2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000 mA cm−2-Level-Current-Density Hydrogen Evolution Over 100 h in Neutral Water

Highlights The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed. The designed electrocatalysts realize expectant 1000 mA cm −2 -level-current-density hydrogen evolution in...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 12; no. 1; pp. 140 - 16
Main Authors Zhang, Shucong, Wang, Wenbin, Hu, Feilong, Mi, Yan, Wang, Shuzhe, Liu, Youwen, Ai, Xiaomeng, Fang, Jiakun, Li, Huiqiao, Zhai, Tianyou
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2311-6706
2150-5551
2150-5551
DOI10.1007/s40820-020-00476-4

Cover

Abstract Highlights The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed. The designed electrocatalysts realize expectant 1000 mA cm −2 -level-current-density hydrogen evolution in neutral water for over 100 h. Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm −2 -level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
AbstractList Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
HighlightsThe 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed.The designed electrocatalysts realize expectant 1000 mA cm−2-level-current-density hydrogen evolution in neutral water for over 100 h.Water electrolysis at high current density (1000 mA cm−2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm−2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
Abstract Water electrolysis at high current density (1000 mA cm−2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm−2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
Highlights The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed. The designed electrocatalysts realize expectant 1000 mA cm −2 -level-current-density hydrogen evolution in neutral water for over 100 h. Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm −2 -level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm −2 -level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed. The designed electrocatalysts realize expectant 1000 mA cm −2 -level-current-density hydrogen evolution in neutral water for over 100 h. Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm −2 -level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
ArticleNumber 140
Author Li, Huiqiao
Wang, Shuzhe
Fang, Jiakun
Liu, Youwen
Hu, Feilong
Zhang, Shucong
Ai, Xiaomeng
Zhai, Tianyou
Mi, Yan
Wang, Wenbin
Author_xml – sequence: 1
  givenname: Shucong
  surname: Zhang
  fullname: Zhang, Shucong
  organization: Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities
– sequence: 2
  givenname: Wenbin
  surname: Wang
  fullname: Wang, Wenbin
  organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Feilong
  surname: Hu
  fullname: Hu, Feilong
  organization: Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities
– sequence: 4
  givenname: Yan
  surname: Mi
  fullname: Mi, Yan
  email: miyan@gxun.edu.cn
  organization: Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 5
  givenname: Shuzhe
  surname: Wang
  fullname: Wang, Shuzhe
  organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 6
  givenname: Youwen
  surname: Liu
  fullname: Liu, Youwen
  email: ywliu@hust.edu.cn
  organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 7
  givenname: Xiaomeng
  surname: Ai
  fullname: Ai, Xiaomeng
  organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology
– sequence: 8
  givenname: Jiakun
  surname: Fang
  fullname: Fang, Jiakun
  organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology
– sequence: 9
  givenname: Huiqiao
  surname: Li
  fullname: Li, Huiqiao
  organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 10
  givenname: Tianyou
  surname: Zhai
  fullname: Zhai, Tianyou
  email: zhaity@hust.edu.cn
  organization: State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology
BookMark eNp9Us1uEzEQXqEiWkpfgJMlLlwW_LvevSBFaaCVogZBEUfL651NXG3sYO9GCk_AGYl7niWPwpPgkCLUHnIY2Rp_3zfzeeZ5duK8gyx7SfAbgrF8GzkuKc7xPjCXRc6fZGeUCJwLIchJujNC8kLi4jS7iNHWWFAuqRT8WXbKOGElofQs-0Uv0djPZlfo8wKgzyfO6FUcOt1Dg24s_Yis6z26HeqUC2gUgt5E9Al0Z79bN0epF7zbLke7rVn-_vGT5lNYQ5ePhxDA9fkluGj7DbraNMHPwaHJ2ndDb71DszWEPX23XaQa6AaGPugOfU2Vw4vsaau7CBf353n25f3kdnyVT2cfrsejaW64FH0uuK7qthZUC850i7WouOAGJ-tlW8sCaCHLBgMnmnHeUJAVJmVTNbWhHKhh59n1Qbfx-k6tgl3qsFFeW_U34cNc6dBb04GqCmbatua6oam4JKUkBccFKXTVtE1RJ613B63VUC-hMcl-8vNA9OGLsws192slpcSllEng9b1A8N8GiL1a2mig67QDP0RFBaesYLLECfrqEfTOD8Glr1JpyIwKwsvqOIpUlHEsSEKVB5QJPsYArTK21_sRpS5tpwhW-4VTh4VTeB_7hVM8Uekj6j-3R0nsQIoJ7OYQ_nd1hPUHB6Ppdw
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_165258
crossref_primary_10_1016_j_mtphys_2021_100448
crossref_primary_10_1016_j_jallcom_2022_164603
crossref_primary_10_1016_j_mtphys_2022_100727
crossref_primary_10_1002_sstr_202200404
crossref_primary_10_1002_adfm_202307109
crossref_primary_10_1021_acs_iecr_0c05565
crossref_primary_10_1021_acsami_1c22294
crossref_primary_10_1039_D3QI01587D
crossref_primary_10_1021_acsaem_3c00010
crossref_primary_10_1039_D2TA01233B
crossref_primary_10_1021_acsomega_4c10407
crossref_primary_10_1002_aenm_202200928
crossref_primary_10_1016_j_apcatb_2024_124392
crossref_primary_10_1016_j_jcis_2022_01_132
crossref_primary_10_1088_1361_6528_acd3f6
crossref_primary_10_1002_smll_202302906
crossref_primary_10_1016_j_coelec_2021_100788
crossref_primary_10_1007_s12598_023_02337_6
crossref_primary_10_1016_j_jechem_2020_11_038
crossref_primary_10_1002_anie_202302795
crossref_primary_10_1016_j_apcatb_2022_122256
crossref_primary_10_1002_adma_202307979
crossref_primary_10_1021_acsami_1c01091
crossref_primary_10_1039_D1NJ04344G
crossref_primary_10_1002_adma_202108133
crossref_primary_10_1002_adfm_202211260
crossref_primary_10_1002_adma_202311322
crossref_primary_10_1002_adfm_202412685
crossref_primary_10_1016_j_jpowsour_2021_230279
crossref_primary_10_3389_fchem_2022_866415
crossref_primary_10_1016_j_ccr_2024_215832
crossref_primary_10_1016_j_esci_2024_100334
crossref_primary_10_1016_j_jallcom_2022_163865
crossref_primary_10_1021_acsaem_3c02215
crossref_primary_10_1016_j_apcatb_2023_122926
crossref_primary_10_1002_aenm_202201713
crossref_primary_10_1002_adfm_202304296
crossref_primary_10_1039_D1DT00852H
crossref_primary_10_1007_s40820_023_01129_y
crossref_primary_10_1016_j_jcat_2022_04_009
crossref_primary_10_1021_acsaem_1c01671
crossref_primary_10_1021_acsaem_1c01314
crossref_primary_10_1016_j_ijhydene_2021_12_264
crossref_primary_10_1002_anie_202415132
crossref_primary_10_1021_acssuschemeng_4c08443
crossref_primary_10_1007_s00339_023_06775_y
crossref_primary_10_1016_j_apsusc_2023_157204
crossref_primary_10_1016_j_apcatb_2021_120559
crossref_primary_10_1021_acs_iecr_1c02592
crossref_primary_10_1002_smll_202309078
crossref_primary_10_1002_aenm_202402633
crossref_primary_10_1016_j_jallcom_2022_168683
crossref_primary_10_1039_D1NR02592A
crossref_primary_10_1016_j_cej_2021_132674
crossref_primary_10_1039_D2DT00641C
crossref_primary_10_1002_advs_202401207
crossref_primary_10_1016_j_cej_2024_149264
crossref_primary_10_1002_ange_202302795
crossref_primary_10_1016_j_cej_2023_144373
crossref_primary_10_1002_ange_202415132
crossref_primary_10_1007_s12274_020_3133_x
crossref_primary_10_1021_acsami_2c22632
crossref_primary_10_1007_s40820_023_01251_x
crossref_primary_10_1002_aenm_202404246
crossref_primary_10_1002_smtd_202300461
crossref_primary_10_1039_D2SE01068B
crossref_primary_10_26599_NR_2025_94907139
crossref_primary_10_1002_smll_202404808
crossref_primary_10_1016_j_cej_2023_142177
crossref_primary_10_1016_j_cej_2020_127135
crossref_primary_10_1016_j_jmst_2024_03_056
crossref_primary_10_1007_s12274_021_3568_8
crossref_primary_10_1002_chem_202303826
crossref_primary_10_1002_aenm_202102353
crossref_primary_10_12677_AAC_2022_123030
crossref_primary_10_1016_j_electacta_2021_138786
crossref_primary_10_1039_D2DT00037G
crossref_primary_10_1039_D3QM00557G
crossref_primary_10_1002_smll_202106012
crossref_primary_10_1039_D3CS00010A
crossref_primary_10_1002_smll_202104513
crossref_primary_10_1016_j_apcatb_2022_122207
crossref_primary_10_1016_j_apcatb_2024_124028
crossref_primary_10_1039_D1TA03362J
crossref_primary_10_1039_D2CY00055E
crossref_primary_10_1016_j_jcis_2025_01_080
crossref_primary_10_1002_smll_202300194
crossref_primary_10_1007_s40820_021_00607_5
crossref_primary_10_1002_adma_202209500
crossref_primary_10_1016_j_ijhydene_2021_04_088
crossref_primary_10_1016_j_jcis_2023_02_003
crossref_primary_10_1039_D2GC01158A
crossref_primary_10_1039_D0NR08025J
crossref_primary_10_1007_s40820_021_00744_x
crossref_primary_10_1016_j_apcatb_2023_123661
crossref_primary_10_1002_cssc_202102352
Cites_doi 10.1063/1.1323224
10.1038/s41563-019-0463-8
10.1002/aenm.201802983
10.1002/adma.201803590
10.1002/anie.201808929
10.1021/cm702868u
10.1038/s41467-018-03858-w
10.1021/acs.nanolett.8b03833
10.1038/s41467-018-07792-9
10.1103/PhysRevB.13.5188
10.1073/pnas.1900556116
10.1002/anie.201204842
10.1063/1.1329672
10.1002/adma.201900528
10.1038/s41467-019-13092-7
10.1002/anie.201500137
10.1021/acs.accounts.8b00070
10.1002/jcc.21748
10.1002/adma.201304759
10.1021/jacs.6b00858
10.1103/PhysRevB.59.7413
10.1103/PhysRevB.59.1758
10.1002/adfm.201101598
10.1002/adma.201903605
10.1021/acsenergylett.9b00220
10.1038/s41467-019-09765-y
10.31635/ccschem.019.20190022
10.1007/s40820-019-0279-8
10.1103/physrevlett.77.3865
10.1007/s40820-019-0253-5
10.1002/advs.201900140
10.1021/ja504099w
10.1021/nn203879f
10.1007/s40820-019-0242-8
10.1038/ncomms15437
10.1021/jacs.9b02527
10.1021/nl501793a
10.1103/physrevb.50.17953
10.1038/s41467-018-05019-5
10.1039/C8TA06023A
10.1007/s40820-019-0299-4
10.1038/s41467-018-03429-z
10.1039/c6ee03088b
10.1002/adma.201704075
10.1039/c8ee03208d
10.1038/s41467-018-04954-7
10.1002/anie.201608899
10.1002/adma.201700404
10.1002/adma.201705366
10.1038/s41560-018-0296-8
10.1002/anie.201502836
10.1002/ange.201609527
10.1039/c9ee02388g
10.1039/c4ee01760a
10.1007/s40820-019-0289-6
10.1002/aenm.201702294
10.1038/s41467-018-06728-7
10.1039/C6TA09323J
10.1021/jacs.9b04492
10.1038/ncomms5565
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-020-00476-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database (ProQuest)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 16
ExternalDocumentID oai_doaj_org_article_963cffb4ad2c4771871640616a9dfd6b
PMC7770877
10_1007_s40820_020_00476_4
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-54a9bfb52a543af0a59454c02318fb76e2678d0e41a344d2e79018d9dbc24e2c3
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:30:22 EDT 2025
Thu Aug 21 18:26:55 EDT 2025
Sun Sep 28 06:52:49 EDT 2025
Wed Aug 13 08:02:43 EDT 2025
Wed Aug 13 06:03:48 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Tue Jul 01 00:55:44 EDT 2025
Fri Feb 21 02:35:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mass transport
Interfacial charge modulation
Multiscale coordinated regulation
2D adaptive material
Large-scale hydrogen production
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-54a9bfb52a543af0a59454c02318fb76e2678d0e41a344d2e79018d9dbc24e2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/963cffb4ad2c4771871640616a9dfd6b
PMID 34138122
PQID 2419234051
PQPubID 2044332
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_963cffb4ad2c4771871640616a9dfd6b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770877
proquest_miscellaneous_2542363780
proquest_journals_2473251489
proquest_journals_2419234051
crossref_citationtrail_10_1007_s40820_020_00476_4
crossref_primary_10_1007_s40820_020_00476_4
springer_journals_10_1007_s40820_020_00476_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Liu, Yan, Chen, Fan, Sun (CR56) 2014; 14
Song, Li, Yang, Han, Liao, Sun (CR45) 2018; 9
Zheng, Wu, Gao, Zhang, Gao (CR23) 2018; 9
Kuang, Kenney, Meng, Hung, Liu (CR47) 2019; 116
Lin, Yan, Li, Si, Wang (CR2) 2019; 11
Dinh, Jain, Arquer, Luna, Li (CR7) 2019; 4
Faber, Dziedzic, Lukowski, Kaiser, Ding, Jin (CR17) 2014; 136
Xu, Lu, Sun, Jiang, Duan (CR11) 2018; 51
Wu, Liu, Han, Song, Shi (CR8) 2018; 9
Sun, Pan, Zhang, Zhang, Liang (CR21) 2019; 19
Zhou, Wang, Su, Gu, Liu (CR53) 2019; 12
Liu, Liang, Gu, Zhang, Li, Zou, Chen (CR1) 2018; 9
Wu, Gao, Zheng, Zheng, Zhu, Gao, Yu (CR41) 2018; 130
Wang, Zhu, Wen, Tamg, Xia (CR9) 2019; 31
Meng, Yilmaz, Ding, Gao, Ho (CR4) 2019; 31
Sheppard, Henkelman (CR36) 2011; 32
Deng, Lu, Zhang, Sui, Shi, Wang, Zheng (CR38) 2018; 8
Zhao, Feng, Liu, Wang, Wang (CR20) 2014; 5
Yilmaz, Tan, Lim, Ho (CR60) 2019; 9
Luo, Li, Zhu, Zhao, Gao (CR54) 2015; 54
Wang, Liu, Zeng, Li, Huang, Hu (CR39) 2017; 56
Luo, Tang, Khan, Yu, Cheng, Zou, Liu (CR50) 2019; 10
Kresse, Joubert (CR32) 1999; 59
You, Zhuo, Lu, Liu, Guo (CR16) 2019; 1
Lim, Yilmaz, Lim, Ho (CR6) 2018; 6
Weng, Xu, Wang, Meng, Grice, Yan (CR28) 2017; 10
Lim, Lim, Ho (CR5) 2017; 5
Zhang, Wang, Liu, Liao, Liu (CR48) 2017; 8
Zhang, Xia, Deng, Zhong, Xie (CR15) 2019; 11
Jiang, Liu, Luo, Ning, Peng (CR43) 2019; 10
Lu, Zhu, Yu, Zhang, Li (CR51) 2014; 26
Cao, Wang, Chen, Lei, Yang (CR3) 2019; 11
Yu, Yu, Zhang, Zheng, Duan (CR13) 2019; 141
Huang, Liu, Wang, Zhou, Wang, Song, Jiang (CR52) 2011; 21
Wu, Wei, Ren, Ji, Liu (CR27) 2018; 30
Han, Yang, Lu, Li, Xu (CR10) 2018; 9
Dresp, Dionigi, Klingenhof, Strasser (CR46) 2019; 4
Blöchl (CR31) 1994; 50
Faber, Jin (CR18) 2014; 7
Liang, Zou, Nairan, Zhang, Liu (CR19) 2020; 13
Yu, Zhou, Song, McElhenny, Wang (CR14) 2019; 10
Hammer, Hansen, Nørskov (CR30) 1999; 59
Lei, Zhou, Feng, Lei, Zhang, Chen, Qin (CR58) 2019; 11
Zou, Liu, Li, Wu, Liu (CR55) 2017; 29
Henkelman, Uberuaga, Jónsson (CR35) 2000; 113
Yang, Sasaki (CR37) 2008; 20
Qian, Cui, Jiang, Zhang, Du (CR44) 2017; 29
Danilovic, Subbaraman, Strmcnik, Chang, Paulikas, Stamenkovic, Markovic (CR49) 2012; 51
Bertolazzi, Kis (CR57) 2011; 5
Yilmaz, Yang, Do, Yu, Feng, Shen, Ho (CR22) 2019; 6
Huang, Chen, Yao, He, Jiang (CR26) 2015; 54
Liu, Li, Wang, Zhou, Liu, Guo (CR40) 2018; 30
Yang, Yao, Yu, Islam, He (CR42) 2019; 141
Henkelman, Jonsson (CR34) 2000; 113
Liu, Hua, Xiao, Zhou, Huang, Guo, Pan, Xie (CR24) 2016; 138
Yang, Mohmad, Wang, Fullon, Song (CR12) 2019; 18
Tang, Lu, Wang, Liu, Hao, Du, Asiri, Sun (CR25) 2017; 129
Perdew, Burke, Ernzerhof (CR29) 1996; 77
Monkhorst, Pack (CR33) 1976; 13
Deng, Zhang, Xie, Zhang, Zhang (CR59) 2019; 11
N Han (476_CR10) 2018; 9
S Deng (476_CR59) 2019; 11
J Lin (476_CR2) 2019; 11
Y Liu (476_CR24) 2016; 138
B Weng (476_CR28) 2017; 10
G Henkelman (476_CR35) 2000; 113
Z Lu (476_CR51) 2014; 26
B Hammer (476_CR30) 1999; 59
K Zhang (476_CR15) 2019; 11
P Blöchl (476_CR31) 1994; 50
Y Luo (476_CR54) 2015; 54
Y Yang (476_CR42) 2019; 141
Y Zhao (476_CR20) 2014; 5
Y Kuang (476_CR47) 2019; 116
D Wu (476_CR27) 2018; 30
X Zou (476_CR55) 2017; 29
YR Zheng (476_CR23) 2018; 9
G Yilmaz (476_CR22) 2019; 6
Y Wu (476_CR8) 2018; 9
W Xu (476_CR11) 2018; 51
L Yu (476_CR14) 2019; 10
N Danilovic (476_CR49) 2012; 51
J Perdew (476_CR29) 1996; 77
J Cao (476_CR3) 2019; 11
WY Lim (476_CR5) 2017; 5
L Wang (476_CR39) 2017; 56
MS Faber (476_CR18) 2014; 7
G Kresse (476_CR32) 1999; 59
J Yang (476_CR12) 2019; 18
KJH Lim (476_CR6) 2018; 6
C Liang (476_CR19) 2020; 13
Y Huang (476_CR52) 2011; 21
CT Dinh (476_CR7) 2019; 4
H You (476_CR16) 2019; 1
F Meng (476_CR4) 2019; 31
J Huang (476_CR26) 2015; 54
M Qian (476_CR44) 2017; 29
K Liu (476_CR56) 2014; 14
J Bertolazzi (476_CR57) 2011; 5
Y Sun (476_CR21) 2019; 19
C Tang (476_CR25) 2017; 129
G Henkelman (476_CR34) 2000; 113
T Deng (476_CR38) 2018; 8
D Sheppard (476_CR36) 2011; 32
H Monkhorst (476_CR33) 1976; 13
T Liu (476_CR40) 2018; 30
MS Faber (476_CR17) 2014; 136
R Wu (476_CR41) 2018; 130
C Lei (476_CR58) 2019; 11
W Wang (476_CR9) 2019; 31
J Zhou (476_CR53) 2019; 12
J Yang (476_CR37) 2008; 20
Y Luo (476_CR50) 2019; 10
J Zhang (476_CR48) 2017; 8
X Yu (476_CR13) 2019; 141
K Jiang (476_CR43) 2019; 10
Y Liu (476_CR1) 2018; 9
F Song (476_CR45) 2018; 9
S Dresp (476_CR46) 2019; 4
G Yilmaz (476_CR60) 2019; 9
References_xml – volume: 113
  start-page: 9978
  year: 2000
  end-page: 9985
  ident: CR34
  article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 18
  start-page: 1309
  year: 2019
  end-page: 1314
  ident: CR12
  article-title: Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0463-8
– volume: 9
  start-page: 1802983
  year: 2019
  ident: CR60
  article-title: Pseudomorphic transformation of interpenetrated prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802983
– volume: 30
  start-page: e1803590
  year: 2018
  ident: CR40
  article-title: Interfacial electron transfer of Ni P–NiP polymorphs inducing enhanced electrochemical properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803590
– volume: 130
  start-page: 15671
  year: 2018
  end-page: 15675
  ident: CR41
  article-title: A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808929
– volume: 20
  start-page: 2049
  year: 2008
  end-page: 2056
  ident: CR37
  article-title: Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating
  publication-title: Chem. Mater.
  doi: 10.1021/cm702868u
– volume: 9
  start-page: 1425
  year: 2018
  ident: CR8
  article-title: Electron density modulation of NiCo S nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03858-w
– volume: 19
  start-page: 761
  year: 2019
  end-page: 769
  ident: CR21
  article-title: Elastic properties and fracture behaviors of biaxially deformed, Polymorphic MoTe
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03833
– volume: 10
  start-page: 269
  year: 2019
  ident: CR50
  article-title: Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07792-9
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR33
  article-title: Special points for brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 116
  start-page: 6624
  year: 2019
  end-page: 6629
  ident: CR47
  article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1900556116
– volume: 51
  start-page: 12495
  year: 2012
  end-page: 12498
  ident: CR49
  article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH) /Metal catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204842
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR35
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 31
  start-page: 1900528
  year: 2019
  ident: CR9
  article-title: Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900528
– volume: 10
  start-page: 5106
  year: 2019
  ident: CR14
  article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 54
  start-page: 4876
  year: 2015
  end-page: 4879
  ident: CR54
  article-title: Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201500137
– volume: 51
  start-page: 1590
  year: 2018
  end-page: 1598
  ident: CR11
  article-title: Superwetting electrodes for gas-involving electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00070
– volume: 32
  start-page: 1769
  year: 2011
  end-page: 1771
  ident: CR36
  article-title: Letter to the editor paths to which the nudged elastic band converges
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21748
– volume: 26
  start-page: 2683
  year: 2014
  end-page: 2687
  ident: CR51
  article-title: Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS nanostructured electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304759
– volume: 138
  start-page: 5087
  year: 2016
  end-page: 5092
  ident: CR24
  article-title: Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00858
– volume: 59
  start-page: 7413
  year: 1999
  end-page: 7421
  ident: CR30
  article-title: Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7413
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR32
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 21
  start-page: 4436
  year: 2011
  end-page: 4441
  ident: CR52
  article-title: Controllable underwater oil-adhesion-interface films assembled from nonspherical particles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101598
– volume: 31
  start-page: 1903605
  year: 2019
  ident: CR4
  article-title: A hybrid solar absorber-electrocatalytic N-doped carbon/alloy/semiconductor electrode for localized photothermic electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903605
– volume: 4
  start-page: 933
  year: 2019
  end-page: 942
  ident: CR46
  article-title: Direct electrolytic splitting of seawater: opportunities and challenges
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00220
– volume: 10
  start-page: 1743
  year: 2019
  ident: CR43
  article-title: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
– volume: 1
  start-page: 396
  year: 2019
  end-page: 407
  ident: CR16
  article-title: MoTe -based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.019.20190022
– volume: 11
  start-page: 45
  year: 2019
  ident: CR58
  article-title: Charge engineering of Mo C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H evolution
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0279-8
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR29
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.77.3865
– volume: 11
  start-page: 21
  year: 2019
  ident: CR15
  article-title: Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0253-5
– volume: 6
  start-page: 1900140
  year: 2019
  ident: CR22
  article-title: Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS basal domains via charge injection through surface functionalization and heteroatom doping
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900140
– volume: 136
  start-page: 10053
  year: 2014
  end-page: 10061
  ident: CR17
  article-title: High-performance electrocatalysis using metallic cobalt pyrite (CoS ) micro- and nanostructures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504099w
– volume: 5
  start-page: 9703
  year: 2011
  end-page: 9709
  ident: CR57
  article-title: Stretching and breaking of ultrathin MoS
  publication-title: ACS Nano
  doi: 10.1021/nn203879f
– volume: 11
  start-page: 12
  year: 2019
  ident: CR59
  article-title: High-index-faceted Ni S branch arrays as bifunctional electrocatalysts for efficient water splitting
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0242-8
– volume: 8
  start-page: 15437
  year: 2017
  ident: CR48
  article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15437
– volume: 141
  start-page: 7537
  year: 2019
  end-page: 7543
  ident: CR13
  article-title: “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02527
– volume: 14
  start-page: 5097
  year: 2014
  end-page: 5103
  ident: CR56
  article-title: Elastic properties of chemical-vapor-deposited monolayer MoS , WS , and their bilayer heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/nl501793a
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR31
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.50.17953
– volume: 9
  start-page: 2609
  year: 2018
  ident: CR1
  article-title: Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05019-5
– volume: 6
  start-page: 20491
  year: 2018
  end-page: 20499
  ident: CR6
  article-title: Multi-compositional hierarchical nanostructured Ni S @MoS /NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06023A
– volume: 11
  start-page: 1545
  year: 2019
  ident: CR3
  article-title: Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0299-4
– volume: 9
  start-page: 924
  year: 2018
  ident: CR10
  article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03429-z
– volume: 10
  start-page: 121
  year: 2017
  end-page: 128
  ident: CR28
  article-title: A layered Na Ni Fe O double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c6ee03088b
– volume: 29
  start-page: 1704075
  year: 2017
  ident: CR44
  article-title: Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional solid-solution nanoplate arrays
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704075
– volume: 12
  start-page: 739
  year: 2019
  end-page: 746
  ident: CR53
  article-title: Electrochemically accessing ultrathin Co(oxy)-Hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c8ee03208d
– volume: 9
  start-page: 2533
  year: 2018
  ident: CR23
  article-title: Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04954-7
– volume: 129
  start-page: 860
  year: 2017
  end-page: 864
  ident: CR25
  article-title: Energy-saving electrolytic hydrogen generation: Ni P nanoarray as a high-performance non-noble-metal electrocatalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608899
– volume: 29
  start-page: 1700404
  year: 2017
  ident: CR55
  article-title: Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700404
– volume: 30
  start-page: 1705633
  year: 2018
  ident: CR27
  article-title: Co(OH) nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705366
– volume: 4
  start-page: 107
  year: 2019
  end-page: 114
  ident: CR7
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 54
  start-page: 8722
  year: 2015
  end-page: 8727
  ident: CR26
  article-title: CoOOH nanosheets with high mass activity for water oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502836
– volume: 56
  start-page: 1105
  year: 2017
  end-page: 1110
  ident: CR39
  article-title: Constructing hierarchical tectorum-like a-Fe O /PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201609527
– volume: 13
  start-page: 86
  year: 2020
  end-page: 95
  ident: CR19
  article-title: Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee02388g
– volume: 7
  start-page: 3519
  year: 2014
  end-page: 3542
  ident: CR18
  article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee01760a
– volume: 11
  start-page: 2034
  year: 2019
  ident: CR2
  article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0289-6
– volume: 8
  start-page: 1702294
  year: 2018
  ident: CR38
  article-title: Inverted design for high-performance supercapacitor via Co(OH) -derived highly oriented MOF electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702294
– volume: 9
  start-page: 4531
  year: 2018
  ident: CR45
  article-title: Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06728-7
– volume: 5
  start-page: 919
  year: 2017
  end-page: 924
  ident: CR5
  article-title: Pseudomorphic-phase transformation of NiCo based ternary hierarchical 2D-1D nanostructures for enhanced electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09323J
– volume: 141
  start-page: 10417
  year: 2019
  end-page: 10430
  ident: CR42
  article-title: Hierarchical nanoassembly of MoS /Co S /Ni S /Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 5
  start-page: 4565
  year: 2014
  ident: CR20
  article-title: Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5565
– volume: 113
  start-page: 9901
  year: 2000
  ident: 476_CR35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 4
  start-page: 933
  year: 2019
  ident: 476_CR46
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00220
– volume: 8
  start-page: 1702294
  year: 2018
  ident: 476_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702294
– volume: 19
  start-page: 761
  year: 2019
  ident: 476_CR21
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03833
– volume: 116
  start-page: 6624
  year: 2019
  ident: 476_CR47
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1900556116
– volume: 9
  start-page: 2609
  year: 2018
  ident: 476_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05019-5
– volume: 11
  start-page: 1545
  year: 2019
  ident: 476_CR3
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0299-4
– volume: 50
  start-page: 17953
  year: 1994
  ident: 476_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.50.17953
– volume: 56
  start-page: 1105
  year: 2017
  ident: 476_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201609527
– volume: 130
  start-page: 15671
  year: 2018
  ident: 476_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808929
– volume: 129
  start-page: 860
  year: 2017
  ident: 476_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608899
– volume: 9
  start-page: 1802983
  year: 2019
  ident: 476_CR60
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802983
– volume: 13
  start-page: 5188
  year: 1976
  ident: 476_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 51
  start-page: 12495
  year: 2012
  ident: 476_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204842
– volume: 141
  start-page: 7537
  year: 2019
  ident: 476_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02527
– volume: 54
  start-page: 4876
  year: 2015
  ident: 476_CR54
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201500137
– volume: 32
  start-page: 1769
  year: 2011
  ident: 476_CR36
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21748
– volume: 5
  start-page: 919
  year: 2017
  ident: 476_CR5
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09323J
– volume: 6
  start-page: 20491
  year: 2018
  ident: 476_CR6
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06023A
– volume: 9
  start-page: 1425
  year: 2018
  ident: 476_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03858-w
– volume: 10
  start-page: 121
  year: 2017
  ident: 476_CR28
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c6ee03088b
– volume: 12
  start-page: 739
  year: 2019
  ident: 476_CR53
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c8ee03208d
– volume: 29
  start-page: 1700404
  year: 2017
  ident: 476_CR55
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700404
– volume: 29
  start-page: 1704075
  year: 2017
  ident: 476_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704075
– volume: 31
  start-page: 1903605
  year: 2019
  ident: 476_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903605
– volume: 4
  start-page: 107
  year: 2019
  ident: 476_CR7
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 9
  start-page: 924
  year: 2018
  ident: 476_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03429-z
– volume: 20
  start-page: 2049
  year: 2008
  ident: 476_CR37
  publication-title: Chem. Mater.
  doi: 10.1021/cm702868u
– volume: 13
  start-page: 86
  year: 2020
  ident: 476_CR19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee02388g
– volume: 26
  start-page: 2683
  year: 2014
  ident: 476_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304759
– volume: 141
  start-page: 10417
  year: 2019
  ident: 476_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 21
  start-page: 4436
  year: 2011
  ident: 476_CR52
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101598
– volume: 11
  start-page: 45
  year: 2019
  ident: 476_CR58
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0279-8
– volume: 113
  start-page: 9978
  year: 2000
  ident: 476_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 59
  start-page: 7413
  year: 1999
  ident: 476_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7413
– volume: 59
  start-page: 1758
  year: 1999
  ident: 476_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 14
  start-page: 5097
  year: 2014
  ident: 476_CR56
  publication-title: Nano Lett.
  doi: 10.1021/nl501793a
– volume: 9
  start-page: 2533
  year: 2018
  ident: 476_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04954-7
– volume: 18
  start-page: 1309
  year: 2019
  ident: 476_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0463-8
– volume: 8
  start-page: 15437
  year: 2017
  ident: 476_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15437
– volume: 10
  start-page: 5106
  year: 2019
  ident: 476_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 138
  start-page: 5087
  year: 2016
  ident: 476_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00858
– volume: 136
  start-page: 10053
  year: 2014
  ident: 476_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504099w
– volume: 5
  start-page: 9703
  year: 2011
  ident: 476_CR57
  publication-title: ACS Nano
  doi: 10.1021/nn203879f
– volume: 31
  start-page: 1900528
  year: 2019
  ident: 476_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900528
– volume: 11
  start-page: 21
  year: 2019
  ident: 476_CR15
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0253-5
– volume: 11
  start-page: 12
  year: 2019
  ident: 476_CR59
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0242-8
– volume: 1
  start-page: 396
  year: 2019
  ident: 476_CR16
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.019.20190022
– volume: 77
  start-page: 3865
  year: 1996
  ident: 476_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.77.3865
– volume: 9
  start-page: 4531
  year: 2018
  ident: 476_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06728-7
– volume: 30
  start-page: e1803590
  year: 2018
  ident: 476_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803590
– volume: 10
  start-page: 269
  year: 2019
  ident: 476_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07792-9
– volume: 30
  start-page: 1705633
  year: 2018
  ident: 476_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705366
– volume: 7
  start-page: 3519
  year: 2014
  ident: 476_CR18
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee01760a
– volume: 54
  start-page: 8722
  year: 2015
  ident: 476_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502836
– volume: 11
  start-page: 2034
  year: 2019
  ident: 476_CR2
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0289-6
– volume: 51
  start-page: 1590
  year: 2018
  ident: 476_CR11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00070
– volume: 6
  start-page: 1900140
  year: 2019
  ident: 476_CR22
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900140
– volume: 5
  start-page: 4565
  year: 2014
  ident: 476_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5565
– volume: 10
  start-page: 1743
  year: 2019
  ident: 476_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09765-y
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5246396
Snippet Highlights The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned...
Water electrolysis at high current density (1000 mA cm −2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green...
HighlightsThe 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned...
Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green...
The 2D CoOOH sheet-encapsulated Ni 2 P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was...
Abstract Water electrolysis at high current density (1000 mA cm−2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms 2D adaptive material
Arrays
Bubbles
Catalysis
Charge transfer
Convection
Current density
Electrocatalysts
Electrolysis
Electrolytes
Electronic structure
Encapsulation
Engineering
High current
Hydrogen
Hydrogen evolution
Interfacial charge modulation
Large-scale hydrogen production
Mass transfer
Mass transport
Multiscale coordinated regulation
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Porosity
Structural stability
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagXOCAeIqFgozEDSx2vfY6e0KlTYgQJAha0dvKr20itbsl2SCFX8C5P5FfwszGmzSV2kMu8Wttjz2fPeNvCHmTJQlyxghWJiZjIvcxM3lpmNMClKEHiCDwvfPXUTY8Ep-P5XG4cJsHt8puT2w3aldbvCN_z9FcmULZ5MP5L4ZRo9C6GkJo3CZ3Eg6ShC_FB586eeIK4zJtrIQYXFlc4qoRyOySbujMJNKXqQ1LpuQCtHtQtys4rdCQ1carSxKWqTgL73Da13gYuzlmeB5DDkbo-Zaua0MCbOHYq16YV0yxrYYbPCD3AzSleytZekhu-eoRuXeJsPAxueAHdL8ej4f0x8T7hvUrq-GYfQqA1dHRlH-j06qp6eHCoHcrVDXTyzn9DmB0-gcqoHjNT8_2qD379_eCsy_osdRRRLED9KVvlnS4dLMa5Jr2f4d1Qcew4LAwnUADdOQX2BX6E5qdPSFHg_7h_pCFqA7MCiUbJoXOTWkk11Kkuoy1zIUUFnnoeqVRmeegP13sRaJTIRz3CiBLz-XOWC48t-lTslPVlX9GqFOZib0zSe441OC0szZODRypJNTccxFJuvEvbKA8x8gbp8WarLmdsyLGH85ZISLydl3mfEX4cWPujzit65xI1t3-Uc9OirD2C9jjbFkaoR2HIQAwgGdUwFGZzl3pMhOR3U4oirCDzIuNvF-TrFKApqKXR-T1Ohm2BrT36MrXC8gjAStnqerFEVFbsrb1vdsp1XTSkowrpZArMiLvOqncNH79eDy_uSsvyF2O66N1B9olO81s4V8CqGvMq3bl_gdtNz29
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZgucAB8SsCCzISN7BIHP80x6XbVYWgRbAr9hbZsaNW2k1WbYrUfYI9I3Hvs_RReBJm0rTdVCwSh1xiZ5zGM57PnfE3hLxRUYScMYLlkVVMJD5kNsktc0aAM_QAEQSed_48UP0T8fFUnjY0OXgWZid-_36KBZFDhpscJDYEcbfJHQkLL6bvdVV3rTtcYw2mbUQQCymLa7w0Allc4i11mUSqMr1lxJRcgCdvXOsKOmsMWtW16aKIKR2q5szN31-r5ddq-v8WZt3NuNwJu9be7OgBud_AUHqw0puH5JYvHpF718gJH5Nf_JB2y-GwT7-NvK9Yr8gMbKnPAJw6OhjzL3RcVCU9nlnMZAVREzOf0q8APMeXIIDiX_rLxfnBcpGd_776ydknzE9aE0KxQ8ycr-a0P3eTErSY9n40VkCHYF74-HIxgjHowM_w19DvMPLkCTk56h13-6wp4sAyoWXFpDCJza3kRorY5KGRiZAiQ9q5Tm618hzcpQu9iEwshONeA0LpuMTZjAvPs_gp2SvKwj8j1GllQ-9slDgOEpxxWRbGFnZQEiR3XECi9RSkWcNwjoU2ztINN3M9bWmIF05bKgLydvPMxYrf45-9P-DMbnoiN3d9A1Q2bUw9hSUty3MrjOPwCcD345YUYJMyicudsgHZX-tF2iwY05RjND4G04huaNYxIFHRSQLyetMMKwGGd0zhyxn0kQCNVaw7YUB0S91a79tuKcajmlNca43UkAF5t1bM7eA3f4_n_9f9BbnL0WTqbKB9sldNZv4lYLrKvqqN-Q8D7TpU
  priority: 102
  providerName: Springer Nature
Title 2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000 mA cm−2-Level-Current-Density Hydrogen Evolution Over 100 h in Neutral Water
URI https://link.springer.com/article/10.1007/s40820-020-00476-4
https://www.proquest.com/docview/2419234051
https://www.proquest.com/docview/2473251489
https://www.proquest.com/docview/2542363780
https://pubmed.ncbi.nlm.nih.gov/PMC7770877
https://doaj.org/article/963cffb4ad2c4771871640616a9dfd6b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: ABDBF
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: ADMLS
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: 8FG
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: AAJSJ
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: C6C
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: C24
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgucAB8SsCS2UkbmCROHacHPtLhaBdLbtib5EdO2ql3RR105W6T8AZiXufpY_CkzCTpn8rLVw4tJVix27s8cznzPgbQt5GQYCcMYLlgYmYSJzPTJIbZrUAY-gAIgg87_xlEPVPxaczebaT6gtjwlb0wKuB-wACkuW5EdryTCjQpAjwwQhFOrG5jQxqXzBjO5spkCSuMCPT1j-IaZXFDkuNQE6XcEtkJpG4TG35MSUXYNdrQ7sC0gpdWFWmuiBgkfKj-gROdQ4Pszb7DHdiyL4Iz7xn5apkAHsI9mb85Q0nbGXbeo_IwxqU0uZqMB6TO654Qh7sUBU-Jb94h7Ynw2Gffh05V7JukWnYYJ8DVLV0MOZHdFyUE3oyMxjXCk1N9fySHgMMHV9DAxRf8C8XF83lIrv4_eMnZ58xWmlND8U6GEdfzml_bqcTkGnavarXBB3CYsPbl4sR9EEHboZPQ79Bz9Nn5LTXPWn3WZ3SgcHkyZJJoROTG8m1FKHOfS0TIUWGJHRxblTkOBhP6zsR6FAIy50CvBLbxJqMC8ez8Dk5KCaFe0GoVZHxnTVBYjm0YLXNMj80sJ-S0HJsPRKspyDNar5zTLtxnm6YmqtpS3384LSlwiPvNvd8X7F9_LV2C2d2UxOZuqsLIL9pLb_pv-TXI4druUhr9XGZcvTNh7BQgluKVQi4VMSJR95sikEvoLNHF24ygzoSgHIUqtj3iNoTt73_u19SjEcVw7hSCokiPfJ-LZjbzm8fj5f_YzxekfscF1IVMXRIDsrpzL0G3FeaBrkb9z42yL1mq9PqwW-rOzg6hqttLvA7ajcqJfAHoNNP4g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwENaUcgAODL-DoYCYgRNosGXZsg8MU5qElKYJA-m0NyNZMslMa5fUgQlPwLkPwkPxJOw6dtJ0pr314Iv1F0u7q0_Z1beEvAw9DzljBMs8HTIRW5fpONPMKAGboQWIIPC-824_7O6JTwfBwRr529yFwbDKxiZWhtoUKf5H_paju9KHtt774x8Ms0ahd7VJoTEXix07-wVHtpN32y1Y31ecd9rDrS6rswqwVMigZIFQsc50wFUgfJW5KohFIFLkQYsyLUPLwX4b1wpP-UIYbiVsmZGJjU65sDz1od9r5LrwfR-5-qPOx0Z-ucQ8UEuvJCZzFme4cQQyyfhL-rQA6dLkkpUz4ALQRL29z-G7RMdZlR_P81go3bC-91Pd_sNc0S7D8x9yPsJMr-ytVQqCFdx8PurznOu32lE7d8jtGgrTzbns3iVrNr9Hbp0hSLxPTnmLbhWDQZd-HVlbsnaeKjjWHwJANrQ_5p_pOC8LOpxqjKaFriZqdkK_APgd_4YOKLoV6NEmTY_-_TnlrIcRUg0lFWth7H45o92ZmRSgR7T9s9ZDOgAFx8Z0BAPQvp3ip9B9GHbygOxdyXo_JOt5kdtHhBoZatca7cWGQw9GmTR1fQ1HuAB6joxDvGb-k7SmWMdMH4fJghy6WrPExQfXLBEOeb1oczwnGLm09gdc1kVNJAevXhST70ltaxKwqWmWaaEMhykA8IFnYsBtoYpNZkLtkI1GKJLaYp0kS_26oFj6AIVFFDvkxaIYTBH6l1RuiynUCQCbh76MXIfIFVlb-b2rJfl4VJGaSymRm9IhbxqpXA5-8Xw8vvxTnpMb3eFuL-lt93eekJscdaUKRdog6-Vkap8CoCz1s0qLKfl21WbjP7K4efU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdgSAgeJv6KsAFG4g2sJY4dJ49jbVVgtBNsYm-RHTu00pZMXYpUPgHPSLz3s_Sj8Em4S9N_E0PiIS-xY6fxne_n3t3vCHkVBQFyxgiWByZiInE-M0lumNUCjKEDiCAw3_ljL-qeiPen8nQti7-Odl-4JOc5DcjSVFR7FzbfWya-YZlkn-HRB-kOYZKb5BZyddXu2hX_OFdYmWnlJ8TyymKNrUYgt0u4IjSTSGCmVjyZkguw743BnQNqha6sumJdELBI-VGTifP319qwdnVRgA0kezUO84oztrZxnXtkuwGndH8uTffJDVc8IHfXKAsfkl-8RQ_Kfr9LPw-cq1i7yDQctM8AslraG_IjOiyqkh6PDca3wlAjPbmknwCODr_DABT_6J9Nz_dn0-z894-fnB1i1NKCJoq1MJ6-mtDuxI5KkG3a_tboBu2D0uHjs-kA5qA9N8ZfQ7_AzKNH5KTTPj7osqa0A8uEkhWTQicmN5JrKUKd-1omQooMyeji3KjIcTCi1nci0KEQljsFuCW2iTUZF45n4WOyVZSFe0KoVZHxnTVBYjmMYLXNMj80cK6SMHJsPRIsliDNGt5zLL9xli4Zm-tlS328cNlS4ZHXy2cu5qwf_-z9Fld22RMZu-sb5ehr2mwAKWx0WZ4boS2HTwCIAA-qAKYindjcRsYjuwu5SJtt5DLl6KMPQWGCa5pVCPhUxIlHXi6bYX9Ap48uXDmGPhIAcxSq2PeI2hC3jffdbCmGg5ppXCmFhJEeebMQzNXk13-Pp__X_QW5fdTqpIfveh92yB2O2lOHC-2SrWo0ds8A9FXmea3XfwAOAEVs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+CoOOH+Sheet-Encapsulated+Ni2P+into+Tubular+Arrays+Realizing+1000%C2%A0mA%C2%A0cm%E2%88%922-Level-Current-Density+Hydrogen+Evolution+Over+100%C2%A0h+in+Neutral+Water&rft.jtitle=Nano-micro+letters&rft.au=Shucong+Zhang&rft.au=Wenbin+Wang&rft.au=Feilong+Hu&rft.au=Yan+Mi&rft.date=2020-12-01&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1007%2Fs40820-020-00476-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_963cffb4ad2c4771871640616a9dfd6b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon