Artificial intelligence-enhanced detection of subclinical coronary artery disease in athletes: diagnostic performance and limitations

Purpose This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners. Material and methods We prospec...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of cardiovascular imaging Vol. 40; no. 12; pp. 2503 - 2511
Main Authors Kübler, Jens, Brendel, Jan M., Küstner, Thomas, Walterspiel, Jonathan, Hagen, Florian, Paul, Jean-François, Nikolaou, Konstantin, Gassenmaier, Sebastian, Tsiflikas, Ilias, Burgstahler, Christof, Greulich, Simon, Winkelmann, Moritz T., Krumm, Patrick
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1875-8312
1569-5794
1875-8312
1573-0743
DOI10.1007/s10554-024-03256-y

Cover

Abstract Purpose This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners. Material and methods We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Results The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives. Conclusion AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.
AbstractList Purpose This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners. Material and methods We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Results The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives. Conclusion AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.
This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.PURPOSEThis study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.MATERIAL AND METHODSWe prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.RESULTSThe AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.CONCLUSIONAI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.
This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners. We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives. AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.
PurposeThis study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.Material and methodsWe prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.ResultsThe AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.ConclusionAI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.
Author Hagen, Florian
Krumm, Patrick
Kübler, Jens
Walterspiel, Jonathan
Brendel, Jan M.
Tsiflikas, Ilias
Winkelmann, Moritz T.
Nikolaou, Konstantin
Burgstahler, Christof
Küstner, Thomas
Paul, Jean-François
Greulich, Simon
Gassenmaier, Sebastian
Author_xml – sequence: 1
  givenname: Jens
  surname: Kübler
  fullname: Kübler, Jens
  email: jens.kuebler@med.uni-tuebingen.de
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 2
  givenname: Jan M.
  surname: Brendel
  fullname: Brendel, Jan M.
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 3
  givenname: Thomas
  surname: Küstner
  fullname: Küstner, Thomas
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 4
  givenname: Jonathan
  surname: Walterspiel
  fullname: Walterspiel, Jonathan
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 5
  givenname: Florian
  surname: Hagen
  fullname: Hagen, Florian
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 6
  givenname: Jean-François
  surname: Paul
  fullname: Paul, Jean-François
  organization: Department of Radiology, Institut Mutualiste Montsouris, Cardiac Imaging, Spimed-AI
– sequence: 7
  givenname: Konstantin
  surname: Nikolaou
  fullname: Nikolaou, Konstantin
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 8
  givenname: Sebastian
  surname: Gassenmaier
  fullname: Gassenmaier, Sebastian
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 9
  givenname: Ilias
  surname: Tsiflikas
  fullname: Tsiflikas, Ilias
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 10
  givenname: Christof
  surname: Burgstahler
  fullname: Burgstahler, Christof
  organization: Department of Internal Medicine V, Sports Medicine, University of Tübingen
– sequence: 11
  givenname: Simon
  surname: Greulich
  fullname: Greulich, Simon
  organization: Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen
– sequence: 12
  givenname: Moritz T.
  surname: Winkelmann
  fullname: Winkelmann, Moritz T.
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
– sequence: 13
  givenname: Patrick
  surname: Krumm
  fullname: Krumm, Patrick
  organization: Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39373817$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVAR_YA_wAFF4sIlYMdx7OWCqoovqRIXOFsTZ7LrKrEX26m0P4D_zSy7lNJDD9ZY9nvP88bvnJ2EGJCxl4K_FZzrd1lwpdqaN7Rko7p694SdCaNVbaRoTu7tT9l5zjecCy1Xq2fsVK6klkboM_brMhU_eudhqnwoOE1-jcFhjWEDVIdqwIKu-BiqOFZ56d3kg3cEdzHFAGlXQSpIZfAZISPJVFA2E9HyezqEdYi5eFdtMY0xzXvVCsJQTX72BfbK-Tl7OsKU8cWxXrAfnz5-v_pSX3_7_PXq8rp2rValbhxI6AbFJZe97EBpHECpsemUU2ha6bhTK90BAO9700k-CnLPnZFgetHIC_bhoLtd-hkHh6EkmOw2-ZmM2Aje_n8T_Mau460VohOm4YIU3hwVUvy5YC529tnR2CBgXLKVQkitJNeGoK8fQG_ikgL5I1TLTdfqThPq1f2W7nr5-0UEaA4Al2LOCcc7iOB2nwN7yIGlHNg_ObA7IpkHJHecNdny0-NUeaBmeiesMf1r-xHWb05zy0I
CitedBy_id crossref_primary_10_3390_electronics14010160
crossref_primary_10_1007_s10554_024_03289_3
Cites_doi 10.1038/s41569-021-00527-2
10.1016/j.pcad.2020.03.003
10.1016/j.jcct.2014.07.003
10.1016/0735-1097(90)90282-T
10.3389/fcvm.2023.1236405
10.1161/CIRCULATIONAHA.107.699579
10.1016/j.diii.2022.01.004
10.1111/j.1553-2712.2011.01173.x
10.1016/j.jacc.2013.11.043
10.1007/s00330-021-08027-0
10.1055/s-0034-1399221
10.1016/j.jacc.2024.03.400
10.3389/fcvm.2023.1081675
10.1161/CIRCULATIONAHA.107.181485
10.1136/bjsports-2018-099530
10.1007/s00259-021-05341-z
10.1111/sms.13035
10.1016/j.diii.2024.01.010
10.1109/TMI.2018.2883807
10.1007/s11886-015-0695-4
10.1177/2047487320932018
10.15420/ecr/2016:24:2
10.3389/fcvm.2022.896366
10.1007/s10554-024-03063-5
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Dec 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1007/s10554-024-03256-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1875-8312
1573-0743
EndPage 2511
ExternalDocumentID PMC11618201
39373817
10_1007_s10554_024_03256_y
Genre Journal Article
GrantInformation_xml – fundername: Universitätsklinikum Tübingen (8868)
GroupedDBID ---
-Y2
.86
.GJ
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AAWTL
AAYIU
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQSL
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACSTC
ACUDM
ACZOJ
ADBBV
ADHKG
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFHIU
AFKRA
AFLOW
AFOHR
AFRAH
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AOCGG
ARMRJ
ASPBG
AXYYD
AYFIA
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGRSB
GJIRD
GNWQR
GQ8
GRRUI
GXS
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OVD
P19
P2P
P9S
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOS
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SSXJD
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c475t-2ca3a6d50303b36a57eda55f265c5e843c0c5976aaa0bb8630f13120c83a8b123
IEDL.DBID C6C
ISSN 1875-8312
1569-5794
IngestDate Thu Aug 21 18:29:18 EDT 2025
Thu Sep 04 15:25:52 EDT 2025
Sat Aug 16 18:42:20 EDT 2025
Mon Jul 21 05:35:28 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Tue Jul 01 00:49:05 EDT 2025
Mon Jul 21 06:09:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Marathon runners
Coronary artery disease
Artificial intelligence
Fractional flow reserve
Coronary computed tomography angiography
Diagnostic accuracy
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-2ca3a6d50303b36a57eda55f265c5e843c0c5976aaa0bb8630f13120c83a8b123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s10554-024-03256-y
PMID 39373817
PQID 3140864767
PQPubID 43205
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618201
proquest_miscellaneous_3113753078
proquest_journals_3140864767
pubmed_primary_39373817
crossref_primary_10_1007_s10554_024_03256_y
crossref_citationtrail_10_1007_s10554_024_03256_y
springer_journals_10_1007_s10554_024_03256_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: United States
PublicationSubtitle X-Ray Imaging, Intravascular Imaging, Echocardiography, Nuclear Cardiology, Computed Tomography and Magnetic Resonance Imaging
PublicationTitle The international journal of cardiovascular imaging
PublicationTitleAbbrev Int J Cardiovasc Imaging
PublicationTitleAlternate Int J Cardiovasc Imaging
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References S Balanescu (3256_CR4) 2016; 11
M Sermesant (3256_CR21) 2021; 18
F D'Ascenzi (3256_CR20) 2019; 53
YD Ding (3256_CR24) 2023; 10
J Liao (3256_CR5) 2022; 9
BL Norgaard (3256_CR17) 2014; 63
S Gassenmaier (3256_CR10) 2021; 31
M Doris (3256_CR3) 2016; 18
F D'Ascenzi (3256_CR19) 2021; 28
B Mehier (3256_CR14) 2024; 40
RB D'Agostino Sr (3256_CR7) 2008; 117
J Leipsic (3256_CR11) 2014; 8
3256_CR13
RHJA Slart (3256_CR22) 2021; 48
PD Thompson (3256_CR23) 2007; 115
AS Agatston (3256_CR1) 1990; 15
C Grabitz (3256_CR6) 2023; 10
JF Paul (3256_CR12) 2022; 103
I Tsiflikas (3256_CR9) 2015; 187
M Zreik (3256_CR15) 2019; 38
C Burgstahler (3256_CR8) 2018; 28
AM Chang (3256_CR2) 2011; 18
B Xu (3256_CR18) 2020; 63
P Elias (3256_CR16) 2024; 83
References_xml – volume: 18
  start-page: 600
  issue: 8
  year: 2021
  ident: 3256_CR21
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-021-00527-2
– volume: 63
  start-page: 367
  issue: 3
  year: 2020
  ident: 3256_CR18
  publication-title: Prog Cardiovasc Dis
  doi: 10.1016/j.pcad.2020.03.003
– volume: 8
  start-page: 342
  issue: 5
  year: 2014
  ident: 3256_CR11
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2014.07.003
– volume: 15
  start-page: 827
  issue: 4
  year: 1990
  ident: 3256_CR1
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(90)90282-T
– volume: 10
  start-page: 1236405
  year: 2023
  ident: 3256_CR24
  publication-title: Front Cardiovascu Med
  doi: 10.3389/fcvm.2023.1236405
– volume: 117
  start-page: 743
  issue: 6
  year: 2008
  ident: 3256_CR7
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.699579
– volume: 103
  start-page: 316
  issue: 6
  year: 2022
  ident: 3256_CR12
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2022.01.004
– volume: 18
  start-page: 1065
  issue: 10
  year: 2011
  ident: 3256_CR2
  publication-title: Acad Emerg Med
  doi: 10.1111/j.1553-2712.2011.01173.x
– volume: 63
  start-page: 1145
  issue: 12
  year: 2014
  ident: 3256_CR17
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.11.043
– volume: 31
  start-page: 8975
  issue: 12
  year: 2021
  ident: 3256_CR10
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08027-0
– volume: 187
  start-page: 561
  issue: 7
  year: 2015
  ident: 3256_CR9
  publication-title: Rofo
  doi: 10.1055/s-0034-1399221
– volume: 83
  start-page: 2472
  issue: 24
  year: 2024
  ident: 3256_CR16
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2024.03.400
– volume: 10
  start-page: 1081675
  year: 2023
  ident: 3256_CR6
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2023.1081675
– volume: 115
  start-page: 2358
  issue: 17
  year: 2007
  ident: 3256_CR23
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.181485
– volume: 53
  start-page: 37
  issue: 1
  year: 2019
  ident: 3256_CR20
  publication-title: Br J Sports Med
  doi: 10.1136/bjsports-2018-099530
– volume: 48
  start-page: 1399
  issue: 5
  year: 2021
  ident: 3256_CR22
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05341-z
– volume: 28
  start-page: 1397
  issue: 4
  year: 2018
  ident: 3256_CR8
  publication-title: Scand J Med Sci Sports
  doi: 10.1111/sms.13035
– ident: 3256_CR13
  doi: 10.1016/j.diii.2024.01.010
– volume: 38
  start-page: 1588
  issue: 7
  year: 2019
  ident: 3256_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2883807
– volume: 18
  start-page: 18
  issue: 2
  year: 2016
  ident: 3256_CR3
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-015-0695-4
– volume: 28
  start-page: 1071
  issue: 10
  year: 2021
  ident: 3256_CR19
  publication-title: Eur J Prev Cardiol
  doi: 10.1177/2047487320932018
– volume: 11
  start-page: 77
  issue: 2
  year: 2016
  ident: 3256_CR4
  publication-title: Eur Cardiol
  doi: 10.15420/ecr/2016:24:2
– volume: 9
  year: 2022
  ident: 3256_CR5
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2022.896366
– volume: 40
  start-page: 981
  issue: 5
  year: 2024
  ident: 3256_CR14
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-024-03063-5
SSID ssj0017399
Score 2.4074898
Snippet Purpose This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting...
This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary...
PurposeThis study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2503
SubjectTerms Accuracy
Aged
Algorithms
Angiography
Artificial Intelligence
Asymptomatic
Asymptomatic Diseases
Athletes
Cardiac Imaging
Cardiology
Cardiovascular disease
Computed tomography
Computed Tomography Angiography
Coronary Angiography
Coronary artery disease
Coronary Artery Disease - diagnostic imaging
Coronary Artery Disease - physiopathology
Coronary Stenosis - diagnostic imaging
Coronary Stenosis - physiopathology
Coronary vessels
Coronary Vessels - diagnostic imaging
Coronary Vessels - physiopathology
Fractional Flow Reserve, Myocardial
Heart diseases
Humans
Imaging
Ironmaking
Male
Males
Marathons
Medicine
Medicine & Public Health
Middle Aged
Original Paper
Performance evaluation
Predictive Value of Tests
Prospective Studies
Radiographic Image Interpretation, Computer-Assisted
Radiology
Reproducibility of Results
Risk groups
Running
Sensitivity analysis
Severity of Illness Index
Statistical analysis
Stenosis
Vein & artery diseases
Title Artificial intelligence-enhanced detection of subclinical coronary artery disease in athletes: diagnostic performance and limitations
URI https://link.springer.com/article/10.1007/s10554-024-03256-y
https://www.ncbi.nlm.nih.gov/pubmed/39373817
https://www.proquest.com/docview/3140864767
https://www.proquest.com/docview/3113753078
https://pubmed.ncbi.nlm.nih.gov/PMC11618201
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VkBAX1JZXKEWuxA0sxfEjgdtqBUWt6ImV4BQ5tiOQUBbB7mF_QP93Z5xstgsUqZccYjtxMjP5xpmZzwBHtU094SD3XiiuvJC8qE3gXp9agfAtlKZC4atf5nKkftzom44mh2phXsTvqcQNAY8jkvBUIjzz2QqsafzwkjYPzbCPGOSItF1RzNvjloHnlTf5OinyRWQ0As7FR9jsPEU2aEX7CT6E5jOsX3Wx8C34TS0t_wO7_4tYk4fmLob1mQ-TmGjVsHHNnqfVvAqSOaItsE8zFhM6Z6yL0uBlWEyuQPfzDE_GJDy8O3tcVBcw23j2QFVR7a--bRhdnF8PL3m3qQJ3KtcTnjkrrfEajVtW0lidB2-1rjOjnQ6Fki51uMgw1tq0qgoj01pIkaWukLaoEOd2YLUZN2EPWKVqtOYgautSJbywxgZ3SqFDoWsVsgTE_I2XrpsWbXzxUC64kklKJUqpjFIqZwkc92MeW76Nd3sfzAVZdrb3XKJ-4TpN5SZP4FvfjFZDoRDbhPGU-giJCzX0jxLYbeXe344oAom3MIFiSSP6DsTIvdzS3N9FZm5B2w-gS5XAyVx5FvP692Ps_1_3L7CRkWLHpJoDWJ08TcNXdI0m1SGsDb7f_jw_jLaBx1E2-AOqHgyL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFouFfQBKY-6Um-tpTh-JHBDK9BCWU4gcYsc2xFIKItg97A_oP-7M042y0JbiWtsx0nGo2-cb-YzwPfapp5wkHsvFFdeSF7UJnCvD6xA-BZKU6Hw6MIMr9TZtb7uZHKoFuYZf08lbgh4HJGEpxLhmc_ewBoxl6STPzCDnjHIEWm7opi_j1sGnhfR5MukyGfMaASckw1430WK7Kg17SashOYDvB11XPhH-E0trf4Du30irMlDcxNpfebDJCZaNWxcs8dpNa-CZI5kC-zDjMWEzhnrWBq8DYvJFRh-HuLFmISHs7P7RXUBs41nd1QV1f7q-wRXJ8eXgyHvDlXgTuV6wjNnpTVeo3PLShqr8-Ct1nVmtNOhUNKlDjcZxlqbVlVhZFoLKbLUFdIWFeLcZ1htxk3YBlapGr05iNq6VAkvrLHBHRB1KHStQpaAmH_x0nWPRQdf3JULrWSyUolWKqOVylkCP_ox963exn97784NWXa-91ji-sJ9mspNnsC3vhm9hqgQ24TxlPoIiRs1jI8S2Grt3k9HEoGkW5hAsbQi-g6kyL3c0tzeRGVuQccPYEiVwM_54lk8179f48vrun-Fd8PL0Xl5fnrxawfWM1rkMcFmF1YnD9Owh2HSpNqP_vEHtJAM_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqq48KYEChiJG7iNYztJuVXQpVBacaBSOUWOH2pF5V212cNy538zdh672wIS4ho78SPjfOPMN58BXjmVmoCD1BgmqDCM09Lllhq5oxjCNxMyJAofHuX7x-LTiTxZyuKPbPc-JNnmNASVJt9sT43bXkp8QxikiC805QjadH4T1kQ4Q2IEa7sfvh3sDZGEAhG4S5b5_Z2rgHTNy7xOlrwSMY1ANL4Dqh9Cyz_5vjVr6i3944q64_-M8S7c7rxUstua1T24Yf19WD_s4vAP4GcoabUnyNmSqCe1_jRSCoixTSR5eTJx5HJW9xmYRAfJBHUxJ5FMOiddhAgfQyKxA13ft3gxEgCxdTJdZDYQ5Q05DxlZ7W_Gh3A83vv6bp92BzpQLQrZ0EwrrnIj8cPCa54rWVijpHRZLrW0peA61bjByZVSaV2XOU8d4yxLdclVWSPGPoKRn3j7GEgtHH5JLHNKp4IZpnJl9U4IWzLphM0SYP1brXTXrXDoxnm10GkO81vh_FZxfqt5Aq-He6at1sdfa2_2xlJ16_6yQtvGPaIo8iKBl0MxrtgQhlHeTmahDuO4SUTfLIGN1raG5oI8YdBMTKBcsbqhQlADXy3xZ6dRFZyFow_QnUvgTW9bi379eRhP_q36C1j_8n5cff54dPAUbmXBOiO3ZxNGzcXMPkMPramfd4vwF5FfNzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enhanced+detection+of+subclinical+coronary+artery+disease+in+athletes%3A+diagnostic+performance+and+limitations&rft.jtitle=The+international+journal+of+cardiovascular+imaging&rft.au=K%C3%BCbler%2C+Jens&rft.au=Brendel%2C+Jan+M.&rft.au=K%C3%BCstner%2C+Thomas&rft.au=Walterspiel%2C+Jonathan&rft.date=2024-12-01&rft.pub=Springer+Netherlands&rft.eissn=1875-8312&rft.volume=40&rft.issue=12&rft.spage=2503&rft.epage=2511&rft_id=info:doi/10.1007%2Fs10554-024-03256-y&rft.externalDocID=10_1007_s10554_024_03256_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-8312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-8312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-8312&client=summon