Artificial Intelligence-Based Classification of CT Images Using a Hybrid SpinalZFNet
The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as c...
Saved in:
| Published in | Interdisciplinary sciences : computational life sciences Vol. 16; no. 4; pp. 907 - 925 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.12.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1913-2751 1867-1462 1867-1462 |
| DOI | 10.1007/s12539-024-00649-4 |
Cover
| Abstract | The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.
Graphical Abstract |
|---|---|
| AbstractList | The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease. The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease. Graphical Abstract The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease. |
| Author | Rehman, Naveed Ur Din, Irfanud Qiu, Baozhi Zhenfei, Wang Sabah, Fahad Sarwar, Raheem Maqsood, Faiqa Ali, Muhammad Mumtaz Mahmood, Tahir |
| Author_xml | – sequence: 1 givenname: Faiqa surname: Maqsood fullname: Maqsood, Faiqa organization: School of Computer and Artificial Intelligence, Zhengzhou University – sequence: 2 givenname: Wang surname: Zhenfei fullname: Zhenfei, Wang organization: School of Computer and Artificial Intelligence, Zhengzhou University – sequence: 3 givenname: Muhammad Mumtaz surname: Ali fullname: Ali, Muhammad Mumtaz organization: School of Computer and Artificial Intelligence, Zhengzhou University – sequence: 4 givenname: Baozhi surname: Qiu fullname: Qiu, Baozhi organization: School of Computer and Artificial Intelligence, Zhengzhou University – sequence: 5 givenname: Naveed Ur surname: Rehman fullname: Rehman, Naveed Ur organization: School of Computer and Artificial Intelligence, Zhengzhou University – sequence: 6 givenname: Fahad surname: Sabah fullname: Sabah, Fahad organization: Beijing University of Technology – sequence: 7 givenname: Tahir surname: Mahmood fullname: Mahmood, Tahir organization: Division of Electronics and Electrical Engineering, Dongguk University – sequence: 8 givenname: Irfanud surname: Din fullname: Din, Irfanud organization: Department of Computer Science, New Uzbekistan University – sequence: 9 givenname: Raheem orcidid: 0000-0002-0640-807X surname: Sarwar fullname: Sarwar, Raheem email: R.Sarwar@mmu.ac.uk organization: OTEHM, Faculty of Business and Law, Manchester Metropolitan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39167285$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkTtvFDEURi0URB7wByiQJRqaAT_H4wolK0JWiqBg09BYHj8GR7P2Ys-A9t_jzS4EUkS4saV7vqvrc0_BUUzRAfASo7cYIfGuYMKpbBBhDUItkw17Ak5w14oGs5Yc1bfEtCGC42NwWsrtDuooegaOqcStIB0_AavzPAUfTNAjXMbJjWMYXDSuudDFWbgYdSm7up5CijB5uFjB5VoPrsCbEuIANbza9jlY-GUToh6_Xn5y03Pw1OuxuBeH-wzcXH5YLa6a688fl4vz68YwwacG91gKS6T3khrfEtY6SSTWViJCrebe2Z7RnndMEuENR854Yh0RxlsuuKdngO77znGjtz_1OKpNDmudtwojtXOk9o5UdaTuHClWU-_3qc3cr501Lk5Z3yeTDurfSgzf1JB-KIw5Jp2ktcObQ4ecvs-uTGodiqnudHRpLooiyVvRCiEr-voBepvmXEVVinAmGa-nUq_-HunPLL_3VIFuD5icSsnOKxOmu53UCcP4-HfJg-h_OTqYLRWOg8v3Yz-S-gVXqsaN |
| CitedBy_id | crossref_primary_10_1007_s10489_024_06047_z crossref_primary_10_1021_acsnano_4c15705 crossref_primary_10_1007_s12539_025_00693_8 |
| Cites_doi | 10.3390/bdcc6010029 10.3390/cancers15123189 10.3389/fmed.2023.1106717 10.1007/s42452-019-1800-x 10.1002/ima.22515 10.1016/j.ins.2023.119005 10.1109/TAI.2022.3185179 10.1016/j.ifacol.2018.08.059 10.48550/arXiv.1606.02147 10.1109/TPAMI.2009.155 10.1016/j.jisa.2017.09.003 10.17485/ijst/2017/v10i13/94111 10.1016/j.imu.2017.07.002 10.1080/03772063.2020.1725663 10.1155/2021/7433186 10.3390/app13053125 10.3389/fpubh.2023.1109236 10.1109/ACCESS.2020.2995310 10.1155/2022/9821773 10.1007/s00345-019-03000-5 10.1038/s41551-018-0305-z 10.1038/s42256-019-0110-8 10.1016/j.knosys.2020.105873 10.1038/s41598-022-15634-4 10.1016/j.cmpb.2021.106071 10.1016/j.kisu.2021.11.003 10.1038/s41598-019-46718-3 10.1002/jmri.27001 10.1109/ACCESS.2022.3147869 10.5815/ijisa.2017.06.06 10.1007/978-3-319-40973-3_14 10.3390/s21144928 10.1016/j.compbiomed.2023.106973 10.1109/ROBOT.2007.364077 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s12539-024-00649-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Biotechnology Research Abstracts CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1867-1462 |
| EndPage | 925 |
| ExternalDocumentID | 10.1007/s12539-024-00649-4 PMC11512893 39167285 10_1007_s12539_024_00649_4 |
| Genre | Journal Article |
| GroupedDBID | --- -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 29~ 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 67N 6NX 7X2 7X7 7XC 88E 8CJ 8FE 8FG 8FH 8FI 8FJ 96X AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG APEBS ARAPS ASPBG ATCPS AUKKA AVWKF AXYYD AZFZN BA0 BBNVY BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI C6C CAG CCPQU COF D1J D1K DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI FYUFA G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IZIGR I~X J-C JBSCW JCJTX JZLTJ K6- KOV LK5 LK8 LLZTM M0K M1P M4Y M7P M7R NPVJJ NQJWS NU0 O9- O9J P62 PATMY PCBAR PQQKQ PROAC PSQYO PT4 PYCSY Q2X QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SCL SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 T13 TSG U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION K7- PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c475t-1b197d29ff93cf6246e9291ad9023da5fedb43b584927fc50ecf2de27cfd575f3 |
| IEDL.DBID | AGYKE |
| ISSN | 1913-2751 1867-1462 |
| IngestDate | Sun Oct 26 04:03:40 EDT 2025 Thu Aug 21 18:44:08 EDT 2025 Thu Oct 02 04:16:22 EDT 2025 Tue Oct 07 06:05:13 EDT 2025 Wed Feb 19 02:17:29 EST 2025 Wed Oct 01 02:58:33 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Fri Feb 21 02:37:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | SpinalNet Efficient neural network Computed tomography Median filter Zeiler and Fergus network |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-1b197d29ff93cf6246e9291ad9023da5fedb43b584927fc50ecf2de27cfd575f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0640-807X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12539-024-00649-4 |
| PMID | 39167285 |
| PQID | 3254945555 |
| PQPubID | 326319 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1007_s12539_024_00649_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11512893 proquest_miscellaneous_3095676779 proquest_journals_3254945555 pubmed_primary_39167285 crossref_citationtrail_10_1007_s12539_024_00649_4 crossref_primary_10_1007_s12539_024_00649_4 springer_journals_10_1007_s12539_024_00649_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Germany – name: Bromont |
| PublicationTitle | Interdisciplinary sciences : computational life sciences |
| PublicationTitleAbbrev | Interdiscip Sci Comput Life Sci |
| PublicationTitleAlternate | Interdiscip Sci |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Raji, Anand (CR9) 2017; 9 Suarez-Ibarrola, Hein, Reis (CR12) 2020; 38 Antonik, Marsal, Brunner (CR26) 2019; 1 Chilakala, Kishore (CR25) 2021; 31 Sudharson, Kokil (CR6) 2021; 205 Kabir, Abdar, Khosravi, Jalali (CR27) 2023; 4 Raji, Vinod Chandra (CR33) 2016 Maheshan, Prasanna Kumar (CR20) 2019; 2 Raji, Chandra (CR34) 2017; 10 Fu, Feng, Majeed (CR28) 2018; 51 Islam, Hasan, Hossain (CR5) 2022; 12 Yu, Beam, Kohane (CR13) 2018; 2 Patro, Jaya Prakash, Jayamanmadha Rao (CR15) 2022; 68 Shehata, Alksas, Abouelkheir (CR19) 2021; 21 Al Khalil, Amirrajab, Lorenz (CR31) 2023; 161 Kijowski, Liu, Caliva (CR14) 2020; 52 Kasim, Harjoko (CR30) 2017; 9 Sharma, Yadav, Garg (CR22) 2021; 2021 Cai, Liu, Zhang (CR18) 2022; 2022 Rajinikanth, Vincent, Srinivasan (CR1) 2023; 11 Chen, Shan, He (CR29) 2010; 32 Bhandari, Yogarajah, Kavitha (CR3) 2023; 13 CR23 Wu, Yi (CR4) 2020; 200 Zhang, Li, Yang (CR24) 2017; 36 Mahmud, Abbas, Mushtak (CR7) 2023; 15 Patro, Allam, Neelapu (CR16) 2023; 640 Tabibu, Vinod, Jawahar (CR17) 2019; 9 Nguyen, Li, Cheah (CR32) 2022; 10 Chen, Ding, Li (CR11) 2020; 8 Kovesdy (CR2) 2022; 12 Badawy, Almars, Balaha (CR8) 2023; 10 Gharaibeh, Alzubi, Abdullah (CR10) 2022; 6 Paszke, Chaurasia, Kim (CR21) 2016 Yu Wu (649_CR4) 2020; 200 S Mahmud (649_CR7) 2023; 15 KK Patro (649_CR15) 2022; 68 CM Maheshan (649_CR20) 2019; 2 M Gharaibeh (649_CR10) 2022; 6 G Chen (649_CR11) 2020; 8 R Suarez-Ibarrola (649_CR12) 2020; 38 S Sudharson (649_CR6) 2021; 205 M Shehata (649_CR19) 2021; 21 L Fu (649_CR28) 2018; 51 CG Raji (649_CR34) 2017; 10 CG Raji (649_CR9) 2017; 9 P Antonik (649_CR26) 2019; 1 D Zhang (649_CR24) 2017; 36 A Paszke (649_CR21) 2016 649_CR23 LR Chilakala (649_CR25) 2021; 31 CP Kovesdy (649_CR2) 2022; 12 M Badawy (649_CR8) 2023; 10 M Bhandari (649_CR3) 2023; 13 S Tabibu (649_CR17) 2019; 9 J Cai (649_CR18) 2022; 2022 Y Al Khalil (649_CR31) 2023; 161 V Rajinikanth (649_CR1) 2023; 11 A Sharma (649_CR22) 2021; 2021 MN Islam (649_CR5) 2022; 12 A Kasim (649_CR30) 2017; 9 K-H Yu (649_CR13) 2018; 2 CG Raji (649_CR33) 2016 H-T Nguyen (649_CR32) 2022; 10 HMD Kabir (649_CR27) 2023; 4 J Chen (649_CR29) 2010; 32 R Kijowski (649_CR14) 2020; 52 KK Patro (649_CR16) 2023; 640 |
| References_xml | – volume: 6 start-page: 29 year: 2022 ident: CR10 article-title: Radiology imaging scans for early diagnosis of kidney tumors: a review of data analytics-based machine learning and deep learning approaches publication-title: Big Data Cog Comp doi: 10.3390/bdcc6010029 – volume: 15 start-page: 3189 year: 2023 ident: CR7 article-title: Kidney cancer diagnosis and surgery selection by machine learning from CT scans combined with clinical metadata publication-title: Cancers doi: 10.3390/cancers15123189 – volume: 10 year: 2023 ident: CR8 article-title: A two-stage renal disease classification based on transfer learning with hyperparameters optimization publication-title: Front Med doi: 10.3389/fmed.2023.1106717 – volume: 2 start-page: 67 year: 2019 ident: CR20 article-title: Performance of image pre-processing filters for noise removal in transformer oil images at different temperatures publication-title: SN Appl Sci doi: 10.1007/s42452-019-1800-x – volume: 31 start-page: 1404 year: 2021 end-page: 1423 ident: CR25 article-title: Optimal deep belief network with opposition-based hybrid grasshopper and honeybee optimization algorithm for lung cancer classification: a DBNGHHB approach publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22515 – volume: 640 year: 2023 ident: CR16 article-title: Application of kronecker convolutions in deep learning technique for automated detection of kidney stones with coronal CT images publication-title: Info Sci doi: 10.1016/j.ins.2023.119005 – volume: 4 start-page: 1165 year: 2023 end-page: 1177 ident: CR27 article-title: SpinalNet: deep neural network with gradual input publication-title: IEEE Trans Artif Intell doi: 10.1109/TAI.2022.3185179 – volume: 51 start-page: 45 year: 2018 end-page: 50 ident: CR28 article-title: Kiwifruit detection in field images using faster R-CNN with ZFNet publication-title: IFAC-Pap doi: 10.1016/j.ifacol.2018.08.059 – year: 2016 ident: CR21 article-title: ENet: a deep neural network architecture for real-time semantic segmentation publication-title: arXiv doi: 10.48550/arXiv.1606.02147 – volume: 32 start-page: 1705 year: 2010 end-page: 1720 ident: CR29 article-title: WLD: a robust local image descriptor publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.155 – volume: 36 start-page: 135 year: 2017 end-page: 144 ident: CR24 article-title: Detection of image seam carving by using weber local descriptor and local binary patterns publication-title: J Inf Secur Appl doi: 10.1016/j.jisa.2017.09.003 – volume: 10 start-page: 1 issue: 13 year: 2017 end-page: 17 ident: CR34 article-title: Various medical aspects of liver transplantation and its survival prediction using machine learning techniques publication-title: Indian J Sci Technol doi: 10.17485/ijst/2017/v10i13/94111 – volume: 9 start-page: 93 year: 2017 end-page: 106 ident: CR9 article-title: Computer-based prognosis model with dimensionality reduction and validation of attributes for prolonged survival prediction publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2017.07.002 – volume: 68 start-page: 2743 year: 2022 end-page: 2754 ident: CR15 article-title: An efficient optimized feature selection with machine learning approach for ECG biometric recognition publication-title: IETE J Res doi: 10.1080/03772063.2020.1725663 – volume: 2021 year: 2021 ident: CR22 article-title: Bone cancer detection using feature extraction based machine learning model publication-title: Comput Math Methods Med doi: 10.1155/2021/7433186 – volume: 13 start-page: 3125 year: 2023 ident: CR3 article-title: Exploring the capabilities of a lightweight CNN model in accurately identifying renal abnormalities: cysts, stones, and tumors, using LIME and SHAP publication-title: Appl Sci doi: 10.3390/app13053125 – ident: CR23 – volume: 11 start-page: 1109236 year: 2023 ident: CR1 article-title: A framework to distinguish healthy/cancer renal CT images using the fused deep features publication-title: Front Public Health doi: 10.3389/fpubh.2023.1109236 – volume: 8 start-page: 100497 year: 2020 end-page: 100508 ident: CR11 article-title: Prediction of chronic kidney disease using adaptive hybridized deep convolutional neural network on the internet of medical things platform publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995310 – volume: 2022 year: 2022 ident: CR18 article-title: Renal cancer detection: fusing deep and texture features from histopathology images publication-title: BioMed Res Int doi: 10.1155/2022/9821773 – volume: 38 start-page: 2329 year: 2020 end-page: 2347 ident: CR12 article-title: Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer publication-title: World J Urology doi: 10.1007/s00345-019-03000-5 – volume: 2 start-page: 719 year: 2018 end-page: 731 ident: CR13 article-title: Artificial intelligence in healthcare publication-title: Nat Biomed Engine doi: 10.1038/s41551-018-0305-z – volume: 1 start-page: 530 year: 2019 end-page: 537 ident: CR26 article-title: Human action recognition with a large-scale brain-inspired photonic computer publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0110-8 – volume: 200 year: 2020 ident: CR4 article-title: Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.105873 – volume: 12 start-page: 11440 year: 2022 ident: CR5 article-title: Vision transformer and explainable transfer learning models for auto-detection of kidney cyst, stone and tumor from CT-radiography publication-title: Sci Reports doi: 10.1038/s41598-022-15634-4 – volume: 205 year: 2021 ident: CR6 article-title: Computer-aided diagnosis system for the classification of multi-class kidney abnormalities in the noisy ultrasound images publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106071 – volume: 12 start-page: 7 year: 2022 end-page: 11 ident: CR2 article-title: Epidemiology of chronic kidney disease: an update 2022 publication-title: Kidney Int Suppl doi: 10.1016/j.kisu.2021.11.003 – volume: 9 start-page: 10509 year: 2019 ident: CR17 article-title: Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning publication-title: Sci Rep doi: 10.1038/s41598-019-46718-3 – volume: 52 start-page: 1607 year: 2020 end-page: 1619 ident: CR14 article-title: Deep learning for lesion detection, progression, and prediction of musculoskeletal disease publication-title: J Magn Res Imaging doi: 10.1002/jmri.27001 – volume: 10 start-page: 14270 year: 2022 end-page: 14287 ident: CR32 article-title: A layer-wise theoretical framework for deep learning of convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147869 – volume: 9 start-page: 55 year: 2017 end-page: 65 ident: CR30 article-title: Batik classification with artificial neural network based on texture-shape feature of main ornament publication-title: Int J Intell Syst Appl doi: 10.5815/ijisa.2017.06.06 – start-page: 147 year: 2016 end-page: 155 ident: CR33 article-title: Prediction and survival analysis of patients after liver transplantation using rbf networks publication-title: Data Mining and Big Data doi: 10.1007/978-3-319-40973-3_14 – volume: 21 start-page: 4928 year: 2021 ident: CR19 article-title: A comprehensive computer-assisted diagnosis system for early assessment of renal cancer tumors publication-title: Sensors doi: 10.3390/s21144928 – volume: 161 year: 2023 ident: CR31 article-title: Reducing segmentation failures in cardiac MRI via late feature fusion and GAN-based augmentation publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106973 – volume: 68 start-page: 2743 year: 2022 ident: 649_CR15 publication-title: IETE J Res doi: 10.1080/03772063.2020.1725663 – volume: 10 start-page: 1 issue: 13 year: 2017 ident: 649_CR34 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2017/v10i13/94111 – volume: 2022 year: 2022 ident: 649_CR18 publication-title: BioMed Res Int doi: 10.1155/2022/9821773 – volume: 2021 year: 2021 ident: 649_CR22 publication-title: Comput Math Methods Med doi: 10.1155/2021/7433186 – volume: 52 start-page: 1607 year: 2020 ident: 649_CR14 publication-title: J Magn Res Imaging doi: 10.1002/jmri.27001 – volume: 21 start-page: 4928 year: 2021 ident: 649_CR19 publication-title: Sensors doi: 10.3390/s21144928 – volume: 31 start-page: 1404 year: 2021 ident: 649_CR25 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22515 – volume: 38 start-page: 2329 year: 2020 ident: 649_CR12 publication-title: World J Urology doi: 10.1007/s00345-019-03000-5 – volume: 10 start-page: 14270 year: 2022 ident: 649_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147869 – volume: 10 year: 2023 ident: 649_CR8 publication-title: Front Med doi: 10.3389/fmed.2023.1106717 – volume: 161 year: 2023 ident: 649_CR31 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106973 – volume: 205 year: 2021 ident: 649_CR6 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106071 – volume: 11 start-page: 1109236 year: 2023 ident: 649_CR1 publication-title: Front Public Health doi: 10.3389/fpubh.2023.1109236 – volume: 12 start-page: 11440 year: 2022 ident: 649_CR5 publication-title: Sci Reports doi: 10.1038/s41598-022-15634-4 – volume: 6 start-page: 29 year: 2022 ident: 649_CR10 publication-title: Big Data Cog Comp doi: 10.3390/bdcc6010029 – volume: 8 start-page: 100497 year: 2020 ident: 649_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995310 – volume: 2 start-page: 67 year: 2019 ident: 649_CR20 publication-title: SN Appl Sci doi: 10.1007/s42452-019-1800-x – volume: 12 start-page: 7 year: 2022 ident: 649_CR2 publication-title: Kidney Int Suppl doi: 10.1016/j.kisu.2021.11.003 – volume: 51 start-page: 45 year: 2018 ident: 649_CR28 publication-title: IFAC-Pap doi: 10.1016/j.ifacol.2018.08.059 – volume: 15 start-page: 3189 year: 2023 ident: 649_CR7 publication-title: Cancers doi: 10.3390/cancers15123189 – volume: 36 start-page: 135 year: 2017 ident: 649_CR24 publication-title: J Inf Secur Appl doi: 10.1016/j.jisa.2017.09.003 – volume: 640 year: 2023 ident: 649_CR16 publication-title: Info Sci doi: 10.1016/j.ins.2023.119005 – volume: 9 start-page: 93 year: 2017 ident: 649_CR9 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2017.07.002 – start-page: 147 volume-title: Data Mining and Big Data year: 2016 ident: 649_CR33 doi: 10.1007/978-3-319-40973-3_14 – volume: 13 start-page: 3125 year: 2023 ident: 649_CR3 publication-title: Appl Sci doi: 10.3390/app13053125 – volume: 9 start-page: 10509 year: 2019 ident: 649_CR17 publication-title: Sci Rep doi: 10.1038/s41598-019-46718-3 – ident: 649_CR23 doi: 10.1109/ROBOT.2007.364077 – volume: 4 start-page: 1165 year: 2023 ident: 649_CR27 publication-title: IEEE Trans Artif Intell doi: 10.1109/TAI.2022.3185179 – volume: 2 start-page: 719 year: 2018 ident: 649_CR13 publication-title: Nat Biomed Engine doi: 10.1038/s41551-018-0305-z – volume: 1 start-page: 530 year: 2019 ident: 649_CR26 publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0110-8 – volume: 32 start-page: 1705 year: 2010 ident: 649_CR29 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.155 – volume: 9 start-page: 55 year: 2017 ident: 649_CR30 publication-title: Int J Intell Syst Appl doi: 10.5815/ijisa.2017.06.06 – volume: 200 year: 2020 ident: 649_CR4 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.105873 – year: 2016 ident: 649_CR21 publication-title: arXiv doi: 10.48550/arXiv.1606.02147 |
| SSID | ssj0064830 |
| Score | 2.3556058 |
| Snippet | The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 907 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Biomedical and Life Sciences Classification Computational Biology/Bioinformatics Computational Science and Engineering Computed tomography Computer Appl. in Life Sciences Computer applications Computer vision Computing costs Cysts Datasets Deep Learning Dietary supplements Excess water Feature extraction Health Sciences Humans Image acquisition Image filters Image Processing, Computer-Assisted - methods Kidney cancer Kidney diseases Kidney Diseases - diagnostic imaging Kidney stones Kidneys Life Sciences Machine learning Mathematical and Computational Physics Medical imaging Medicine Nephrology Neural networks Neural Networks, Computer Optimization techniques Original Original Research Article Real time Renal failure Statistics for Life Sciences Task complexity Theoretical Theoretical and Computational Chemistry Tomography Tomography, X-Ray Computed - methods Tumors Water purification Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIhy4F1YKMhI3KjTrHe9jo-lEKVIREgkUuGy8lMgwiaiG6Hw6xnvKw1FFYicIs1sEjufPZ_lmW8AXiQcOXiqLdViyGmqdYzvlKLOxbGynHllQr3zu0k2nqVvz_jZDrxua2GqbPf2SrKuaQgqTUV5tLT-aFP4xngiKcYXGmKqpGkfzddgN-PIyHuwO5u8P_4YzlpD3AdwM6guPWWcUCZ43NTO_PmDtuPTJdJ5OXeyu0C9CTdWxVKtf6j5_EKMGt0G146uTk352l-Vum9-_ib8-L_DvwO3GhJLjmvU3YUdV9yD63Vby_V9mAZDrUxBTi9IftJXGDItqfpwBnsFCrLw5GRKTr_hxnZOqgwGosh4HSrJyIdlaNr1aTRx5QOYjd5MT8a06d5ATSp4SWMdS2GZ9F4mxmcszRxSMQSARJpgFffO6jTRSIAkE97wgTOeWceE8RY5pE_2oVcsCvcICBsII7mwIpxHtU_kwGvj0FFpP5BuGEHc_me5aaTNQ4eNeb4RZQ4zluOM5dWM5WkEL7tnlrWwx5XeBy0U8maRn-dJOFynHF8RPO_MuDzDnYsq3GKFPkHoUWRCyAge1sjpvi7UPAs2xKeHW5jqHIL097al-PK5kgCPA1FDqhnBYYuWze-6ahiHHUT_YtSP_839CeyxgMkq2ecAeuX3lXuKlK3Uz5oV-QtUoDZd priority: 102 providerName: Unpaywall |
| Title | Artificial Intelligence-Based Classification of CT Images Using a Hybrid SpinalZFNet |
| URI | https://link.springer.com/article/10.1007/s12539-024-00649-4 https://www.ncbi.nlm.nih.gov/pubmed/39167285 https://www.proquest.com/docview/3254945555 https://www.proquest.com/docview/3095676779 https://pubmed.ncbi.nlm.nih.gov/PMC11512893 https://link.springer.com/content/pdf/10.1007/s12539-024-00649-4.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1867-1462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064830 issn: 1867-1462 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1867-1462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064830 issn: 1867-1462 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTnw98LHxERiTkXhjnhonjuPHUq10oFVINNLGS2QntkCUtKKpUPnrOeerK0MTy0MUxRcnds6-n-W73wG8CThi8FDnVIuY01BrH6-Uosb4vso5sypz8c5nk2ichB_O-XkTFLZsvd3bLclqpt4EuzEeSIo2hTo7Kmm4A7sV31YPdgfvLz6etDNwFMZVjhFcigSUCe43wTL_rmXbIF1BmVedJbsd0_twd1Us1PqXms0uGaXRQ0ja5tS-KN-PV6U-zn7_xfR40_Y-ggcNSiWDWq0ewy1T7MHtOm_leg_unDU78vswdTI1CwU5vUTvSd-hecxJlXPTlVcKQOaWDKfk9AdOYktSeSsQRcZrFzVGPi9cgq4vo4kpn0AyOpkOx7TJ1ECzUPCS-tqXImfSWhlkNmJhZBB24c-WCAlyxa3JdRhoBDuSCZvxvsksyw0Tmc0RL9rgKfSKeWGeA2F9kUkucuHWntoGsm91ZlBQaduXJvbAb39XmjU05i6bxizdEDC7jkux49Kq49LQg7fdM4uaxONa6YNWC9JmQC_TwC2kQ46HB6-7YhyKbn9FFWa-QhlH6igiIaQHz2ql6V7n4psFi_HpeEudOgFH871dUnz7WtF9-w6UIaz04KhVlM13XdeMo047_6PVL25W-0u4x5xqVo49B9Arf67MK4RnpT5sRuMh7AyjIZ4TNsB7yeTT4OIPOG0xng |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6CIdg4IBiMBQYYiRuz1Dh2HB_HRNXC2gutNHGJ7NgWk7q0Wluh_vc851dXDU2QUyQ_J3E-2--z7Pc9gE-JQA7OjaVGZoJyY2K805o6F8faCuZ1EeKdR-N0MOXfLsVlExS2bE-7t1uS1Uy9DXZjIlEUfQoNflRR_hAeBQGroJg_ZWft_JvyrMowgguRhDIp4iZU5u_P2HVHdzjm3aOS3X7pU9hflwu9-a1ns1suqf8cnjVckpzV4L-AB648hMd1dsnNITwZNfvmL2ESbGqtCDK8JcJJv6ATs6TKjBnKK5jI3JPzCRle41SzJNWZAqLJYBNiu8iPRUij9bM_dqtXMO1_nZwPaJNPgRZcihWNTaykZcp7lRQ-ZTx1SI4QEoWO22rhnTU8MUhJFJO-ED1XeGYdk4W3yOp8cgR75bx0x0BYTxZKSCvDCtH4RPW8KRwaauN7ymURxO1vzYtGbDzkvJjlW5nkAEWOUOQVFDmP4HNXZ1FLbdxrfdKilTfDbpknYbnLBV4RfOyKccCEXRBduvkabYL0okylVBG8rsHtXheikCXLsHa2A3tnEMS4d0vKq1-VKHccqBOSvwhO2x6y_a77mnHa9aJ_aPWb_3v6B9gfTEYX-cVw_P0tHLDQ8aujOCewt7pZu3dIqFbmfTV-_gBb8RQO |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEBs8IBhfgQFG4o1Zaxw7jh-hULXAKiQ6aeIlsmNbIHVpxVKh_vec89VWQxPkKZLPTpyzcz_r7n4H8CYRiMG5sdTITFBuTIx3WlPn4lhbwbwuQr7z6TQdn_FP5-J8K4u_jnbvXJJNTkNgaSqrk6X1J5vENyYSRdG-0GBTFeU34RZH6xZqGAzTYfcvTnlWVxvBQ0lCmRRxmzbz9zF2TdMVvHk1bLL3nd6Fg1W51Ovfej7fMk-j-3CvxZXkXbMQHsANVx7C7abS5PoQ9k9bH_pDmAWZhjeCTLYIOel7NGiW1FUyQ3utMrLwZDgjkwv87VySOr6AaDJehzwv8m0ZSmp9H01d9QjORh9nwzFtayvQgktR0djESlqmvFdJ4VPGU4dACdWj0IhbLbyzhicG4Yli0hdi4ArPrGOy8BYRnk8ew165KN1TIGwgCyWkleG0aHyiBt4UDgW18QPlsgji7rPmRUs8HupfzPMNZXJQRY6qyGtV5DyCt32fZUO7ca30UaetvN2Cl3kSjr5c4BXB674ZN0_wiOjSLVYoE2gYZSqliuBJo9z-cSEjWbIMe2c7au8FAjH3bkv580dN0B0HGIVAMILjboVs3uu6aRz3q-gfZv3s_0Z_BftfP4zyL5Pp5-dwh4V1X0flHMFe9WvlXiC2qszLevv8AfobGDQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIhy4F1YKMhI3KjTrHe9jo-lEKVIREgkUuGy8lMgwiaiG6Hw6xnvKw1FFYicIs1sEjufPZ_lmW8AXiQcOXiqLdViyGmqdYzvlKLOxbGynHllQr3zu0k2nqVvz_jZDrxua2GqbPf2SrKuaQgqTUV5tLT-aFP4xngiKcYXGmKqpGkfzddgN-PIyHuwO5u8P_4YzlpD3AdwM6guPWWcUCZ43NTO_PmDtuPTJdJ5OXeyu0C9CTdWxVKtf6j5_EKMGt0G146uTk352l-Vum9-_ib8-L_DvwO3GhJLjmvU3YUdV9yD63Vby_V9mAZDrUxBTi9IftJXGDItqfpwBnsFCrLw5GRKTr_hxnZOqgwGosh4HSrJyIdlaNr1aTRx5QOYjd5MT8a06d5ATSp4SWMdS2GZ9F4mxmcszRxSMQSARJpgFffO6jTRSIAkE97wgTOeWceE8RY5pE_2oVcsCvcICBsII7mwIpxHtU_kwGvj0FFpP5BuGEHc_me5aaTNQ4eNeb4RZQ4zluOM5dWM5WkEL7tnlrWwx5XeBy0U8maRn-dJOFynHF8RPO_MuDzDnYsq3GKFPkHoUWRCyAge1sjpvi7UPAs2xKeHW5jqHIL097al-PK5kgCPA1FDqhnBYYuWze-6ahiHHUT_YtSP_839CeyxgMkq2ecAeuX3lXuKlK3Uz5oV-QtUoDZd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Based+Classification+of+CT+Images+Using+a+Hybrid+SpinalZFNet&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Maqsood%2C+Faiqa&rft.au=Zhenfei%2C+Wang&rft.au=Ali%2C+Muhammad+Mumtaz&rft.au=Qiu%2C+Baozhi&rft.date=2024-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=1913-2751&rft.eissn=1867-1462&rft.volume=16&rft.issue=4&rft.spage=907&rft.epage=925&rft_id=info:doi/10.1007%2Fs12539-024-00649-4&rft_id=info%3Apmid%2F39167285&rft.externalDocID=PMC11512893 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon |