Inferring global exponents in subsampled neural systems
In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents ma...
Saved in:
Published in | iScience Vol. 28; no. 8; p. 113049 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2025.113049 |
Cover
Abstract | In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system.
[Display omitted]
•Neural activity exhibits avalanche dynamics with power-law size and duration distributions•Subsampling alters these distributions and biases estimates of critical exponents•Exponents governing power spectrum and DFA remain stable under subsampling•This robustness enables inferring global critical exponents reliably from partial data
Natural sciences; Biological sciences; Neural networks |
---|---|
AbstractList | In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system.
[Display omitted]
•Neural activity exhibits avalanche dynamics with power-law size and duration distributions•Subsampling alters these distributions and biases estimates of critical exponents•Exponents governing power spectrum and DFA remain stable under subsampling•This robustness enables inferring global critical exponents reliably from partial data
Natural sciences; Biological sciences; Neural networks In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system. In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don't depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system.In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don't depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system. In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology of the connections. However, when only a small fraction of the units composing the system are observed and sampled, the measured exponents may differ significantly from the true ones. In this study, using branching process and (2 + 1)D directed percolation, we show that some of the exponents, namely the ones governing the power spectrum and the detrended fluctuation analysis (DFA) of the system activity, are more robust and are unaffected in some intervals of frequencies by the subsampling. This robustness derives from the preservation of long-time correlations in the subsampled signal, even though large avalanches can be fragmented into smaller ones. These results don’t depend on the specific model and may be used therefore to extract in a simple and unbiased way some of the exponents of the unobserved full system. • Neural activity exhibits avalanche dynamics with power-law size and duration distributions • Subsampling alters these distributions and biases estimates of critical exponents • Exponents governing power spectrum and DFA remain stable under subsampling • This robustness enables inferring global critical exponents reliably from partial data Natural sciences; Biological sciences; Neural networks |
ArticleNumber | 113049 |
Author | Conte, Davide de Candia, Antonio |
Author_xml | – sequence: 1 givenname: Davide surname: Conte fullname: Conte, Davide email: davide.conte@unicampania.it organization: Department of Mathematics & Physics, University of Campania “Luigi Vanvitelli”, viale Lincoln 5, 81100 Caserta, Italy – sequence: 2 givenname: Antonio surname: de Candia fullname: de Candia, Antonio email: antonio.decandia@unina.it organization: Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40727941$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctq3DAUFSWheTQ_0EXxspuZ6mXLgkAooU0HAt0ka6HH1VSDLU0lOzR_X02chmRTEEjongf3nDN0FFMEhD4SvCaYdF9261BsWFNM2zUhDHP5Dp3StpcrjDk9evU-QRel7DDGtB4uu_fohGNBheTkFIlN9JBziNtmOySjhwb-7KtTnEoTYlNmU_S4H8A1EeZcx-WxTDCWD-jY66HAxfN9ju6_f7u7_rG6_Xmzuf56u7JctNOqtYID9n3vW2OcZKApYGGNdQ53uqXUa99707VScC-EF5Z6bolmVLTEW8bO0WbRdUnv1D6HUedHlXRQTx8pb5XOU7ADKCONBU9txxjljGLNiPPW8V4Kor3zVetq0drPZgRn65J1ozeibycx_FLb9KAIZZjhrq8Kn58Vcvo9Q5nUWFuAYdAR0lwUo4wz0veSV-in12YvLv-irwC6AGxOpWTwLxCC1aFitVOHitWhYrVUXEmXCwlq5g8BsqoIiBZcyGCnGkr4H_0vocavww |
Cites_doi | 10.1038/ncomms15140 10.1016/0025-5564(82)90036-0 10.1073/pnas.1216855110 10.1103/PhysRevE.110.035003 10.1523/JNEUROSCI.4286-12.2013 10.1063/1.166141 10.1007/s10827-010-0263-2 10.1038/s41598-022-26392-8 10.1038/nphys289 10.1103/PhysRevLett.122.208101 10.1063/5.0219561 10.1016/S0370-1573(02)00634-8 10.1523/JNEUROSCI.4637-10.2011 10.1103/PhysRevLett.67.1334 10.1038/s41598-018-21730-1 10.1371/journal.pone.0014129 10.1016/j.tics.2014.04.003 10.1038/s41598-018-29576-3 10.1088/0305-4470/22/17/032 10.1038/s41598-024-70014-4 10.1523/JNEUROSCI.23-35-11167.2003 10.1103/PhysRevLett.68.1244 10.1073/pnas.0904089106 10.1038/35065675 10.1073/pnas.0711525105 10.1016/j.neuron.2019.08.031 10.1063/1.372921 10.1016/0035-5054(93)90023-V 10.1103/PhysRevB.62.11699 10.1103/PhysRevE.97.062305 10.1038/nphys3370 10.1086/186180 10.1038/s41593-020-00744-x 10.1016/S0378-4371(98)00549-4 10.1007/s10955-011-0229-4 10.1029/JB094iB11p15635 10.1103/PhysRevE.59.6175 10.1103/PhysRevE.95.012413 10.1103/PhysRevB.66.024430 |
ContentType | Journal Article |
Copyright | 2025 The Authors 2025 The Authors. 2025 The Authors 2025 |
Copyright_xml | – notice: 2025 The Authors – notice: 2025 The Authors. – notice: 2025 The Authors 2025 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2025.113049 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_b9bcef2c63324320a31dfcd48971afdf PMC12303068 40727941 10_1016_j_isci_2025_113049 S2589004225013100 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 6I. AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYXX CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c475t-5c74e0f88f5bbd93ea2e07cbcdd06a522faf8fb65974f77f7c2f4c1a32751fc33 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:30:48 EDT 2025 Thu Aug 21 18:34:10 EDT 2025 Fri Sep 05 15:33:31 EDT 2025 Fri Aug 01 03:41:41 EDT 2025 Thu Sep 18 00:18:42 EDT 2025 Sat Sep 27 17:13:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Natural sciences biological sciences neural networks |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-5c74e0f88f5bbd93ea2e07cbcdd06a522faf8fb65974f77f7c2f4c1a32751fc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
OpenAccessLink | https://doaj.org/article/b9bcef2c63324320a31dfcd48971afdf |
PMID | 40727941 |
PQID | 3234318894 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9bcef2c63324320a31dfcd48971afdf pubmedcentral_primary_oai_pubmedcentral_nih_gov_12303068 proquest_miscellaneous_3234318894 pubmed_primary_40727941 crossref_primary_10_1016_j_isci_2025_113049 elsevier_sciencedirect_doi_10_1016_j_isci_2025_113049 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-15 |
PublicationDateYYYYMMDD | 2025-08-15 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Ribeiro, Copelli, Caixeta, Belchior, Chialvo, Nicolelis, Ribeiro (bib31) 2010; 5 Sethna, Dahmen, Myers (bib1) 2001; 410 Travesset, White, Dahmen (bib40) 2002; 66 Grassberger (bib12) 1983; 63 Johnson, Kotz, Kemp (bib25) 1992 Shew, Clawson, Pobst, Karimipanah, Wright, Wessel (bib30) 2015; 11 He (bib43) 2014; 18 Bak, Tang (bib4) 1989; 94 Mora, Bialek (bib7) 2011; 144 Bak, Chen, Scheinkman, Woodford (bib9) 1993; 47 Kuntz, Sethna (bib2) 2000; 62 Nykter, Price, Aldana, Ramsey, Kauffman, Hood, Yli-Harja, Shmulevich (bib8) 2008; 105 Palva, Zhigalov, Hirvonen, Korhonen, Linkenkaer-Hansen, Palva (bib32) 2013; 110 Peng, Havlin, Stanley, Goldberger (bib19) 1995; 5 Jo, Birhanu, Masuda (bib36) 2024; 34 Olami, Feder, Christensen (bib5) 1992; 68 Bohn, Durin, Correa, Machado, Della Pace, Chesman, Sommer (bib38) 2018; 8 Shriki, Alstott, Carver, Holroyd, Henson, Smith, Coppola, Bullmore, Plenz (bib14) 2013; 33 Donoghue, Haller, Peterson, Varma, Sebastian, Gao, Noto, Lara, Wallis, Knight (bib41) 2020; 23 Shew, Yang, Yu, Roy, Plenz (bib24) 2011; 31 Fontenele, de Vasconcelos, Feliciano, Aguiar, Soares-Cunha, Coimbra, Dalla Porta, Ribeiro, Rodrigues, Sousa (bib33) 2019; 122 Korchinski, Orlandi, Son, Davidsen (bib35) 2021; 11 Touboul, Destexhe (bib17) 2017; 95 Mayya, Barés, Jagla, Bonamy, Rosso (bib39) 2024; 110 Carvalho, Ribeiro, Prado, Copelli (bib22) 2021; 14 Srinivasan, Ribeiro, Kells, Plenz (bib28) 2024; 14 Grassberger (bib26) 1989; 22 Apicella, Scarpetta, de Arcangelis, Sarracino, de Candia (bib29) 2022; 12 Beggs, Plenz (bib13) 2003; 23 Ma, Turrigiano, Wessel, Hengen (bib18) 2019; 104 Lu, Hamilton (bib6) 1991; 380 Tang, Tian (bib10) 1999; 264 Dehghani, Bédard, Cash, Halgren, Destexhe (bib42) 2010; 29 Durin, Zapperi (bib37) 2000; 87 Kinouchi, Copelli (bib23) 2006; 2 Petermann, Thiagarajan, Lebedev, Nicolelis, Chialvo, Plenz (bib15) 2009; 106 Muñoz, Dickman, Vespignani, Zapperi (bib27) 1999; 59 Sornette (bib11) 2003; 378 Heneghan, McDarby, O’Regan (bib20) 2000; 62 Levina, Priesemann (bib21) 2017; 8 Cote, Meisel (bib3) 1991; 67 Scarpetta, Apicella, Minati, de Candia (bib16) 2018; 97 Yaghoubi, de Graaf, Orlandi, Girotto, Colicos, Davidsen (bib34) 2018; 8 Olami (10.1016/j.isci.2025.113049_bib5) 1992; 68 Nykter (10.1016/j.isci.2025.113049_bib8) 2008; 105 Palva (10.1016/j.isci.2025.113049_bib32) 2013; 110 Kuntz (10.1016/j.isci.2025.113049_bib2) 2000; 62 Mayya (10.1016/j.isci.2025.113049_bib39) 2024; 110 Travesset (10.1016/j.isci.2025.113049_bib40) 2002; 66 Peng (10.1016/j.isci.2025.113049_bib19) 1995; 5 Carvalho (10.1016/j.isci.2025.113049_bib22) 2021; 14 Grassberger (10.1016/j.isci.2025.113049_bib26) 1989; 22 Shew (10.1016/j.isci.2025.113049_bib30) 2015; 11 Heneghan (10.1016/j.isci.2025.113049_bib20) 2000; 62 Jo (10.1016/j.isci.2025.113049_bib36) 2024; 34 Grassberger (10.1016/j.isci.2025.113049_bib12) 1983; 63 Sethna (10.1016/j.isci.2025.113049_bib1) 2001; 410 Mora (10.1016/j.isci.2025.113049_bib7) 2011; 144 Levina (10.1016/j.isci.2025.113049_bib21) 2017; 8 Srinivasan (10.1016/j.isci.2025.113049_bib28) 2024; 14 Lu (10.1016/j.isci.2025.113049_bib6) 1991; 380 Bak (10.1016/j.isci.2025.113049_bib9) 1993; 47 Ribeiro (10.1016/j.isci.2025.113049_bib31) 2010; 5 Donoghue (10.1016/j.isci.2025.113049_bib41) 2020; 23 Muñoz (10.1016/j.isci.2025.113049_bib27) 1999; 59 Scarpetta (10.1016/j.isci.2025.113049_bib16) 2018; 97 Shriki (10.1016/j.isci.2025.113049_bib14) 2013; 33 Johnson (10.1016/j.isci.2025.113049_bib25) 1992 Fontenele (10.1016/j.isci.2025.113049_bib33) 2019; 122 Ma (10.1016/j.isci.2025.113049_bib18) 2019; 104 Korchinski (10.1016/j.isci.2025.113049_bib35) 2021; 11 Touboul (10.1016/j.isci.2025.113049_bib17) 2017; 95 Durin (10.1016/j.isci.2025.113049_bib37) 2000; 87 Sornette (10.1016/j.isci.2025.113049_bib11) 2003; 378 Kinouchi (10.1016/j.isci.2025.113049_bib23) 2006; 2 Yaghoubi (10.1016/j.isci.2025.113049_bib34) 2018; 8 Cote (10.1016/j.isci.2025.113049_bib3) 1991; 67 Shew (10.1016/j.isci.2025.113049_bib24) 2011; 31 Dehghani (10.1016/j.isci.2025.113049_bib42) 2010; 29 Petermann (10.1016/j.isci.2025.113049_bib15) 2009; 106 He (10.1016/j.isci.2025.113049_bib43) 2014; 18 Tang (10.1016/j.isci.2025.113049_bib10) 1999; 264 Bohn (10.1016/j.isci.2025.113049_bib38) 2018; 8 Beggs (10.1016/j.isci.2025.113049_bib13) 2003; 23 Apicella (10.1016/j.isci.2025.113049_bib29) 2022; 12 Bak (10.1016/j.isci.2025.113049_bib4) 1989; 94 |
References_xml | – year: 1992 ident: bib25 article-title: Univariate Discrete Distributions – volume: 14 year: 2021 ident: bib22 article-title: Subsampled directed-percolation models explain scaling relations experimentally observed in the brain publication-title: Front. Neural Circ. – volume: 59 start-page: 6175 year: 1999 end-page: 6179 ident: bib27 article-title: Avalanche and spreading exponents in systems with absorbing states publication-title: Phys. Rev. E – volume: 22 start-page: 3673 year: 1989 end-page: 3679 ident: bib26 article-title: Directed percolation in (2+1) dimensions publication-title: J. Phys. A: Math. Gen. – volume: 110 year: 2024 ident: bib39 article-title: Percolation versus depinning transition: The inherent role of damage hardening during quasibrittle failure publication-title: Phys. Rev. E – volume: 29 start-page: 405 year: 2010 end-page: 421 ident: bib42 article-title: Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media publication-title: J. Comput. Neurosci. – volume: 67 start-page: 1334 year: 1991 end-page: 1337 ident: bib3 article-title: Self-organized criticality and the barkhausen effect publication-title: Phys. Rev. Lett. – volume: 18 start-page: 480 year: 2014 end-page: 487 ident: bib43 article-title: Scale-free brain activity: past, present, and future publication-title: Trends Cogn. Sci. – volume: 68 start-page: 1244 year: 1992 end-page: 1247 ident: bib5 article-title: Self-organized criticality in a continuous, non-conservative cellular automaton modeling earthquakes publication-title: Phys. Rev. Lett. – volume: 11 year: 2021 ident: bib35 article-title: Criticality in spreading processes without timescale separation and the critical brain hypothesis publication-title: Phys. Rev. X – volume: 94 start-page: 15635 year: 1989 end-page: 15637 ident: bib4 article-title: Earthquakes as a self-organized critical phenomenon publication-title: J. Geophys. Res. Solid Earth – volume: 380 start-page: L89 year: 1991 end-page: L92 ident: bib6 article-title: Avalanches and the distribution of solar flares publication-title: Astrophys. J. – volume: 110 start-page: 3585 year: 2013 end-page: 3590 ident: bib32 article-title: Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws publication-title: Proc. Natl. Acad. Sci. USA – volume: 144 start-page: 268 year: 2011 end-page: 302 ident: bib7 article-title: Are biological systems poised at criticality? publication-title: J. Stat. Phys. – volume: 95 year: 2017 ident: bib17 article-title: Power-law statistics and universal scaling in the absence of criticality publication-title: Phys. Rev. E – volume: 5 year: 2010 ident: bib31 article-title: Spike avalanches exhibit universal dynamics across the sleep–wake cycle publication-title: PLoS One – volume: 14 year: 2024 ident: bib28 article-title: The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality publication-title: Sci. Rep. – volume: 34 year: 2024 ident: bib36 article-title: Temporal scaling theory for bursty time series with clusters of arbitrarily many events publication-title: Chaos – volume: 8 year: 2018 ident: bib38 article-title: Playing with universality classes of barkhausen avalanches publication-title: Sci. Rep. – volume: 31 start-page: 55 year: 2011 end-page: 63 ident: bib24 article-title: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches publication-title: J. Neurosci. – volume: 104 start-page: 655 year: 2019 end-page: 664.e4 ident: bib18 article-title: Cortical circuit dynamics are homeostatically tuned to criticality publication-title: Neuron – volume: 63 start-page: 157 year: 1983 end-page: 172 ident: bib12 article-title: On the critical behavior of the general epidemic process and dynamical percolation publication-title: Math. Biosci. – volume: 62 start-page: 6103 year: 2000 end-page: 6110 ident: bib20 article-title: Establishing the relation between detrended fluctuation analysis and power spectral density for stochastic processes publication-title: Phys. Rev. – volume: 23 start-page: 11167 year: 2003 end-page: 11177 ident: bib13 article-title: Neuronal avalanches in neocortical circuits publication-title: J. Neurosci. – volume: 378 start-page: 1 year: 2003 end-page: 98 ident: bib11 article-title: Critical market crashes publication-title: Phys. Rep. – volume: 8 year: 2017 ident: bib21 article-title: Subsampling scaling publication-title: Nat. Commun. – volume: 122 year: 2019 ident: bib33 article-title: Criticality between cortical states publication-title: Phys. Rev. Lett. – volume: 62 start-page: 11699 year: 2000 end-page: 11708 ident: bib2 article-title: Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models publication-title: Phys. Rev. B – volume: 47 start-page: 3 year: 1993 end-page: 30 ident: bib9 article-title: Aggregate fluctuations from independent sectoral shocks: Self-organized criticality in a model of production and inventory dynamics publication-title: Ric. Econ. – volume: 33 start-page: 7079 year: 2013 end-page: 7090 ident: bib14 article-title: Neuronal avalanches in the resting meg of the human brain publication-title: J. Neurosci. – volume: 2 start-page: 348 year: 2006 end-page: 351 ident: bib23 article-title: Optimal dynamical range of excitable networks at criticality publication-title: Nat. Phys. – volume: 410 start-page: 242 year: 2001 end-page: 250 ident: bib1 article-title: Crackling noise publication-title: Nature – volume: 23 start-page: 1655 year: 2020 end-page: 1665 ident: bib41 article-title: Parameterizing neural power spectra into periodic and aperiodic components publication-title: Nat. Neurosci. – volume: 264 start-page: 543 year: 1999 end-page: 550 ident: bib10 article-title: Reaction–diffusion–branching models of stock price fluctuations publication-title: Physica A – volume: 97 year: 2018 ident: bib16 article-title: Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network publication-title: Phys. Rev. E – volume: 105 start-page: 1897 year: 2008 end-page: 1900 ident: bib8 article-title: Gene expression dynamics in the macrophage exhibit criticality publication-title: Proc. Natl. Acad. Sci. USA – volume: 106 start-page: 15921 year: 2009 end-page: 15926 ident: bib15 article-title: Spontaneous cortical activity in awake monkeys composed of neuronal avalanches publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 year: 2022 ident: bib29 article-title: Power spectrum and critical exponents in the 2d stochastic wilson–cowan model publication-title: Sci. Rep. – volume: 11 start-page: 659 year: 2015 end-page: 663 ident: bib30 article-title: Adaptation to sensory input tunes visual cortex to criticality publication-title: Nat. Phys. – volume: 5 start-page: 82 year: 1995 end-page: 87 ident: bib19 article-title: Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series publication-title: Chaos – volume: 87 start-page: 7031 year: 2000 end-page: 7033 ident: bib37 article-title: Universality and size effects in the barkhausen noise publication-title: J. Appl. Phys. – volume: 8 start-page: 3417 year: 2018 ident: bib34 article-title: Neuronal avalanche dynamics indicates different universality classes in neuronal cultures publication-title: Sci. Rep. – volume: 66 year: 2002 ident: bib40 article-title: Crackling noise, power spectra, and disorder-induced critical scaling publication-title: Phys. Rev. B – volume: 8 year: 2017 ident: 10.1016/j.isci.2025.113049_bib21 article-title: Subsampling scaling publication-title: Nat. Commun. doi: 10.1038/ncomms15140 – volume: 63 start-page: 157 year: 1983 ident: 10.1016/j.isci.2025.113049_bib12 article-title: On the critical behavior of the general epidemic process and dynamical percolation publication-title: Math. Biosci. doi: 10.1016/0025-5564(82)90036-0 – volume: 110 start-page: 3585 year: 2013 ident: 10.1016/j.isci.2025.113049_bib32 article-title: Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1216855110 – volume: 110 year: 2024 ident: 10.1016/j.isci.2025.113049_bib39 article-title: Percolation versus depinning transition: The inherent role of damage hardening during quasibrittle failure publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.110.035003 – volume: 33 start-page: 7079 year: 2013 ident: 10.1016/j.isci.2025.113049_bib14 article-title: Neuronal avalanches in the resting meg of the human brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4286-12.2013 – volume: 5 start-page: 82 year: 1995 ident: 10.1016/j.isci.2025.113049_bib19 article-title: Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series publication-title: Chaos doi: 10.1063/1.166141 – volume: 29 start-page: 405 year: 2010 ident: 10.1016/j.isci.2025.113049_bib42 article-title: Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0263-2 – volume: 12 year: 2022 ident: 10.1016/j.isci.2025.113049_bib29 article-title: Power spectrum and critical exponents in the 2d stochastic wilson–cowan model publication-title: Sci. Rep. doi: 10.1038/s41598-022-26392-8 – volume: 2 start-page: 348 year: 2006 ident: 10.1016/j.isci.2025.113049_bib23 article-title: Optimal dynamical range of excitable networks at criticality publication-title: Nat. Phys. doi: 10.1038/nphys289 – volume: 122 year: 2019 ident: 10.1016/j.isci.2025.113049_bib33 article-title: Criticality between cortical states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.208101 – volume: 34 year: 2024 ident: 10.1016/j.isci.2025.113049_bib36 article-title: Temporal scaling theory for bursty time series with clusters of arbitrarily many events publication-title: Chaos doi: 10.1063/5.0219561 – volume: 378 start-page: 1 year: 2003 ident: 10.1016/j.isci.2025.113049_bib11 article-title: Critical market crashes publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00634-8 – volume: 31 start-page: 55 year: 2011 ident: 10.1016/j.isci.2025.113049_bib24 article-title: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4637-10.2011 – volume: 67 start-page: 1334 year: 1991 ident: 10.1016/j.isci.2025.113049_bib3 article-title: Self-organized criticality and the barkhausen effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.1334 – volume: 8 start-page: 3417 year: 2018 ident: 10.1016/j.isci.2025.113049_bib34 article-title: Neuronal avalanche dynamics indicates different universality classes in neuronal cultures publication-title: Sci. Rep. doi: 10.1038/s41598-018-21730-1 – volume: 5 year: 2010 ident: 10.1016/j.isci.2025.113049_bib31 article-title: Spike avalanches exhibit universal dynamics across the sleep–wake cycle publication-title: PLoS One doi: 10.1371/journal.pone.0014129 – volume: 18 start-page: 480 year: 2014 ident: 10.1016/j.isci.2025.113049_bib43 article-title: Scale-free brain activity: past, present, and future publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2014.04.003 – volume: 8 year: 2018 ident: 10.1016/j.isci.2025.113049_bib38 article-title: Playing with universality classes of barkhausen avalanches publication-title: Sci. Rep. doi: 10.1038/s41598-018-29576-3 – volume: 22 start-page: 3673 year: 1989 ident: 10.1016/j.isci.2025.113049_bib26 article-title: Directed percolation in (2+1) dimensions publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/22/17/032 – volume: 14 year: 2024 ident: 10.1016/j.isci.2025.113049_bib28 article-title: The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality publication-title: Sci. Rep. doi: 10.1038/s41598-024-70014-4 – volume: 23 start-page: 11167 year: 2003 ident: 10.1016/j.isci.2025.113049_bib13 article-title: Neuronal avalanches in neocortical circuits publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-35-11167.2003 – volume: 68 start-page: 1244 year: 1992 ident: 10.1016/j.isci.2025.113049_bib5 article-title: Self-organized criticality in a continuous, non-conservative cellular automaton modeling earthquakes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1244 – volume: 106 start-page: 15921 year: 2009 ident: 10.1016/j.isci.2025.113049_bib15 article-title: Spontaneous cortical activity in awake monkeys composed of neuronal avalanches publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904089106 – volume: 410 start-page: 242 year: 2001 ident: 10.1016/j.isci.2025.113049_bib1 article-title: Crackling noise publication-title: Nature doi: 10.1038/35065675 – volume: 105 start-page: 1897 year: 2008 ident: 10.1016/j.isci.2025.113049_bib8 article-title: Gene expression dynamics in the macrophage exhibit criticality publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711525105 – volume: 104 start-page: 655 year: 2019 ident: 10.1016/j.isci.2025.113049_bib18 article-title: Cortical circuit dynamics are homeostatically tuned to criticality in vivo publication-title: Neuron doi: 10.1016/j.neuron.2019.08.031 – volume: 87 start-page: 7031 year: 2000 ident: 10.1016/j.isci.2025.113049_bib37 article-title: Universality and size effects in the barkhausen noise publication-title: J. Appl. Phys. doi: 10.1063/1.372921 – volume: 47 start-page: 3 year: 1993 ident: 10.1016/j.isci.2025.113049_bib9 article-title: Aggregate fluctuations from independent sectoral shocks: Self-organized criticality in a model of production and inventory dynamics publication-title: Ric. Econ. doi: 10.1016/0035-5054(93)90023-V – volume: 62 start-page: 11699 year: 2000 ident: 10.1016/j.isci.2025.113049_bib2 article-title: Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.11699 – volume: 11 year: 2021 ident: 10.1016/j.isci.2025.113049_bib35 article-title: Criticality in spreading processes without timescale separation and the critical brain hypothesis publication-title: Phys. Rev. X – volume: 97 year: 2018 ident: 10.1016/j.isci.2025.113049_bib16 article-title: Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.062305 – volume: 11 start-page: 659 year: 2015 ident: 10.1016/j.isci.2025.113049_bib30 article-title: Adaptation to sensory input tunes visual cortex to criticality publication-title: Nat. Phys. doi: 10.1038/nphys3370 – volume: 380 start-page: L89 year: 1991 ident: 10.1016/j.isci.2025.113049_bib6 article-title: Avalanches and the distribution of solar flares publication-title: Astrophys. J. doi: 10.1086/186180 – volume: 23 start-page: 1655 year: 2020 ident: 10.1016/j.isci.2025.113049_bib41 article-title: Parameterizing neural power spectra into periodic and aperiodic components publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00744-x – volume: 264 start-page: 543 year: 1999 ident: 10.1016/j.isci.2025.113049_bib10 article-title: Reaction–diffusion–branching models of stock price fluctuations publication-title: Physica A doi: 10.1016/S0378-4371(98)00549-4 – volume: 14 year: 2021 ident: 10.1016/j.isci.2025.113049_bib22 article-title: Subsampled directed-percolation models explain scaling relations experimentally observed in the brain publication-title: Front. Neural Circ. – volume: 144 start-page: 268 year: 2011 ident: 10.1016/j.isci.2025.113049_bib7 article-title: Are biological systems poised at criticality? publication-title: J. Stat. Phys. doi: 10.1007/s10955-011-0229-4 – volume: 94 start-page: 15635 year: 1989 ident: 10.1016/j.isci.2025.113049_bib4 article-title: Earthquakes as a self-organized critical phenomenon publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB094iB11p15635 – year: 1992 ident: 10.1016/j.isci.2025.113049_bib25 – volume: 59 start-page: 6175 year: 1999 ident: 10.1016/j.isci.2025.113049_bib27 article-title: Avalanche and spreading exponents in systems with absorbing states publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.59.6175 – volume: 95 year: 2017 ident: 10.1016/j.isci.2025.113049_bib17 article-title: Power-law statistics and universal scaling in the absence of criticality publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.012413 – volume: 66 year: 2002 ident: 10.1016/j.isci.2025.113049_bib40 article-title: Crackling noise, power spectra, and disorder-induced critical scaling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.024430 – volume: 62 start-page: 6103 year: 2000 ident: 10.1016/j.isci.2025.113049_bib20 article-title: Establishing the relation between detrended fluctuation analysis and power spectral density for stochastic processes publication-title: Phys. Rev. |
SSID | ssj0002002496 |
Score | 2.3041 |
Snippet | In systems exhibiting avalanche-like activity, critical exponents can provide insights into the mechanisms underlying the observed behavior or on the topology... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 113049 |
SubjectTerms | biological sciences Natural sciences neural networks |
Title | Inferring global exponents in subsampled neural systems |
URI | https://dx.doi.org/10.1016/j.isci.2025.113049 https://www.ncbi.nlm.nih.gov/pubmed/40727941 https://www.proquest.com/docview/3234318894 https://pubmed.ncbi.nlm.nih.gov/PMC12303068 https://doaj.org/article/b9bcef2c63324320a31dfcd48971afdf |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLCt6kmDRNkx5VlFXQk4K3kCfuHrqLuwv-fGearuwq6MVrU5pmps33TTLzhZBz1gSmfB0LIbgoAK95YStLCyE9Z2WonPRYKPz4VA9eqodX8bp01BfmhCV54GS4S9tYF2Lpag7Qz0tqOPPR-Uo1kpnoI86-tKFLwdSo215DKby6r5JJCV1Y5QoBYSnwHBOK4plLSNQJ9q8A0k_C-T1vcgmI7rbIZs8g86v05ttkLbQ7RN5j4R6u0eVJ4iMPH5Nxi1kS-bDNpzA9GNQB9jkKWEJzUnCe7pKXu9vnm0HRn4lQuEqKWSGcrAKNSkVhrW94MGWg0lnnPa0NkKloooq2xjghShmlK2PlmOGlFCw6zvfIegvdH5AckMlLaiFeAEoha6cAqKJH8R4rlbEuIxcL--hJkr7Qi5ywkUZrarSmTtbMyDWa8OtOlK3uLoAzde9M_ZczMyIWDtA9A0jIDo8a_tr52cJbGn4P3PMwbRjPp5qXHCiSUk2Vkf3kva9XRG04mI5YRtSKX1fGsNrSDt86CW7Aewy21OF_jPqIbOBYcKWaiWOyPnufhxOgOjN72n3Vnx-G_lc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+global+exponents+in+subsampled+neural+systems&rft.jtitle=iScience&rft.au=Conte%2C+Davide&rft.au=de+Candia%2C+Antonio&rft.date=2025-08-15&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=28&rft.issue=8&rft.spage=113049&rft_id=info:doi/10.1016%2Fj.isci.2025.113049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2025_113049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |