Optimal Subsampling Bootstrap for Massive Data
The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla version of bootstrap is no longer feasible computationally for many modern massive datasets due to the need to repeatedly resample the entire data....
        Saved in:
      
    
          | Published in | Journal of business & economic statistics Vol. 42; no. 1; pp. 174 - 186 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Alexandria
          Taylor & Francis
    
        2024
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0735-0015 1537-2707 1537-2707  | 
| DOI | 10.1080/07350015.2023.2166514 | 
Cover
| Abstract | The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla version of bootstrap is no longer feasible computationally for many modern massive datasets due to the need to repeatedly resample the entire data. Therefore, several improvements to the bootstrap method have been made in recent years, which assess the quality of estimators by subsampling the full dataset before resampling the subsamples. Naturally, the performance of these modern subsampling methods is influenced by tuning parameters such as the size of subsamples, the number of subsamples, and the number of resamples per subsample. In this article, we develop a novel hyperparameter selection methodology for selecting these tuning parameters. Formulated as an optimization problem to find the optimal value of some measure of accuracy of an estimator subject to computational cost, our framework provides closed-form solutions for the optimal hyperparameter values for subsampled bootstrap, subsampled double bootstrap and bag of little bootstraps, at no or little extra time cost. Using the mean square errors as a proxy of the accuracy measure, we apply our methodology to study, compare and improve the performance of these modern versions of bootstrap developed for massive data through numerical study. The results are promising. | 
    
|---|---|
| AbstractList | The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla version of bootstrap is no longer feasible computationally for many modern massive datasets due to the need to repeatedly resample the entire data. Therefore, several improvements to the bootstrap method have been made in recent years, which assess the quality of estimators by subsampling the full dataset before resampling the subsamples. Naturally, the performance of these modern subsampling methods is influenced by tuning parameters such as the size of subsamples, the number of subsamples, and the number of resamples per subsample. In this article, we develop a novel hyperparameter selection methodology for selecting these tuning parameters. Formulated as an optimization problem to find the optimal value of some measure of accuracy of an estimator subject to computational cost, our framework provides closed-form solutions for the optimal hyperparameter values for subsampled bootstrap, subsampled double bootstrap and bag of little bootstraps, at no or little extra time cost. Using the mean square errors as a proxy of the accuracy measure, we apply our methodology to study, compare and improve the performance of these modern versions of bootstrap developed for massive data through numerical study. The results are promising. | 
    
| Author | Ma, Yingying Wang, Hansheng Leng, Chenlei  | 
    
| Author_xml | – sequence: 1 givenname: Yingying surname: Ma fullname: Ma, Yingying organization: School of Economics and Management, Beihang University – sequence: 2 givenname: Chenlei surname: Leng fullname: Leng, Chenlei organization: Department of Statistics, University of Warwick – sequence: 3 givenname: Hansheng surname: Wang fullname: Wang, Hansheng organization: Guanghua School of Management, Peking University  | 
    
| BookMark | eNqNkF9LwzAUxYNMcJt-BKHgc2vSNE2LL-rmP5jsQX0OaZtKRpbUJHXs25vS-eKDerlwX87vcM6dgYk2WgBwjmCCYAEvIcUEQkSSFKY4SVGeE5QdgSkimMYphXQCpoMmHkQnYObcBoYpSD4FybrzcstV9NJXjm87JfV7dGuMd97yLmqNjZ65c_JTREvu-Sk4brly4uxw5-Dt_u518Riv1g9Pi5tVXGeU-DgVTUVbnMM6TxFGqKgoajBGHKMWk7CZqHEhQqiqhKQSFcrKXPCybsoKZwXFc5CPvr3u-H7HlWKdDTntniHIhtbsuzUbWrND6wBejGBnzUcvnGcb01sdsrK0hCUpSgqLoCKjqrbGOSvaf7tf_eBq6bmXRodvSfUnfT3SUoe_bvnOWNUwz_fK2NZyXUvH8O8WXx0bjFQ | 
    
| CitedBy_id | crossref_primary_10_3390_fractalfract7090670 crossref_primary_10_1080_24754269_2024_2343151 crossref_primary_10_3390_admsci15010017  | 
    
| Cites_doi | 10.1017/CBO9780511754098 10.1214/18-AOS1777 10.1002/asmb.1927 10.1214/18-AOS1730 10.1201/9780429246593 10.1016/S1573-4412(05)80008-X 10.1007/978-1-4757-2545-2_3 10.1214/aos/1032181172 10.1198/073500106000000251 10.1214/21-AOS2062 10.1007/978-1-4612-1554-7 10.1093/biomet/81.2.331 10.1080/01621459.1990.10475309 10.1111/rssb.12050 10.1080/01621459.2018.1429274 10.1080/01621459.2015.1080709 10.1198/016214502760047078 10.1080/01621459.2021.1969238  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 0YH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1080/07350015.2023.2166514 | 
    
| DatabaseName | Taylor & Francis eJournals Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Statistics Mathematics  | 
    
| EISSN | 1537-2707 | 
    
| EndPage | 186 | 
    
| ExternalDocumentID | 10.1080/07350015.2023.2166514 10_1080_07350015_2023_2166514 2166514  | 
    
| Genre | Research Article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12271012; 11831008 – fundername: EPSRC grantid: EP/X009505/1 – fundername: National Natural Science Foundation of China grantid: 12171020; 11801022  | 
    
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 0YH 29K 30N 4.4 5GY 7WY 85S 8FL AAENE AAGDL AAHIA AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABKVW ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYRZ ABYWD ABYYQ ACGFO ACGFS ACHQT ACMTB ACNCT ACTIO ACTMH ACVFL ADCVX ADGTB ADMHG ADXHL AEISY AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHAJD AHDZW AHQJS AIJEM AIYEW AKBRZ AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BKOMP BLEHA CCCUG CS3 D-I D0L DGEBU DKSSO DU5 EBS EBU EOH E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA JST K60 K6~ KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UT5 UU3 WZA YK4 YQT ZCA ZGOLN ~S~ AAYXX CITATION ADYSH ALIPV 07G 1OL 2AX 3R3 8FI 8FJ 8G5 8H~ 8R4 8R5 AAIKQ AAKBW AAOAC AAWIL ABAWQ ABBHK ABQDR ABUWG ABXSQ ACAGQ ACDIW ACGEE ACHJO ACTCW ACUHF ACXJH ADBBV ADGDI ADODI ADTOC ADULT AEUMN AEUPB AFFNX AFFVI AFKRA AFSUE AGCQS AGLEN AGLNM AGROQ AHMOU AIHAF ALCKM ALRMG AMATQ AMEWO AMXXU APTMU AQUVI ASMEE AZQEC BCCOT BENPR BEZIV BPHCQ BPLKW BVXVI C06 CBXGM CCPQU CHNMF CRFIH DMQIW DQDLB DSRWC DWIFK DWQXO ECEWR EJD FEDTE FRNLG FYUFA GIFXF GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HECYW HGD HQ6 HVGLF H~9 IPSME IVXBP JAAYA JBMMH JBU JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JPPEU LPU M0C M0T M2O MVM NUSFT PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQQKQ PROAC Q2X QCRFL RNS S0X SA0 TAQ TFMCV UB9 UKHRP UNPAY YYP ZY4  | 
    
| ID | FETCH-LOGICAL-c475t-2edb7f360c6213118b71d331a31f35f354ec38e073b905beb1496ea9cd9b34873 | 
    
| IEDL.DBID | 0YH | 
    
| ISSN | 0735-0015 1537-2707  | 
    
| IngestDate | Tue Aug 19 21:30:23 EDT 2025 Fri Jul 25 23:29:52 EDT 2025 Wed Oct 01 03:36:23 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Mon Oct 20 23:45:03 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c475t-2edb7f360c6213118b71d331a31f35f354ec38e073b905beb1496ea9cd9b34873 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/07350015.2023.2166514 | 
    
| PQID | 2909589708 | 
    
| PQPubID | 3244 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_primary_10_1080_07350015_2023_2166514 crossref_citationtrail_10_1080_07350015_2023_2166514 unpaywall_primary_10_1080_07350015_2023_2166514 proquest_journals_2909589708 informaworld_taylorfrancis_310_1080_07350015_2023_2166514  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-00-00 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 2024-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Alexandria | 
    
| PublicationPlace_xml | – name: Alexandria | 
    
| PublicationTitle | Journal of business & economic statistics | 
    
| PublicationYear | 2024 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 Bickel P. (e_1_3_3_2_1) 1997; 7 e_1_3_3_8_1 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_13_1 e_1_3_3_16_1 Bickel P. J. (e_1_3_3_3_1) 2008; 18 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_21_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_12_1 e_1_3_3_4_1 e_1_3_3_11_1  | 
    
| References_xml | – ident: e_1_3_3_14_1 doi: 10.1017/CBO9780511754098 – ident: e_1_3_3_6_1 doi: 10.1214/18-AOS1777 – volume: 7 start-page: 1 year: 1997 ident: e_1_3_3_2_1 article-title: “Resampling Fewer than n Observations: Gains, Losses, and Remedies for Losses,” publication-title: Statistica Sinica – ident: e_1_3_3_15_1 doi: 10.1002/asmb.1927 – ident: e_1_3_3_20_1 doi: 10.1214/18-AOS1730 – ident: e_1_3_3_8_1 doi: 10.1201/9780429246593 – ident: e_1_3_3_10_1 doi: 10.1016/S1573-4412(05)80008-X – ident: e_1_3_3_19_1 doi: 10.1007/978-1-4757-2545-2_3 – ident: e_1_3_3_11_1 doi: 10.1214/aos/1032181172 – ident: e_1_3_3_21_1 doi: 10.1198/073500106000000251 – ident: e_1_3_3_5_1 doi: 10.1214/21-AOS2062 – ident: e_1_3_3_16_1 doi: 10.1007/978-1-4612-1554-7 – ident: e_1_3_3_4_1 doi: 10.1093/biomet/81.2.331 – ident: e_1_3_3_7_1 doi: 10.1080/01621459.1990.10475309 – ident: e_1_3_3_13_1 doi: 10.1111/rssb.12050 – ident: e_1_3_3_12_1 doi: 10.1080/01621459.2018.1429274 – ident: e_1_3_3_17_1 doi: 10.1080/01621459.2015.1080709 – ident: e_1_3_3_18_1 doi: 10.1198/016214502760047078 – volume: 18 start-page: 967 year: 2008 ident: e_1_3_3_3_1 article-title: “On the Choice of m Out of n Bootstrap and Confidence Bounds for Extrema,” publication-title: Statistica Sinica – ident: e_1_3_3_9_1 doi: 10.1080/01621459.2021.1969238  | 
    
| SSID | ssj0000856 | 
    
| Score | 2.4272308 | 
    
| Snippet | The bootstrap is a widely used procedure for statistical inference because of its simplicity and attractive statistical properties. However, the vanilla... | 
    
| SourceID | unpaywall proquest crossref informaworld  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 174 | 
    
| SubjectTerms | Bag of little bootstraps Bootstrap Computational cost Subsampled double bootstrap Subsampling  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwEB1BOQAHvhGFgnLYa0JTO058QKh8CSGV5UAlOEV2YnOgpBVNtdq97F9npnEqutIKOCDlksM4yeRl5tkZvwH4YS1jItexb2wofW6V9XVuuY_ZiZHiFLeG_uj2bsV1n988RA-uVenYlVXSHNpWQhHTWE0ftxnlti6JO0ZYRpTsA-r9HXRCITDtnxYY7rvTLoMn5SsVLA_R2XpSIodahCURIVdvwFL_9q77ONXmZJFPg1SCqjFtzIrrLT7_u8Zc8pqTNp0jqMuTYqR-_1KDwbtcdbUOf-unrEpUnoNJqYPszz8CkN_nhg1YczTX61a43IQFU2zBcr0LerwFq72ZXiyerRDnrSSjtyH4iWHsBa0pqCmqeC-evLPhsKRVmZGH3vB6SPkxTHsXqlQ70L-6vD-_9l1bBz_jcVT6HYPYsEy0M9EhsZ9Ex2HOWKhYaFmEBzcZSww-nZbtSGMy4VIYJbNcaobzK7YLjWJYmD3wWGyTOEdA8XaOYxsprWDKSOQxNDGKmsDr95VmTvOcWm8M0rCWRnU-TMmHqfNhE4KZ2agS_fjIQL4HQ1pOV1ts1RolZR_YtmrkpC5-jNOOROqbyLidNOF4hqbP3cz-ly0OYAVPebWy1IIG4eYQuVapj9wH8wb4ShgW priority: 102 providerName: Unpaywall  | 
    
| Title | Optimal Subsampling Bootstrap for Massive Data | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/07350015.2023.2166514 https://www.proquest.com/docview/2909589708 https://www.tandfonline.com/doi/epdf/10.1080/07350015.2023.2166514?needAccess=true&role=button  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000856 issn: 1537-2707 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000856 issn: 1537-2707 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQHVoGBAVEoVQZWJMmsfPwWChVhNTCQAVliZzEZilpRVIh_j13eZR2QEVCihR5OMu5s-8-O-fvCLlWilI3iTxdKovrTAmlR4liOkQnioxTTEn8ozueuMGU3b84dTZhVqVV4h5alUQRha_GxS2irM6I68OsdDDWG1j627At13WwlHXD9iyOE9ucBT_O2C8KuKKIjjL1JZ7futkKT1vkpVsQtLlKl-LrU8znG9FodEQOKxipDUq7H5M9mbZJs75lnLXJwXjNxwqtFmLKkpL5hBgP4CbeQRqdhsCM8vRNu1kscjz1WGowFm0MkBrcoDYUuTgl09Hd022gV2UT9Jh5Tq7bEnSvqGvGro1kOn7kWQmllqCWog48TMbUl_D5ETedCJw1464UPE54RGH_Qs_IfrpI5TnRqKd8LwGDMTOBviXnyqVCcsAJuPFwOoTV2grjilMcS1vMQ6umHq2UHKKSw0rJHWKsxZYlqcYuAb5pijAvTjNUWXokpDtku7Xdwmp9ZqHNAVr63DP9Dumvbfm3wVz8YzCXpAVNVp7hdMl-_rGSV4Bq8qhXzNseaQyC4eszvKeTx8HsG3io6Dw | 
    
| linkProvider | Taylor & Francis | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGVoGBAVEoUAG1qRJ7Tw88qoKNGVppTJZTmKzlLSiqRD_nrs8SjugIiFliaKznDv77vPZ_o6Qa60p9ZLIN5V2uMm01GaUaGZCdKLIOMW0wh3dcOj1x-xp4k7W7sLgsUpcQ-uCKCL31Ti5MRldHYnrwLB0MdhbWPvb6jqe52It610X4CKWb7Bf-z_eOMgruKKIiTLVLZ7fmtmITxvspRsYtL5M5_LrU06na-God0D2Sxxp3BSGPyQ7Km2SenXNeNEke-GKkBXeGggqC07mI2K9gJ94B2n0GhKPlKdvxu1slmHaY25AX4wQMDX4QeNeZvKYjHsPo7u-WdZNMGPmu5nZVaB8TT079rrIphNEvpNQ6kjqaOrCw1RMAwW_H3HbjcBbM-4pyeOERxQWMPSE1NJZqk6JQX0d-AlYjNkJtK041x6VigNQwJWH2yKs0paIS1JxrG0xFU7FPVoqWaCSRankFrFWYvOCVWObAF83hcjydIYuao8IukW2XdlNlBN0IbocsGXAfTtokc7Kln_rzNk_OnNF6v1ROBCDx-HzOWnAJ1YkdNqkln0s1QVAnCy6zMfwN23V6E4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkWgZEBQQhQIZWJMmtfPwCJSqPFoYqAST5SQ2S0kjmgrx77nLo7QDKhJSlig6y7mz7z7b5-8IudCaUi8OfVNph5tMS22GsWYmRCeKjFNMKzzRHY68wZjdvbhVNuGsTKvENbQuiCJyX42TO411lRHXgVHpYqy3sPS31XU8z8VS1ptuAOENhrT9OvhxxkFewBVFTJSpLvH81sxKeFohL12BoPV5ksqvTzmZLEWj_i7ZKWGkcVnYfY9sqKRJ6tUt41mTbA8XfKzw1kBMWVAy7xPrEdzEO0ij05CYUZ68GVfTaYa7HqkBfTGGAKnBDRo9mckDMu7fPF8PzLJsghkx383MrgLda-rZkddFMp0g9J2YUkdSR1MXHqYiGij4_ZDbbgjOmnFPSR7FPKSwfqGHpJZME3VEDOrrwI_BYMyOoW3FufaoVBxwAi483BZhlbZEVHKKY2mLiXAq6tFSyQKVLEolt4i1EEsLUo11AnzZFCLLdzN0UXpE0DWy7cpuopyfM9HlAC0D7ttBi3QWtvxbZ47_0ZlzsvXU64uH29H9CWnAF1Zs57RJLfuYq1MAOFl4lg_hbxVE54A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwEB1BOQAHvhGFgnLYa0JTO058QKh8CSGV5UAlOEV2YnOgpBVNtdq97F9npnEqutIKOCDlksM4yeRl5tkZvwH4YS1jItexb2wofW6V9XVuuY_ZiZHiFLeG_uj2bsV1n988RA-uVenYlVXSHNpWQhHTWE0ftxnlti6JO0ZYRpTsA-r9HXRCITDtnxYY7rvTLoMn5SsVLA_R2XpSIodahCURIVdvwFL_9q77ONXmZJFPg1SCqjFtzIrrLT7_u8Zc8pqTNp0jqMuTYqR-_1KDwbtcdbUOf-unrEpUnoNJqYPszz8CkN_nhg1YczTX61a43IQFU2zBcr0LerwFq72ZXiyerRDnrSSjtyH4iWHsBa0pqCmqeC-evLPhsKRVmZGH3vB6SPkxTHsXqlQ70L-6vD-_9l1bBz_jcVT6HYPYsEy0M9EhsZ9Ex2HOWKhYaFmEBzcZSww-nZbtSGMy4VIYJbNcaobzK7YLjWJYmD3wWGyTOEdA8XaOYxsprWDKSOQxNDGKmsDr95VmTvOcWm8M0rCWRnU-TMmHqfNhE4KZ2agS_fjIQL4HQ1pOV1ts1RolZR_YtmrkpC5-jNOOROqbyLidNOF4hqbP3cz-ly0OYAVPebWy1IIG4eYQuVapj9wH8wb4ShgW | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Subsampling+Bootstrap+for+Massive+Data&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Ma%2C+Yingying&rft.au=Leng%2C+Chenlei&rft.au=Wang%2C+Hansheng&rft.date=2024&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=42&rft.issue=1&rft.spage=174&rft.epage=186&rft_id=info:doi/10.1080%2F07350015.2023.2166514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07350015_2023_2166514 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon |