOpWTwLxCC1aFitVOHitWhYrVUXEmXCwlq5g8BsqoIiBZcyGCnGkr4H_0vocavww
Cites_doi 10.1038/ncomms15140
10.1016/0025-5564(82)90036-0
10.1073/pnas.1216855110
10.1103/PhysRevE.110.035003
10.1523/JNEUROSCI.4286-12.2013
10.1063/1.166141
10.1007/s10827-010-0263-2
10.1038/s41598-022-26392-8
10.1038/nphys289
10.1103/PhysRevLett.122.208101
10.1063/5.0219561
10.1016/S0370-1573(02)00634-8
10.1523/JNEUROSCI.4637-10.2011
10.1103/PhysRevLett.67.1334
10.1038/s41598-018-21730-1
10.1371/journal.pone.0014129
10.1016/j.tics.2014.04.003
10.1038/s41598-018-29576-3
10.1088/0305-4470/22/17/032
10.1038/s41598-024-70014-4
10.1523/JNEUROSCI.23-35-11167.2003
10.1103/PhysRevLett.68.1244
10.1073/pnas.0904089106
10.1038/35065675
10.1073/pnas.0711525105
10.1016/j.neuron.2019.08.031
10.1063/1.372921
10.1016/0035-5054(93)90023-V
10.1103/PhysRevB.62.11699
10.1103/PhysRevE.97.062305
10.1038/nphys3370
10.1086/186180
10.1038/s41593-020-00744-x
10.1016/S0378-4371(98)00549-4
10.1007/s10955-011-0229-4
10.1029/JB094iB11p15635
10.1103/PhysRevE.59.6175
10.1103/PhysRevE.95.012413
10.1103/PhysRevB.66.024430
ContentType Journal Article
Copyright 2025 The Authors
2025 The Authors.
2025 The Authors 2025
Copyright_xml – notice: 2025 The Authors
– notice: 2025 The Authors.
– notice: 2025 The Authors 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2025.113049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_b9bcef2c63324320a31dfcd48971afdf
PMC12303068
40727941
10_1016_j_isci_2025_113049
S2589004225013100
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c475t-5c74e0f88f5bbd93ea2e07cbcdd06a522faf8fb65974f77f7c2f4c1a32751fc33
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:30:48 EDT 2025
Thu Aug 21 18:34:10 EDT 2025
Fri Sep 05 15:33:31 EDT 2025
Fri Aug 01 03:41:41 EDT 2025
Thu Sep 18 00:18:42 EDT 2025
Sat Sep 27 17:13:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Natural sciences
biological sciences
neural networks
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-5c74e0f88f5bbd93ea2e07cbcdd06a522faf8fb65974f77f7c2f4c1a32751fc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
OpenAccessLink https://doaj.org/article/b9bcef2c63324320a31dfcd48971afdf
PMID 40727941
PQID 3234318894
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b9bcef2c63324320a31dfcd48971afdf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12303068
proquest_miscellaneous_3234318894
pubmed_primary_40727941
crossref_primary_10_1016_j_isci_2025_113049
elsevier_sciencedirect_doi_10_1016_j_isci_2025_113049
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ribeiro, Copelli, Caixeta, Belchior, Chialvo, Nicolelis, Ribeiro (bib31) 2010; 5
Sethna, Dahmen, Myers (bib1) 2001; 410
Travesset, White, Dahmen (bib40) 2002; 66
Grassberger (bib12) 1983; 63
Johnson, Kotz, Kemp (bib25) 1992
Shew, Clawson, Pobst, Karimipanah, Wright, Wessel (bib30) 2015; 11
He (bib43) 2014; 18
Bak, Tang (bib4) 1989; 94
Mora, Bialek (bib7) 2011; 144
Bak, Chen, Scheinkman, Woodford (bib9) 1993; 47
Kuntz, Sethna (bib2) 2000; 62
Nykter, Price, Aldana, Ramsey, Kauffman, Hood, Yli-Harja, Shmulevich (bib8) 2008; 105
Palva, Zhigalov, Hirvonen, Korhonen, Linkenkaer-Hansen, Palva (bib32) 2013; 110
Peng, Havlin, Stanley, Goldberger (bib19) 1995; 5
Jo, Birhanu, Masuda (bib36) 2024; 34
Olami, Feder, Christensen (bib5) 1992; 68
Bohn, Durin, Correa, Machado, Della Pace, Chesman, Sommer (bib38) 2018; 8
Shriki, Alstott, Carver, Holroyd, Henson, Smith, Coppola, Bullmore, Plenz (bib14) 2013; 33
Donoghue, Haller, Peterson, Varma, Sebastian, Gao, Noto, Lara, Wallis, Knight (bib41) 2020; 23
Shew, Yang, Yu, Roy, Plenz (bib24) 2011; 31
Fontenele, de Vasconcelos, Feliciano, Aguiar, Soares-Cunha, Coimbra, Dalla Porta, Ribeiro, Rodrigues, Sousa (bib33) 2019; 122
Korchinski, Orlandi, Son, Davidsen (bib35) 2021; 11
Touboul, Destexhe (bib17) 2017; 95
Mayya, Barés, Jagla, Bonamy, Rosso (bib39) 2024; 110
Carvalho, Ribeiro, Prado, Copelli (bib22) 2021; 14
Srinivasan, Ribeiro, Kells, Plenz (bib28) 2024; 14
Grassberger (bib26) 1989; 22
Apicella, Scarpetta, de Arcangelis, Sarracino, de Candia (bib29) 2022; 12
Beggs, Plenz (bib13) 2003; 23
Ma, Turrigiano, Wessel, Hengen (bib18) 2019; 104
Lu, Hamilton (bib6) 1991; 380
Tang, Tian (bib10) 1999; 264
Dehghani, Bédard, Cash, Halgren, Destexhe (bib42) 2010; 29
Durin, Zapperi (bib37) 2000; 87
Kinouchi, Copelli (bib23) 2006; 2
Petermann, Thiagarajan, Lebedev, Nicolelis, Chialvo, Plenz (bib15) 2009; 106
Muñoz, Dickman, Vespignani, Zapperi (bib27) 1999; 59
Sornette (bib11) 2003; 378
Heneghan, McDarby, O’Regan (bib20) 2000; 62
Levina, Priesemann (bib21) 2017; 8
Cote, Meisel (bib3) 1991; 67
Scarpetta, Apicella, Minati, de Candia (bib16) 2018; 97
Yaghoubi, de Graaf, Orlandi, Girotto, Colicos, Davidsen (bib34) 2018; 8
Olami (10.1016/j.isci.2025.113049_bib5) 1992; 68
Nykter (10.1016/j.isci.2025.113049_bib8) 2008; 105
Palva (10.1016/j.isci.2025.113049_bib32) 2013; 110
Kuntz (10.1016/j.isci.2025.113049_bib2) 2000; 62
Mayya (10.1016/j.isci.2025.113049_bib39) 2024; 110
Travesset (10.1016/j.isci.2025.113049_bib40) 2002; 66
Peng (10.1016/j.isci.2025.113049_bib19) 1995; 5
Carvalho (10.1016/j.isci.2025.113049_bib22) 2021; 14
Grassberger (10.1016/j.isci.2025.113049_bib26) 1989; 22
Shew (10.1016/j.isci.2025.113049_bib30) 2015; 11
Heneghan (10.1016/j.isci.2025.113049_bib20) 2000; 62
Jo (10.1016/j.isci.2025.113049_bib36) 2024; 34
Grassberger (10.1016/j.isci.2025.113049_bib12) 1983; 63
Sethna (10.1016/j.isci.2025.113049_bib1) 2001; 410
Mora (10.1016/j.isci.2025.113049_bib7) 2011; 144
Levina (10.1016/j.isci.2025.113049_bib21) 2017; 8
Srinivasan (10.1016/j.isci.2025.113049_bib28) 2024; 14
Lu (10.1016/j.isci.2025.113049_bib6) 1991; 380
Bak (10.1016/j.isci.2025.113049_bib9) 1993; 47
Ribeiro (10.1016/j.isci.2025.113049_bib31) 2010; 5
Donoghue (10.1016/j.isci.2025.113049_bib41) 2020; 23
Muñoz (10.1016/j.isci.2025.113049_bib27) 1999; 59
Scarpetta (10.1016/j.isci.2025.113049_bib16) 2018; 97
Shriki (10.1016/j.isci.2025.113049_bib14) 2013; 33
Johnson (10.1016/j.isci.2025.113049_bib25) 1992
Fontenele (10.1016/j.isci.2025.113049_bib33) 2019; 122
Ma (10.1016/j.isci.2025.113049_bib18) 2019; 104
Korchinski (10.1016/j.isci.2025.113049_bib35) 2021; 11
Touboul (10.1016/j.isci.2025.113049_bib17) 2017; 95
Durin (10.1016/j.isci.2025.113049_bib37) 2000; 87
Sornette (10.1016/j.isci.2025.113049_bib11) 2003; 378
Kinouchi (10.1016/j.isci.2025.113049_bib23) 2006; 2
Yaghoubi (10.1016/j.isci.2025.113049_bib34) 2018; 8
Cote (10.1016/j.isci.2025.113049_bib3) 1991; 67
Shew (10.1016/j.isci.2025.113049_bib24) 2011; 31
Dehghani (10.1016/j.isci.2025.113049_bib42) 2010; 29
Petermann (10.1016/j.isci.2025.113049_bib15) 2009; 106
He (10.1016/j.isci.2025.113049_bib43) 2014; 18
Tang (10.1016/j.isci.2025.113049_bib10) 1999; 264
Bohn (10.1016/j.isci.2025.113049_bib38) 2018; 8
Beggs (10.1016/j.isci.2025.113049_bib13) 2003; 23
Apicella (10.1016/j.isci.2025.113049_bib29) 2022; 12
Bak (10.1016/j.isci.2025.113049_bib4) 1989; 94
References_xml – year: 1992
  ident: bib25
  article-title: Univariate Discrete Distributions
– volume: 14
  year: 2021
  ident: bib22
  article-title: Subsampled directed-percolation models explain scaling relations experimentally observed in the brain
  publication-title: Front. Neural Circ.
– volume: 59
  start-page: 6175
  year: 1999
  end-page: 6179
  ident: bib27
  article-title: Avalanche and spreading exponents in systems with absorbing states
  publication-title: Phys. Rev. E
– volume: 22
  start-page: 3673
  year: 1989
  end-page: 3679
  ident: bib26
  article-title: Directed percolation in (2+1) dimensions
  publication-title: J. Phys. A: Math. Gen.
– volume: 110
  year: 2024
  ident: bib39
  article-title: Percolation versus depinning transition: The inherent role of damage hardening during quasibrittle failure
  publication-title: Phys. Rev. E
– volume: 29
  start-page: 405
  year: 2010
  end-page: 421
  ident: bib42
  article-title: Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media
  publication-title: J. Comput. Neurosci.
– volume: 67
  start-page: 1334
  year: 1991
  end-page: 1337
  ident: bib3
  article-title: Self-organized criticality and the barkhausen effect
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 480
  year: 2014
  end-page: 487
  ident: bib43
  article-title: Scale-free brain activity: past, present, and future
  publication-title: Trends Cogn. Sci.
– volume: 68
  start-page: 1244
  year: 1992
  end-page: 1247
  ident: bib5
  article-title: Self-organized criticality in a continuous, non-conservative cellular automaton modeling earthquakes
  publication-title: Phys. Rev. Lett.
– volume: 11
  year: 2021
  ident: bib35
  article-title: Criticality in spreading processes without timescale separation and the critical brain hypothesis
  publication-title: Phys. Rev. X
– volume: 94
  start-page: 15635
  year: 1989
  end-page: 15637
  ident: bib4
  article-title: Earthquakes as a self-organized critical phenomenon
  publication-title: J. Geophys. Res. Solid Earth
– volume: 380
  start-page: L89
  year: 1991
  end-page: L92
  ident: bib6
  article-title: Avalanches and the distribution of solar flares
  publication-title: Astrophys. J.
– volume: 110
  start-page: 3585
  year: 2013
  end-page: 3590
  ident: bib32
  article-title: Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 144
  start-page: 268
  year: 2011
  end-page: 302
  ident: bib7
  article-title: Are biological systems poised at criticality?
  publication-title: J. Stat. Phys.
– volume: 95
  year: 2017
  ident: bib17
  article-title: Power-law statistics and universal scaling in the absence of criticality
  publication-title: Phys. Rev. E
– volume: 5
  year: 2010
  ident: bib31
  article-title: Spike avalanches exhibit universal dynamics across the sleep–wake cycle
  publication-title: PLoS One
– volume: 14
  year: 2024
  ident: bib28
  article-title: The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality
  publication-title: Sci. Rep.
– volume: 34
  year: 2024
  ident: bib36
  article-title: Temporal scaling theory for bursty time series with clusters of arbitrarily many events
  publication-title: Chaos
– volume: 8
  year: 2018
  ident: bib38
  article-title: Playing with universality classes of barkhausen avalanches
  publication-title: Sci. Rep.
– volume: 31
  start-page: 55
  year: 2011
  end-page: 63
  ident: bib24
  article-title: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches
  publication-title: J. Neurosci.
– volume: 104
  start-page: 655
  year: 2019
  end-page: 664.e4
  ident: bib18
  article-title: Cortical circuit dynamics are homeostatically tuned to criticality
  publication-title: Neuron
– volume: 63
  start-page: 157
  year: 1983
  end-page: 172
  ident: bib12
  article-title: On the critical behavior of the general epidemic process and dynamical percolation
  publication-title: Math. Biosci.
– volume: 62
  start-page: 6103
  year: 2000
  end-page: 6110
  ident: bib20
  article-title: Establishing the relation between detrended fluctuation analysis and power spectral density for stochastic processes
  publication-title: Phys. Rev.
– volume: 23
  start-page: 11167
  year: 2003
  end-page: 11177
  ident: bib13
  article-title: Neuronal avalanches in neocortical circuits
  publication-title: J. Neurosci.
– volume: 378
  start-page: 1
  year: 2003
  end-page: 98
  ident: bib11
  article-title: Critical market crashes
  publication-title: Phys. Rep.
– volume: 8
  year: 2017
  ident: bib21
  article-title: Subsampling scaling
  publication-title: Nat. Commun.
– volume: 122
  year: 2019
  ident: bib33
  article-title: Criticality between cortical states
  publication-title: Phys. Rev. Lett.
– volume: 62
  start-page: 11699
  year: 2000
  end-page: 11708
  ident: bib2
  article-title: Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 3
  year: 1993
  end-page: 30
  ident: bib9
  article-title: Aggregate fluctuations from independent sectoral shocks: Self-organized criticality in a model of production and inventory dynamics
  publication-title: Ric. Econ.
– volume: 33
  start-page: 7079
  year: 2013
  end-page: 7090
  ident: bib14
  article-title: Neuronal avalanches in the resting meg of the human brain
  publication-title: J. Neurosci.
– volume: 2
  start-page: 348
  year: 2006
  end-page: 351
  ident: bib23
  article-title: Optimal dynamical range of excitable networks at criticality
  publication-title: Nat. Phys.
– volume: 410
  start-page: 242
  year: 2001
  end-page: 250
  ident: bib1
  article-title: Crackling noise
  publication-title: Nature
– volume: 23
  start-page: 1655
  year: 2020
  end-page: 1665
  ident: bib41
  article-title: Parameterizing neural power spectra into periodic and aperiodic components
  publication-title: Nat. Neurosci.
– volume: 264
  start-page: 543
  year: 1999
  end-page: 550
  ident: bib10
  article-title: Reaction–diffusion–branching models of stock price fluctuations
  publication-title: Physica A
– volume: 97
  year: 2018
  ident: bib16
  article-title: Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network
  publication-title: Phys. Rev. E
– volume: 105
  start-page: 1897
  year: 2008
  end-page: 1900
  ident: bib8
  article-title: Gene expression dynamics in the macrophage exhibit criticality
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 15921
  year: 2009
  end-page: 15926
  ident: bib15
  article-title: Spontaneous cortical activity in awake monkeys composed of neuronal avalanches
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  year: 2022
  ident: bib29
  article-title: Power spectrum and critical exponents in the 2d stochastic wilson–cowan model
  publication-title: Sci. Rep.
– volume: 11
  start-page: 659
  year: 2015
  end-page: 663
  ident: bib30
  article-title: Adaptation to sensory input tunes visual cortex to criticality
  publication-title: Nat. Phys.
– volume: 5
  start-page: 82
  year: 1995
  end-page: 87
  ident: bib19
  article-title: Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series
  publication-title: Chaos
– volume: 87
  start-page: 7031
  year: 2000
  end-page: 7033
  ident: bib37
  article-title: Universality and size effects in the barkhausen noise
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 3417
  year: 2018
  ident: bib34
  article-title: Neuronal avalanche dynamics indicates different universality classes in neuronal cultures
  publication-title: Sci. Rep.
– volume: 66
  year: 2002
  ident: bib40
  article-title: Crackling noise, power spectra, and disorder-induced critical scaling
  publication-title: Phys. Rev. B
– volume: 8
  year: 2017
  ident: 10.1016/j.isci.2025.113049_bib21
  article-title: Subsampling scaling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15140
– volume: 63
  start-page: 157
  year: 1983
  ident: 10.1016/j.isci.2025.113049_bib12
  article-title: On the critical behavior of the general epidemic process and dynamical percolation
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(82)90036-0
– volume: 110
  start-page: 3585
  year: 2013
  ident: 10.1016/j.isci.2025.113049_bib32
  article-title: Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1216855110
– volume: 110
  year: 2024
  ident: 10.1016/j.isci.2025.113049_bib39
  article-title: Percolation versus depinning transition: The inherent role of damage hardening during quasibrittle failure
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.110.035003
– volume: 33
  start-page: 7079
  year: 2013
  ident: 10.1016/j.isci.2025.113049_bib14
  article-title: Neuronal avalanches in the resting meg of the human brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4286-12.2013
– volume: 5
  start-page: 82
  year: 1995
  ident: 10.1016/j.isci.2025.113049_bib19
  article-title: Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series
  publication-title: Chaos
  doi: 10.1063/1.166141
– volume: 29
  start-page: 405
  year: 2010
  ident: 10.1016/j.isci.2025.113049_bib42
  article-title: Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-010-0263-2
– volume: 12
  year: 2022
  ident: 10.1016/j.isci.2025.113049_bib29
  article-title: Power spectrum and critical exponents in the 2d stochastic wilson–cowan model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-26392-8
– volume: 2
  start-page: 348
  year: 2006
  ident: 10.1016/j.isci.2025.113049_bib23
  article-title: Optimal dynamical range of excitable networks at criticality
  publication-title: Nat. Phys.
  doi: 10.1038/nphys289
– volume: 122
  year: 2019
  ident: 10.1016/j.isci.2025.113049_bib33
  article-title: Criticality between cortical states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.208101
– volume: 34
  year: 2024
  ident: 10.1016/j.isci.2025.113049_bib36
  article-title: Temporal scaling theory for bursty time series with clusters of arbitrarily many events
  publication-title: Chaos
  doi: 10.1063/5.0219561
– volume: 378
  start-page: 1
  year: 2003
  ident: 10.1016/j.isci.2025.113049_bib11
  article-title: Critical market crashes
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(02)00634-8
– volume: 31
  start-page: 55
  year: 2011
  ident: 10.1016/j.isci.2025.113049_bib24
  article-title: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4637-10.2011
– volume: 67
  start-page: 1334
  year: 1991
  ident: 10.1016/j.isci.2025.113049_bib3
  article-title: Self-organized criticality and the barkhausen effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.1334
– volume: 8
  start-page: 3417
  year: 2018
  ident: 10.1016/j.isci.2025.113049_bib34
  article-title: Neuronal avalanche dynamics indicates different universality classes in neuronal cultures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21730-1
– volume: 5
  year: 2010
  ident: 10.1016/j.isci.2025.113049_bib31
  article-title: Spike avalanches exhibit universal dynamics across the sleep–wake cycle
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014129
– volume: 18
  start-page: 480
  year: 2014
  ident: 10.1016/j.isci.2025.113049_bib43
  article-title: Scale-free brain activity: past, present, and future
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2014.04.003
– volume: 8
  year: 2018
  ident: 10.1016/j.isci.2025.113049_bib38
  article-title: Playing with universality classes of barkhausen avalanches
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29576-3
– volume: 22
  start-page: 3673
  year: 1989
  ident: 10.1016/j.isci.2025.113049_bib26
  article-title: Directed percolation in (2+1) dimensions
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/22/17/032
– volume: 14
  year: 2024
  ident: 10.1016/j.isci.2025.113049_bib28
  article-title: The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-70014-4
– volume: 23
  start-page: 11167
  year: 2003
  ident: 10.1016/j.isci.2025.113049_bib13
  article-title: Neuronal avalanches in neocortical circuits
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-35-11167.2003
– volume: 68
  start-page: 1244
  year: 1992
  ident: 10.1016/j.isci.2025.113049_bib5
  article-title: Self-organized criticality in a continuous, non-conservative cellular automaton modeling earthquakes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1244
– volume: 106
  start-page: 15921
  year: 2009
  ident: 10.1016/j.isci.2025.113049_bib15
  article-title: Spontaneous cortical activity in awake monkeys composed of neuronal avalanches
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904089106
– volume: 410
  start-page: 242
  year: 2001
  ident: 10.1016/j.isci.2025.113049_bib1
  article-title: Crackling noise
  publication-title: Nature
  doi: 10.1038/35065675
– volume: 105
  start-page: 1897
  year: 2008
  ident: 10.1016/j.isci.2025.113049_bib8
  article-title: Gene expression dynamics in the macrophage exhibit criticality
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711525105
– volume: 104
  start-page: 655
  year: 2019
  ident: 10.1016/j.isci.2025.113049_bib18
  article-title: Cortical circuit dynamics are homeostatically tuned to criticality in vivo
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.08.031
– volume: 87
  start-page: 7031
  year: 2000
  ident: 10.1016/j.isci.2025.113049_bib37
  article-title: Universality and size effects in the barkhausen noise
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372921
– volume: 47
  start-page: 3
  year: 1993
  ident: 10.1016/j.isci.2025.113049_bib9
  article-title: Aggregate fluctuations from independent sectoral shocks: Self-organized criticality in a model of production and inventory dynamics
  publication-title: Ric. Econ.
  doi: 10.1016/0035-5054(93)90023-V
– volume: 62
  start-page: 11699
  year: 2000
  ident: 10.1016/j.isci.2025.113049_bib2
  article-title: Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.11699
– volume: 11
  year: 2021
  ident: 10.1016/j.isci.2025.113049_bib35
  article-title: Criticality in spreading processes without timescale separation and the critical brain hypothesis
  publication-title: Phys. Rev. X
– volume: 97
  year: 2018
  ident: 10.1016/j.isci.2025.113049_bib16
  article-title: Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.062305
– volume: 11
  start-page: 659
  year: 2015
  ident: 10.1016/j.isci.2025.113049_bib30
  article-title: Adaptation to sensory input tunes visual cortex to criticality
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3370
– volume: 380
  start-page: L89
  year: 1991
  ident: 10.1016/j.isci.2025.113049_bib6
  article-title: Avalanches and the distribution of solar flares
  publication-title: Astrophys. J.
  doi: 10.1086/186180
– volume: 23
  start-page: 1655
  year: 2020
  ident: 10.1016/j.isci.2025.113049_bib41
  article-title: Parameterizing neural power spectra into periodic and aperiodic components
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00744-x
– volume: 264
  start-page: 543
  year: 1999
  ident: 10.1016/j.isci.2025.113049_bib10
  article-title: Reaction–diffusion–branching models of stock price fluctuations
  publication-title: Physica A
  doi: 10.1016/S0378-4371(98)00549-4
– volume: 14
  year: 2021
  ident: 10.1016/j.isci.2025.113049_bib22
  article-title: Subsampled directed-percolation models explain scaling relations experimentally observed in the brain
  publication-title: Front. Neural Circ.
– volume: 144
  start-page: 268
  year: 2011
  ident: 10.1016/j.isci.2025.113049_bib7
  article-title: Are biological systems poised at criticality?
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-011-0229-4
– volume: 94
  start-page: 15635
  year: 1989
  ident: 10.1016/j.isci.2025.113049_bib4
  article-title: Earthquakes as a self-organized critical phenomenon
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB094iB11p15635
– year: 1992
  ident: 10.1016/j.isci.2025.113049_bib25
– volume: 59
  start-page: 6175
  year: 1999
  ident: 10.1016/j.isci.2025.113049_bib27
  article-title: Avalanche and spreading exponents in systems with absorbing states
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.59.6175
– volume: 95
  year: 2017
  ident: 10.1016/j.isci.2025.113049_bib17
  article-title: Power-law statistics and universal scaling in the absence of criticality
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.012413
– volume: 66
  year: 2002
  ident: 10.1016/j.isci.2025.113049_bib40
  article-title: Crackling noise, power spectra, and disorder-induced critical scaling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.024430
– volume: 62
  start-page: 6103
  year: 2000
  ident: 10.1016/j.isci.2025.113049_bib20
  article-title: Establishing the relation between detrended fluctuation analysis and power spectral density for stochastic processes
  publication-title: Phys. Rev.
SSID ssj0002002496
Score 2.3041
Snippet In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 113049
SubjectTerms biological sciences
Natural sciences
neural networks
Title Inferring global exponents in subsampled neural systems
URI https://dx.doi.org/10.1016/j.isci.2025.113049
https://www.ncbi.nlm.nih.gov/pubmed/40727941
https://www.proquest.com/docview/3234318894
https://pubmed.ncbi.nlm.nih.gov/PMC12303068
https://doaj.org/article/b9bcef2c63324320a31dfcd48971afdf
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLCt6kmDRNkx5VlFXQk4K3kCfuHrqLuwv-fGearuwq6MVrU5pmps33TTLzhZBz1gSmfB0LIbgoAK95YStLCyE9Z2WonPRYKPz4VA9eqodX8bp01BfmhCV54GS4S9tYF2Lpag7Qz0tqOPPR-Uo1kpnoI86-tKFLwdSo215DKby6r5JJCV1Y5QoBYSnwHBOK4plLSNQJ9q8A0k_C-T1vcgmI7rbIZs8g86v05ttkLbQ7RN5j4R6u0eVJ4iMPH5Nxi1kS-bDNpzA9GNQB9jkKWEJzUnCe7pKXu9vnm0HRn4lQuEqKWSGcrAKNSkVhrW94MGWg0lnnPa0NkKloooq2xjghShmlK2PlmOGlFCw6zvfIegvdH5AckMlLaiFeAEoha6cAqKJH8R4rlbEuIxcL--hJkr7Qi5ywkUZrarSmTtbMyDWa8OtOlK3uLoAzde9M_ZczMyIWDtA9A0jIDo8a_tr52cJbGn4P3PMwbRjPp5qXHCiSUk2Vkf3kva9XRG04mI5YRtSKX1fGsNrSDt86CW7Aewy21OF_jPqIbOBYcKWaiWOyPnufhxOgOjN72n3Vnx-G_lc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+global+exponents+in+subsampled+neural+systems&rft.jtitle=iScience&rft.au=Conte%2C+Davide&rft.au=de+Candia%2C+Antonio&rft.date=2025-08-15&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=28&rft.issue=8&rft.spage=113049&rft_id=info:doi/10.1016%2Fj.isci.2025.113049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2025_113049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon