Artificial Intelligence-Based Classification of CT Images Using a Hybrid SpinalZFNet

The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as c...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary sciences : computational life sciences Vol. 16; no. 4; pp. 907 - 925
Main Authors Maqsood, Faiqa, Zhenfei, Wang, Ali, Muhammad Mumtaz, Qiu, Baozhi, Rehman, Naveed Ur, Sabah, Fahad, Mahmood, Tahir, Din, Irfanud, Sarwar, Raheem
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1913-2751
1867-1462
1867-1462
DOI10.1007/s12539-024-00649-4

Cover

Abstract The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease. Graphical Abstract
AbstractList The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.
The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease. Graphical Abstract
The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.
Author Rehman, Naveed Ur
Din, Irfanud
Qiu, Baozhi
Zhenfei, Wang
Sabah, Fahad
Sarwar, Raheem
Maqsood, Faiqa
Ali, Muhammad Mumtaz
Mahmood, Tahir
Author_xml – sequence: 1
  givenname: Faiqa
  surname: Maqsood
  fullname: Maqsood, Faiqa
  organization: School of Computer and Artificial Intelligence, Zhengzhou University
– sequence: 2
  givenname: Wang
  surname: Zhenfei
  fullname: Zhenfei, Wang
  organization: School of Computer and Artificial Intelligence, Zhengzhou University
– sequence: 3
  givenname: Muhammad Mumtaz
  surname: Ali
  fullname: Ali, Muhammad Mumtaz
  organization: School of Computer and Artificial Intelligence, Zhengzhou University
– sequence: 4
  givenname: Baozhi
  surname: Qiu
  fullname: Qiu, Baozhi
  organization: School of Computer and Artificial Intelligence, Zhengzhou University
– sequence: 5
  givenname: Naveed Ur
  surname: Rehman
  fullname: Rehman, Naveed Ur
  organization: School of Computer and Artificial Intelligence, Zhengzhou University
– sequence: 6
  givenname: Fahad
  surname: Sabah
  fullname: Sabah, Fahad
  organization: Beijing University of Technology
– sequence: 7
  givenname: Tahir
  surname: Mahmood
  fullname: Mahmood, Tahir
  organization: Division of Electronics and Electrical Engineering, Dongguk University
– sequence: 8
  givenname: Irfanud
  surname: Din
  fullname: Din, Irfanud
  organization: Department of Computer Science, New Uzbekistan University
– sequence: 9
  givenname: Raheem
  orcidid: 0000-0002-0640-807X
  surname: Sarwar
  fullname: Sarwar, Raheem
  email: R.Sarwar@mmu.ac.uk
  organization: OTEHM, Faculty of Business and Law, Manchester Metropolitan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39167285$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEURi0URB7wByiQJRqaAT_H4wolK0JWiqBg09BYHj8GR7P2Ys-A9t_jzS4EUkS4saV7vqvrc0_BUUzRAfASo7cYIfGuYMKpbBBhDUItkw17Ak5w14oGs5Yc1bfEtCGC42NwWsrtDuooegaOqcStIB0_AavzPAUfTNAjXMbJjWMYXDSuudDFWbgYdSm7up5CijB5uFjB5VoPrsCbEuIANbza9jlY-GUToh6_Xn5y03Pw1OuxuBeH-wzcXH5YLa6a688fl4vz68YwwacG91gKS6T3khrfEtY6SSTWViJCrebe2Z7RnndMEuENR854Yh0RxlsuuKdngO77znGjtz_1OKpNDmudtwojtXOk9o5UdaTuHClWU-_3qc3cr501Lk5Z3yeTDurfSgzf1JB-KIw5Jp2ktcObQ4ecvs-uTGodiqnudHRpLooiyVvRCiEr-voBepvmXEVVinAmGa-nUq_-HunPLL_3VIFuD5icSsnOKxOmu53UCcP4-HfJg-h_OTqYLRWOg8v3Yz-S-gVXqsaN
CitedBy_id crossref_primary_10_1007_s10489_024_06047_z
crossref_primary_10_1021_acsnano_4c15705
crossref_primary_10_1007_s12539_025_00693_8
Cites_doi 10.3390/bdcc6010029
10.3390/cancers15123189
10.3389/fmed.2023.1106717
10.1007/s42452-019-1800-x
10.1002/ima.22515
10.1016/j.ins.2023.119005
10.1109/TAI.2022.3185179
10.1016/j.ifacol.2018.08.059
10.48550/arXiv.1606.02147
10.1109/TPAMI.2009.155
10.1016/j.jisa.2017.09.003
10.17485/ijst/2017/v10i13/94111
10.1016/j.imu.2017.07.002
10.1080/03772063.2020.1725663
10.1155/2021/7433186
10.3390/app13053125
10.3389/fpubh.2023.1109236
10.1109/ACCESS.2020.2995310
10.1155/2022/9821773
10.1007/s00345-019-03000-5
10.1038/s41551-018-0305-z
10.1038/s42256-019-0110-8
10.1016/j.knosys.2020.105873
10.1038/s41598-022-15634-4
10.1016/j.cmpb.2021.106071
10.1016/j.kisu.2021.11.003
10.1038/s41598-019-46718-3
10.1002/jmri.27001
10.1109/ACCESS.2022.3147869
10.5815/ijisa.2017.06.06
10.1007/978-3-319-40973-3_14
10.3390/s21144928
10.1016/j.compbiomed.2023.106973
10.1109/ROBOT.2007.364077
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s12539-024-00649-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Biotechnology Research Abstracts

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1867-1462
EndPage 925
ExternalDocumentID 10.1007/s12539-024-00649-4
PMC11512893
39167285
10_1007_s12539_024_00649_4
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
D1J
D1K
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M0K
M1P
M4Y
M7P
M7R
NPVJJ
NQJWS
NU0
O9-
O9J
P62
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
K7-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c475t-1b197d29ff93cf6246e9291ad9023da5fedb43b584927fc50ecf2de27cfd575f3
IEDL.DBID AGYKE
ISSN 1913-2751
1867-1462
IngestDate Sun Oct 26 04:03:40 EDT 2025
Thu Aug 21 18:44:08 EDT 2025
Thu Oct 02 04:16:22 EDT 2025
Tue Oct 07 06:05:13 EDT 2025
Wed Feb 19 02:17:29 EST 2025
Wed Oct 01 02:58:33 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Fri Feb 21 02:37:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords SpinalNet
Efficient neural network
Computed tomography
Median filter
Zeiler and Fergus network
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-1b197d29ff93cf6246e9291ad9023da5fedb43b584927fc50ecf2de27cfd575f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0640-807X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12539-024-00649-4
PMID 39167285
PQID 3254945555
PQPubID 326319
PageCount 19
ParticipantIDs unpaywall_primary_10_1007_s12539_024_00649_4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11512893
proquest_miscellaneous_3095676779
proquest_journals_3254945555
pubmed_primary_39167285
crossref_citationtrail_10_1007_s12539_024_00649_4
crossref_primary_10_1007_s12539_024_00649_4
springer_journals_10_1007_s12539_024_00649_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Bromont
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationTitleAlternate Interdiscip Sci
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Raji, Anand (CR9) 2017; 9
Suarez-Ibarrola, Hein, Reis (CR12) 2020; 38
Antonik, Marsal, Brunner (CR26) 2019; 1
Chilakala, Kishore (CR25) 2021; 31
Sudharson, Kokil (CR6) 2021; 205
Kabir, Abdar, Khosravi, Jalali (CR27) 2023; 4
Raji, Vinod Chandra (CR33) 2016
Maheshan, Prasanna Kumar (CR20) 2019; 2
Raji, Chandra (CR34) 2017; 10
Fu, Feng, Majeed (CR28) 2018; 51
Islam, Hasan, Hossain (CR5) 2022; 12
Yu, Beam, Kohane (CR13) 2018; 2
Patro, Jaya Prakash, Jayamanmadha Rao (CR15) 2022; 68
Shehata, Alksas, Abouelkheir (CR19) 2021; 21
Al Khalil, Amirrajab, Lorenz (CR31) 2023; 161
Kijowski, Liu, Caliva (CR14) 2020; 52
Kasim, Harjoko (CR30) 2017; 9
Sharma, Yadav, Garg (CR22) 2021; 2021
Cai, Liu, Zhang (CR18) 2022; 2022
Rajinikanth, Vincent, Srinivasan (CR1) 2023; 11
Chen, Shan, He (CR29) 2010; 32
Bhandari, Yogarajah, Kavitha (CR3) 2023; 13
CR23
Wu, Yi (CR4) 2020; 200
Zhang, Li, Yang (CR24) 2017; 36
Mahmud, Abbas, Mushtak (CR7) 2023; 15
Patro, Allam, Neelapu (CR16) 2023; 640
Tabibu, Vinod, Jawahar (CR17) 2019; 9
Nguyen, Li, Cheah (CR32) 2022; 10
Chen, Ding, Li (CR11) 2020; 8
Kovesdy (CR2) 2022; 12
Badawy, Almars, Balaha (CR8) 2023; 10
Gharaibeh, Alzubi, Abdullah (CR10) 2022; 6
Paszke, Chaurasia, Kim (CR21) 2016
Yu Wu (649_CR4) 2020; 200
S Mahmud (649_CR7) 2023; 15
KK Patro (649_CR15) 2022; 68
CM Maheshan (649_CR20) 2019; 2
M Gharaibeh (649_CR10) 2022; 6
G Chen (649_CR11) 2020; 8
R Suarez-Ibarrola (649_CR12) 2020; 38
S Sudharson (649_CR6) 2021; 205
M Shehata (649_CR19) 2021; 21
L Fu (649_CR28) 2018; 51
CG Raji (649_CR34) 2017; 10
CG Raji (649_CR9) 2017; 9
P Antonik (649_CR26) 2019; 1
D Zhang (649_CR24) 2017; 36
A Paszke (649_CR21) 2016
649_CR23
LR Chilakala (649_CR25) 2021; 31
CP Kovesdy (649_CR2) 2022; 12
M Badawy (649_CR8) 2023; 10
M Bhandari (649_CR3) 2023; 13
S Tabibu (649_CR17) 2019; 9
J Cai (649_CR18) 2022; 2022
Y Al Khalil (649_CR31) 2023; 161
V Rajinikanth (649_CR1) 2023; 11
A Sharma (649_CR22) 2021; 2021
MN Islam (649_CR5) 2022; 12
A Kasim (649_CR30) 2017; 9
K-H Yu (649_CR13) 2018; 2
CG Raji (649_CR33) 2016
H-T Nguyen (649_CR32) 2022; 10
HMD Kabir (649_CR27) 2023; 4
J Chen (649_CR29) 2010; 32
R Kijowski (649_CR14) 2020; 52
KK Patro (649_CR16) 2023; 640
References_xml – volume: 6
  start-page: 29
  year: 2022
  ident: CR10
  article-title: Radiology imaging scans for early diagnosis of kidney tumors: a review of data analytics-based machine learning and deep learning approaches
  publication-title: Big Data Cog Comp
  doi: 10.3390/bdcc6010029
– volume: 15
  start-page: 3189
  year: 2023
  ident: CR7
  article-title: Kidney cancer diagnosis and surgery selection by machine learning from CT scans combined with clinical metadata
  publication-title: Cancers
  doi: 10.3390/cancers15123189
– volume: 10
  year: 2023
  ident: CR8
  article-title: A two-stage renal disease classification based on transfer learning with hyperparameters optimization
  publication-title: Front Med
  doi: 10.3389/fmed.2023.1106717
– volume: 2
  start-page: 67
  year: 2019
  ident: CR20
  article-title: Performance of image pre-processing filters for noise removal in transformer oil images at different temperatures
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1800-x
– volume: 31
  start-page: 1404
  year: 2021
  end-page: 1423
  ident: CR25
  article-title: Optimal deep belief network with opposition-based hybrid grasshopper and honeybee optimization algorithm for lung cancer classification: a DBNGHHB approach
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22515
– volume: 640
  year: 2023
  ident: CR16
  article-title: Application of kronecker convolutions in deep learning technique for automated detection of kidney stones with coronal CT images
  publication-title: Info Sci
  doi: 10.1016/j.ins.2023.119005
– volume: 4
  start-page: 1165
  year: 2023
  end-page: 1177
  ident: CR27
  article-title: SpinalNet: deep neural network with gradual input
  publication-title: IEEE Trans Artif Intell
  doi: 10.1109/TAI.2022.3185179
– volume: 51
  start-page: 45
  year: 2018
  end-page: 50
  ident: CR28
  article-title: Kiwifruit detection in field images using faster R-CNN with ZFNet
  publication-title: IFAC-Pap
  doi: 10.1016/j.ifacol.2018.08.059
– year: 2016
  ident: CR21
  article-title: ENet: a deep neural network architecture for real-time semantic segmentation
  publication-title: arXiv
  doi: 10.48550/arXiv.1606.02147
– volume: 32
  start-page: 1705
  year: 2010
  end-page: 1720
  ident: CR29
  article-title: WLD: a robust local image descriptor
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.155
– volume: 36
  start-page: 135
  year: 2017
  end-page: 144
  ident: CR24
  article-title: Detection of image seam carving by using weber local descriptor and local binary patterns
  publication-title: J Inf Secur Appl
  doi: 10.1016/j.jisa.2017.09.003
– volume: 10
  start-page: 1
  issue: 13
  year: 2017
  end-page: 17
  ident: CR34
  article-title: Various medical aspects of liver transplantation and its survival prediction using machine learning techniques
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2017/v10i13/94111
– volume: 9
  start-page: 93
  year: 2017
  end-page: 106
  ident: CR9
  article-title: Computer-based prognosis model with dimensionality reduction and validation of attributes for prolonged survival prediction
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2017.07.002
– volume: 68
  start-page: 2743
  year: 2022
  end-page: 2754
  ident: CR15
  article-title: An efficient optimized feature selection with machine learning approach for ECG biometric recognition
  publication-title: IETE J Res
  doi: 10.1080/03772063.2020.1725663
– volume: 2021
  year: 2021
  ident: CR22
  article-title: Bone cancer detection using feature extraction based machine learning model
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/7433186
– volume: 13
  start-page: 3125
  year: 2023
  ident: CR3
  article-title: Exploring the capabilities of a lightweight CNN model in accurately identifying renal abnormalities: cysts, stones, and tumors, using LIME and SHAP
  publication-title: Appl Sci
  doi: 10.3390/app13053125
– ident: CR23
– volume: 11
  start-page: 1109236
  year: 2023
  ident: CR1
  article-title: A framework to distinguish healthy/cancer renal CT images using the fused deep features
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2023.1109236
– volume: 8
  start-page: 100497
  year: 2020
  end-page: 100508
  ident: CR11
  article-title: Prediction of chronic kidney disease using adaptive hybridized deep convolutional neural network on the internet of medical things platform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995310
– volume: 2022
  year: 2022
  ident: CR18
  article-title: Renal cancer detection: fusing deep and texture features from histopathology images
  publication-title: BioMed Res Int
  doi: 10.1155/2022/9821773
– volume: 38
  start-page: 2329
  year: 2020
  end-page: 2347
  ident: CR12
  article-title: Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer
  publication-title: World J Urology
  doi: 10.1007/s00345-019-03000-5
– volume: 2
  start-page: 719
  year: 2018
  end-page: 731
  ident: CR13
  article-title: Artificial intelligence in healthcare
  publication-title: Nat Biomed Engine
  doi: 10.1038/s41551-018-0305-z
– volume: 1
  start-page: 530
  year: 2019
  end-page: 537
  ident: CR26
  article-title: Human action recognition with a large-scale brain-inspired photonic computer
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0110-8
– volume: 200
  year: 2020
  ident: CR4
  article-title: Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105873
– volume: 12
  start-page: 11440
  year: 2022
  ident: CR5
  article-title: Vision transformer and explainable transfer learning models for auto-detection of kidney cyst, stone and tumor from CT-radiography
  publication-title: Sci Reports
  doi: 10.1038/s41598-022-15634-4
– volume: 205
  year: 2021
  ident: CR6
  article-title: Computer-aided diagnosis system for the classification of multi-class kidney abnormalities in the noisy ultrasound images
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106071
– volume: 12
  start-page: 7
  year: 2022
  end-page: 11
  ident: CR2
  article-title: Epidemiology of chronic kidney disease: an update 2022
  publication-title: Kidney Int Suppl
  doi: 10.1016/j.kisu.2021.11.003
– volume: 9
  start-page: 10509
  year: 2019
  ident: CR17
  article-title: Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-46718-3
– volume: 52
  start-page: 1607
  year: 2020
  end-page: 1619
  ident: CR14
  article-title: Deep learning for lesion detection, progression, and prediction of musculoskeletal disease
  publication-title: J Magn Res Imaging
  doi: 10.1002/jmri.27001
– volume: 10
  start-page: 14270
  year: 2022
  end-page: 14287
  ident: CR32
  article-title: A layer-wise theoretical framework for deep learning of convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147869
– volume: 9
  start-page: 55
  year: 2017
  end-page: 65
  ident: CR30
  article-title: Batik classification with artificial neural network based on texture-shape feature of main ornament
  publication-title: Int J Intell Syst Appl
  doi: 10.5815/ijisa.2017.06.06
– start-page: 147
  year: 2016
  end-page: 155
  ident: CR33
  article-title: Prediction and survival analysis of patients after liver transplantation using rbf networks
  publication-title: Data Mining and Big Data
  doi: 10.1007/978-3-319-40973-3_14
– volume: 21
  start-page: 4928
  year: 2021
  ident: CR19
  article-title: A comprehensive computer-assisted diagnosis system for early assessment of renal cancer tumors
  publication-title: Sensors
  doi: 10.3390/s21144928
– volume: 161
  year: 2023
  ident: CR31
  article-title: Reducing segmentation failures in cardiac MRI via late feature fusion and GAN-based augmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106973
– volume: 68
  start-page: 2743
  year: 2022
  ident: 649_CR15
  publication-title: IETE J Res
  doi: 10.1080/03772063.2020.1725663
– volume: 10
  start-page: 1
  issue: 13
  year: 2017
  ident: 649_CR34
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2017/v10i13/94111
– volume: 2022
  year: 2022
  ident: 649_CR18
  publication-title: BioMed Res Int
  doi: 10.1155/2022/9821773
– volume: 2021
  year: 2021
  ident: 649_CR22
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/7433186
– volume: 52
  start-page: 1607
  year: 2020
  ident: 649_CR14
  publication-title: J Magn Res Imaging
  doi: 10.1002/jmri.27001
– volume: 21
  start-page: 4928
  year: 2021
  ident: 649_CR19
  publication-title: Sensors
  doi: 10.3390/s21144928
– volume: 31
  start-page: 1404
  year: 2021
  ident: 649_CR25
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22515
– volume: 38
  start-page: 2329
  year: 2020
  ident: 649_CR12
  publication-title: World J Urology
  doi: 10.1007/s00345-019-03000-5
– volume: 10
  start-page: 14270
  year: 2022
  ident: 649_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147869
– volume: 10
  year: 2023
  ident: 649_CR8
  publication-title: Front Med
  doi: 10.3389/fmed.2023.1106717
– volume: 161
  year: 2023
  ident: 649_CR31
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106973
– volume: 205
  year: 2021
  ident: 649_CR6
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106071
– volume: 11
  start-page: 1109236
  year: 2023
  ident: 649_CR1
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2023.1109236
– volume: 12
  start-page: 11440
  year: 2022
  ident: 649_CR5
  publication-title: Sci Reports
  doi: 10.1038/s41598-022-15634-4
– volume: 6
  start-page: 29
  year: 2022
  ident: 649_CR10
  publication-title: Big Data Cog Comp
  doi: 10.3390/bdcc6010029
– volume: 8
  start-page: 100497
  year: 2020
  ident: 649_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995310
– volume: 2
  start-page: 67
  year: 2019
  ident: 649_CR20
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1800-x
– volume: 12
  start-page: 7
  year: 2022
  ident: 649_CR2
  publication-title: Kidney Int Suppl
  doi: 10.1016/j.kisu.2021.11.003
– volume: 51
  start-page: 45
  year: 2018
  ident: 649_CR28
  publication-title: IFAC-Pap
  doi: 10.1016/j.ifacol.2018.08.059
– volume: 15
  start-page: 3189
  year: 2023
  ident: 649_CR7
  publication-title: Cancers
  doi: 10.3390/cancers15123189
– volume: 36
  start-page: 135
  year: 2017
  ident: 649_CR24
  publication-title: J Inf Secur Appl
  doi: 10.1016/j.jisa.2017.09.003
– volume: 640
  year: 2023
  ident: 649_CR16
  publication-title: Info Sci
  doi: 10.1016/j.ins.2023.119005
– volume: 9
  start-page: 93
  year: 2017
  ident: 649_CR9
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2017.07.002
– start-page: 147
  volume-title: Data Mining and Big Data
  year: 2016
  ident: 649_CR33
  doi: 10.1007/978-3-319-40973-3_14
– volume: 13
  start-page: 3125
  year: 2023
  ident: 649_CR3
  publication-title: Appl Sci
  doi: 10.3390/app13053125
– volume: 9
  start-page: 10509
  year: 2019
  ident: 649_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-46718-3
– ident: 649_CR23
  doi: 10.1109/ROBOT.2007.364077
– volume: 4
  start-page: 1165
  year: 2023
  ident: 649_CR27
  publication-title: IEEE Trans Artif Intell
  doi: 10.1109/TAI.2022.3185179
– volume: 2
  start-page: 719
  year: 2018
  ident: 649_CR13
  publication-title: Nat Biomed Engine
  doi: 10.1038/s41551-018-0305-z
– volume: 1
  start-page: 530
  year: 2019
  ident: 649_CR26
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0110-8
– volume: 32
  start-page: 1705
  year: 2010
  ident: 649_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.155
– volume: 9
  start-page: 55
  year: 2017
  ident: 649_CR30
  publication-title: Int J Intell Syst Appl
  doi: 10.5815/ijisa.2017.06.06
– volume: 200
  year: 2020
  ident: 649_CR4
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105873
– year: 2016
  ident: 649_CR21
  publication-title: arXiv
  doi: 10.48550/arXiv.1606.02147
SSID ssj0064830
Score 2.3556058
Snippet The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 907
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Biomedical and Life Sciences
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computed tomography
Computer Appl. in Life Sciences
Computer applications
Computer vision
Computing costs
Cysts
Datasets
Deep Learning
Dietary supplements
Excess water
Feature extraction
Health Sciences
Humans
Image acquisition
Image filters
Image Processing, Computer-Assisted - methods
Kidney cancer
Kidney diseases
Kidney Diseases - diagnostic imaging
Kidney stones
Kidneys
Life Sciences
Machine learning
Mathematical and Computational Physics
Medical imaging
Medicine
Nephrology
Neural networks
Neural Networks, Computer
Optimization techniques
Original
Original Research Article
Real time
Renal failure
Statistics for Life Sciences
Task complexity
Theoretical
Theoretical and Computational Chemistry
Tomography
Tomography, X-Ray Computed - methods
Tumors
Water purification
Wavelet transforms
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIhy4F1YKMhI3KjTrHe9jo-lEKVIREgkUuGy8lMgwiaiG6Hw6xnvKw1FFYicIs1sEjufPZ_lmW8AXiQcOXiqLdViyGmqdYzvlKLOxbGynHllQr3zu0k2nqVvz_jZDrxua2GqbPf2SrKuaQgqTUV5tLT-aFP4xngiKcYXGmKqpGkfzddgN-PIyHuwO5u8P_4YzlpD3AdwM6guPWWcUCZ43NTO_PmDtuPTJdJ5OXeyu0C9CTdWxVKtf6j5_EKMGt0G146uTk352l-Vum9-_ib8-L_DvwO3GhJLjmvU3YUdV9yD63Vby_V9mAZDrUxBTi9IftJXGDItqfpwBnsFCrLw5GRKTr_hxnZOqgwGosh4HSrJyIdlaNr1aTRx5QOYjd5MT8a06d5ATSp4SWMdS2GZ9F4mxmcszRxSMQSARJpgFffO6jTRSIAkE97wgTOeWceE8RY5pE_2oVcsCvcICBsII7mwIpxHtU_kwGvj0FFpP5BuGEHc_me5aaTNQ4eNeb4RZQ4zluOM5dWM5WkEL7tnlrWwx5XeBy0U8maRn-dJOFynHF8RPO_MuDzDnYsq3GKFPkHoUWRCyAge1sjpvi7UPAs2xKeHW5jqHIL097al-PK5kgCPA1FDqhnBYYuWze-6ahiHHUT_YtSP_839CeyxgMkq2ecAeuX3lXuKlK3Uz5oV-QtUoDZd
  priority: 102
  providerName: Unpaywall
Title Artificial Intelligence-Based Classification of CT Images Using a Hybrid SpinalZFNet
URI https://link.springer.com/article/10.1007/s12539-024-00649-4
https://www.ncbi.nlm.nih.gov/pubmed/39167285
https://www.proquest.com/docview/3254945555
https://www.proquest.com/docview/3095676779
https://pubmed.ncbi.nlm.nih.gov/PMC11512893
https://link.springer.com/content/pdf/10.1007/s12539-024-00649-4.pdf
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1867-1462
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064830
  issn: 1867-1462
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTnw98LHxERiTkXhjnhonjuPHUq10oFVINNLGS2QntkCUtKKpUPnrOeerK0MTy0MUxRcnds6-n-W73wG8CThi8FDnVIuY01BrH6-Uosb4vso5sypz8c5nk2ichB_O-XkTFLZsvd3bLclqpt4EuzEeSIo2hTo7Kmm4A7sV31YPdgfvLz6etDNwFMZVjhFcigSUCe43wTL_rmXbIF1BmVedJbsd0_twd1Us1PqXms0uGaXRQ0ja5tS-KN-PV6U-zn7_xfR40_Y-ggcNSiWDWq0ewy1T7MHtOm_leg_unDU78vswdTI1CwU5vUTvSd-hecxJlXPTlVcKQOaWDKfk9AdOYktSeSsQRcZrFzVGPi9cgq4vo4kpn0AyOpkOx7TJ1ECzUPCS-tqXImfSWhlkNmJhZBB24c-WCAlyxa3JdRhoBDuSCZvxvsksyw0Tmc0RL9rgKfSKeWGeA2F9kUkucuHWntoGsm91ZlBQaduXJvbAb39XmjU05i6bxizdEDC7jkux49Kq49LQg7fdM4uaxONa6YNWC9JmQC_TwC2kQ46HB6-7YhyKbn9FFWa-QhlH6igiIaQHz2ql6V7n4psFi_HpeEudOgFH871dUnz7WtF9-w6UIaz04KhVlM13XdeMo047_6PVL25W-0u4x5xqVo49B9Arf67MK4RnpT5sRuMh7AyjIZ4TNsB7yeTT4OIPOG0xng
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6CIdg4IBiMBQYYiRuz1Dh2HB_HRNXC2gutNHGJ7NgWk7q0Wluh_vc851dXDU2QUyQ_J3E-2--z7Pc9gE-JQA7OjaVGZoJyY2K805o6F8faCuZ1EeKdR-N0MOXfLsVlExS2bE-7t1uS1Uy9DXZjIlEUfQoNflRR_hAeBQGroJg_ZWft_JvyrMowgguRhDIp4iZU5u_P2HVHdzjm3aOS3X7pU9hflwu9-a1ns1suqf8cnjVckpzV4L-AB648hMd1dsnNITwZNfvmL2ESbGqtCDK8JcJJv6ATs6TKjBnKK5jI3JPzCRle41SzJNWZAqLJYBNiu8iPRUij9bM_dqtXMO1_nZwPaJNPgRZcihWNTaykZcp7lRQ-ZTx1SI4QEoWO22rhnTU8MUhJFJO-ED1XeGYdk4W3yOp8cgR75bx0x0BYTxZKSCvDCtH4RPW8KRwaauN7ymURxO1vzYtGbDzkvJjlW5nkAEWOUOQVFDmP4HNXZ1FLbdxrfdKilTfDbpknYbnLBV4RfOyKccCEXRBduvkabYL0okylVBG8rsHtXheikCXLsHa2A3tnEMS4d0vKq1-VKHccqBOSvwhO2x6y_a77mnHa9aJ_aPWb_3v6B9gfTEYX-cVw_P0tHLDQ8aujOCewt7pZu3dIqFbmfTV-_gBb8RQO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEBs8IBhfgQFG4o1Zaxw7jh-hULXAKiQ6aeIlsmNbIHVpxVKh_vec89VWQxPkKZLPTpyzcz_r7n4H8CYRiMG5sdTITFBuTIx3WlPn4lhbwbwuQr7z6TQdn_FP5-J8K4u_jnbvXJJNTkNgaSqrk6X1J5vENyYSRdG-0GBTFeU34RZH6xZqGAzTYfcvTnlWVxvBQ0lCmRRxmzbz9zF2TdMVvHk1bLL3nd6Fg1W51Ovfej7fMk-j-3CvxZXkXbMQHsANVx7C7abS5PoQ9k9bH_pDmAWZhjeCTLYIOel7NGiW1FUyQ3utMrLwZDgjkwv87VySOr6AaDJehzwv8m0ZSmp9H01d9QjORh9nwzFtayvQgktR0djESlqmvFdJ4VPGU4dACdWj0IhbLbyzhicG4Yli0hdi4ArPrGOy8BYRnk8ew165KN1TIGwgCyWkleG0aHyiBt4UDgW18QPlsgji7rPmRUs8HupfzPMNZXJQRY6qyGtV5DyCt32fZUO7ca30UaetvN2Cl3kSjr5c4BXB674ZN0_wiOjSLVYoE2gYZSqliuBJo9z-cSEjWbIMe2c7au8FAjH3bkv580dN0B0HGIVAMILjboVs3uu6aRz3q-gfZv3s_0Z_BftfP4zyL5Pp5-dwh4V1X0flHMFe9WvlXiC2qszLevv8AfobGDQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIhy4F1YKMhI3KjTrHe9jo-lEKVIREgkUuGy8lMgwiaiG6Hw6xnvKw1FFYicIs1sEjufPZ_lmW8AXiQcOXiqLdViyGmqdYzvlKLOxbGynHllQr3zu0k2nqVvz_jZDrxua2GqbPf2SrKuaQgqTUV5tLT-aFP4xngiKcYXGmKqpGkfzddgN-PIyHuwO5u8P_4YzlpD3AdwM6guPWWcUCZ43NTO_PmDtuPTJdJ5OXeyu0C9CTdWxVKtf6j5_EKMGt0G146uTk352l-Vum9-_ib8-L_DvwO3GhJLjmvU3YUdV9yD63Vby_V9mAZDrUxBTi9IftJXGDItqfpwBnsFCrLw5GRKTr_hxnZOqgwGosh4HSrJyIdlaNr1aTRx5QOYjd5MT8a06d5ATSp4SWMdS2GZ9F4mxmcszRxSMQSARJpgFffO6jTRSIAkE97wgTOeWceE8RY5pE_2oVcsCvcICBsII7mwIpxHtU_kwGvj0FFpP5BuGEHc_me5aaTNQ4eNeb4RZQ4zluOM5dWM5WkEL7tnlrWwx5XeBy0U8maRn-dJOFynHF8RPO_MuDzDnYsq3GKFPkHoUWRCyAge1sjpvi7UPAs2xKeHW5jqHIL097al-PK5kgCPA1FDqhnBYYuWze-6ahiHHUT_YtSP_839CeyxgMkq2ecAeuX3lXuKlK3Uz5oV-QtUoDZd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Based+Classification+of+CT+Images+Using+a+Hybrid+SpinalZFNet&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Maqsood%2C+Faiqa&rft.au=Zhenfei%2C+Wang&rft.au=Ali%2C+Muhammad+Mumtaz&rft.au=Qiu%2C+Baozhi&rft.date=2024-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=1913-2751&rft.eissn=1867-1462&rft.volume=16&rft.issue=4&rft.spage=907&rft.epage=925&rft_id=info:doi/10.1007%2Fs12539-024-00649-4&rft_id=info%3Apmid%2F39167285&rft.externalDocID=PMC11512893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon