Optimal Subsampling Bootstrap for Massive Data

The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla version of bootstrap is no longer feasible computationally for many modern massive datasets due to the need to repeatedly resample the entire data....

Full description

Saved in:
Bibliographic Details
Published inJournal of business & economic statistics Vol. 42; no. 1; pp. 174 - 186
Main Authors Ma, Yingying, Leng, Chenlei, Wang, Hansheng
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0735-0015
1537-2707
1537-2707
DOI10.1080/07350015.2023.2166514

Cover

Abstract The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla version of bootstrap is no longer feasible computationally for many modern massive datasets due to the need to repeatedly resample the entire data. Therefore, several improvements to the bootstrap method have been made in recent years, which assess the quality of estimators by subsampling the full dataset before resampling the subsamples. Naturally, the performance of these modern subsampling methods is influenced by tuning parameters such as the size of subsamples, the number of subsamples, and the number of resamples per subsample. In this article, we develop a novel hyperparameter selection methodology for selecting these tuning parameters. Formulated as an optimization problem to find the optimal value of some measure of accuracy of an estimator subject to computational cost, our framework provides closed-form solutions for the optimal hyperparameter values for subsampled bootstrap, subsampled double bootstrap and bag of little bootstraps, at no or little extra time cost. Using the mean square errors as a proxy of the accuracy measure, we apply our methodology to study, compare and improve the performance of these modern versions of bootstrap developed for massive data through numerical study. The results are promising.
AbstractList The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla version of bootstrap is no longer feasible computationally for many modern massive datasets due to the need to repeatedly resample the entire data. Therefore, several improvements to the bootstrap method have been made in recent years, which assess the quality of estimators by subsampling the full dataset before resampling the subsamples. Naturally, the performance of these modern subsampling methods is influenced by tuning parameters such as the size of subsamples, the number of subsamples, and the number of resamples per subsample. In this article, we develop a novel hyperparameter selection methodology for selecting these tuning parameters. Formulated as an optimization problem to find the optimal value of some measure of accuracy of an estimator subject to computational cost, our framework provides closed-form solutions for the optimal hyperparameter values for subsampled bootstrap, subsampled double bootstrap and bag of little bootstraps, at no or little extra time cost. Using the mean square errors as a proxy of the accuracy measure, we apply our methodology to study, compare and improve the performance of these modern versions of bootstrap developed for massive data through numerical study. The results are promising.
Author Ma, Yingying
Wang, Hansheng
Leng, Chenlei
Author_xml – sequence: 1
  givenname: Yingying
  surname: Ma
  fullname: Ma, Yingying
  organization: School of Economics and Management, Beihang University
– sequence: 2
  givenname: Chenlei
  surname: Leng
  fullname: Leng, Chenlei
  organization: Department of Statistics, University of Warwick
– sequence: 3
  givenname: Hansheng
  surname: Wang
  fullname: Wang, Hansheng
  organization: Guanghua School of Management, Peking University
BookMark eNqNkF9LwzAUxYNMcJt-BKHgc2vSNE2LL-rmP5jsQX0OaZtKRpbUJHXs25vS-eKDerlwX87vcM6dgYk2WgBwjmCCYAEvIcUEQkSSFKY4SVGeE5QdgSkimMYphXQCpoMmHkQnYObcBoYpSD4FybrzcstV9NJXjm87JfV7dGuMd97yLmqNjZ65c_JTREvu-Sk4brly4uxw5-Dt_u518Riv1g9Pi5tVXGeU-DgVTUVbnMM6TxFGqKgoajBGHKMWk7CZqHEhQqiqhKQSFcrKXPCybsoKZwXFc5CPvr3u-H7HlWKdDTntniHIhtbsuzUbWrND6wBejGBnzUcvnGcb01sdsrK0hCUpSgqLoCKjqrbGOSvaf7tf_eBq6bmXRodvSfUnfT3SUoe_bvnOWNUwz_fK2NZyXUvH8O8WXx0bjFQ
CitedBy_id crossref_primary_10_3390_fractalfract7090670
crossref_primary_10_1080_24754269_2024_2343151
crossref_primary_10_3390_admsci15010017
Cites_doi 10.1017/CBO9780511754098
10.1214/18-AOS1777
10.1002/asmb.1927
10.1214/18-AOS1730
10.1201/9780429246593
10.1016/S1573-4412(05)80008-X
10.1007/978-1-4757-2545-2_3
10.1214/aos/1032181172
10.1198/073500106000000251
10.1214/21-AOS2062
10.1007/978-1-4612-1554-7
10.1093/biomet/81.2.331
10.1080/01621459.1990.10475309
10.1111/rssb.12050
10.1080/01621459.2018.1429274
10.1080/01621459.2015.1080709
10.1198/016214502760047078
10.1080/01621459.2021.1969238
ContentType Journal Article
Copyright 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
– notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1080/07350015.2023.2166514
DatabaseName Taylor & Francis eJournals Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1537-2707
EndPage 186
ExternalDocumentID 10.1080/07350015.2023.2166514
10_1080_07350015_2023_2166514
2166514
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12271012; 11831008
– fundername: EPSRC
  grantid: EP/X009505/1
– fundername: National Natural Science Foundation of China
  grantid: 12171020; 11801022
GroupedDBID -~X
.7F
.QJ
0BK
0R~
0YH
29K
30N
4.4
5GY
7WY
85S
8FL
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABKVW
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYRZ
ABYWD
ABYYQ
ACGFO
ACGFS
ACHQT
ACMTB
ACNCT
ACTIO
ACTMH
ACVFL
ADCVX
ADGTB
ADMHG
ADXHL
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHAJD
AHDZW
AHQJS
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BKOMP
BLEHA
CCCUG
CS3
D-I
D0L
DGEBU
DKSSO
DU5
EBS
EBU
EOH
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
JST
K60
K6~
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UT5
UU3
WZA
YK4
YQT
ZCA
ZGOLN
~S~
AAYXX
CITATION
ADYSH
ALIPV
07G
1OL
2AX
3R3
8FI
8FJ
8G5
8H~
8R4
8R5
AAIKQ
AAKBW
AAOAC
AAWIL
ABAWQ
ABBHK
ABQDR
ABUWG
ABXSQ
ACAGQ
ACDIW
ACGEE
ACHJO
ACTCW
ACUHF
ACXJH
ADBBV
ADGDI
ADODI
ADTOC
ADULT
AEUMN
AEUPB
AFFNX
AFFVI
AFKRA
AFSUE
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
APTMU
AQUVI
ASMEE
AZQEC
BCCOT
BENPR
BEZIV
BPHCQ
BPLKW
BVXVI
C06
CBXGM
CCPQU
CHNMF
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
ECEWR
EJD
FEDTE
FRNLG
FYUFA
GIFXF
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HECYW
HGD
HQ6
HVGLF
H~9
IPSME
IVXBP
JAAYA
JBMMH
JBU
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JPPEU
LPU
M0C
M0T
M2O
MVM
NUSFT
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQQKQ
PROAC
Q2X
QCRFL
RNS
S0X
SA0
TAQ
TFMCV
UB9
UKHRP
UNPAY
YYP
ZY4
ID FETCH-LOGICAL-c475t-2edb7f360c6213118b71d331a31f35f354ec38e073b905beb1496ea9cd9b34873
IEDL.DBID 0YH
ISSN 0735-0015
1537-2707
IngestDate Tue Aug 19 21:30:23 EDT 2025
Fri Jul 25 23:29:52 EDT 2025
Wed Oct 01 03:36:23 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Mon Oct 20 23:45:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-2edb7f360c6213118b71d331a31f35f354ec38e073b905beb1496ea9cd9b34873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/07350015.2023.2166514
PQID 2909589708
PQPubID 3244
PageCount 13
ParticipantIDs crossref_primary_10_1080_07350015_2023_2166514
crossref_citationtrail_10_1080_07350015_2023_2166514
unpaywall_primary_10_1080_07350015_2023_2166514
proquest_journals_2909589708
informaworld_taylorfrancis_310_1080_07350015_2023_2166514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of business & economic statistics
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
Bickel P. (e_1_3_3_2_1) 1997; 7
e_1_3_3_8_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_16_1
Bickel P. J. (e_1_3_3_3_1) 2008; 18
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_21_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_12_1
e_1_3_3_4_1
e_1_3_3_11_1
References_xml – ident: e_1_3_3_14_1
  doi: 10.1017/CBO9780511754098
– ident: e_1_3_3_6_1
  doi: 10.1214/18-AOS1777
– volume: 7
  start-page: 1
  year: 1997
  ident: e_1_3_3_2_1
  article-title: “Resampling Fewer than n Observations: Gains, Losses, and Remedies for Losses,”
  publication-title: Statistica Sinica
– ident: e_1_3_3_15_1
  doi: 10.1002/asmb.1927
– ident: e_1_3_3_20_1
  doi: 10.1214/18-AOS1730
– ident: e_1_3_3_8_1
  doi: 10.1201/9780429246593
– ident: e_1_3_3_10_1
  doi: 10.1016/S1573-4412(05)80008-X
– ident: e_1_3_3_19_1
  doi: 10.1007/978-1-4757-2545-2_3
– ident: e_1_3_3_11_1
  doi: 10.1214/aos/1032181172
– ident: e_1_3_3_21_1
  doi: 10.1198/073500106000000251
– ident: e_1_3_3_5_1
  doi: 10.1214/21-AOS2062
– ident: e_1_3_3_16_1
  doi: 10.1007/978-1-4612-1554-7
– ident: e_1_3_3_4_1
  doi: 10.1093/biomet/81.2.331
– ident: e_1_3_3_7_1
  doi: 10.1080/01621459.1990.10475309
– ident: e_1_3_3_13_1
  doi: 10.1111/rssb.12050
– ident: e_1_3_3_12_1
  doi: 10.1080/01621459.2018.1429274
– ident: e_1_3_3_17_1
  doi: 10.1080/01621459.2015.1080709
– ident: e_1_3_3_18_1
  doi: 10.1198/016214502760047078
– volume: 18
  start-page: 967
  year: 2008
  ident: e_1_3_3_3_1
  article-title: “On the Choice of m Out of n Bootstrap and Confidence Bounds for Extrema,”
  publication-title: Statistica Sinica
– ident: e_1_3_3_9_1
  doi: 10.1080/01621459.2021.1969238
SSID ssj0000856
Score 2.4272308
Snippet The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla...
SourceID unpaywall
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174
SubjectTerms Bag of little bootstraps
Bootstrap
Computational cost
Subsampled double bootstrap
Subsampling
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwEB1BOQAHvhGFgnLYa0JTO058QKh8CSGV5UAlOEV2YnOgpBVNtdq97F9npnEqutIKOCDlksM4yeRl5tkZvwH4YS1jItexb2wofW6V9XVuuY_ZiZHiFLeG_uj2bsV1n988RA-uVenYlVXSHNpWQhHTWE0ftxnlti6JO0ZYRpTsA-r9HXRCITDtnxYY7rvTLoMn5SsVLA_R2XpSIodahCURIVdvwFL_9q77ONXmZJFPg1SCqjFtzIrrLT7_u8Zc8pqTNp0jqMuTYqR-_1KDwbtcdbUOf-unrEpUnoNJqYPszz8CkN_nhg1YczTX61a43IQFU2zBcr0LerwFq72ZXiyerRDnrSSjtyH4iWHsBa0pqCmqeC-evLPhsKRVmZGH3vB6SPkxTHsXqlQ70L-6vD-_9l1bBz_jcVT6HYPYsEy0M9EhsZ9Ex2HOWKhYaFmEBzcZSww-nZbtSGMy4VIYJbNcaobzK7YLjWJYmD3wWGyTOEdA8XaOYxsprWDKSOQxNDGKmsDr95VmTvOcWm8M0rCWRnU-TMmHqfNhE4KZ2agS_fjIQL4HQ1pOV1ts1RolZR_YtmrkpC5-jNOOROqbyLidNOF4hqbP3cz-ly0OYAVPebWy1IIG4eYQuVapj9wH8wb4ShgW
  priority: 102
  providerName: Unpaywall
Title Optimal Subsampling Bootstrap for Massive Data
URI https://www.tandfonline.com/doi/abs/10.1080/07350015.2023.2166514
https://www.proquest.com/docview/2909589708
https://www.tandfonline.com/doi/epdf/10.1080/07350015.2023.2166514?needAccess=true&role=button
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000856
  issn: 1537-2707
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000856
  issn: 1537-2707
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQHVoGBAVEoVQZWJMmsfPwWChVhNTCQAVliZzEZilpRVIh_j13eZR2QEVCihR5OMu5s-8-O-fvCLlWilI3iTxdKovrTAmlR4liOkQnioxTTEn8ozueuMGU3b84dTZhVqVV4h5alUQRha_GxS2irM6I68OsdDDWG1j627At13WwlHXD9iyOE9ucBT_O2C8KuKKIjjL1JZ7futkKT1vkpVsQtLlKl-LrU8znG9FodEQOKxipDUq7H5M9mbZJs75lnLXJwXjNxwqtFmLKkpL5hBgP4CbeQRqdhsCM8vRNu1kscjz1WGowFm0MkBrcoDYUuTgl09Hd022gV2UT9Jh5Tq7bEnSvqGvGro1kOn7kWQmllqCWog48TMbUl_D5ETedCJw1464UPE54RGH_Qs_IfrpI5TnRqKd8LwGDMTOBviXnyqVCcsAJuPFwOoTV2grjilMcS1vMQ6umHq2UHKKSw0rJHWKsxZYlqcYuAb5pijAvTjNUWXokpDtku7Xdwmp9ZqHNAVr63DP9Dumvbfm3wVz8YzCXpAVNVp7hdMl-_rGSV4Bq8qhXzNseaQyC4eszvKeTx8HsG3io6Dw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGVoGBAVEoUAG1qRJ7Tw88qoKNGVppTJZTmKzlLSiqRD_nrs8SjugIiFliaKznDv77vPZ_o6Qa60p9ZLIN5V2uMm01GaUaGZCdKLIOMW0wh3dcOj1x-xp4k7W7sLgsUpcQ-uCKCL31Ti5MRldHYnrwLB0MdhbWPvb6jqe52It610X4CKWb7Bf-z_eOMgruKKIiTLVLZ7fmtmITxvspRsYtL5M5_LrU06na-God0D2Sxxp3BSGPyQ7Km2SenXNeNEke-GKkBXeGggqC07mI2K9gJ94B2n0GhKPlKdvxu1slmHaY25AX4wQMDX4QeNeZvKYjHsPo7u-WdZNMGPmu5nZVaB8TT079rrIphNEvpNQ6kjqaOrCw1RMAwW_H3HbjcBbM-4pyeOERxQWMPSE1NJZqk6JQX0d-AlYjNkJtK041x6VigNQwJWH2yKs0paIS1JxrG0xFU7FPVoqWaCSRankFrFWYvOCVWObAF83hcjydIYuao8IukW2XdlNlBN0IbocsGXAfTtokc7Kln_rzNk_OnNF6v1ROBCDx-HzOWnAJ1YkdNqkln0s1QVAnCy6zMfwN23V6E4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkWgZEBQQhQIZWJMmtfPwCJSqPFoYqAST5SQ2S0kjmgrx77nLo7QDKhJSlig6y7mz7z7b5-8IudCaUi8OfVNph5tMS22GsWYmRCeKjFNMKzzRHY68wZjdvbhVNuGsTKvENbQuiCJyX42TO411lRHXgVHpYqy3sPS31XU8z8VS1ptuAOENhrT9OvhxxkFewBVFTJSpLvH81sxKeFohL12BoPV5ksqvTzmZLEWj_i7ZKWGkcVnYfY9sqKRJ6tUt41mTbA8XfKzw1kBMWVAy7xPrEdzEO0ij05CYUZ68GVfTaYa7HqkBfTGGAKnBDRo9mckDMu7fPF8PzLJsghkx383MrgLda-rZkddFMp0g9J2YUkdSR1MXHqYiGij4_ZDbbgjOmnFPSR7FPKSwfqGHpJZME3VEDOrrwI_BYMyOoW3FufaoVBxwAi483BZhlbZEVHKKY2mLiXAq6tFSyQKVLEolt4i1EEsLUo11AnzZFCLLdzN0UXpE0DWy7cpuopyfM9HlAC0D7ttBi3QWtvxbZ47_0ZlzsvXU64uH29H9CWnAF1Zs57RJLfuYq1MAOFl4lg_hbxVE54A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwEB1BOQAHvhGFgnLYa0JTO058QKh8CSGV5UAlOEV2YnOgpBVNtdq97F9npnEqutIKOCDlksM4yeRl5tkZvwH4YS1jItexb2wofW6V9XVuuY_ZiZHiFLeG_uj2bsV1n988RA-uVenYlVXSHNpWQhHTWE0ftxnlti6JO0ZYRpTsA-r9HXRCITDtnxYY7rvTLoMn5SsVLA_R2XpSIodahCURIVdvwFL_9q77ONXmZJFPg1SCqjFtzIrrLT7_u8Zc8pqTNp0jqMuTYqR-_1KDwbtcdbUOf-unrEpUnoNJqYPszz8CkN_nhg1YczTX61a43IQFU2zBcr0LerwFq72ZXiyerRDnrSSjtyH4iWHsBa0pqCmqeC-evLPhsKRVmZGH3vB6SPkxTHsXqlQ70L-6vD-_9l1bBz_jcVT6HYPYsEy0M9EhsZ9Ex2HOWKhYaFmEBzcZSww-nZbtSGMy4VIYJbNcaobzK7YLjWJYmD3wWGyTOEdA8XaOYxsprWDKSOQxNDGKmsDr95VmTvOcWm8M0rCWRnU-TMmHqfNhE4KZ2agS_fjIQL4HQ1pOV1ts1RolZR_YtmrkpC5-jNOOROqbyLidNOF4hqbP3cz-ly0OYAVPebWy1IIG4eYQuVapj9wH8wb4ShgW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Subsampling+Bootstrap+for+Massive+Data&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Ma%2C+Yingying&rft.au=Leng%2C+Chenlei&rft.au=Wang%2C+Hansheng&rft.date=2024&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=42&rft.issue=1&rft.spage=174&rft.epage=186&rft_id=info:doi/10.1080%2F07350015.2023.2166514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07350015_2023_2166514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon