Cognitively Enhanced Versions of Capuchin Search Algorithm for Feature Selection in Medical Diagnosis: a COVID-19 Case Study

Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created...

Full description

Saved in:
Bibliographic Details
Published inCognitive computation Vol. 15; no. 6; pp. 1884 - 1921
Main Authors Braik, Malik, Awadallah, Mohammed A., Al-Betar, Mohammed Azmi, Hammouri, Abdelaziz I., Alzubi, Omar A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-9956
1866-9964
1866-9964
DOI10.1007/s12559-023-10149-0

Cover

Abstract Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.
AbstractList Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.
Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.
Author Alzubi, Omar A.
Braik, Malik
Al-Betar, Mohammed Azmi
Awadallah, Mohammed A.
Hammouri, Abdelaziz I.
Author_xml – sequence: 1
  givenname: Malik
  orcidid: 0000-0003-4180-3734
  surname: Braik
  fullname: Braik, Malik
  email: mbraik@bau.edu.jo
  organization: Department of Computer Science, Al-Balqa Applied University
– sequence: 2
  givenname: Mohammed A.
  surname: Awadallah
  fullname: Awadallah, Mohammed A.
  organization: Department of Computer Science, Al-Aqsa University, Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University
– sequence: 3
  givenname: Mohammed Azmi
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Department of Information Technology, Al-Huson University College, Al-Balqa Applied University
– sequence: 4
  givenname: Abdelaziz I.
  surname: Hammouri
  fullname: Hammouri, Abdelaziz I.
  organization: Department of Computer Science, Al-Balqa Applied University
– sequence: 5
  givenname: Omar A.
  surname: Alzubi
  fullname: Alzubi, Omar A.
  organization: Department of Computer Science, Al-Balqa Applied University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37362196$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH9fgAWyxIZNwHYSJ2aDqrSFSkVd0HZr3Tp24spjD3ZSNBIPj4cZWuiiYuUr3e8cHZ-7j3Z88Bqh15S8p4Q0HxJldS0KwsqCElrl6QXaoy3nhRC82nmYa76L9lO6I4TXomav0G7ZlJxRwffQzy4M3k72XrsVPvUjeKV7fKNjssEnHAzuYDmr0Xr8TUNUIz52Q4h2GhfYhIjPNExz1HnptJqyBmfyq-6tAodPLAw-JJs-YsDd5c35SUFFNkyZn-Z-dYheGnBJH23fA3R9dnrVfSkuLj-fd8cXhaqaeipoD30rSAVUqKZsFWM1UYRr4JXgRghjCOtZA8ooclvyxijVqt5QYtq-akGVB6jc-M5-Casf4JxcRruAuJKUyHWXctOlzF3K311KklWfNqrlfLvQvdJ-ivCoDGDlvxtvRzmE-2zAKkrrKju82zrE8H3WaZILm5R2DrwOc5KsLQljpOZr9O0T9C7M0edWJBOMcJpTlZl683ekhyx_7pmBdgOoGFKK2khlJ1jfJSe07vnvsifS_-po22zKsB90fIz9jOoXXdPUSg
CitedBy_id crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_1371_journal_pone_0307288
crossref_primary_10_1007_s00500_023_09062_3
crossref_primary_10_1007_s11227_025_07139_4
crossref_primary_10_1007_s11227_023_05540_5
crossref_primary_10_1007_s00521_024_10288_x
crossref_primary_10_1007_s00521_024_10806_x
crossref_primary_10_1007_s42235_024_00524_4
crossref_primary_10_3389_frai_2024_1381430
crossref_primary_10_1016_j_swevo_2024_101743
crossref_primary_10_1007_s10586_024_04432_4
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1007_s42235_024_00558_8
crossref_primary_10_1038_s41598_023_44437_4
Cites_doi 10.1007/s00521-022-08015-5
10.1109/ACCESS.2019.2919991
10.1109/ACCTHPA49271.2020.9213197
10.1097/MCP.0000000000000834
10.1007/s11063-022-11023-0
10.1016/j.swevo.2012.09.002
10.1007/s10489-018-1386-9
10.1016/j.matcom.2021.08.013
10.1109/ICIBT52874.2022.9807725
10.1007/978-981-19-3679-1_22
10.1109/TCYB.2021.3061152
10.1016/j.knosys.2015.07.006
10.1016/j.comcom.2020.11.016
10.1007/s13369-020-04871-2
10.1007/s10462-020-09860-3
10.1007/s11063-021-10530-w
10.1016/j.ins.2019.08.040
10.1007/s10489-022-03772-1
10.1186/s40537-020-00327-4
10.1109/ICNSC.2019.8743245
10.1007/s10044-022-01117-9
10.1007/s00521-020-05145-6
10.1016/j.bspc.2022.104445
10.1007/s12559-019-09668-6
10.1080/00031305.1992.10475879
10.1016/j.patrec.2020.07.005
10.1016/j.measurement.2021.109442
10.1016/j.ins.2011.08.006
10.1016/j.neucom.2017.04.053
10.1007/s11042-020-08928-0
10.1109/ICACCS54159.2022.9785113
10.1016/j.gaitpost.2021.06.017
10.1016/j.eswa.2018.08.051
10.1109/TSE.1975.6312856
10.1109/ICNN.1995.488968
10.1016/j.cie.2020.106345
10.1109/CIS.2017.00113
10.1109/TEVC.2008.919004
10.1016/j.compbiomed.2022.105675
10.1016/j.compbiomed.2021.105152
10.1016/j.eswa.2022.116813
10.53370/001c.33767
10.3389/fpubh.2020.00357
10.1186/s40537-019-0267-3
10.1016/j.compeleceng.2022.107886
10.1016/j.neucom.2016.08.089
10.1007/s00500-018-3545-7
10.1016/j.asoc.2020.107026
10.1016/j.chemolab.2018.11.010
10.1007/s13369-020-04380-2
10.1007/s12559-020-09763-z
10.1109/CEC.2006.1688697
10.1007/s00366-021-01369-9
10.1109/TR.1984.5221826
10.1007/s12293-018-0269-2
10.1109/CEC.2016.7744404
10.1109/TCYB.2020.3024849
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s12559-023-10149-0
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
Advanced Technologies & Aerospace Collection
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1866-9964
EndPage 1921
ExternalDocumentID 10.1007/s12559-023-10149-0
PMC10241154
37362196
10_1007_s12559_023_10149_0
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
ZOVNA
~A9
AAFWJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-1dad8904a19c738c2250c06ea6496f99ff02d27acfc0b367fcc8cdf10f8d48ac3
IEDL.DBID UNPAY
ISSN 1866-9956
1866-9964
IngestDate Sun Oct 26 04:02:32 EDT 2025
Tue Sep 30 17:13:24 EDT 2025
Fri Sep 05 06:43:37 EDT 2025
Fri Jul 25 23:43:46 EDT 2025
Wed Feb 19 02:23:28 EST 2025
Wed Oct 01 02:03:15 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Fri Feb 21 02:41:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Capuchin search algorithm
Feature selection
Transfer function
Optimization
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-1dad8904a19c738c2250c06ea6496f99ff02d27acfc0b367fcc8cdf10f8d48ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4180-3734
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s12559-023-10149-0.pdf
PMID 37362196
PQID 2920611013
PQPubID 6623279
PageCount 38
ParticipantIDs unpaywall_primary_10_1007_s12559_023_10149_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10241154
proquest_miscellaneous_2830220564
proquest_journals_2920611013
pubmed_primary_37362196
crossref_citationtrail_10_1007_s12559_023_10149_0
crossref_primary_10_1007_s12559_023_10149_0
springer_journals_10_1007_s12559_023_10149_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationTitleAlternate Cognit Comput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS, Pelusi D, Ghosh U, Nayak J. Industrial internet of things and its applications in industry 4.0: State of the art. Comput Commun. 2021;166:125–39.
Ke L, Li M, Wang L, Deng S, Ye J, Yu X. Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification. Pattern Anal Appl. 2022:1–18.
AhnGHurSEfficient genetic algorithm for feature selection for early time series classificationComput Ind Eng202014210634510.1016/j.cie.2020.106345
Jin LiuYShengWLGuoRWangYWangJImproved asd classification using dynamic functional connectivity and multi-task feature selectionPattern Recogn Lett2020138828710.1016/j.patrec.2020.07.005
Awadallah MA, Al-Betar MA, Braik MS, Hammouri A, Doush IA, Zitar RA. An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput Biol Med. 2022:105675.
YanyuHZhaoLLiZDongXTiantianXZhaoYClassifying the multi-omics data of gastric cancer using a deep feature selection methodExpert Syst Appl202220011681310.1016/j.eswa.2022.116813
RamuSRanganathanRRamamoorthyRCapuchin search algorithm based task scheduling in cloud computing environmentYanbu Journal of Engineering and Science2022191182910.53370/001c.33767
Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Health. 2020;8:357.
LaiC-MYehW-CChangC-YGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089
BraikMA hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case studyNeural Process Lett20215342873291610.1007/s11063-021-10530-w
Bhosale YH, Sridhar Patnaik K. Puldi-covid: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates. Biomed Signal Process Control. 2023;81:104445.
Iqra Batool and Tamim Ahmed KhanSoftware fault prediction using data mining, machine learning and deep learning techniques: A systematic literature reviewComput Electr Eng202210010788610.1016/j.compeleceng.2022.107886
Song X-F, Zhang Y, Gong D-W, Gao X-Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans Cybernetics. 2021.
Jeong IS, Kim HK, Kim TH, Lee DH, Kim KJ, Kang SH. A feature selection approach based on simulated annealing for detecting various denial of service attacks. Softw Netw. 2018;2018(1):173–90.
Zhang C, Soda P, Bi J, Fan G, Almpanidis G, Garcia S, Ding W. An empirical study on the joint impact of feature selection and data resampling on imbalance classification. Appl Intell. 2022:1–13.
HancerEDifferential evolution for feature selection: a fuzzy wrapper-filter approachSoft Comput201923135233524810.1007/s00500-018-3545-7
YamadaSOhbaMOsakiSS-shaped software reliability growth models and their applicationsIEEE Trans Reliab198433428929210.1109/TR.1984.5221826
Venkata Rao R, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform Sci. 2012;183(1):1–15.
Cai W, Wei Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett. 2020.
Bhosale YH, Sridhar Patnaik K. IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using raspberrypi. In 2022 International Conference on IoT and Blockchain Technology (ICIBT). 2022;1–6. IEEE.
Mehmood A, Khan MA, Sharif M, Khan SA, Shaheen M, Saba T, Riaz N, Ashraf I. Prosperous human gait recognition: an end-to-end system based on pre-trained CNN features selection. Multimed Tools Appl. 2020:1–21.
Awadallah MA, Al-Betar MA, Hammouri A, Alomari OA. Binary JAYA algorithm with adaptive mutation for feature selection. Arab J Sci Eng. 2020;45(12):10875–90.
YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst201918410211110.1016/j.chemolab.2018.11.010
Abdel-BassetMDingWEl-ShahatDA hybrid harris hawks optimization algorithm with simulated annealing for feature selectionArtif Intell Rev202154159363710.1007/s10462-020-09860-3
Renuka Devi D, Sasikala S. Online feature selection (OFS) with accelerated bat algorithm (ABA) and ensemble incremental deep multiple layer perceptron (EIDMLP) for big data streams. J Big Data. 2019;6(1):1–20.
Nanda Gopal V, Al-Turjman F, Kumar R, Anand L, Rajesh M. Feature selection and classification in breast cancer prediction using IoT and machine learning. Measurement. 2021;178:109442.
JiaHLiJSongWPengXLangCLiYSpotted hyena optimization algorithm with simulated annealing for feature selectionIEEE Access20197719437196210.1109/ACCESS.2019.2919991
New metaheuristic algorithm for solving optimization problemsFatma A Hashim, Essam H Houssein, Kashif Hussain, Mai S Mabrouk, and Walid Al-Atabany. Honey badger algorithmMath Comput Simul202219284110
Albashish D, Hammouri A, Braik M, Atwan J, Sahran S. Binary biogeography-based optimization based SVM-RFE for feature selection. Appl Soft Comput. 2021;101:107026.
Awadallah MA, Hammouri A, Al-Betar MA, Braik MS, AbdElaziz M. Binary horse herd optimization algorithm with crossover operators for feature selection. Computers Biol Med. 2022:105152.
KirkpatrickSC Daniel Gelatt, and Mario P VecchiOptimization by simulated annealing. science19832204598671680
Liu W, Wang J. A brief survey on nature-inspired metaheuristics for feature selection in classification in this decade. In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC). 2019;424–9. IEEE.
Crow LH. Reliability analysis for complex repairable systems, soc. industrial and applied mathematics, reliability and biometry. Proceedings of Statistical Analysis of Life Length. 1974;25:248–53.
Bhosale YH, Sridhar Patnaik K. Application of deep learning techniques in diagnosis of COVID-19 (coronavirus): a systematic review. Neural Process Lett. 2022:1–53.
Bhosale YH, Zanwar S, Ahmed Z, Nakrani M, Bhuyar D, Shinde U. Deep convolutional neural network based COVID-19 classification from radiology x-ray images for iot enabled devices. In 2022 8th International Conference on Advanced Computing and Communication Systems. 2022;1:398–1402. IEEE.
Jiang Y, Liu X, Yan G, Xiao J. Modified binary cuckoo search for feature selection: a hybrid filter-wrapper approach. In 2017 13th International Conference on Computational Intelligence and Security (CIS). 2017:488–91. IEEE.
Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks. 1995;4:1942–8. IEEE.
AroraSAnandPBinary butterfly optimization approaches for feature selectionExpert Syst Appl201911614716010.1016/j.eswa.2018.08.051
MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002
Zhang F, Mei Y, Nguyen S, Zhang M. Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans Cybernetics. 2020;51(4):1797–811.
MirjaliliSMoth-flame optimization algorithm: A novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006
Singh D, Mathioudakis AG, Higham A. Chronic obstructive pulmonary disease and COVID-19: interrelationships. Curr Opin Pulm Med. 2022;28(2):76.
MessaoudiIKamelNA multi-objective bat algorithm for community detection on dynamic social networksAppl Intell20194962119213610.1007/s10489-018-1386-9
Bhosale YH, Singh P, Sridhar Patnaik K. COVID-19 and associated lung disease classification using deep learning. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022. 2022;3:283–95. Springer.
AbdollahzadehBGharehchopoghFSA multi-objective optimization algorithm for feature selection problemsEng Comput20223831845186310.1007/s00366-021-01369-9
SimonDBiogeography-based optimizationIEEE Trans Evol Comput200812670271310.1109/TEVC.2008.919004
RajDMMohanasundaramRAn efficient filter-based feature selection model to identify significant features from high-dimensional microarray dataArab J Sci Eng20204542619263010.1007/s13369-020-04380-2
ZhangYGongD-WGaoX-ZTianTSunX-YBinary differential evolution with self-learning for multi-objective feature selectionInform Sci20205076785399489210.1016/j.ins.2019.08.0401456.68235
ChongJTjurinPNiemeläMJämsäTFarrahiVMachine-learning models for activity class prediction: A comparative study of feature selection and classification algorithmsGait Posture202189455310.1016/j.gaitpost.2021.06.017
Chen R-C, Dewi C, Huang S-W,  Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):1–26.
Braik M. Enhanced ali baba and the forty thieves algorithm for feature selection. Neural Comput Applic. 2022:1–32.
Zhou R, Niu L. Feature selection of network data via ℓ2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2, p}$$\end{document} regularization. Cogn Comput. 2020;12(6):1217–32.
Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 2017;260:302–312.
BraikMShetaAAl-HiaryHA novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithmNeural Comput Appl20213372515254710.1007/s00521-020-05145-6
Musa JD. A theory of software reliability and i
C Yan (10149_CR38) 2019; 184
10149_CR37
10149_CR36
Y Jin Liu (10149_CR53) 2020; 138
10149_CR34
10149_CR31
Y Zhang (10149_CR32) 2020; 507
10149_CR30
10149_CR9
10149_CR7
DM Raj (10149_CR15) 2020; 45
H Yanyu (10149_CR26) 2022; 200
10149_CR49
10149_CR48
10149_CR47
10149_CR46
S Ramu (10149_CR29) 2022; 19
10149_CR45
M Abdel-Basset (10149_CR41) 2021; 54
10149_CR43
I Messaoudi (10149_CR24) 2019; 49
B Abdollahzadeh (10149_CR25) 2022; 38
10149_CR40
G Ahn (10149_CR33) 2020; 142
10149_CR5
10149_CR6
Iqra Batool and Tamim Ahmed Khan (10149_CR12) 2022; 100
10149_CR3
M Braik (10149_CR27) 2021; 33
10149_CR4
J Chong (10149_CR8) 2021; 89
10149_CR1
E Hancer (10149_CR42) 2019; 23
S Yamada (10149_CR50) 1984; 33
10149_CR19
10149_CR18
10149_CR17
10149_CR16
10149_CR59
10149_CR14
10149_CR58
10149_CR13
10149_CR11
M Braik (10149_CR28) 2021; 53
10149_CR55
10149_CR10
10149_CR54
10149_CR52
D Simon (10149_CR56) 2008; 12
C-M Lai (10149_CR44) 2016; 218
H Jia (10149_CR39) 2019; 7
10149_CR23
10149_CR22
New metaheuristic algorithm for solving optimization problems (10149_CR61) 2022; 192
10149_CR21
10149_CR20
S Arora (10149_CR2) 2019; 116
S Mirjalili (10149_CR51) 2013; 9
10149_CR60
S Kirkpatrick (10149_CR35) 1983; 220
S Mirjalili (10149_CR57) 2015; 89
References_xml – reference: Awadallah MA, Hammouri A, Al-Betar MA, Braik MS, AbdElaziz M. Binary horse herd optimization algorithm with crossover operators for feature selection. Computers Biol Med. 2022:105152.
– reference: Sheta A. Reliability growth modeling for software fault detection using particle swarm optimization. In 2006 IEEE International Conference on Evolutionary Computation. 2006:3071–8. IEEE.
– reference: YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst201918410211110.1016/j.chemolab.2018.11.010
– reference: Bindu MG, Sabu MK. A hybrid feature selection approach using artificial bee colony and genetic algorithm. In 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). 2020;211–6. IEEE.
– reference: MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002
– reference: Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks. 1995;4:1942–8. IEEE.
– reference: Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS, Pelusi D, Ghosh U, Nayak J. Industrial internet of things and its applications in industry 4.0: State of the art. Comput Commun. 2021;166:125–39.
– reference: Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 2017;260:302–312.
– reference: Abdel-BassetMDingWEl-ShahatDA hybrid harris hawks optimization algorithm with simulated annealing for feature selectionArtif Intell Rev202154159363710.1007/s10462-020-09860-3
– reference: Venkata Rao R, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform Sci. 2012;183(1):1–15.
– reference: Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.
– reference: RamuSRanganathanRRamamoorthyRCapuchin search algorithm based task scheduling in cloud computing environmentYanbu Journal of Engineering and Science2022191182910.53370/001c.33767
– reference: YamadaSOhbaMOsakiSS-shaped software reliability growth models and their applicationsIEEE Trans Reliab198433428929210.1109/TR.1984.5221826
– reference: Braik M. Enhanced ali baba and the forty thieves algorithm for feature selection. Neural Comput Applic. 2022:1–32.
– reference: Song X-F, Zhang Y, Gong D-W, Gao X-Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans Cybernetics. 2021.
– reference: Crow LH. Reliability analysis for complex repairable systems, soc. industrial and applied mathematics, reliability and biometry. Proceedings of Statistical Analysis of Life Length. 1974;25:248–53.
– reference: BraikMA hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case studyNeural Process Lett20215342873291610.1007/s11063-021-10530-w
– reference: LaiC-MYehW-CChangC-YGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089
– reference: Zhang F, Mei Y, Nguyen S, Zhang M. Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans Cybernetics. 2020;51(4):1797–811.
– reference: MirjaliliSMoth-flame optimization algorithm: A novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006
– reference: Renuka Devi D, Sasikala S. Online feature selection (OFS) with accelerated bat algorithm (ABA) and ensemble incremental deep multiple layer perceptron (EIDMLP) for big data streams. J Big Data. 2019;6(1):1–20.
– reference: KirkpatrickSC Daniel Gelatt, and Mario P VecchiOptimization by simulated annealing. science19832204598671680
– reference: Iqra Batool and Tamim Ahmed KhanSoftware fault prediction using data mining, machine learning and deep learning techniques: A systematic literature reviewComput Electr Eng202210010788610.1016/j.compeleceng.2022.107886
– reference: Singh D, Mathioudakis AG, Higham A. Chronic obstructive pulmonary disease and COVID-19: interrelationships. Curr Opin Pulm Med. 2022;28(2):76.
– reference: Nanda Gopal V, Al-Turjman F, Kumar R, Anand L, Rajesh M. Feature selection and classification in breast cancer prediction using IoT and machine learning. Measurement. 2021;178:109442.
– reference: Bhosale YH, Singh P, Sridhar Patnaik K. COVID-19 and associated lung disease classification using deep learning. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022. 2022;3:283–95. Springer.
– reference: Ke L, Li M, Wang L, Deng S, Ye J, Yu X. Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification. Pattern Anal Appl. 2022:1–18.
– reference: RajDMMohanasundaramRAn efficient filter-based feature selection model to identify significant features from high-dimensional microarray dataArab J Sci Eng20204542619263010.1007/s13369-020-04380-2
– reference: Cai W, Wei Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett. 2020.
– reference: Zhou R, Niu L. Feature selection of network data via ℓ2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2, p}$$\end{document} regularization. Cogn Comput. 2020;12(6):1217–32.
– reference: Jin LiuYShengWLGuoRWangYWangJImproved asd classification using dynamic functional connectivity and multi-task feature selectionPattern Recogn Lett2020138828710.1016/j.patrec.2020.07.005
– reference: New metaheuristic algorithm for solving optimization problemsFatma A Hashim, Essam H Houssein, Kashif Hussain, Mai S Mabrouk, and Walid Al-Atabany. Honey badger algorithmMath Comput Simul202219284110
– reference: Bhosale YH, Sridhar Patnaik K. Application of deep learning techniques in diagnosis of COVID-19 (coronavirus): a systematic review. Neural Process Lett. 2022:1–53.
– reference: MessaoudiIKamelNA multi-objective bat algorithm for community detection on dynamic social networksAppl Intell20194962119213610.1007/s10489-018-1386-9
– reference: Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput. 2020;12(1):150–75.
– reference: Mehmood A, Khan MA, Sharif M, Khan SA, Shaheen M, Saba T, Riaz N, Ashraf I. Prosperous human gait recognition: an end-to-end system based on pre-trained CNN features selection. Multimed Tools Appl. 2020:1–21.
– reference: ZhangYGongD-WGaoX-ZTianTSunX-YBinary differential evolution with self-learning for multi-objective feature selectionInform Sci20205076785399489210.1016/j.ins.2019.08.0401456.68235
– reference: JiaHLiJSongWPengXLangCLiYSpotted hyena optimization algorithm with simulated annealing for feature selectionIEEE Access20197719437196210.1109/ACCESS.2019.2919991
– reference: AhnGHurSEfficient genetic algorithm for feature selection for early time series classificationComput Ind Eng202014210634510.1016/j.cie.2020.106345
– reference: AbdollahzadehBGharehchopoghFSA multi-objective optimization algorithm for feature selection problemsEng Comput20223831845186310.1007/s00366-021-01369-9
– reference: YanyuHZhaoLLiZDongXTiantianXZhaoYClassifying the multi-omics data of gastric cancer using a deep feature selection methodExpert Syst Appl202220011681310.1016/j.eswa.2022.116813
– reference: Awadallah MA, Al-Betar MA, Braik MS, Hammouri A, Doush IA, Zitar RA. An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput Biol Med. 2022:105675.
– reference: ChongJTjurinPNiemeläMJämsäTFarrahiVMachine-learning models for activity class prediction: A comparative study of feature selection and classification algorithmsGait Posture202189455310.1016/j.gaitpost.2021.06.017
– reference: Viktorin A, Pluhacek M, Senkerik R. Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In 2016 IEEE Congress on Evolutionary Computation (CEC). 2016:4797–803. IEEE.
– reference: Bhosale YH, Sridhar Patnaik K. IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using raspberrypi. In 2022 International Conference on IoT and Blockchain Technology (ICIBT). 2022;1–6. IEEE.
– reference: Hammami M, Bechikh S, Hung C-C, BenSaid L. A multi-objective hybrid filter-wrapper evolutionary approach for feature selection. Memetic Computing. 2019;11(2):193–208.
– reference: Chen R-C, Dewi C, Huang S-W,  Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):1–26.
– reference: Liu W, Wang J. A brief survey on nature-inspired metaheuristics for feature selection in classification in this decade. In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC). 2019;424–9. IEEE.
– reference: Jiang Y, Liu X, Yan G, Xiao J. Modified binary cuckoo search for feature selection: a hybrid filter-wrapper approach. In 2017 13th International Conference on Computational Intelligence and Security (CIS). 2017:488–91. IEEE.
– reference: Zhang C, Soda P, Bi J, Fan G, Almpanidis G, Garcia S, Ding W. An empirical study on the joint impact of feature selection and data resampling on imbalance classification. Appl Intell. 2022:1–13.
– reference: Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Health. 2020;8:357.
– reference: AroraSAnandPBinary butterfly optimization approaches for feature selectionExpert Syst Appl201911614716010.1016/j.eswa.2018.08.051
– reference: Bhosale YH, Zanwar S, Ahmed Z, Nakrani M, Bhuyar D, Shinde U. Deep convolutional neural network based COVID-19 classification from radiology x-ray images for iot enabled devices. In 2022 8th International Conference on Advanced Computing and Communication Systems. 2022;1:398–1402. IEEE.
– reference: Awadallah MA, Al-Betar MA, Hammouri A, Alomari OA. Binary JAYA algorithm with adaptive mutation for feature selection. Arab J Sci Eng. 2020;45(12):10875–90.
– reference: Jeong IS, Kim HK, Kim TH, Lee DH, Kim KJ, Kang SH. A feature selection approach based on simulated annealing for detecting various denial of service attacks. Softw Netw. 2018;2018(1):173–90.
– reference: HancerEDifferential evolution for feature selection: a fuzzy wrapper-filter approachSoft Comput201923135233524810.1007/s00500-018-3545-7
– reference: Bhosale YH, Sridhar Patnaik K. Puldi-covid: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates. Biomed Signal Process Control. 2023;81:104445.
– reference: BraikMShetaAAl-HiaryHA novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithmNeural Comput Appl20213372515254710.1007/s00521-020-05145-6
– reference: SimonDBiogeography-based optimizationIEEE Trans Evol Comput200812670271310.1109/TEVC.2008.919004
– reference: Albashish D, Hammouri A, Braik M, Atwan J, Sahran S. Binary biogeography-based optimization based SVM-RFE for feature selection. Appl Soft Comput. 2021;101:107026.
– reference: Musa JD. A theory of software reliability and its application. IEEE Trans Softw Eng. 1975;(3):312–27.
– ident: 10149_CR1
  doi: 10.1007/s00521-022-08015-5
– volume: 7
  start-page: 71943
  year: 2019
  ident: 10149_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919991
– ident: 10149_CR40
  doi: 10.1109/ACCTHPA49271.2020.9213197
– ident: 10149_CR20
  doi: 10.1097/MCP.0000000000000834
– ident: 10149_CR18
  doi: 10.1007/s11063-022-11023-0
– volume: 9
  start-page: 1
  year: 2013
  ident: 10149_CR51
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2012.09.002
– volume: 49
  start-page: 2119
  issue: 6
  year: 2019
  ident: 10149_CR24
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1386-9
– ident: 10149_CR36
– volume: 192
  start-page: 84
  year: 2022
  ident: 10149_CR61
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.08.013
– ident: 10149_CR54
  doi: 10.1109/ICIBT52874.2022.9807725
– ident: 10149_CR17
  doi: 10.1007/978-981-19-3679-1_22
– ident: 10149_CR30
  doi: 10.1109/TCYB.2021.3061152
– volume: 89
  start-page: 228
  year: 2015
  ident: 10149_CR57
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– ident: 10149_CR3
  doi: 10.1016/j.comcom.2020.11.016
– ident: 10149_CR49
– ident: 10149_CR34
  doi: 10.1007/s13369-020-04871-2
– volume: 54
  start-page: 593
  issue: 1
  year: 2021
  ident: 10149_CR41
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09860-3
– volume: 53
  start-page: 2873
  issue: 4
  year: 2021
  ident: 10149_CR28
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10530-w
– volume: 507
  start-page: 67
  year: 2020
  ident: 10149_CR32
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.08.040
– ident: 10149_CR7
  doi: 10.1007/s10489-022-03772-1
– ident: 10149_CR22
  doi: 10.1186/s40537-020-00327-4
– ident: 10149_CR46
  doi: 10.1109/ICNSC.2019.8743245
– ident: 10149_CR45
  doi: 10.1007/s10044-022-01117-9
– ident: 10149_CR14
– volume: 33
  start-page: 2515
  issue: 7
  year: 2021
  ident: 10149_CR27
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05145-6
– ident: 10149_CR19
  doi: 10.1016/j.bspc.2022.104445
– ident: 10149_CR9
  doi: 10.1007/s12559-019-09668-6
– ident: 10149_CR52
  doi: 10.1080/00031305.1992.10475879
– volume: 138
  start-page: 82
  year: 2020
  ident: 10149_CR53
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.07.005
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10149_CR35
  publication-title: Optimization by simulated annealing. science
– ident: 10149_CR11
  doi: 10.1016/j.measurement.2021.109442
– ident: 10149_CR58
  doi: 10.1016/j.ins.2011.08.006
– ident: 10149_CR37
  doi: 10.1016/j.neucom.2017.04.053
– ident: 10149_CR13
  doi: 10.1007/s11042-020-08928-0
– ident: 10149_CR55
  doi: 10.1109/ICACCS54159.2022.9785113
– volume: 89
  start-page: 45
  year: 2021
  ident: 10149_CR8
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.06.017
– volume: 116
  start-page: 147
  year: 2019
  ident: 10149_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.051
– ident: 10149_CR47
  doi: 10.1109/TSE.1975.6312856
– ident: 10149_CR60
  doi: 10.1109/ICNN.1995.488968
– volume: 142
  start-page: 106345
  year: 2020
  ident: 10149_CR33
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106345
– ident: 10149_CR43
  doi: 10.1109/CIS.2017.00113
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10149_CR56
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.919004
– ident: 10149_CR4
  doi: 10.1016/j.compbiomed.2022.105675
– ident: 10149_CR5
  doi: 10.1016/j.compbiomed.2021.105152
– volume: 200
  start-page: 116813
  year: 2022
  ident: 10149_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116813
– volume: 19
  start-page: 18
  issue: 1
  year: 2022
  ident: 10149_CR29
  publication-title: Yanbu Journal of Engineering and Science
  doi: 10.53370/001c.33767
– ident: 10149_CR16
  doi: 10.3389/fpubh.2020.00357
– ident: 10149_CR21
  doi: 10.1186/s40537-019-0267-3
– volume: 100
  start-page: 107886
  year: 2022
  ident: 10149_CR12
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.107886
– volume: 218
  start-page: 331
  year: 2016
  ident: 10149_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.089
– volume: 23
  start-page: 5233
  issue: 13
  year: 2019
  ident: 10149_CR42
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3545-7
– ident: 10149_CR6
  doi: 10.1016/j.asoc.2020.107026
– volume: 184
  start-page: 102
  year: 2019
  ident: 10149_CR38
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.11.010
– volume: 45
  start-page: 2619
  issue: 4
  year: 2020
  ident: 10149_CR15
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04380-2
– ident: 10149_CR10
  doi: 10.1007/s12559-020-09763-z
– ident: 10149_CR48
  doi: 10.1109/CEC.2006.1688697
– volume: 38
  start-page: 1845
  issue: 3
  year: 2022
  ident: 10149_CR25
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01369-9
– volume: 33
  start-page: 289
  issue: 4
  year: 1984
  ident: 10149_CR50
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.1984.5221826
– ident: 10149_CR23
  doi: 10.1007/s12293-018-0269-2
– ident: 10149_CR59
  doi: 10.1109/CEC.2016.7744404
– ident: 10149_CR31
  doi: 10.1109/TCYB.2020.3024849
SSID ssj0065952
Score 2.4157512
Snippet Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1884
SubjectTerms Acceleration
Accuracy
Algorithms
Artificial Intelligence
Automatic control
Chronic obstructive pulmonary disease
Classification
Computation
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
COVID-19
Data analysis
Data mining
Datasets
Feature selection
Machine learning
Medical diagnosis
Methods
Optimization
Search algorithms
Sensitivity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZbxMxEB6V9IHygDjLQkFG4o1a7OE9jIRQSVMVHgJCFPVt5fgglRYnNIlQJH48M3uFqFLE20qePbwzHn_2jL8BeIWDTONSNuWIhmOO-N9wlcSOJ0JInZoJlZCmbItxdn4hPl2ml3sw7s7CUFpl5xNrR21mmvbI31BVpQznqih5P__FqWoURVe7EhqqLa1g3tUUY7dgPyZmrAHsfxiNv3ztfDOR59XxzyLLOJ3pbI_RNIfpCF1znMM41a_Fq-2p6gb-vJlG2cdS78DtlZ-r9W9VVf9MV2f34G6LM9lJYxj3Yc_6B3DQu7v1Q_gz7DKHqjUb-WmdCsDa_bMFmzk2VHMqleJZk5PMTqof-EeW058MkS4j8Li6tthY1elcnqFkG_dhp00G39XiLVNs-Pn7x1MeSXzgAuWJ0PYRXJyNvg3PeVuLgWuRp0seGWUKGQoVSZ0nhUY3EOowsyoTMnNSOhfGJs6VdjqcJFnutC60cVHoCiMKpZPHMPAzb58AS7XN7cRojVhHqLSQzro0sULk0sa4Agwg6n57qVuicqqXUZUbimVSVYmqKmtVlWEAr_t75g1Nx07po06bZTtkF-XGwAJ42TfjYKMIivJ2tkIZYkuLETOKAA4b5fevS3LEAujPAii2zKIXICLv7RZ_Na0JvRHkCaJFCuC4s6DNd-3qxnFvZf_R66e7e_0MDuLa-Gl76QgGy-uVfY6Aazl50Y6ivxiTJK0
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5B98ByYGF5BRZkJG6sV3k4L25Vt8sCElwoWk6R49i0IqRVkwgV8eMZJ3ZKWbRib5U8cWpnPP6S-fwNwEtcZAJfZUOKaNiniP8LygNf0YCxVIRFrktIa7bFh-h8xt5dhBfmUFht2e42JdlF6u1hN41-Ke4xVNeXxV83Ya_T2xrB3vjNl_dTG4G1RF6X5UyiiOqTm-awzL972d2QLqHMy2TJIWN6G2611YpvfvCy_GNTOjuAmR1Oz0X5dtI2-Yn4-ZfS43XHexfuGJRKxr1b3YMbsjqEA1sBgpiAcAj7Q_zc3IdfE0tFKjdkWs07bgExH-RqslRkwle69kpFepIzGZdfl-tFM_9OEDoTjUbbtcTGsuOHVQQtTSKJnPaUwEX9mnAy-fj57Sn1UuywRnutkPsAZmfTT5Nzaoo7UMHisKFewYskdRn3UhEHicC44go3kjxiaaTSVCnXL_yYCyXcPIhiJUQiCuW5KilYwkXwEEbVspKPgYRCxjIvhEDwxHiYpEqqMJCMxan08ZXSAc8-4UwY5XNdgKPMtprNeq4znOusm-vMdeDVcM2q1_240vrIOk5mYkCd6TpgEaIrL3DgxdCMq1enZHglly3aaPk1H0Eoc-BR72fD7YIYwQUGSAeSHQ8cDLQy-G5LtZh3CuGIGpnWWXLg2PrW9n9dNYzjwaH_Y9RPrtf7U9j3O2_W36-OYNSsW_kMEV2TPzcL-DfG-T54
  priority: 102
  providerName: Springer Nature
Title Cognitively Enhanced Versions of Capuchin Search Algorithm for Feature Selection in Medical Diagnosis: a COVID-19 Case Study
URI https://link.springer.com/article/10.1007/s12559-023-10149-0
https://www.ncbi.nlm.nih.gov/pubmed/37362196
https://www.proquest.com/docview/2920611013
https://www.proquest.com/docview/2830220564
https://pubmed.ncbi.nlm.nih.gov/PMC10241154
https://link.springer.com/content/pdf/10.1007/s12559-023-10149-0.pdf
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9964
  databaseCode: AFBBN
  dateStart: 20090301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1866-9964
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9964
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9964
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9964
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfGA3dYYFRG4o25y8W58VZ62QCpTIii7SlyHJtWC2nVpkJF_HiOcytlaALxVKs-TWL32P4cf-c7AC9xkAncyroU0bBNEf8nlDu2og5joXCTWKeQ1myLsXc2Ye8u3Is9GNSxMAXbvT6SLGMatEpTlp8sEnWyDXzTSJjiekN1rlksdbF6H9qei4i8Be3J-Lx3qfdagedRHby5LXusip3584V216droPM6d7I5QL0Nt9bZgm--8TT9ZY0a3QVZt66kplx113ncFd9_E3783-bfgzsViCW90uvuw57MHsBBM5duHsKPfk1LSjdkmE0LngGpXs6tyFyRPl_oPCwZKQnPpJd-mS9n-fQrQRhNNDJdLyVWpgVXLCNoWR0qkUFJD5ytXhNO-h8-vx1QK8QLrtBeq-U-gslo-Kl_RqtED1Qw382plfAkCE3GrVD4TiBwjjGF6UnusdBTYaiUaSe2z4USZux4vhIiEImyTBUkLODCeQytbJ7JQyCukL6MEyEQSDHuBqGSynUkY34obdxeGmDVf28kKhV0nYwjjbb6zbpzI-zcqOjcyDTgVfObRakBcqP1Ue01UTUfrCKdE8xDpGU5BrxoqnEk6-MZnsn5Gm20FJuNgJQZ8KR0suZ2jo9AAydLA4Id92sMtEr4bk02mxZq4YggmdZcMuC4dqztc93UjOPGm_-i1U__zfwZHNiF--p3WUfQypdr-RzRXR53YD8YnXag3Tu9fD_EzzfD8flH_HZi9zrVwP4JDANInw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7U9qH1Qby7WnUEfbKDe5m9CUVqkpLYGkXa0rd1MjtjCusmdhNKwN_mb_OcvcVQCL70LTAnm8ye2zdzbgCvUckUHmV9jmjY5Yj_Uy4913BPiFj56YhGSFO2xTDon4pP5_75BvxpamEorbKxiaWhTieK7sjf0VSlAH2V432Y_uI0NYqiq80IDVmPVkj3yxZjdWHHkV5c4RGu2B90kd9vXPewd9Lp83rKAFci9GfcSWUaxbaQTqxCL1Io4LayAy0DEQcmjo2x3dQNpTLKHnlBaJSKVGoc20SpiKTy8Lm3YEt4IsbD39bH3vDrt8YXULO-Mt4aBQGnGtK6bKcq3iM0z9FncpqXi59WXeM1vHs9bbON3d6G7Xk-lYsrmWX_uMfDu3CnxrXsoBLEe7Ch8_uw05rXxQP43WkylbIF6-XjMvWA1fd1BZsY1pFTGs2SsyoHmh1kP5ADs_FPhsiaEVidX2pczMr0sZwhZR1nYt0qY_CieM8k63w5G3S5E-MDC6SnBroP4fRGuPIINvNJrp8A85UO9ShVCrGVkH4UG218TwsRxtrFE6cFTvPaE1U3Rqf5HFmybOlMrEqQVUnJqsS24G37nWnVFmQt9W7DzaQ2EUWyFGgLXrXLqNwUsZG5nsyRhrqzuYhRhQWPK-a3P-eFiD3QfloQrYhFS0CNw1dX8otx2UAcQaWgNkwW7DUStPxf67ax10rZf-z66fpdv4Tt_snn4-R4MDx6BjtuqQh0tbULm7PLuX6OYG82elFrFIPvN63EfwGug2L7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BkGA8MBgDwgYYiTdmLR_OF29Vu2oDNHigaG-R69i0UnCrNhWqxB_PXb66atPE3iL54iS6O_sX393vAD6gkyn8lQ05omGfI_7PuQx8wwMhUhXmY2ohTdkWF9HZSHy-DC-vVPFX2e5tSLKuaSCWJluezHNzsil8IyTMcb_h1GsWr-7DA0FECWjRI7_XrsVEllfFO5Mo4lTD2ZTN3DzH9tZ0DW9eT5vsYqeP4dHKzuX6jyyKK9vT8Ck8aXAl69WG8AzuabsPe23PBta48D7sdive-jn87bfJQ8WandpJlQ3AmiO0JZsZ1pdz6pZiWZ2WzHrFr9liWk5-MwS7jPDjaqFxsKgyuixDySb0wwZ1Et90-YlJ1v_283zAvRQnXKI8cdoewGh4-qN_xpt2DFyJOCy5l8s8SV0hvVTFQaJwJXCVG2kZiTQyaWqM6-d-LJVR7jiIYqNUonLjuSbJRSJV8AJ27MzqV8BCpWM9zpVCuCNkmKRGmzDQQsSp9vEn0AGv1USmGq5yaplRZBuWZdJehtrLKu1lrgMfu3vmNVPHrdJHrYKzxmuXGXXuihAPeYED77th9DcKokirZyuUIcI0H2GjcOBlbQ_d44IY4QAuaQ4kW5bSCRCX9_aInU4qTm_EeYKYkRw4bo1q8163fcZxZ3j_8dWv7zb7O3j4fTDMvp5ffDmEXb9yFTp8OoKdcrHSbxCOleO3lcf9A8W1KKE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4t3QPLgfcjsCAjcWPdzcNxEm5Vu6uFw8KBouUUOY69rQhu1SZCRfx4xnmVsmgF4hbJk4edsf3Z_uYbgFfYySQuZUOKaNiniP9zKgJf04CxRIZ5ZlNIW7bFOT-bsncX4cUeTLpYmJrt3h1JNjENVqXJlMfLXB9vA98sEqY431Cbaxavhlh8A_Z5iIh8APvT8w-jz3atFXNObfDm9pqzNnbmzw_anZ-ugM6r3Mn-APUW3KzMUmy-iaL4ZY46vQOqq11DTfkyrMpsKL__Jvz4v9W_C7dbEEtGjdfdgz1l7sNBP5ZuHsCPcUdLKjbkxMxqngFpN-fWZKHJWCxtHhZDGsIzGRWXi9W8nH0lCKOJRabVSmFhUXPFDEHL9lCJTBp64Hz9hggyfv_p7YR6CT5wjfZWLfchTE9PPo7PaJvogUoWhSX1cpHHicuEl8goiCWOMa50uRKcJVwnidaun_uRkFq6WcAjLWUsc-25Os5ZLGTwCAZmYdQTIKFUkcpyKRFIMRHGiVY6DBRjUaJ8XF464HW_N5WtCrpNxlGkW_1m27gpNm5aN27qOvC6v2fZaIBca33YeU3ajgfr1OYE44i0vMCBl30x9mR7PCOMWlRoY6XYfASkzIHHjZP1rwsiBBo4WDoQ77hfb2BVwndLzHxWq4UjgmRWc8mBo86xtt91XTWOem_-i1o__TfzZ3Dg1-5r97IOYVCuKvUc0V2ZvWg7709qd0Oi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitively+Enhanced+Versions+of+Capuchin+Search+Algorithm+for+Feature+Selection+in+Medical+Diagnosis%3A+a+COVID-19+Case+Study&rft.jtitle=Cognitive+computation&rft.au=Braik%2C+Malik&rft.au=Awadallah%2C+Mohammed+A.&rft.au=Al-Betar%2C+Mohammed%C2%A0Azmi&rft.au=Hammouri%2C+Abdelaziz+I.&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=1866-9956&rft.eissn=1866-9964&rft.spage=1&rft.epage=38&rft_id=info:doi/10.1007%2Fs12559-023-10149-0&rft.externalDocID=PMC10241154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon