Cognitively Enhanced Versions of Capuchin Search Algorithm for Feature Selection in Medical Diagnosis: a COVID-19 Case Study
Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created...
Saved in:
| Published in | Cognitive computation Vol. 15; no. 6; pp. 1884 - 1921 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.11.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-9956 1866-9964 1866-9964 |
| DOI | 10.1007/s12559-023-10149-0 |
Cover
| Abstract | Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies. |
|---|---|
| AbstractList | Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies. Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies. |
| Author | Alzubi, Omar A. Braik, Malik Al-Betar, Mohammed Azmi Awadallah, Mohammed A. Hammouri, Abdelaziz I. |
| Author_xml | – sequence: 1 givenname: Malik orcidid: 0000-0003-4180-3734 surname: Braik fullname: Braik, Malik email: mbraik@bau.edu.jo organization: Department of Computer Science, Al-Balqa Applied University – sequence: 2 givenname: Mohammed A. surname: Awadallah fullname: Awadallah, Mohammed A. organization: Department of Computer Science, Al-Aqsa University, Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University – sequence: 3 givenname: Mohammed Azmi surname: Al-Betar fullname: Al-Betar, Mohammed Azmi organization: Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Department of Information Technology, Al-Huson University College, Al-Balqa Applied University – sequence: 4 givenname: Abdelaziz I. surname: Hammouri fullname: Hammouri, Abdelaziz I. organization: Department of Computer Science, Al-Balqa Applied University – sequence: 5 givenname: Omar A. surname: Alzubi fullname: Alzubi, Omar A. organization: Department of Computer Science, Al-Balqa Applied University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37362196$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1URH9fgAWyxIZNwHYSJ2aDqrSFSkVd0HZr3Tp24spjD3ZSNBIPj4cZWuiiYuUr3e8cHZ-7j3Z88Bqh15S8p4Q0HxJldS0KwsqCElrl6QXaoy3nhRC82nmYa76L9lO6I4TXomav0G7ZlJxRwffQzy4M3k72XrsVPvUjeKV7fKNjssEnHAzuYDmr0Xr8TUNUIz52Q4h2GhfYhIjPNExz1HnptJqyBmfyq-6tAodPLAw-JJs-YsDd5c35SUFFNkyZn-Z-dYheGnBJH23fA3R9dnrVfSkuLj-fd8cXhaqaeipoD30rSAVUqKZsFWM1UYRr4JXgRghjCOtZA8ooclvyxijVqt5QYtq-akGVB6jc-M5-Casf4JxcRruAuJKUyHWXctOlzF3K311KklWfNqrlfLvQvdJ-ivCoDGDlvxtvRzmE-2zAKkrrKju82zrE8H3WaZILm5R2DrwOc5KsLQljpOZr9O0T9C7M0edWJBOMcJpTlZl683ekhyx_7pmBdgOoGFKK2khlJ1jfJSe07vnvsifS_-po22zKsB90fIz9jOoXXdPUSg |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04361_2 crossref_primary_10_1371_journal_pone_0307288 crossref_primary_10_1007_s00500_023_09062_3 crossref_primary_10_1007_s11227_025_07139_4 crossref_primary_10_1007_s11227_023_05540_5 crossref_primary_10_1007_s00521_024_10288_x crossref_primary_10_1007_s00521_024_10806_x crossref_primary_10_1007_s42235_024_00524_4 crossref_primary_10_3389_frai_2024_1381430 crossref_primary_10_1016_j_swevo_2024_101743 crossref_primary_10_1007_s10586_024_04432_4 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1007_s42235_024_00558_8 crossref_primary_10_1038_s41598_023_44437_4 |
| Cites_doi | 10.1007/s00521-022-08015-5 10.1109/ACCESS.2019.2919991 10.1109/ACCTHPA49271.2020.9213197 10.1097/MCP.0000000000000834 10.1007/s11063-022-11023-0 10.1016/j.swevo.2012.09.002 10.1007/s10489-018-1386-9 10.1016/j.matcom.2021.08.013 10.1109/ICIBT52874.2022.9807725 10.1007/978-981-19-3679-1_22 10.1109/TCYB.2021.3061152 10.1016/j.knosys.2015.07.006 10.1016/j.comcom.2020.11.016 10.1007/s13369-020-04871-2 10.1007/s10462-020-09860-3 10.1007/s11063-021-10530-w 10.1016/j.ins.2019.08.040 10.1007/s10489-022-03772-1 10.1186/s40537-020-00327-4 10.1109/ICNSC.2019.8743245 10.1007/s10044-022-01117-9 10.1007/s00521-020-05145-6 10.1016/j.bspc.2022.104445 10.1007/s12559-019-09668-6 10.1080/00031305.1992.10475879 10.1016/j.patrec.2020.07.005 10.1016/j.measurement.2021.109442 10.1016/j.ins.2011.08.006 10.1016/j.neucom.2017.04.053 10.1007/s11042-020-08928-0 10.1109/ICACCS54159.2022.9785113 10.1016/j.gaitpost.2021.06.017 10.1016/j.eswa.2018.08.051 10.1109/TSE.1975.6312856 10.1109/ICNN.1995.488968 10.1016/j.cie.2020.106345 10.1109/CIS.2017.00113 10.1109/TEVC.2008.919004 10.1016/j.compbiomed.2022.105675 10.1016/j.compbiomed.2021.105152 10.1016/j.eswa.2022.116813 10.53370/001c.33767 10.3389/fpubh.2020.00357 10.1186/s40537-019-0267-3 10.1016/j.compeleceng.2022.107886 10.1016/j.neucom.2016.08.089 10.1007/s00500-018-3545-7 10.1016/j.asoc.2020.107026 10.1016/j.chemolab.2018.11.010 10.1007/s13369-020-04380-2 10.1007/s12559-020-09763-z 10.1109/CEC.2006.1688697 10.1007/s00366-021-01369-9 10.1109/TR.1984.5221826 10.1007/s12293-018-0269-2 10.1109/CEC.2016.7744404 10.1109/TCYB.2020.3024849 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s12559-023-10149-0 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Advanced Technologies & Aerospace Collection MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Computer Science |
| EISSN | 1866-9964 |
| EndPage | 1921 |
| ExternalDocumentID | 10.1007/s12559-023-10149-0 PMC10241154 37362196 10_1007_s12559_023_10149_0 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-1dad8904a19c738c2250c06ea6496f99ff02d27acfc0b367fcc8cdf10f8d48ac3 |
| IEDL.DBID | UNPAY |
| ISSN | 1866-9956 1866-9964 |
| IngestDate | Sun Oct 26 04:02:32 EDT 2025 Tue Sep 30 17:13:24 EDT 2025 Fri Sep 05 06:43:37 EDT 2025 Fri Jul 25 23:43:46 EDT 2025 Wed Feb 19 02:23:28 EST 2025 Wed Oct 01 02:03:15 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Fri Feb 21 02:41:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Capuchin search algorithm Feature selection Transfer function Optimization |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-1dad8904a19c738c2250c06ea6496f99ff02d27acfc0b367fcc8cdf10f8d48ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4180-3734 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s12559-023-10149-0.pdf |
| PMID | 37362196 |
| PQID | 2920611013 |
| PQPubID | 6623279 |
| PageCount | 38 |
| ParticipantIDs | unpaywall_primary_10_1007_s12559_023_10149_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10241154 proquest_miscellaneous_2830220564 proquest_journals_2920611013 pubmed_primary_37362196 crossref_citationtrail_10_1007_s12559_023_10149_0 crossref_primary_10_1007_s12559_023_10149_0 springer_journals_10_1007_s12559_023_10149_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Cognitive computation |
| PublicationTitleAbbrev | Cogn Comput |
| PublicationTitleAlternate | Cognit Comput |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS, Pelusi D, Ghosh U, Nayak J. Industrial internet of things and its applications in industry 4.0: State of the art. Comput Commun. 2021;166:125–39. Ke L, Li M, Wang L, Deng S, Ye J, Yu X. Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification. Pattern Anal Appl. 2022:1–18. AhnGHurSEfficient genetic algorithm for feature selection for early time series classificationComput Ind Eng202014210634510.1016/j.cie.2020.106345 Jin LiuYShengWLGuoRWangYWangJImproved asd classification using dynamic functional connectivity and multi-task feature selectionPattern Recogn Lett2020138828710.1016/j.patrec.2020.07.005 Awadallah MA, Al-Betar MA, Braik MS, Hammouri A, Doush IA, Zitar RA. An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput Biol Med. 2022:105675. YanyuHZhaoLLiZDongXTiantianXZhaoYClassifying the multi-omics data of gastric cancer using a deep feature selection methodExpert Syst Appl202220011681310.1016/j.eswa.2022.116813 RamuSRanganathanRRamamoorthyRCapuchin search algorithm based task scheduling in cloud computing environmentYanbu Journal of Engineering and Science2022191182910.53370/001c.33767 Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Health. 2020;8:357. LaiC-MYehW-CChangC-YGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089 BraikMA hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case studyNeural Process Lett20215342873291610.1007/s11063-021-10530-w Bhosale YH, Sridhar Patnaik K. Puldi-covid: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates. Biomed Signal Process Control. 2023;81:104445. Iqra Batool and Tamim Ahmed KhanSoftware fault prediction using data mining, machine learning and deep learning techniques: A systematic literature reviewComput Electr Eng202210010788610.1016/j.compeleceng.2022.107886 Song X-F, Zhang Y, Gong D-W, Gao X-Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans Cybernetics. 2021. Jeong IS, Kim HK, Kim TH, Lee DH, Kim KJ, Kang SH. A feature selection approach based on simulated annealing for detecting various denial of service attacks. Softw Netw. 2018;2018(1):173–90. Zhang C, Soda P, Bi J, Fan G, Almpanidis G, Garcia S, Ding W. An empirical study on the joint impact of feature selection and data resampling on imbalance classification. Appl Intell. 2022:1–13. HancerEDifferential evolution for feature selection: a fuzzy wrapper-filter approachSoft Comput201923135233524810.1007/s00500-018-3545-7 YamadaSOhbaMOsakiSS-shaped software reliability growth models and their applicationsIEEE Trans Reliab198433428929210.1109/TR.1984.5221826 Venkata Rao R, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform Sci. 2012;183(1):1–15. Cai W, Wei Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett. 2020. Bhosale YH, Sridhar Patnaik K. IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using raspberrypi. In 2022 International Conference on IoT and Blockchain Technology (ICIBT). 2022;1–6. IEEE. Mehmood A, Khan MA, Sharif M, Khan SA, Shaheen M, Saba T, Riaz N, Ashraf I. Prosperous human gait recognition: an end-to-end system based on pre-trained CNN features selection. Multimed Tools Appl. 2020:1–21. Awadallah MA, Al-Betar MA, Hammouri A, Alomari OA. Binary JAYA algorithm with adaptive mutation for feature selection. Arab J Sci Eng. 2020;45(12):10875–90. YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst201918410211110.1016/j.chemolab.2018.11.010 Abdel-BassetMDingWEl-ShahatDA hybrid harris hawks optimization algorithm with simulated annealing for feature selectionArtif Intell Rev202154159363710.1007/s10462-020-09860-3 Renuka Devi D, Sasikala S. Online feature selection (OFS) with accelerated bat algorithm (ABA) and ensemble incremental deep multiple layer perceptron (EIDMLP) for big data streams. J Big Data. 2019;6(1):1–20. Nanda Gopal V, Al-Turjman F, Kumar R, Anand L, Rajesh M. Feature selection and classification in breast cancer prediction using IoT and machine learning. Measurement. 2021;178:109442. JiaHLiJSongWPengXLangCLiYSpotted hyena optimization algorithm with simulated annealing for feature selectionIEEE Access20197719437196210.1109/ACCESS.2019.2919991 New metaheuristic algorithm for solving optimization problemsFatma A Hashim, Essam H Houssein, Kashif Hussain, Mai S Mabrouk, and Walid Al-Atabany. Honey badger algorithmMath Comput Simul202219284110 Albashish D, Hammouri A, Braik M, Atwan J, Sahran S. Binary biogeography-based optimization based SVM-RFE for feature selection. Appl Soft Comput. 2021;101:107026. Awadallah MA, Hammouri A, Al-Betar MA, Braik MS, AbdElaziz M. Binary horse herd optimization algorithm with crossover operators for feature selection. Computers Biol Med. 2022:105152. KirkpatrickSC Daniel Gelatt, and Mario P VecchiOptimization by simulated annealing. science19832204598671680 Liu W, Wang J. A brief survey on nature-inspired metaheuristics for feature selection in classification in this decade. In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC). 2019;424–9. IEEE. Crow LH. Reliability analysis for complex repairable systems, soc. industrial and applied mathematics, reliability and biometry. Proceedings of Statistical Analysis of Life Length. 1974;25:248–53. Bhosale YH, Sridhar Patnaik K. Application of deep learning techniques in diagnosis of COVID-19 (coronavirus): a systematic review. Neural Process Lett. 2022:1–53. Bhosale YH, Zanwar S, Ahmed Z, Nakrani M, Bhuyar D, Shinde U. Deep convolutional neural network based COVID-19 classification from radiology x-ray images for iot enabled devices. In 2022 8th International Conference on Advanced Computing and Communication Systems. 2022;1:398–1402. IEEE. Jiang Y, Liu X, Yan G, Xiao J. Modified binary cuckoo search for feature selection: a hybrid filter-wrapper approach. In 2017 13th International Conference on Computational Intelligence and Security (CIS). 2017:488–91. IEEE. Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks. 1995;4:1942–8. IEEE. AroraSAnandPBinary butterfly optimization approaches for feature selectionExpert Syst Appl201911614716010.1016/j.eswa.2018.08.051 MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002 Zhang F, Mei Y, Nguyen S, Zhang M. Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans Cybernetics. 2020;51(4):1797–811. MirjaliliSMoth-flame optimization algorithm: A novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006 Singh D, Mathioudakis AG, Higham A. Chronic obstructive pulmonary disease and COVID-19: interrelationships. Curr Opin Pulm Med. 2022;28(2):76. MessaoudiIKamelNA multi-objective bat algorithm for community detection on dynamic social networksAppl Intell20194962119213610.1007/s10489-018-1386-9 Bhosale YH, Singh P, Sridhar Patnaik K. COVID-19 and associated lung disease classification using deep learning. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022. 2022;3:283–95. Springer. AbdollahzadehBGharehchopoghFSA multi-objective optimization algorithm for feature selection problemsEng Comput20223831845186310.1007/s00366-021-01369-9 SimonDBiogeography-based optimizationIEEE Trans Evol Comput200812670271310.1109/TEVC.2008.919004 RajDMMohanasundaramRAn efficient filter-based feature selection model to identify significant features from high-dimensional microarray dataArab J Sci Eng20204542619263010.1007/s13369-020-04380-2 ZhangYGongD-WGaoX-ZTianTSunX-YBinary differential evolution with self-learning for multi-objective feature selectionInform Sci20205076785399489210.1016/j.ins.2019.08.0401456.68235 ChongJTjurinPNiemeläMJämsäTFarrahiVMachine-learning models for activity class prediction: A comparative study of feature selection and classification algorithmsGait Posture202189455310.1016/j.gaitpost.2021.06.017 Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):1–26. Braik M. Enhanced ali baba and the forty thieves algorithm for feature selection. Neural Comput Applic. 2022:1–32. Zhou R, Niu L. Feature selection of network data via ℓ2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2, p}$$\end{document} regularization. Cogn Comput. 2020;12(6):1217–32. Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 2017;260:302–312. BraikMShetaAAl-HiaryHA novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithmNeural Comput Appl20213372515254710.1007/s00521-020-05145-6 Musa JD. A theory of software reliability and i C Yan (10149_CR38) 2019; 184 10149_CR37 10149_CR36 Y Jin Liu (10149_CR53) 2020; 138 10149_CR34 10149_CR31 Y Zhang (10149_CR32) 2020; 507 10149_CR30 10149_CR9 10149_CR7 DM Raj (10149_CR15) 2020; 45 H Yanyu (10149_CR26) 2022; 200 10149_CR49 10149_CR48 10149_CR47 10149_CR46 S Ramu (10149_CR29) 2022; 19 10149_CR45 M Abdel-Basset (10149_CR41) 2021; 54 10149_CR43 I Messaoudi (10149_CR24) 2019; 49 B Abdollahzadeh (10149_CR25) 2022; 38 10149_CR40 G Ahn (10149_CR33) 2020; 142 10149_CR5 10149_CR6 Iqra Batool and Tamim Ahmed Khan (10149_CR12) 2022; 100 10149_CR3 M Braik (10149_CR27) 2021; 33 10149_CR4 J Chong (10149_CR8) 2021; 89 10149_CR1 E Hancer (10149_CR42) 2019; 23 S Yamada (10149_CR50) 1984; 33 10149_CR19 10149_CR18 10149_CR17 10149_CR16 10149_CR59 10149_CR14 10149_CR58 10149_CR13 10149_CR11 M Braik (10149_CR28) 2021; 53 10149_CR55 10149_CR10 10149_CR54 10149_CR52 D Simon (10149_CR56) 2008; 12 C-M Lai (10149_CR44) 2016; 218 H Jia (10149_CR39) 2019; 7 10149_CR23 10149_CR22 New metaheuristic algorithm for solving optimization problems (10149_CR61) 2022; 192 10149_CR21 10149_CR20 S Arora (10149_CR2) 2019; 116 S Mirjalili (10149_CR51) 2013; 9 10149_CR60 S Kirkpatrick (10149_CR35) 1983; 220 S Mirjalili (10149_CR57) 2015; 89 |
| References_xml | – reference: Awadallah MA, Hammouri A, Al-Betar MA, Braik MS, AbdElaziz M. Binary horse herd optimization algorithm with crossover operators for feature selection. Computers Biol Med. 2022:105152. – reference: Sheta A. Reliability growth modeling for software fault detection using particle swarm optimization. In 2006 IEEE International Conference on Evolutionary Computation. 2006:3071–8. IEEE. – reference: YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst201918410211110.1016/j.chemolab.2018.11.010 – reference: Bindu MG, Sabu MK. A hybrid feature selection approach using artificial bee colony and genetic algorithm. In 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). 2020;211–6. IEEE. – reference: MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evol Comput2013911410.1016/j.swevo.2012.09.002 – reference: Kennedy J, Eberhart R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks. 1995;4:1942–8. IEEE. – reference: Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, Alnumay WS, Pelusi D, Ghosh U, Nayak J. Industrial internet of things and its applications in industry 4.0: State of the art. Comput Commun. 2021;166:125–39. – reference: Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 2017;260:302–312. – reference: Abdel-BassetMDingWEl-ShahatDA hybrid harris hawks optimization algorithm with simulated annealing for feature selectionArtif Intell Rev202154159363710.1007/s10462-020-09860-3 – reference: Venkata Rao R, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform Sci. 2012;183(1):1–15. – reference: Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85. – reference: RamuSRanganathanRRamamoorthyRCapuchin search algorithm based task scheduling in cloud computing environmentYanbu Journal of Engineering and Science2022191182910.53370/001c.33767 – reference: YamadaSOhbaMOsakiSS-shaped software reliability growth models and their applicationsIEEE Trans Reliab198433428929210.1109/TR.1984.5221826 – reference: Braik M. Enhanced ali baba and the forty thieves algorithm for feature selection. Neural Comput Applic. 2022:1–32. – reference: Song X-F, Zhang Y, Gong D-W, Gao X-Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans Cybernetics. 2021. – reference: Crow LH. Reliability analysis for complex repairable systems, soc. industrial and applied mathematics, reliability and biometry. Proceedings of Statistical Analysis of Life Length. 1974;25:248–53. – reference: BraikMA hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case studyNeural Process Lett20215342873291610.1007/s11063-021-10530-w – reference: LaiC-MYehW-CChangC-YGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089 – reference: Zhang F, Mei Y, Nguyen S, Zhang M. Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans Cybernetics. 2020;51(4):1797–811. – reference: MirjaliliSMoth-flame optimization algorithm: A novel nature-inspired heuristic paradigmKnowl-Based Syst20158922824910.1016/j.knosys.2015.07.006 – reference: Renuka Devi D, Sasikala S. Online feature selection (OFS) with accelerated bat algorithm (ABA) and ensemble incremental deep multiple layer perceptron (EIDMLP) for big data streams. J Big Data. 2019;6(1):1–20. – reference: KirkpatrickSC Daniel Gelatt, and Mario P VecchiOptimization by simulated annealing. science19832204598671680 – reference: Iqra Batool and Tamim Ahmed KhanSoftware fault prediction using data mining, machine learning and deep learning techniques: A systematic literature reviewComput Electr Eng202210010788610.1016/j.compeleceng.2022.107886 – reference: Singh D, Mathioudakis AG, Higham A. Chronic obstructive pulmonary disease and COVID-19: interrelationships. Curr Opin Pulm Med. 2022;28(2):76. – reference: Nanda Gopal V, Al-Turjman F, Kumar R, Anand L, Rajesh M. Feature selection and classification in breast cancer prediction using IoT and machine learning. Measurement. 2021;178:109442. – reference: Bhosale YH, Singh P, Sridhar Patnaik K. COVID-19 and associated lung disease classification using deep learning. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022. 2022;3:283–95. Springer. – reference: Ke L, Li M, Wang L, Deng S, Ye J, Yu X. Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification. Pattern Anal Appl. 2022:1–18. – reference: RajDMMohanasundaramRAn efficient filter-based feature selection model to identify significant features from high-dimensional microarray dataArab J Sci Eng20204542619263010.1007/s13369-020-04380-2 – reference: Cai W, Wei Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci Remote Sens Lett. 2020. – reference: Zhou R, Niu L. Feature selection of network data via ℓ2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2, p}$$\end{document} regularization. Cogn Comput. 2020;12(6):1217–32. – reference: Jin LiuYShengWLGuoRWangYWangJImproved asd classification using dynamic functional connectivity and multi-task feature selectionPattern Recogn Lett2020138828710.1016/j.patrec.2020.07.005 – reference: New metaheuristic algorithm for solving optimization problemsFatma A Hashim, Essam H Houssein, Kashif Hussain, Mai S Mabrouk, and Walid Al-Atabany. Honey badger algorithmMath Comput Simul202219284110 – reference: Bhosale YH, Sridhar Patnaik K. Application of deep learning techniques in diagnosis of COVID-19 (coronavirus): a systematic review. Neural Process Lett. 2022:1–53. – reference: MessaoudiIKamelNA multi-objective bat algorithm for community detection on dynamic social networksAppl Intell20194962119213610.1007/s10489-018-1386-9 – reference: Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput. 2020;12(1):150–75. – reference: Mehmood A, Khan MA, Sharif M, Khan SA, Shaheen M, Saba T, Riaz N, Ashraf I. Prosperous human gait recognition: an end-to-end system based on pre-trained CNN features selection. Multimed Tools Appl. 2020:1–21. – reference: ZhangYGongD-WGaoX-ZTianTSunX-YBinary differential evolution with self-learning for multi-objective feature selectionInform Sci20205076785399489210.1016/j.ins.2019.08.0401456.68235 – reference: JiaHLiJSongWPengXLangCLiYSpotted hyena optimization algorithm with simulated annealing for feature selectionIEEE Access20197719437196210.1109/ACCESS.2019.2919991 – reference: AhnGHurSEfficient genetic algorithm for feature selection for early time series classificationComput Ind Eng202014210634510.1016/j.cie.2020.106345 – reference: AbdollahzadehBGharehchopoghFSA multi-objective optimization algorithm for feature selection problemsEng Comput20223831845186310.1007/s00366-021-01369-9 – reference: YanyuHZhaoLLiZDongXTiantianXZhaoYClassifying the multi-omics data of gastric cancer using a deep feature selection methodExpert Syst Appl202220011681310.1016/j.eswa.2022.116813 – reference: Awadallah MA, Al-Betar MA, Braik MS, Hammouri A, Doush IA, Zitar RA. An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput Biol Med. 2022:105675. – reference: ChongJTjurinPNiemeläMJämsäTFarrahiVMachine-learning models for activity class prediction: A comparative study of feature selection and classification algorithmsGait Posture202189455310.1016/j.gaitpost.2021.06.017 – reference: Viktorin A, Pluhacek M, Senkerik R. Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In 2016 IEEE Congress on Evolutionary Computation (CEC). 2016:4797–803. IEEE. – reference: Bhosale YH, Sridhar Patnaik K. IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using raspberrypi. In 2022 International Conference on IoT and Blockchain Technology (ICIBT). 2022;1–6. IEEE. – reference: Hammami M, Bechikh S, Hung C-C, BenSaid L. A multi-objective hybrid filter-wrapper evolutionary approach for feature selection. Memetic Computing. 2019;11(2):193–208. – reference: Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):1–26. – reference: Liu W, Wang J. A brief survey on nature-inspired metaheuristics for feature selection in classification in this decade. In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC). 2019;424–9. IEEE. – reference: Jiang Y, Liu X, Yan G, Xiao J. Modified binary cuckoo search for feature selection: a hybrid filter-wrapper approach. In 2017 13th International Conference on Computational Intelligence and Security (CIS). 2017:488–91. IEEE. – reference: Zhang C, Soda P, Bi J, Fan G, Almpanidis G, Garcia S, Ding W. An empirical study on the joint impact of feature selection and data resampling on imbalance classification. Appl Intell. 2022:1–13. – reference: Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Health. 2020;8:357. – reference: AroraSAnandPBinary butterfly optimization approaches for feature selectionExpert Syst Appl201911614716010.1016/j.eswa.2018.08.051 – reference: Bhosale YH, Zanwar S, Ahmed Z, Nakrani M, Bhuyar D, Shinde U. Deep convolutional neural network based COVID-19 classification from radiology x-ray images for iot enabled devices. In 2022 8th International Conference on Advanced Computing and Communication Systems. 2022;1:398–1402. IEEE. – reference: Awadallah MA, Al-Betar MA, Hammouri A, Alomari OA. Binary JAYA algorithm with adaptive mutation for feature selection. Arab J Sci Eng. 2020;45(12):10875–90. – reference: Jeong IS, Kim HK, Kim TH, Lee DH, Kim KJ, Kang SH. A feature selection approach based on simulated annealing for detecting various denial of service attacks. Softw Netw. 2018;2018(1):173–90. – reference: HancerEDifferential evolution for feature selection: a fuzzy wrapper-filter approachSoft Comput201923135233524810.1007/s00500-018-3545-7 – reference: Bhosale YH, Sridhar Patnaik K. Puldi-covid: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates. Biomed Signal Process Control. 2023;81:104445. – reference: BraikMShetaAAl-HiaryHA novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithmNeural Comput Appl20213372515254710.1007/s00521-020-05145-6 – reference: SimonDBiogeography-based optimizationIEEE Trans Evol Comput200812670271310.1109/TEVC.2008.919004 – reference: Albashish D, Hammouri A, Braik M, Atwan J, Sahran S. Binary biogeography-based optimization based SVM-RFE for feature selection. Appl Soft Comput. 2021;101:107026. – reference: Musa JD. A theory of software reliability and its application. IEEE Trans Softw Eng. 1975;(3):312–27. – ident: 10149_CR1 doi: 10.1007/s00521-022-08015-5 – volume: 7 start-page: 71943 year: 2019 ident: 10149_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919991 – ident: 10149_CR40 doi: 10.1109/ACCTHPA49271.2020.9213197 – ident: 10149_CR20 doi: 10.1097/MCP.0000000000000834 – ident: 10149_CR18 doi: 10.1007/s11063-022-11023-0 – volume: 9 start-page: 1 year: 2013 ident: 10149_CR51 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2012.09.002 – volume: 49 start-page: 2119 issue: 6 year: 2019 ident: 10149_CR24 publication-title: Appl Intell doi: 10.1007/s10489-018-1386-9 – ident: 10149_CR36 – volume: 192 start-page: 84 year: 2022 ident: 10149_CR61 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2021.08.013 – ident: 10149_CR54 doi: 10.1109/ICIBT52874.2022.9807725 – ident: 10149_CR17 doi: 10.1007/978-981-19-3679-1_22 – ident: 10149_CR30 doi: 10.1109/TCYB.2021.3061152 – volume: 89 start-page: 228 year: 2015 ident: 10149_CR57 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – ident: 10149_CR3 doi: 10.1016/j.comcom.2020.11.016 – ident: 10149_CR49 – ident: 10149_CR34 doi: 10.1007/s13369-020-04871-2 – volume: 54 start-page: 593 issue: 1 year: 2021 ident: 10149_CR41 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09860-3 – volume: 53 start-page: 2873 issue: 4 year: 2021 ident: 10149_CR28 publication-title: Neural Process Lett doi: 10.1007/s11063-021-10530-w – volume: 507 start-page: 67 year: 2020 ident: 10149_CR32 publication-title: Inform Sci doi: 10.1016/j.ins.2019.08.040 – ident: 10149_CR7 doi: 10.1007/s10489-022-03772-1 – ident: 10149_CR22 doi: 10.1186/s40537-020-00327-4 – ident: 10149_CR46 doi: 10.1109/ICNSC.2019.8743245 – ident: 10149_CR45 doi: 10.1007/s10044-022-01117-9 – ident: 10149_CR14 – volume: 33 start-page: 2515 issue: 7 year: 2021 ident: 10149_CR27 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05145-6 – ident: 10149_CR19 doi: 10.1016/j.bspc.2022.104445 – ident: 10149_CR9 doi: 10.1007/s12559-019-09668-6 – ident: 10149_CR52 doi: 10.1080/00031305.1992.10475879 – volume: 138 start-page: 82 year: 2020 ident: 10149_CR53 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.07.005 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10149_CR35 publication-title: Optimization by simulated annealing. science – ident: 10149_CR11 doi: 10.1016/j.measurement.2021.109442 – ident: 10149_CR58 doi: 10.1016/j.ins.2011.08.006 – ident: 10149_CR37 doi: 10.1016/j.neucom.2017.04.053 – ident: 10149_CR13 doi: 10.1007/s11042-020-08928-0 – ident: 10149_CR55 doi: 10.1109/ICACCS54159.2022.9785113 – volume: 89 start-page: 45 year: 2021 ident: 10149_CR8 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.06.017 – volume: 116 start-page: 147 year: 2019 ident: 10149_CR2 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.051 – ident: 10149_CR47 doi: 10.1109/TSE.1975.6312856 – ident: 10149_CR60 doi: 10.1109/ICNN.1995.488968 – volume: 142 start-page: 106345 year: 2020 ident: 10149_CR33 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106345 – ident: 10149_CR43 doi: 10.1109/CIS.2017.00113 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10149_CR56 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.919004 – ident: 10149_CR4 doi: 10.1016/j.compbiomed.2022.105675 – ident: 10149_CR5 doi: 10.1016/j.compbiomed.2021.105152 – volume: 200 start-page: 116813 year: 2022 ident: 10149_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116813 – volume: 19 start-page: 18 issue: 1 year: 2022 ident: 10149_CR29 publication-title: Yanbu Journal of Engineering and Science doi: 10.53370/001c.33767 – ident: 10149_CR16 doi: 10.3389/fpubh.2020.00357 – ident: 10149_CR21 doi: 10.1186/s40537-019-0267-3 – volume: 100 start-page: 107886 year: 2022 ident: 10149_CR12 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.107886 – volume: 218 start-page: 331 year: 2016 ident: 10149_CR44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.089 – volume: 23 start-page: 5233 issue: 13 year: 2019 ident: 10149_CR42 publication-title: Soft Comput doi: 10.1007/s00500-018-3545-7 – ident: 10149_CR6 doi: 10.1016/j.asoc.2020.107026 – volume: 184 start-page: 102 year: 2019 ident: 10149_CR38 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.11.010 – volume: 45 start-page: 2619 issue: 4 year: 2020 ident: 10149_CR15 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04380-2 – ident: 10149_CR10 doi: 10.1007/s12559-020-09763-z – ident: 10149_CR48 doi: 10.1109/CEC.2006.1688697 – volume: 38 start-page: 1845 issue: 3 year: 2022 ident: 10149_CR25 publication-title: Eng Comput doi: 10.1007/s00366-021-01369-9 – volume: 33 start-page: 289 issue: 4 year: 1984 ident: 10149_CR50 publication-title: IEEE Trans Reliab doi: 10.1109/TR.1984.5221826 – ident: 10149_CR23 doi: 10.1007/s12293-018-0269-2 – ident: 10149_CR59 doi: 10.1109/CEC.2016.7744404 – ident: 10149_CR31 doi: 10.1109/TCYB.2020.3024849 |
| SSID | ssj0065952 |
| Score | 2.4157512 |
| Snippet | Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1884 |
| SubjectTerms | Acceleration Accuracy Algorithms Artificial Intelligence Automatic control Chronic obstructive pulmonary disease Classification Computation Computation by Abstract Devices Computational Biology/Bioinformatics Computer Science COVID-19 Data analysis Data mining Datasets Feature selection Machine learning Medical diagnosis Methods Optimization Search algorithms Sensitivity |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZbxMxEB6V9IHygDjLQkFG4o1a7OE9jIRQSVMVHgJCFPVt5fgglRYnNIlQJH48M3uFqFLE20qePbwzHn_2jL8BeIWDTONSNuWIhmOO-N9wlcSOJ0JInZoJlZCmbItxdn4hPl2ml3sw7s7CUFpl5xNrR21mmvbI31BVpQznqih5P__FqWoURVe7EhqqLa1g3tUUY7dgPyZmrAHsfxiNv3ztfDOR59XxzyLLOJ3pbI_RNIfpCF1znMM41a_Fq-2p6gb-vJlG2cdS78DtlZ-r9W9VVf9MV2f34G6LM9lJYxj3Yc_6B3DQu7v1Q_gz7DKHqjUb-WmdCsDa_bMFmzk2VHMqleJZk5PMTqof-EeW058MkS4j8Li6tthY1elcnqFkG_dhp00G39XiLVNs-Pn7x1MeSXzgAuWJ0PYRXJyNvg3PeVuLgWuRp0seGWUKGQoVSZ0nhUY3EOowsyoTMnNSOhfGJs6VdjqcJFnutC60cVHoCiMKpZPHMPAzb58AS7XN7cRojVhHqLSQzro0sULk0sa4Agwg6n57qVuicqqXUZUbimVSVYmqKmtVlWEAr_t75g1Nx07po06bZTtkF-XGwAJ42TfjYKMIivJ2tkIZYkuLETOKAA4b5fevS3LEAujPAii2zKIXICLv7RZ_Na0JvRHkCaJFCuC4s6DNd-3qxnFvZf_R66e7e_0MDuLa-Gl76QgGy-uVfY6Aazl50Y6ivxiTJK0 priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5B98ByYGF5BRZkJG6sV3k4L25Vt8sCElwoWk6R49i0IqRVkwgV8eMZJ3ZKWbRib5U8cWpnPP6S-fwNwEtcZAJfZUOKaNiniP8LygNf0YCxVIRFrktIa7bFh-h8xt5dhBfmUFht2e42JdlF6u1hN41-Ke4xVNeXxV83Ya_T2xrB3vjNl_dTG4G1RF6X5UyiiOqTm-awzL972d2QLqHMy2TJIWN6G2611YpvfvCy_GNTOjuAmR1Oz0X5dtI2-Yn4-ZfS43XHexfuGJRKxr1b3YMbsjqEA1sBgpiAcAj7Q_zc3IdfE0tFKjdkWs07bgExH-RqslRkwle69kpFepIzGZdfl-tFM_9OEDoTjUbbtcTGsuOHVQQtTSKJnPaUwEX9mnAy-fj57Sn1UuywRnutkPsAZmfTT5Nzaoo7UMHisKFewYskdRn3UhEHicC44go3kjxiaaTSVCnXL_yYCyXcPIhiJUQiCuW5KilYwkXwEEbVspKPgYRCxjIvhEDwxHiYpEqqMJCMxan08ZXSAc8-4UwY5XNdgKPMtprNeq4znOusm-vMdeDVcM2q1_240vrIOk5mYkCd6TpgEaIrL3DgxdCMq1enZHglly3aaPk1H0Eoc-BR72fD7YIYwQUGSAeSHQ8cDLQy-G5LtZh3CuGIGpnWWXLg2PrW9n9dNYzjwaH_Y9RPrtf7U9j3O2_W36-OYNSsW_kMEV2TPzcL-DfG-T54 priority: 102 providerName: Springer Nature |
| Title | Cognitively Enhanced Versions of Capuchin Search Algorithm for Feature Selection in Medical Diagnosis: a COVID-19 Case Study |
| URI | https://link.springer.com/article/10.1007/s12559-023-10149-0 https://www.ncbi.nlm.nih.gov/pubmed/37362196 https://www.proquest.com/docview/2920611013 https://www.proquest.com/docview/2830220564 https://pubmed.ncbi.nlm.nih.gov/PMC10241154 https://link.springer.com/content/pdf/10.1007/s12559-023-10149-0.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9964 databaseCode: AFBBN dateStart: 20090301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1866-9964 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9964 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9964 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9964 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfGA3dYYFRG4o25y8W58VZ62QCpTIii7SlyHJtWC2nVpkJF_HiOcytlaALxVKs-TWL32P4cf-c7AC9xkAncyroU0bBNEf8nlDu2og5joXCTWKeQ1myLsXc2Ye8u3Is9GNSxMAXbvT6SLGMatEpTlp8sEnWyDXzTSJjiekN1rlksdbF6H9qei4i8Be3J-Lx3qfdagedRHby5LXusip3584V216droPM6d7I5QL0Nt9bZgm--8TT9ZY0a3QVZt66kplx113ncFd9_E3783-bfgzsViCW90uvuw57MHsBBM5duHsKPfk1LSjdkmE0LngGpXs6tyFyRPl_oPCwZKQnPpJd-mS9n-fQrQRhNNDJdLyVWpgVXLCNoWR0qkUFJD5ytXhNO-h8-vx1QK8QLrtBeq-U-gslo-Kl_RqtED1Qw382plfAkCE3GrVD4TiBwjjGF6UnusdBTYaiUaSe2z4USZux4vhIiEImyTBUkLODCeQytbJ7JQyCukL6MEyEQSDHuBqGSynUkY34obdxeGmDVf28kKhV0nYwjjbb6zbpzI-zcqOjcyDTgVfObRakBcqP1Ue01UTUfrCKdE8xDpGU5BrxoqnEk6-MZnsn5Gm20FJuNgJQZ8KR0suZ2jo9AAydLA4Id92sMtEr4bk02mxZq4YggmdZcMuC4dqztc93UjOPGm_-i1U__zfwZHNiF--p3WUfQypdr-RzRXR53YD8YnXag3Tu9fD_EzzfD8flH_HZi9zrVwP4JDANInw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7U9qH1Qby7WnUEfbKDe5m9CUVqkpLYGkXa0rd1MjtjCusmdhNKwN_mb_OcvcVQCL70LTAnm8ye2zdzbgCvUckUHmV9jmjY5Yj_Uy4913BPiFj56YhGSFO2xTDon4pP5_75BvxpamEorbKxiaWhTieK7sjf0VSlAH2V432Y_uI0NYqiq80IDVmPVkj3yxZjdWHHkV5c4RGu2B90kd9vXPewd9Lp83rKAFci9GfcSWUaxbaQTqxCL1Io4LayAy0DEQcmjo2x3dQNpTLKHnlBaJSKVGoc20SpiKTy8Lm3YEt4IsbD39bH3vDrt8YXULO-Mt4aBQGnGtK6bKcq3iM0z9FncpqXi59WXeM1vHs9bbON3d6G7Xk-lYsrmWX_uMfDu3CnxrXsoBLEe7Ch8_uw05rXxQP43WkylbIF6-XjMvWA1fd1BZsY1pFTGs2SsyoHmh1kP5ADs_FPhsiaEVidX2pczMr0sZwhZR1nYt0qY_CieM8k63w5G3S5E-MDC6SnBroP4fRGuPIINvNJrp8A85UO9ShVCrGVkH4UG218TwsRxtrFE6cFTvPaE1U3Rqf5HFmybOlMrEqQVUnJqsS24G37nWnVFmQt9W7DzaQ2EUWyFGgLXrXLqNwUsZG5nsyRhrqzuYhRhQWPK-a3P-eFiD3QfloQrYhFS0CNw1dX8otx2UAcQaWgNkwW7DUStPxf67ax10rZf-z66fpdv4Tt_snn4-R4MDx6BjtuqQh0tbULm7PLuX6OYG82elFrFIPvN63EfwGug2L7 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BkGA8MBgDwgYYiTdmLR_OF29Vu2oDNHigaG-R69i0UnCrNhWqxB_PXb66atPE3iL54iS6O_sX393vAD6gkyn8lQ05omGfI_7PuQx8wwMhUhXmY2ohTdkWF9HZSHy-DC-vVPFX2e5tSLKuaSCWJluezHNzsil8IyTMcb_h1GsWr-7DA0FECWjRI7_XrsVEllfFO5Mo4lTD2ZTN3DzH9tZ0DW9eT5vsYqeP4dHKzuX6jyyKK9vT8Ck8aXAl69WG8AzuabsPe23PBta48D7sdive-jn87bfJQ8WandpJlQ3AmiO0JZsZ1pdz6pZiWZ2WzHrFr9liWk5-MwS7jPDjaqFxsKgyuixDySb0wwZ1Et90-YlJ1v_283zAvRQnXKI8cdoewGh4-qN_xpt2DFyJOCy5l8s8SV0hvVTFQaJwJXCVG2kZiTQyaWqM6-d-LJVR7jiIYqNUonLjuSbJRSJV8AJ27MzqV8BCpWM9zpVCuCNkmKRGmzDQQsSp9vEn0AGv1USmGq5yaplRZBuWZdJehtrLKu1lrgMfu3vmNVPHrdJHrYKzxmuXGXXuihAPeYED77th9DcKokirZyuUIcI0H2GjcOBlbQ_d44IY4QAuaQ4kW5bSCRCX9_aInU4qTm_EeYKYkRw4bo1q8163fcZxZ3j_8dWv7zb7O3j4fTDMvp5ffDmEXb9yFTp8OoKdcrHSbxCOleO3lcf9A8W1KKE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4t3QPLgfcjsCAjcWPdzcNxEm5Vu6uFw8KBouUUOY69rQhu1SZCRfx4xnmVsmgF4hbJk4edsf3Z_uYbgFfYySQuZUOKaNiniP9zKgJf04CxRIZ5ZlNIW7bFOT-bsncX4cUeTLpYmJrt3h1JNjENVqXJlMfLXB9vA98sEqY431Cbaxavhlh8A_Z5iIh8APvT8w-jz3atFXNObfDm9pqzNnbmzw_anZ-ugM6r3Mn-APUW3KzMUmy-iaL4ZY46vQOqq11DTfkyrMpsKL__Jvz4v9W_C7dbEEtGjdfdgz1l7sNBP5ZuHsCPcUdLKjbkxMxqngFpN-fWZKHJWCxtHhZDGsIzGRWXi9W8nH0lCKOJRabVSmFhUXPFDEHL9lCJTBp64Hz9hggyfv_p7YR6CT5wjfZWLfchTE9PPo7PaJvogUoWhSX1cpHHicuEl8goiCWOMa50uRKcJVwnidaun_uRkFq6WcAjLWUsc-25Os5ZLGTwCAZmYdQTIKFUkcpyKRFIMRHGiVY6DBRjUaJ8XF464HW_N5WtCrpNxlGkW_1m27gpNm5aN27qOvC6v2fZaIBca33YeU3ajgfr1OYE44i0vMCBl30x9mR7PCOMWlRoY6XYfASkzIHHjZP1rwsiBBo4WDoQ77hfb2BVwndLzHxWq4UjgmRWc8mBo86xtt91XTWOem_-i1o__TfzZ3Dg1-5r97IOYVCuKvUc0V2ZvWg7709qd0Oi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitively+Enhanced+Versions+of+Capuchin+Search+Algorithm+for+Feature+Selection+in+Medical+Diagnosis%3A+a+COVID-19+Case+Study&rft.jtitle=Cognitive+computation&rft.au=Braik%2C+Malik&rft.au=Awadallah%2C+Mohammed+A.&rft.au=Al-Betar%2C+Mohammed%C2%A0Azmi&rft.au=Hammouri%2C+Abdelaziz+I.&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=1866-9956&rft.eissn=1866-9964&rft.spage=1&rft.epage=38&rft_id=info:doi/10.1007%2Fs12559-023-10149-0&rft.externalDocID=PMC10241154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |