2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000 mA cm−2-Level-Current-Density Hydrogen Evolution Over 100 h in Neutral Water
Highlights The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed. The designed electrocatalysts realize expectant 1000 mA cm −2 -level-current-density hydrogen evolution in...
Saved in:
Published in | Nano-micro letters Vol. 12; no. 1; pp. 140 - 16 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2311-6706 2150-5551 2150-5551 |
DOI | 10.1007/s40820-020-00476-4 |
Cover
Abstract | Highlights
The 2D CoOOH sheet-encapsulated Ni
2
P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed.
The designed electrocatalysts realize expectant 1000 mA cm
−2
-level-current-density hydrogen evolution in neutral water for over 100 h.
Water electrolysis at high current density (1000 mA cm
−2
level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni
2
P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm
−2
-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts. |
---|---|
AbstractList | Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts. HighlightsThe 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed.The designed electrocatalysts realize expectant 1000 mA cm−2-level-current-density hydrogen evolution in neutral water for over 100 h.Water electrolysis at high current density (1000 mA cm−2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm−2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts. Abstract Water electrolysis at high current density (1000 mA cm−2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm−2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts. Highlights The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed. The designed electrocatalysts realize expectant 1000 mA cm −2 -level-current-density hydrogen evolution in neutral water for over 100 h. Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm −2 -level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts. Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm −2 -level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts. The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed. The designed electrocatalysts realize expectant 1000 mA cm −2 -level-current-density hydrogen evolution in neutral water for over 100 h. Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm −2 -level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts. |
ArticleNumber | 140 |
Author | Li, Huiqiao Wang, Shuzhe Fang, Jiakun Liu, Youwen Hu, Feilong Zhang, Shucong Ai, Xiaomeng Zhai, Tianyou Mi, Yan Wang, Wenbin |
Author_xml | – sequence: 1 givenname: Shucong surname: Zhang fullname: Zhang, Shucong organization: Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities – sequence: 2 givenname: Wenbin surname: Wang fullname: Wang, Wenbin organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Feilong surname: Hu fullname: Hu, Feilong organization: Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities – sequence: 4 givenname: Yan surname: Mi fullname: Mi, Yan email: miyan@gxun.edu.cn organization: Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 5 givenname: Shuzhe surname: Wang fullname: Wang, Shuzhe organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 6 givenname: Youwen surname: Liu fullname: Liu, Youwen email: ywliu@hust.edu.cn organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 7 givenname: Xiaomeng surname: Ai fullname: Ai, Xiaomeng organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology – sequence: 8 givenname: Jiakun surname: Fang fullname: Fang, Jiakun organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology – sequence: 9 givenname: Huiqiao surname: Li fullname: Li, Huiqiao organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 10 givenname: Tianyou surname: Zhai fullname: Zhai, Tianyou email: zhaity@hust.edu.cn organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology |
BookMark | eNp9Us1uEzEQXqEiWkpfgJMlLlwW_LvevSBFaaCVogZBEUfL651NXG3sYO9GCk_AGYl7niWPwpPgkCLUHnIY2Rp_3zfzeeZ5duK8gyx7SfAbgrF8GzkuKc7xPjCXRc6fZGeUCJwLIchJujNC8kLi4jS7iNHWWFAuqRT8WXbKOGElofQs-0Uv0djPZlfo8wKgzyfO6FUcOt1Dg24s_Yis6z26HeqUC2gUgt5E9Al0Z79bN0epF7zbLke7rVn-_vGT5lNYQ5ePhxDA9fkluGj7DbraNMHPwaHJ2ndDb71DszWEPX23XaQa6AaGPugOfU2Vw4vsaau7CBf353n25f3kdnyVT2cfrsejaW64FH0uuK7qthZUC850i7WouOAGJ-tlW8sCaCHLBgMnmnHeUJAVJmVTNbWhHKhh59n1Qbfx-k6tgl3qsFFeW_U34cNc6dBb04GqCmbatua6oam4JKUkBccFKXTVtE1RJ613B63VUC-hMcl-8vNA9OGLsws192slpcSllEng9b1A8N8GiL1a2mig67QDP0RFBaesYLLECfrqEfTOD8Glr1JpyIwKwsvqOIpUlHEsSEKVB5QJPsYArTK21_sRpS5tpwhW-4VTh4VTeB_7hVM8Uekj6j-3R0nsQIoJ7OYQ_nd1hPUHB6Ppdw |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_165258 crossref_primary_10_1016_j_mtphys_2021_100448 crossref_primary_10_1016_j_jallcom_2022_164603 crossref_primary_10_1016_j_mtphys_2022_100727 crossref_primary_10_1002_sstr_202200404 crossref_primary_10_1002_adfm_202307109 crossref_primary_10_1021_acs_iecr_0c05565 crossref_primary_10_1021_acsami_1c22294 crossref_primary_10_1039_D3QI01587D crossref_primary_10_1021_acsaem_3c00010 crossref_primary_10_1039_D2TA01233B crossref_primary_10_1021_acsomega_4c10407 crossref_primary_10_1002_aenm_202200928 crossref_primary_10_1016_j_apcatb_2024_124392 crossref_primary_10_1016_j_jcis_2022_01_132 crossref_primary_10_1088_1361_6528_acd3f6 crossref_primary_10_1002_smll_202302906 crossref_primary_10_1016_j_coelec_2021_100788 crossref_primary_10_1007_s12598_023_02337_6 crossref_primary_10_1016_j_jechem_2020_11_038 crossref_primary_10_1002_anie_202302795 crossref_primary_10_1016_j_apcatb_2022_122256 crossref_primary_10_1002_adma_202307979 crossref_primary_10_1021_acsami_1c01091 crossref_primary_10_1039_D1NJ04344G crossref_primary_10_1002_adma_202108133 crossref_primary_10_1002_adfm_202211260 crossref_primary_10_1002_adma_202311322 crossref_primary_10_1002_adfm_202412685 crossref_primary_10_1016_j_jpowsour_2021_230279 crossref_primary_10_3389_fchem_2022_866415 crossref_primary_10_1016_j_ccr_2024_215832 crossref_primary_10_1016_j_esci_2024_100334 crossref_primary_10_1016_j_jallcom_2022_163865 crossref_primary_10_1021_acsaem_3c02215 crossref_primary_10_1016_j_apcatb_2023_122926 crossref_primary_10_1002_aenm_202201713 crossref_primary_10_1002_adfm_202304296 crossref_primary_10_1039_D1DT00852H crossref_primary_10_1007_s40820_023_01129_y crossref_primary_10_1016_j_jcat_2022_04_009 crossref_primary_10_1021_acsaem_1c01671 crossref_primary_10_1021_acsaem_1c01314 crossref_primary_10_1016_j_ijhydene_2021_12_264 crossref_primary_10_1002_anie_202415132 crossref_primary_10_1021_acssuschemeng_4c08443 crossref_primary_10_1007_s00339_023_06775_y crossref_primary_10_1016_j_apsusc_2023_157204 crossref_primary_10_1016_j_apcatb_2021_120559 crossref_primary_10_1021_acs_iecr_1c02592 crossref_primary_10_1002_smll_202309078 crossref_primary_10_1002_aenm_202402633 crossref_primary_10_1016_j_jallcom_2022_168683 crossref_primary_10_1039_D1NR02592A crossref_primary_10_1016_j_cej_2021_132674 crossref_primary_10_1039_D2DT00641C crossref_primary_10_1002_advs_202401207 crossref_primary_10_1016_j_cej_2024_149264 crossref_primary_10_1002_ange_202302795 crossref_primary_10_1016_j_cej_2023_144373 crossref_primary_10_1002_ange_202415132 crossref_primary_10_1007_s12274_020_3133_x crossref_primary_10_1021_acsami_2c22632 crossref_primary_10_1007_s40820_023_01251_x crossref_primary_10_1002_aenm_202404246 crossref_primary_10_1002_smtd_202300461 crossref_primary_10_1039_D2SE01068B crossref_primary_10_26599_NR_2025_94907139 crossref_primary_10_1002_smll_202404808 crossref_primary_10_1016_j_cej_2023_142177 crossref_primary_10_1016_j_cej_2020_127135 crossref_primary_10_1016_j_jmst_2024_03_056 crossref_primary_10_1007_s12274_021_3568_8 crossref_primary_10_1002_chem_202303826 crossref_primary_10_1002_aenm_202102353 crossref_primary_10_12677_AAC_2022_123030 crossref_primary_10_1016_j_electacta_2021_138786 crossref_primary_10_1039_D2DT00037G crossref_primary_10_1039_D3QM00557G crossref_primary_10_1002_smll_202106012 crossref_primary_10_1039_D3CS00010A crossref_primary_10_1002_smll_202104513 crossref_primary_10_1016_j_apcatb_2022_122207 crossref_primary_10_1016_j_apcatb_2024_124028 crossref_primary_10_1039_D1TA03362J crossref_primary_10_1039_D2CY00055E crossref_primary_10_1016_j_jcis_2025_01_080 crossref_primary_10_1002_smll_202300194 crossref_primary_10_1007_s40820_021_00607_5 crossref_primary_10_1002_adma_202209500 crossref_primary_10_1016_j_ijhydene_2021_04_088 crossref_primary_10_1016_j_jcis_2023_02_003 crossref_primary_10_1039_D2GC01158A crossref_primary_10_1039_D0NR08025J crossref_primary_10_1007_s40820_021_00744_x crossref_primary_10_1016_j_apcatb_2023_123661 crossref_primary_10_1002_cssc_202102352 |
Cites_doi | 10.1063/1.1323224 10.1038/s41563-019-0463-8 10.1002/aenm.201802983 10.1002/adma.201803590 10.1002/anie.201808929 10.1021/cm702868u 10.1038/s41467-018-03858-w 10.1021/acs.nanolett.8b03833 10.1038/s41467-018-07792-9 10.1103/PhysRevB.13.5188 10.1073/pnas.1900556116 10.1002/anie.201204842 10.1063/1.1329672 10.1002/adma.201900528 10.1038/s41467-019-13092-7 10.1002/anie.201500137 10.1021/acs.accounts.8b00070 10.1002/jcc.21748 10.1002/adma.201304759 10.1021/jacs.6b00858 10.1103/PhysRevB.59.7413 10.1103/PhysRevB.59.1758 10.1002/adfm.201101598 10.1002/adma.201903605 10.1021/acsenergylett.9b00220 10.1038/s41467-019-09765-y 10.31635/ccschem.019.20190022 10.1007/s40820-019-0279-8 10.1103/physrevlett.77.3865 10.1007/s40820-019-0253-5 10.1002/advs.201900140 10.1021/ja504099w 10.1021/nn203879f 10.1007/s40820-019-0242-8 10.1038/ncomms15437 10.1021/jacs.9b02527 10.1021/nl501793a 10.1103/physrevb.50.17953 10.1038/s41467-018-05019-5 10.1039/C8TA06023A 10.1007/s40820-019-0299-4 10.1038/s41467-018-03429-z 10.1039/c6ee03088b 10.1002/adma.201704075 10.1039/c8ee03208d 10.1038/s41467-018-04954-7 10.1002/anie.201608899 10.1002/adma.201700404 10.1002/adma.201705366 10.1038/s41560-018-0296-8 10.1002/anie.201502836 10.1002/ange.201609527 10.1039/c9ee02388g 10.1039/c4ee01760a 10.1007/s40820-019-0289-6 10.1002/aenm.201702294 10.1038/s41467-018-06728-7 10.1039/C6TA09323J 10.1021/jacs.9b04492 10.1038/ncomms5565 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-020-00476-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database (ProQuest) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_963cffb4ad2c4771871640616a9dfd6b PMC7770877 10_1007_s40820_020_00476_4 |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c475t-54a9bfb52a543af0a59454c02318fb76e2678d0e41a344d2e79018d9dbc24e2c3 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Thu Aug 21 18:26:55 EDT 2025 Sun Sep 28 06:52:49 EDT 2025 Wed Aug 13 08:02:43 EDT 2025 Wed Aug 13 06:03:48 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Tue Jul 01 00:55:44 EDT 2025 Fri Feb 21 02:35:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mass transport Interfacial charge modulation Multiscale coordinated regulation 2D adaptive material Large-scale hydrogen production |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-54a9bfb52a543af0a59454c02318fb76e2678d0e41a344d2e79018d9dbc24e2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/963cffb4ad2c4771871640616a9dfd6b |
PMID | 34138122 |
PQID | 2419234051 |
PQPubID | 2044332 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_963cffb4ad2c4771871640616a9dfd6b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770877 proquest_miscellaneous_2542363780 proquest_journals_2473251489 proquest_journals_2419234051 crossref_citationtrail_10_1007_s40820_020_00476_4 crossref_primary_10_1007_s40820_020_00476_4 springer_journals_10_1007_s40820_020_00476_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationYear | 2020 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Liu, Yan, Chen, Fan, Sun (CR56) 2014; 14 Song, Li, Yang, Han, Liao, Sun (CR45) 2018; 9 Zheng, Wu, Gao, Zhang, Gao (CR23) 2018; 9 Kuang, Kenney, Meng, Hung, Liu (CR47) 2019; 116 Lin, Yan, Li, Si, Wang (CR2) 2019; 11 Dinh, Jain, Arquer, Luna, Li (CR7) 2019; 4 Faber, Dziedzic, Lukowski, Kaiser, Ding, Jin (CR17) 2014; 136 Xu, Lu, Sun, Jiang, Duan (CR11) 2018; 51 Wu, Liu, Han, Song, Shi (CR8) 2018; 9 Sun, Pan, Zhang, Zhang, Liang (CR21) 2019; 19 Zhou, Wang, Su, Gu, Liu (CR53) 2019; 12 Liu, Liang, Gu, Zhang, Li, Zou, Chen (CR1) 2018; 9 Wu, Gao, Zheng, Zheng, Zhu, Gao, Yu (CR41) 2018; 130 Wang, Zhu, Wen, Tamg, Xia (CR9) 2019; 31 Meng, Yilmaz, Ding, Gao, Ho (CR4) 2019; 31 Sheppard, Henkelman (CR36) 2011; 32 Deng, Lu, Zhang, Sui, Shi, Wang, Zheng (CR38) 2018; 8 Zhao, Feng, Liu, Wang, Wang (CR20) 2014; 5 Yilmaz, Tan, Lim, Ho (CR60) 2019; 9 Luo, Li, Zhu, Zhao, Gao (CR54) 2015; 54 Wang, Liu, Zeng, Li, Huang, Hu (CR39) 2017; 56 Luo, Tang, Khan, Yu, Cheng, Zou, Liu (CR50) 2019; 10 Kresse, Joubert (CR32) 1999; 59 You, Zhuo, Lu, Liu, Guo (CR16) 2019; 1 Lim, Yilmaz, Lim, Ho (CR6) 2018; 6 Weng, Xu, Wang, Meng, Grice, Yan (CR28) 2017; 10 Lim, Lim, Ho (CR5) 2017; 5 Zhang, Wang, Liu, Liao, Liu (CR48) 2017; 8 Zhang, Xia, Deng, Zhong, Xie (CR15) 2019; 11 Jiang, Liu, Luo, Ning, Peng (CR43) 2019; 10 Lu, Zhu, Yu, Zhang, Li (CR51) 2014; 26 Cao, Wang, Chen, Lei, Yang (CR3) 2019; 11 Yu, Yu, Zhang, Zheng, Duan (CR13) 2019; 141 Huang, Liu, Wang, Zhou, Wang, Song, Jiang (CR52) 2011; 21 Wu, Wei, Ren, Ji, Liu (CR27) 2018; 30 Han, Yang, Lu, Li, Xu (CR10) 2018; 9 Dresp, Dionigi, Klingenhof, Strasser (CR46) 2019; 4 Blöchl (CR31) 1994; 50 Faber, Jin (CR18) 2014; 7 Liang, Zou, Nairan, Zhang, Liu (CR19) 2020; 13 Yu, Zhou, Song, McElhenny, Wang (CR14) 2019; 10 Hammer, Hansen, Nørskov (CR30) 1999; 59 Lei, Zhou, Feng, Lei, Zhang, Chen, Qin (CR58) 2019; 11 Zou, Liu, Li, Wu, Liu (CR55) 2017; 29 Henkelman, Uberuaga, Jónsson (CR35) 2000; 113 Yang, Sasaki (CR37) 2008; 20 Qian, Cui, Jiang, Zhang, Du (CR44) 2017; 29 Danilovic, Subbaraman, Strmcnik, Chang, Paulikas, Stamenkovic, Markovic (CR49) 2012; 51 Bertolazzi, Kis (CR57) 2011; 5 Yilmaz, Yang, Do, Yu, Feng, Shen, Ho (CR22) 2019; 6 Huang, Chen, Yao, He, Jiang (CR26) 2015; 54 Liu, Li, Wang, Zhou, Liu, Guo (CR40) 2018; 30 Yang, Yao, Yu, Islam, He (CR42) 2019; 141 Henkelman, Jonsson (CR34) 2000; 113 Liu, Hua, Xiao, Zhou, Huang, Guo, Pan, Xie (CR24) 2016; 138 Yang, Mohmad, Wang, Fullon, Song (CR12) 2019; 18 Tang, Lu, Wang, Liu, Hao, Du, Asiri, Sun (CR25) 2017; 129 Perdew, Burke, Ernzerhof (CR29) 1996; 77 Monkhorst, Pack (CR33) 1976; 13 Deng, Zhang, Xie, Zhang, Zhang (CR59) 2019; 11 N Han (476_CR10) 2018; 9 S Deng (476_CR59) 2019; 11 J Lin (476_CR2) 2019; 11 Y Liu (476_CR24) 2016; 138 B Weng (476_CR28) 2017; 10 G Henkelman (476_CR35) 2000; 113 Z Lu (476_CR51) 2014; 26 B Hammer (476_CR30) 1999; 59 K Zhang (476_CR15) 2019; 11 P Blöchl (476_CR31) 1994; 50 Y Luo (476_CR54) 2015; 54 Y Yang (476_CR42) 2019; 141 Y Zhao (476_CR20) 2014; 5 Y Kuang (476_CR47) 2019; 116 D Wu (476_CR27) 2018; 30 X Zou (476_CR55) 2017; 29 YR Zheng (476_CR23) 2018; 9 G Yilmaz (476_CR22) 2019; 6 Y Wu (476_CR8) 2018; 9 W Xu (476_CR11) 2018; 51 L Yu (476_CR14) 2019; 10 N Danilovic (476_CR49) 2012; 51 J Perdew (476_CR29) 1996; 77 J Cao (476_CR3) 2019; 11 WY Lim (476_CR5) 2017; 5 L Wang (476_CR39) 2017; 56 MS Faber (476_CR18) 2014; 7 G Kresse (476_CR32) 1999; 59 J Yang (476_CR12) 2019; 18 KJH Lim (476_CR6) 2018; 6 C Liang (476_CR19) 2020; 13 Y Huang (476_CR52) 2011; 21 CT Dinh (476_CR7) 2019; 4 H You (476_CR16) 2019; 1 F Meng (476_CR4) 2019; 31 J Huang (476_CR26) 2015; 54 M Qian (476_CR44) 2017; 29 K Liu (476_CR56) 2014; 14 J Bertolazzi (476_CR57) 2011; 5 Y Sun (476_CR21) 2019; 19 C Tang (476_CR25) 2017; 129 G Henkelman (476_CR34) 2000; 113 T Deng (476_CR38) 2018; 8 D Sheppard (476_CR36) 2011; 32 H Monkhorst (476_CR33) 1976; 13 T Liu (476_CR40) 2018; 30 MS Faber (476_CR17) 2014; 136 R Wu (476_CR41) 2018; 130 C Lei (476_CR58) 2019; 11 W Wang (476_CR9) 2019; 31 J Zhou (476_CR53) 2019; 12 J Yang (476_CR37) 2008; 20 Y Luo (476_CR50) 2019; 10 J Zhang (476_CR48) 2017; 8 X Yu (476_CR13) 2019; 141 K Jiang (476_CR43) 2019; 10 Y Liu (476_CR1) 2018; 9 F Song (476_CR45) 2018; 9 S Dresp (476_CR46) 2019; 4 G Yilmaz (476_CR60) 2019; 9 |
References_xml | – volume: 113 start-page: 9978 year: 2000 end-page: 9985 ident: CR34 article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 18 start-page: 1309 year: 2019 end-page: 1314 ident: CR12 article-title: Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution publication-title: Nat. Mater. doi: 10.1038/s41563-019-0463-8 – volume: 9 start-page: 1802983 year: 2019 ident: CR60 article-title: Pseudomorphic transformation of interpenetrated prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802983 – volume: 30 start-page: e1803590 year: 2018 ident: CR40 article-title: Interfacial electron transfer of Ni P–NiP polymorphs inducing enhanced electrochemical properties publication-title: Adv. Mater. doi: 10.1002/adma.201803590 – volume: 130 start-page: 15671 year: 2018 end-page: 15675 ident: CR41 article-title: A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808929 – volume: 20 start-page: 2049 year: 2008 end-page: 2056 ident: CR37 article-title: Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating publication-title: Chem. Mater. doi: 10.1021/cm702868u – volume: 9 start-page: 1425 year: 2018 ident: CR8 article-title: Electron density modulation of NiCo S nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-018-03858-w – volume: 19 start-page: 761 year: 2019 end-page: 769 ident: CR21 article-title: Elastic properties and fracture behaviors of biaxially deformed, Polymorphic MoTe publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03833 – volume: 10 start-page: 269 year: 2019 ident: CR50 article-title: Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density publication-title: Nat. Commun. doi: 10.1038/s41467-018-07792-9 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR33 article-title: Special points for brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 116 start-page: 6624 year: 2019 end-page: 6629 ident: CR47 article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1900556116 – volume: 51 start-page: 12495 year: 2012 end-page: 12498 ident: CR49 article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH) /Metal catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204842 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR35 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 31 start-page: 1900528 year: 2019 ident: CR9 article-title: Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201900528 – volume: 10 start-page: 5106 year: 2019 ident: CR14 article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 54 start-page: 4876 year: 2015 end-page: 4879 ident: CR54 article-title: Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201500137 – volume: 51 start-page: 1590 year: 2018 end-page: 1598 ident: CR11 article-title: Superwetting electrodes for gas-involving electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00070 – volume: 32 start-page: 1769 year: 2011 end-page: 1771 ident: CR36 article-title: Letter to the editor paths to which the nudged elastic band converges publication-title: J. Comput. Chem. doi: 10.1002/jcc.21748 – volume: 26 start-page: 2683 year: 2014 end-page: 2687 ident: CR51 article-title: Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS nanostructured electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201304759 – volume: 138 start-page: 5087 year: 2016 end-page: 5092 ident: CR24 article-title: Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00858 – volume: 59 start-page: 7413 year: 1999 end-page: 7421 ident: CR30 article-title: Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR32 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 21 start-page: 4436 year: 2011 end-page: 4441 ident: CR52 article-title: Controllable underwater oil-adhesion-interface films assembled from nonspherical particles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101598 – volume: 31 start-page: 1903605 year: 2019 ident: CR4 article-title: A hybrid solar absorber-electrocatalytic N-doped carbon/alloy/semiconductor electrode for localized photothermic electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201903605 – volume: 4 start-page: 933 year: 2019 end-page: 942 ident: CR46 article-title: Direct electrolytic splitting of seawater: opportunities and challenges publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00220 – volume: 10 start-page: 1743 year: 2019 ident: CR43 article-title: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 1 start-page: 396 year: 2019 end-page: 407 ident: CR16 article-title: MoTe -based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis publication-title: CCS Chem. doi: 10.31635/ccschem.019.20190022 – volume: 11 start-page: 45 year: 2019 ident: CR58 article-title: Charge engineering of Mo C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H evolution publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0279-8 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR29 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 11 start-page: 21 year: 2019 ident: CR15 article-title: Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0253-5 – volume: 6 start-page: 1900140 year: 2019 ident: CR22 article-title: Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS basal domains via charge injection through surface functionalization and heteroatom doping publication-title: Adv. Sci. doi: 10.1002/advs.201900140 – volume: 136 start-page: 10053 year: 2014 end-page: 10061 ident: CR17 article-title: High-performance electrocatalysis using metallic cobalt pyrite (CoS ) micro- and nanostructures publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504099w – volume: 5 start-page: 9703 year: 2011 end-page: 9709 ident: CR57 article-title: Stretching and breaking of ultrathin MoS publication-title: ACS Nano doi: 10.1021/nn203879f – volume: 11 start-page: 12 year: 2019 ident: CR59 article-title: High-index-faceted Ni S branch arrays as bifunctional electrocatalysts for efficient water splitting publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0242-8 – volume: 8 start-page: 15437 year: 2017 ident: CR48 article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. doi: 10.1038/ncomms15437 – volume: 141 start-page: 7537 year: 2019 end-page: 7543 ident: CR13 article-title: “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02527 – volume: 14 start-page: 5097 year: 2014 end-page: 5103 ident: CR56 article-title: Elastic properties of chemical-vapor-deposited monolayer MoS , WS , and their bilayer heterostructures publication-title: Nano Lett. doi: 10.1021/nl501793a – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR31 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/physrevb.50.17953 – volume: 9 start-page: 2609 year: 2018 ident: CR1 article-title: Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours publication-title: Nat. Commun. doi: 10.1038/s41467-018-05019-5 – volume: 6 start-page: 20491 year: 2018 end-page: 20499 ident: CR6 article-title: Multi-compositional hierarchical nanostructured Ni S @MoS /NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06023A – volume: 11 start-page: 1545 year: 2019 ident: CR3 article-title: Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0299-4 – volume: 9 start-page: 924 year: 2018 ident: CR10 article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid publication-title: Nat. Commun. doi: 10.1038/s41467-018-03429-z – volume: 10 start-page: 121 year: 2017 end-page: 128 ident: CR28 article-title: A layered Na Ni Fe O double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting publication-title: Energy Environ. Sci. doi: 10.1039/c6ee03088b – volume: 29 start-page: 1704075 year: 2017 ident: CR44 article-title: Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional solid-solution nanoplate arrays publication-title: Adv. Mater. doi: 10.1002/adma.201704075 – volume: 12 start-page: 739 year: 2019 end-page: 746 ident: CR53 article-title: Electrochemically accessing ultrathin Co(oxy)-Hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction publication-title: Energy Environ. Sci. doi: 10.1039/c8ee03208d – volume: 9 start-page: 2533 year: 2018 ident: CR23 article-title: Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-018-04954-7 – volume: 129 start-page: 860 year: 2017 end-page: 864 ident: CR25 article-title: Energy-saving electrolytic hydrogen generation: Ni P nanoarray as a high-performance non-noble-metal electrocatalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608899 – volume: 29 start-page: 1700404 year: 2017 ident: CR55 article-title: Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201700404 – volume: 30 start-page: 1705633 year: 2018 ident: CR27 article-title: Co(OH) nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201705366 – volume: 4 start-page: 107 year: 2019 end-page: 114 ident: CR7 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 54 start-page: 8722 year: 2015 end-page: 8727 ident: CR26 article-title: CoOOH nanosheets with high mass activity for water oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502836 – volume: 56 start-page: 1105 year: 2017 end-page: 1110 ident: CR39 article-title: Constructing hierarchical tectorum-like a-Fe O /PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201609527 – volume: 13 start-page: 86 year: 2020 end-page: 95 ident: CR19 article-title: Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting publication-title: Energy Environ. Sci. doi: 10.1039/c9ee02388g – volume: 7 start-page: 3519 year: 2014 end-page: 3542 ident: CR18 article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications publication-title: Energy Environ. Sci. doi: 10.1039/c4ee01760a – volume: 11 start-page: 2034 year: 2019 ident: CR2 article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0289-6 – volume: 8 start-page: 1702294 year: 2018 ident: CR38 article-title: Inverted design for high-performance supercapacitor via Co(OH) -derived highly oriented MOF electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702294 – volume: 9 start-page: 4531 year: 2018 ident: CR45 article-title: Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions publication-title: Nat. Commun. doi: 10.1038/s41467-018-06728-7 – volume: 5 start-page: 919 year: 2017 end-page: 924 ident: CR5 article-title: Pseudomorphic-phase transformation of NiCo based ternary hierarchical 2D-1D nanostructures for enhanced electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09323J – volume: 141 start-page: 10417 year: 2019 end-page: 10430 ident: CR42 article-title: Hierarchical nanoassembly of MoS /Co S /Ni S /Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 5 start-page: 4565 year: 2014 ident: CR20 article-title: Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene publication-title: Nat. Commun. doi: 10.1038/ncomms5565 – volume: 113 start-page: 9901 year: 2000 ident: 476_CR35 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 4 start-page: 933 year: 2019 ident: 476_CR46 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00220 – volume: 8 start-page: 1702294 year: 2018 ident: 476_CR38 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702294 – volume: 19 start-page: 761 year: 2019 ident: 476_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03833 – volume: 116 start-page: 6624 year: 2019 ident: 476_CR47 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1900556116 – volume: 9 start-page: 2609 year: 2018 ident: 476_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05019-5 – volume: 11 start-page: 1545 year: 2019 ident: 476_CR3 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0299-4 – volume: 50 start-page: 17953 year: 1994 ident: 476_CR31 publication-title: Phys. Rev. B doi: 10.1103/physrevb.50.17953 – volume: 56 start-page: 1105 year: 2017 ident: 476_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201609527 – volume: 130 start-page: 15671 year: 2018 ident: 476_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808929 – volume: 129 start-page: 860 year: 2017 ident: 476_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608899 – volume: 9 start-page: 1802983 year: 2019 ident: 476_CR60 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802983 – volume: 13 start-page: 5188 year: 1976 ident: 476_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 51 start-page: 12495 year: 2012 ident: 476_CR49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204842 – volume: 141 start-page: 7537 year: 2019 ident: 476_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02527 – volume: 54 start-page: 4876 year: 2015 ident: 476_CR54 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201500137 – volume: 32 start-page: 1769 year: 2011 ident: 476_CR36 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21748 – volume: 5 start-page: 919 year: 2017 ident: 476_CR5 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09323J – volume: 6 start-page: 20491 year: 2018 ident: 476_CR6 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06023A – volume: 9 start-page: 1425 year: 2018 ident: 476_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03858-w – volume: 10 start-page: 121 year: 2017 ident: 476_CR28 publication-title: Energy Environ. Sci. doi: 10.1039/c6ee03088b – volume: 12 start-page: 739 year: 2019 ident: 476_CR53 publication-title: Energy Environ. Sci. doi: 10.1039/c8ee03208d – volume: 29 start-page: 1700404 year: 2017 ident: 476_CR55 publication-title: Adv. Mater. doi: 10.1002/adma.201700404 – volume: 29 start-page: 1704075 year: 2017 ident: 476_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201704075 – volume: 31 start-page: 1903605 year: 2019 ident: 476_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201903605 – volume: 4 start-page: 107 year: 2019 ident: 476_CR7 publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 9 start-page: 924 year: 2018 ident: 476_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03429-z – volume: 20 start-page: 2049 year: 2008 ident: 476_CR37 publication-title: Chem. Mater. doi: 10.1021/cm702868u – volume: 13 start-page: 86 year: 2020 ident: 476_CR19 publication-title: Energy Environ. Sci. doi: 10.1039/c9ee02388g – volume: 26 start-page: 2683 year: 2014 ident: 476_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.201304759 – volume: 141 start-page: 10417 year: 2019 ident: 476_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 21 start-page: 4436 year: 2011 ident: 476_CR52 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101598 – volume: 11 start-page: 45 year: 2019 ident: 476_CR58 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0279-8 – volume: 113 start-page: 9978 year: 2000 ident: 476_CR34 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 59 start-page: 7413 year: 1999 ident: 476_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 – volume: 59 start-page: 1758 year: 1999 ident: 476_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 14 start-page: 5097 year: 2014 ident: 476_CR56 publication-title: Nano Lett. doi: 10.1021/nl501793a – volume: 9 start-page: 2533 year: 2018 ident: 476_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04954-7 – volume: 18 start-page: 1309 year: 2019 ident: 476_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0463-8 – volume: 8 start-page: 15437 year: 2017 ident: 476_CR48 publication-title: Nat. Commun. doi: 10.1038/ncomms15437 – volume: 10 start-page: 5106 year: 2019 ident: 476_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 138 start-page: 5087 year: 2016 ident: 476_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00858 – volume: 136 start-page: 10053 year: 2014 ident: 476_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504099w – volume: 5 start-page: 9703 year: 2011 ident: 476_CR57 publication-title: ACS Nano doi: 10.1021/nn203879f – volume: 31 start-page: 1900528 year: 2019 ident: 476_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201900528 – volume: 11 start-page: 21 year: 2019 ident: 476_CR15 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0253-5 – volume: 11 start-page: 12 year: 2019 ident: 476_CR59 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0242-8 – volume: 1 start-page: 396 year: 2019 ident: 476_CR16 publication-title: CCS Chem. doi: 10.31635/ccschem.019.20190022 – volume: 77 start-page: 3865 year: 1996 ident: 476_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 9 start-page: 4531 year: 2018 ident: 476_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06728-7 – volume: 30 start-page: e1803590 year: 2018 ident: 476_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201803590 – volume: 10 start-page: 269 year: 2019 ident: 476_CR50 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07792-9 – volume: 30 start-page: 1705633 year: 2018 ident: 476_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201705366 – volume: 7 start-page: 3519 year: 2014 ident: 476_CR18 publication-title: Energy Environ. Sci. doi: 10.1039/c4ee01760a – volume: 54 start-page: 8722 year: 2015 ident: 476_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502836 – volume: 11 start-page: 2034 year: 2019 ident: 476_CR2 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0289-6 – volume: 51 start-page: 1590 year: 2018 ident: 476_CR11 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00070 – volume: 6 start-page: 1900140 year: 2019 ident: 476_CR22 publication-title: Adv. Sci. doi: 10.1002/advs.201900140 – volume: 5 start-page: 4565 year: 2014 ident: 476_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms5565 – volume: 10 start-page: 1743 year: 2019 ident: 476_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5246396 |
Snippet | Highlights
The 2D CoOOH sheet-encapsulated Ni
2
P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned... Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green... HighlightsThe 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned... Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green... The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was... Abstract Water electrolysis at high current density (1000 mA cm−2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 140 |
SubjectTerms | 2D adaptive material Arrays Bubbles Catalysis Charge transfer Convection Current density Electrocatalysts Electrolysis Electrolytes Electronic structure Encapsulation Engineering High current Hydrogen Hydrogen evolution Interfacial charge modulation Large-scale hydrogen production Mass transfer Mass transport Multiscale coordinated regulation Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Porosity Structural stability |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagXOCAeIqFgozEDSx2vfY6e0KlTYgQJAha0dvKr20itbsl2SCFX8C5P5FfwszGmzSV2kMu8Wttjz2fPeNvCHmTJQlyxghWJiZjIvcxM3lpmNMClKEHiCDwvfPXUTY8Ep-P5XG4cJsHt8puT2w3aldbvCN_z9FcmULZ5MP5L4ZRo9C6GkJo3CZ3Eg6ShC_FB586eeIK4zJtrIQYXFlc4qoRyOySbujMJNKXqQ1LpuQCtHtQtys4rdCQ1carSxKWqTgL73Da13gYuzlmeB5DDkbo-Zaua0MCbOHYq16YV0yxrYYbPCD3AzSleytZekhu-eoRuXeJsPAxueAHdL8ej4f0x8T7hvUrq-GYfQqA1dHRlH-j06qp6eHCoHcrVDXTyzn9DmB0-gcqoHjNT8_2qD379_eCsy_osdRRRLED9KVvlnS4dLMa5Jr2f4d1Qcew4LAwnUADdOQX2BX6E5qdPSFHg_7h_pCFqA7MCiUbJoXOTWkk11Kkuoy1zIUUFnnoeqVRmeegP13sRaJTIRz3CiBLz-XOWC48t-lTslPVlX9GqFOZib0zSe441OC0szZODRypJNTccxFJuvEvbKA8x8gbp8WarLmdsyLGH85ZISLydl3mfEX4cWPujzit65xI1t3-Uc9OirD2C9jjbFkaoR2HIQAwgGdUwFGZzl3pMhOR3U4oirCDzIuNvF-TrFKApqKXR-T1Ohm2BrT36MrXC8gjAStnqerFEVFbsrb1vdsp1XTSkowrpZArMiLvOqncNH79eDy_uSsvyF2O66N1B9olO81s4V8CqGvMq3bl_gdtNz29 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZgucAB8SsCCzISN7BIHP80x6XbVYWgRbAr9hbZsaNW2k1WbYrUfYI9I3Hvs_RReBJm0rTdVCwSh1xiZ5zGM57PnfE3hLxRUYScMYLlkVVMJD5kNsktc0aAM_QAEQSed_48UP0T8fFUnjY0OXgWZid-_36KBZFDhpscJDYEcbfJHQkLL6bvdVV3rTtcYw2mbUQQCymLa7w0Allc4i11mUSqMr1lxJRcgCdvXOsKOmsMWtW16aKIKR2q5szN31-r5ddq-v8WZt3NuNwJu9be7OgBud_AUHqw0puH5JYvHpF718gJH5Nf_JB2y-GwT7-NvK9Yr8gMbKnPAJw6OhjzL3RcVCU9nlnMZAVREzOf0q8APMeXIIDiX_rLxfnBcpGd_776ydknzE9aE0KxQ8ycr-a0P3eTErSY9n40VkCHYF74-HIxgjHowM_w19DvMPLkCTk56h13-6wp4sAyoWXFpDCJza3kRorY5KGRiZAiQ9q5Tm618hzcpQu9iEwshONeA0LpuMTZjAvPs_gp2SvKwj8j1GllQ-9slDgOEpxxWRbGFnZQEiR3XECi9RSkWcNwjoU2ztINN3M9bWmIF05bKgLydvPMxYrf45-9P-DMbnoiN3d9A1Q2bUw9hSUty3MrjOPwCcD345YUYJMyicudsgHZX-tF2iwY05RjND4G04huaNYxIFHRSQLyetMMKwGGd0zhyxn0kQCNVaw7YUB0S91a79tuKcajmlNca43UkAF5t1bM7eA3f4_n_9f9BbnL0WTqbKB9sldNZv4lYLrKvqqN-Q8D7TpU priority: 102 providerName: Springer Nature |
Title | 2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000 mA cm−2-Level-Current-Density Hydrogen Evolution Over 100 h in Neutral Water |
URI | https://link.springer.com/article/10.1007/s40820-020-00476-4 https://www.proquest.com/docview/2419234051 https://www.proquest.com/docview/2473251489 https://www.proquest.com/docview/2542363780 https://pubmed.ncbi.nlm.nih.gov/PMC7770877 https://doaj.org/article/963cffb4ad2c4771871640616a9dfd6b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: ABDBF dateStart: 20110301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: ADMLS dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: 8FG dateStart: 20191201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: AAJSJ dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: C6C dateStart: 20091201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: C24 dateStart: 20091201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgucAB8SsCS2UkbmCROHacHPtLhaBdLbtib5EdO2ql3RR105W6T8AZiXufpY_CkzCTpn8rLVw4tJVix27s8cznzPgbQt5GQYCcMYLlgYmYSJzPTJIbZrUAY-gAIgg87_xlEPVPxaczebaT6gtjwlb0wKuB-wACkuW5EdryTCjQpAjwwQhFOrG5jQxqXzBjO5spkCSuMCPT1j-IaZXFDkuNQE6XcEtkJpG4TG35MSUXYNdrQ7sC0gpdWFWmuiBgkfKj-gROdQ4Pszb7DHdiyL4Iz7xn5apkAHsI9mb85Q0nbGXbeo_IwxqU0uZqMB6TO654Qh7sUBU-Jb94h7Ynw2Gffh05V7JukWnYYJ8DVLV0MOZHdFyUE3oyMxjXCk1N9fySHgMMHV9DAxRf8C8XF83lIrv4_eMnZ58xWmlND8U6GEdfzml_bqcTkGnavarXBB3CYsPbl4sR9EEHboZPQ79Bz9Nn5LTXPWn3WZ3SgcHkyZJJoROTG8m1FKHOfS0TIUWGJHRxblTkOBhP6zsR6FAIy50CvBLbxJqMC8ez8Dk5KCaFe0GoVZHxnTVBYjm0YLXNMj80sJ-S0HJsPRKspyDNar5zTLtxnm6YmqtpS3384LSlwiPvNvd8X7F9_LV2C2d2UxOZuqsLIL9pLb_pv-TXI4druUhr9XGZcvTNh7BQgluKVQi4VMSJR95sikEvoLNHF24ygzoSgHIUqtj3iNoTt73_u19SjEcVw7hSCokiPfJ-LZjbzm8fj5f_YzxekfscF1IVMXRIDsrpzL0G3FeaBrkb9z42yL1mq9PqwW-rOzg6hqttLvA7ajcqJfAHoNNP4g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwENaUcgAODL-DoYCYgRNosGXZsg8MU5qElKYJA-m0NyNZMslMa5fUgQlPwLkPwkPxJOw6dtJ0pr314Iv1F0u7q0_Z1beEvAw9DzljBMs8HTIRW5fpONPMKAGboQWIIPC-824_7O6JTwfBwRr529yFwbDKxiZWhtoUKf5H_paju9KHtt774x8Ms0ahd7VJoTEXix07-wVHtpN32y1Y31ecd9rDrS6rswqwVMigZIFQsc50wFUgfJW5KohFIFLkQYsyLUPLwX4b1wpP-UIYbiVsmZGJjU65sDz1od9r5LrwfR-5-qPOx0Z-ucQ8UEuvJCZzFme4cQQyyfhL-rQA6dLkkpUz4ALQRL29z-G7RMdZlR_P81go3bC-91Pd_sNc0S7D8x9yPsJMr-ytVQqCFdx8PurznOu32lE7d8jtGgrTzbns3iVrNr9Hbp0hSLxPTnmLbhWDQZd-HVlbsnaeKjjWHwJANrQ_5p_pOC8LOpxqjKaFriZqdkK_APgd_4YOKLoV6NEmTY_-_TnlrIcRUg0lFWth7H45o92ZmRSgR7T9s9ZDOgAFx8Z0BAPQvp3ip9B9GHbygOxdyXo_JOt5kdtHhBoZatca7cWGQw9GmTR1fQ1HuAB6joxDvGb-k7SmWMdMH4fJghy6WrPExQfXLBEOeb1oczwnGLm09gdc1kVNJAevXhST70ltaxKwqWmWaaEMhykA8IFnYsBtoYpNZkLtkI1GKJLaYp0kS_26oFj6AIVFFDvkxaIYTBH6l1RuiynUCQCbh76MXIfIFVlb-b2rJfl4VJGaSymRm9IhbxqpXA5-8Xw8vvxTnpMb3eFuL-lt93eekJscdaUKRdog6-Vkap8CoCz1s0qLKfl21WbjP7K4efU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdgSAgeJv6KsAFG4g2sJY4dJ49jbVVgtBNsYm-RHTu00pZMXYpUPgHPSLz3s_Sj8Em4S9N_E0PiIS-xY6fxne_n3t3vCHkVBQFyxgiWByZiInE-M0lumNUCjKEDiCAw3_ljL-qeiPen8nQti7-Odl-4JOc5DcjSVFR7FzbfWya-YZlkn-HRB-kOYZKb5BZyddXu2hX_OFdYmWnlJ8TyymKNrUYgt0u4IjSTSGCmVjyZkguw743BnQNqha6sumJdELBI-VGTifP319qwdnVRgA0kezUO84oztrZxnXtkuwGndH8uTffJDVc8IHfXKAsfkl-8RQ_Kfr9LPw-cq1i7yDQctM8AslraG_IjOiyqkh6PDca3wlAjPbmknwCODr_DABT_6J9Nz_dn0-z894-fnB1i1NKCJoq1MJ6-mtDuxI5KkG3a_tboBu2D0uHjs-kA5qA9N8ZfQ7_AzKNH5KTTPj7osqa0A8uEkhWTQicmN5JrKUKd-1omQooMyeji3KjIcTCi1nci0KEQljsFuCW2iTUZF45n4WOyVZSFe0KoVZHxnTVBYjmMYLXNMj80cK6SMHJsPRIsliDNGt5zLL9xli4Zm-tlS328cNlS4ZHXy2cu5qwf_-z9Fld22RMZu-sb5ehr2mwAKWx0WZ4boS2HTwCIAA-qAKYindjcRsYjuwu5SJtt5DLl6KMPQWGCa5pVCPhUxIlHXi6bYX9Ap48uXDmGPhIAcxSq2PeI2hC3jffdbCmGg5ppXCmFhJEeebMQzNXk13-Pp__X_QW5fdTqpIfveh92yB2O2lOHC-2SrWo0ds8A9FXmea3XfwAOAEVs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+CoOOH+Sheet-Encapsulated+Ni2P+into+Tubular+Arrays+Realizing+1000%C2%A0mA%C2%A0cm%E2%88%922-Level-Current-Density+Hydrogen+Evolution+Over+100%C2%A0h+in+Neutral+Water&rft.jtitle=Nano-micro+letters&rft.au=Shucong+Zhang&rft.au=Wenbin+Wang&rft.au=Feilong+Hu&rft.au=Yan+Mi&rft.date=2020-12-01&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1007%2Fs40820-020-00476-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_963cffb4ad2c4771871640616a9dfd6b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |