A first order phase transition mechanism underlies protein aggregation in mammalian cells

The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay base...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 8
Main Authors Narayanan, Arjun, Meriin, Anatoli, Andrews, J Owen, Spille, Jan-Hendrik, Sherman, Michael Y, Cisse, Ibrahim I
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 04.02.2019
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text
ISSN2050-084X
2050-084X
DOI10.7554/eLife.39695

Cover

Abstract The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter ).
AbstractList The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed ( see decision letter ).
The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter ).
The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates.The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates.This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).Editorial noteThis article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Author Cisse, Ibrahim I
Andrews, J Owen
Spille, Jan-Hendrik
Sherman, Michael Y
Narayanan, Arjun
Meriin, Anatoli
Author_xml – sequence: 1
  givenname: Arjun
  orcidid: 0000-0002-2269-3253
  surname: Narayanan
  fullname: Narayanan, Arjun
  organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
– sequence: 2
  givenname: Anatoli
  orcidid: 0000-0003-0087-814X
  surname: Meriin
  fullname: Meriin, Anatoli
  organization: Department of Biochemistry, Boston University School of Medicine, Boston, United States
– sequence: 3
  givenname: J Owen
  surname: Andrews
  fullname: Andrews, J Owen
  organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
– sequence: 4
  givenname: Jan-Hendrik
  surname: Spille
  fullname: Spille, Jan-Hendrik
  organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
– sequence: 5
  givenname: Michael Y
  surname: Sherman
  fullname: Sherman, Michael Y
  organization: Department of Molecular Biology, Ariel University, Ariel, Israel
– sequence: 6
  givenname: Ibrahim I
  orcidid: 0000-0002-8764-1809
  surname: Cisse
  fullname: Cisse, Ibrahim I
  organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30716021$$D View this record in MEDLINE/PubMed
BookMark eNptkk1r3DAQQEVJadI0p96LoZdC2FSyJMu6FEJI2sBCLim0JzGWx14ttrSV7ED_fRRvGpJQXfT15jEazXty4INHQj4yeqakFF9x7To847rS8g05KqmkK1qLXwfP1ofkJKUtzUOJumb6HTnkVLGKluyI_D4vOhfTVITYYix2G0hYTBF8cpMLvhjRbsC7NBazz8DgMBW7GCZ0voC-j9jDwuXtCOMIgwNfWByG9IG87WBIePI4H5OfV5e3Fz9W65vv1xfn65UVSk4rJkDWtaU1COyqpuaCdY3gyC2gUlTrUkpNbSOo0C2lnCMFK6jlJVjKJeXH5HrvbQNszS66EeJfE8CZ5SDE3kCcnB3QaNvkqEZ3GjvRiKapsINWIlfAKlnx7Pq2d-3mZsTWos-lGF5IX954tzF9uDMVr1hOMwu-PApi-DNjmszo0kM5wGOYkymZ0pIpxmRGP79Ct2GOPpcqU3WlVTaqTH16ntFTKv9-MAOne8DGkFLE7glh1Dy0iFlaxCwtkmn2irZuWn4wP8cN_425B2XpwFs
CitedBy_id crossref_primary_10_1038_s41573_022_00505_4
crossref_primary_10_3390_biom15030406
crossref_primary_10_1016_j_cell_2023_08_018
crossref_primary_10_1021_acs_jpcb_3c01696
crossref_primary_10_1186_s12915_020_0751_4
crossref_primary_10_1093_nar_gkac866
crossref_primary_10_1016_j_tcb_2019_10_006
crossref_primary_10_1039_C9SC06501F
crossref_primary_10_1016_j_bpj_2019_03_007
crossref_primary_10_1016_j_celrep_2020_108045
crossref_primary_10_1103_PhysRevLett_123_228101
crossref_primary_10_1016_j_bbamcr_2020_118795
crossref_primary_10_26508_lsa_202402757
crossref_primary_10_1016_j_jmb_2020_11_023
crossref_primary_10_1073_pnas_2102772118
crossref_primary_10_1093_nar_gkab1242
crossref_primary_10_1038_s41586_022_05138_6
crossref_primary_10_1042_ETLS20190187
crossref_primary_10_1042_EBC20220055
crossref_primary_10_3389_fncel_2020_00045
crossref_primary_10_1073_pnas_2202222119
crossref_primary_10_1016_j_jmb_2022_167713
crossref_primary_10_1038_s41596_022_00787_3
crossref_primary_10_1016_j_biomaterials_2020_120452
crossref_primary_10_1016_j_cocis_2021_101421
crossref_primary_10_1111_jnc_15586
crossref_primary_10_1016_j_bpj_2020_06_014
crossref_primary_10_15252_msb_202110272
crossref_primary_10_1016_j_jmb_2021_166848
crossref_primary_10_1021_acs_chemrev_2c00814
crossref_primary_10_1039_D3CS01065A
crossref_primary_10_1073_pnas_2008447117
crossref_primary_10_1002_bies_202000036
crossref_primary_10_1016_j_sbi_2020_06_012
crossref_primary_10_1038_s41589_020_0524_y
crossref_primary_10_1016_j_tibs_2020_12_005
crossref_primary_10_1042_EBC20220148
crossref_primary_10_1126_sciadv_abh2929
crossref_primary_10_3390_ijms25136825
crossref_primary_10_15302_J_QB_021_0262
crossref_primary_10_1021_acs_chemrev_4c00138
crossref_primary_10_1091_mbc_E24_01_0013
crossref_primary_10_1021_acs_biochem_1c00434
crossref_primary_10_1038_s41467_023_42015_w
crossref_primary_10_1523_JNEUROSCI_2104_23_2024
crossref_primary_10_1038_s41467_022_31912_1
crossref_primary_10_1021_acs_nanolett_3c01301
crossref_primary_10_1016_j_devcel_2020_09_003
crossref_primary_10_1038_s41467_023_41864_9
crossref_primary_10_1063_5_0083286
crossref_primary_10_1016_j_cell_2023_09_006
crossref_primary_10_1021_acs_biomac_4c00738
crossref_primary_10_1002_chem_202400277
crossref_primary_10_1016_j_tibs_2020_04_011
crossref_primary_10_1038_s41467_023_40540_2
crossref_primary_10_3390_jdb10010004
crossref_primary_10_1002_smll_202202606
crossref_primary_10_1038_s41467_020_16396_1
crossref_primary_10_1002_cbic_202100285
crossref_primary_10_1021_jacsau_2c00055
crossref_primary_10_1016_j_cocis_2021_101488
crossref_primary_10_15252_embr_201949585
crossref_primary_10_1101_gad_331520_119
crossref_primary_10_7554_eLife_76965
crossref_primary_10_1038_s41467_021_24727_z
crossref_primary_10_1038_s41467_022_33433_3
Cites_doi 10.1126/science.289.5483.1317
10.1088/0953-8984/19/3/033101
10.1242/jcs.098954
10.1126/science.aar3958
10.1039/C8CC02204F
10.1074/jbc.M110.148460
10.1007/978-3-662-04884-9
10.1126/science.1172046
10.1111/j.1471-4159.2004.02533.x
10.1529/biophysj.106.091116
10.1038/nmeth.1233
10.1038/s41598-018-25454-0
10.1126/science.1127344
10.1038/nm1001-1144
10.1073/pnas.96.5.1858
10.1016/j.molcel.2015.07.012
10.7554/eLife.13617
10.1093/emboj/16.12.3693
10.1117/1.NPh.3.4.041807
10.1016/0092-8674(93)90635-4
10.1101/146241
10.1073/pnas.1315346111
10.1038/nm1066
10.1126/science.1257998
10.1126/science.1239053
10.1073/pnas.1017150108
10.1038/ncomms15730
10.1038/ncb1104-1054
10.1007/978-90-481-3643-8
10.1073/pnas.1320626110
10.1038/418291a
10.1073/pnas.93.3.1125
10.1073/pnas.1509317112
10.1016/j.cocis.2008.01.004
10.1038/nprot.2007.291
10.1016/j.bpc.2011.04.006
10.1038/nature03679
10.1074/jbc.M802216200
10.1016/j.tibs.2013.09.003
10.1146/annurev.bi.45.070176.003531
10.1016/S0065-3233(08)60320-4
10.1063/1.2822322
10.1007/s00280-009-1194-3
10.1016/j.jneumeth.2009.11.004
10.1146/annurev.biochem.74.082803.133400
10.1515/zpch-1927-12513
10.1016/j.cell.2015.07.047
10.1515/zpch-1897-2233
10.1016/S0022-2836(02)00735-0
10.1002/9783527627769
10.1038/emboj.2009.257
10.1074/jbc.RA117.000357
10.1038/nmeth929
10.15252/embj.201591245
10.1126/science.aar2555
10.1038/nm0602-600
10.1126/science.aar4199
10.1002/pro.3396
10.1074/jbc.M208194200
10.1126/scisignal.2003520
10.1074/jbc.M310994200
10.1002/1531-8249(200004)47:4<521::AID-ANA18>3.0.CO;2-B
10.1093/hmg/ddp467
10.1016/S1359-0278(98)00002-9
10.1016/j.bbapap.2008.10.016
ContentType Journal Article
Copyright 2019, Narayanan et al.
2019, Narayanan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019, Narayanan et al 2019 Narayanan et al
Copyright_xml – notice: 2019, Narayanan et al.
– notice: 2019, Narayanan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019, Narayanan et al 2019 Narayanan et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.39695
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_9cb2acb9f9ef4b4bb6efad5e37a16563
PMC6361590
30716021
10_7554_eLife_39695
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: DP2 CA195769
– fundername: NIH HHS
  grantid: DP2CA195769
– fundername: ;
  grantid: DP2CA195769
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c475t-14a588c08a4ef6b8341fb43e3cae7709925590cb4049d0033e0ac40c32ac03503
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:29:45 EDT 2025
Thu Aug 21 14:12:01 EDT 2025
Fri Sep 05 11:45:47 EDT 2025
Sun Sep 07 08:40:38 EDT 2025
Thu Jan 02 22:59:14 EST 2025
Tue Jul 01 03:59:59 EDT 2025
Thu Apr 24 23:00:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords single molecule
phase separation
super-resolution
neurodegeneration
aggregation
live cell imaging
human
physics of living systems
Language English
License http://creativecommons.org/licenses/by/4.0
2019, Narayanan et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-14a588c08a4ef6b8341fb43e3cae7709925590cb4049d0033e0ac40c32ac03503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2269-3253
0000-0003-0087-814X
0000-0002-8764-1809
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.39695
PMID 30716021
PQID 2186976157
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_9cb2acb9f9ef4b4bb6efad5e37a16563
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361590
proquest_miscellaneous_2179517115
proquest_journals_2186976157
pubmed_primary_30716021
crossref_primary_10_7554_eLife_39695
crossref_citationtrail_10_7554_eLife_39695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-04
PublicationDateYYYYMMDD 2019-02-04
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2019
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Jefferies (bib31) 1997; 16
Patel (bib46) 2015; 162
Ross (bib50) 2004; 10 Suppl
Andrews (bib2) 2017
Pountney (bib48) 2004; 90
Xu (bib66) 2002; 8
Farkas (bib20) 1927; 125U
Karpinar (bib34) 2009; 28
Lomakin (bib38) 1996; 93
Gaczynska (bib22) 2008; 13
Zaarur (bib67) 2008; 283
Cisse (bib15) 2013; 341
Slezov (bib59) 2009
Wakabayashi (bib65) 2000; 47
Chong (bib12) 2018; 361
Garai (bib25) 2018; 27
Betzig (bib5) 2006; 313
Abraham (bib1) 1974
Chudakov (bib13) 2007; 2
Cookson (bib17) 2005; 74
Meriin (bib40) 2012; 125
Cho (bib11) 2018; 361
Sabari (bib52) 2018; 361
Tanaka (bib61) 2004; 279
Conn (bib16) 2013; 6
JA (bib29) 2006
Gao (bib23) 2015; 59
Tremblay (bib63) 2010; 186
Sergé (bib56) 2008; 5
Törnquist (bib62) 2018; 54
Garai (bib24) 2008; 128
Park (bib45) 2017; 8
Kalikmanov (bib32) 2013
Massey (bib39) 2010; 66
Sear (bib54) 2007; 19
Serio (bib57) 2000; 289
Nonaka (bib43) 2010; 285
Goldberg (bib26) 1976; 45
Jarrett (bib30) 1993; 73
Selkoe (bib55) 2004; 6
Nawaz (bib42) 1999; 96
Crick (bib18) 2013; 110
Cho (bib10) 2016; 5
Andrews (bib3) 2018; 8
Hess (bib28) 2006; 91
Kaminski (bib33) 2016; 3
Ostwald (bib44) 1897; 22
Sherman (bib58) 2013; 38
Sunde (bib60) 1997; 50
Krishnan (bib35) 2005; 435
Chen (bib9) 2014; 346
Ratke (bib49) 2002
Zaarur (bib68) 2015; 34
Brangwynne (bib6) 2009; 324
Rust (bib51) 2006; 3
Gosavi (bib27) 2002; 277
Posey (bib47) 2018; 293
Chung (bib14) 2001; 7
Lashuel (bib36) 2002; 418
Sathasivam (bib53) 2010; 19
Brangwynne (bib7) 2011; 108
Lashuel (bib37) 2002; 322
Vitalis (bib64) 2011; 159
Berry (bib4) 2015; 112
Buell (bib8) 2014; 111
Ester (bib19) 1996
Fink (bib21) 1998; 3
Morris (bib41) 2009; 1794
References_xml – volume: 289
  start-page: 1317
  year: 2000
  ident: bib57
  article-title: Nucleated conformational conversion and the replication of conformational information by a prion determinant
  publication-title: Science
  doi: 10.1126/science.289.5483.1317
– volume: 19
  start-page: 033101
  year: 2007
  ident: bib54
  article-title: Nucleation: theory and applications to protein solutions and colloidal suspensions
  publication-title: Journal of Physics: Condensed Matter
  doi: 10.1088/0953-8984/19/3/033101
– volume: 125
  start-page: 2665
  year: 2012
  ident: bib40
  article-title: Association of translation factor eEF1A with defective ribosomal products generates a signal for aggresome formation
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.098954
– volume: 361
  start-page: eaar3958
  year: 2018
  ident: bib52
  article-title: Coactivator condensation at super-enhancers links phase separation and gene control
  publication-title: Science
  doi: 10.1126/science.aar3958
– volume: 54
  start-page: 8667
  year: 2018
  ident: bib62
  article-title: Secondary nucleation in amyloid formation
  publication-title: Chemical Communications
  doi: 10.1039/C8CC02204F
– volume: 285
  start-page: 34885
  year: 2010
  ident: bib43
  article-title: Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M110.148460
– volume-title: Growth and Coarsening: Ostwald Ripening in Material Processing
  year: 2002
  ident: bib49
  doi: 10.1007/978-3-662-04884-9
– volume: 324
  start-page: 1729
  year: 2009
  ident: bib6
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
  doi: 10.1126/science.1172046
– volume: 90
  start-page: 502
  year: 2004
  ident: bib48
  article-title: Annular alpha-synuclein species from purified multiple system atrophy inclusions
  publication-title: Journal of Neurochemistry
  doi: 10.1111/j.1471-4159.2004.02533.x
– volume: 91
  start-page: 4258
  year: 2006
  ident: bib28
  article-title: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy
  publication-title: Biophysical Journal
  doi: 10.1529/biophysj.106.091116
– volume: 5
  start-page: 687
  year: 2008
  ident: bib56
  article-title: Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1233
– volume: 8
  year: 2018
  ident: bib3
  article-title: qSR: a quantitative super-resolution analysis tool reveals the cell-cycle dependent organization of RNA polymerase I in live human cells
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-25454-0
– volume: 313
  start-page: 1642
  year: 2006
  ident: bib5
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
  doi: 10.1126/science.1127344
– volume: 7
  start-page: 1144
  year: 2001
  ident: bib14
  article-title: Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease
  publication-title: Nature Medicine
  doi: 10.1038/nm1001-1144
– volume: 96
  start-page: 1858
  year: 1999
  ident: bib42
  article-title: Proteasome-dependent degradation of the human estrogen receptor
  publication-title: PNAS
  doi: 10.1073/pnas.96.5.1858
– volume: 59
  start-page: 781
  year: 2015
  ident: bib23
  article-title: Human Hsp70 disaggregase reverses parkinson's-linked α-synuclein amyloid fibrils
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.07.012
– volume: 5
  start-page: e13617
  year: 2016
  ident: bib10
  article-title: RNA Polymerase II cluster dynamics predict mRNA output in living cells
  publication-title: eLife
  doi: 10.7554/eLife.13617
– volume: 16
  start-page: 3693
  year: 1997
  ident: bib31
  article-title: Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k
  publication-title: The EMBO Journal
  doi: 10.1093/emboj/16.12.3693
– volume: 3
  start-page: 041807
  year: 2016
  ident: bib33
  article-title: Probing amyloid protein aggregation with optical superresolution methods: from the test tube to models of disease
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.3.4.041807
– volume: 73
  start-page: 1055
  year: 1993
  ident: bib30
  article-title: Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90635-4
– volume-title: bioRxiv
  year: 2017
  ident: bib2
  article-title: qSR: A software for quantitative analysis of single molecule and super-resolution data
  doi: 10.1101/146241
– volume: 111
  start-page: 7671
  year: 2014
  ident: bib8
  article-title: Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation
  publication-title: PNAS
  doi: 10.1073/pnas.1315346111
– volume: 10 Suppl
  start-page: S10
  year: 2004
  ident: bib50
  article-title: Protein aggregation and neurodegenerative disease
  publication-title: Nature Medicine
  doi: 10.1038/nm1066
– volume: 346
  start-page: 1257998
  year: 2014
  ident: bib9
  article-title: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution
  publication-title: Science
  doi: 10.1126/science.1257998
– volume: 341
  start-page: 664
  year: 2013
  ident: bib15
  article-title: Real-time dynamics of RNA polymerase II clustering in live human cells
  publication-title: Science
  doi: 10.1126/science.1239053
– volume: 108
  start-page: 4334
  year: 2011
  ident: bib7
  article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: PNAS
  doi: 10.1073/pnas.1017150108
– volume: 8
  start-page: 15730
  year: 2017
  ident: bib45
  article-title: Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex
  publication-title: Nature Communications
  doi: 10.1038/ncomms15730
– volume: 6
  start-page: 1054
  year: 2004
  ident: bib55
  article-title: Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1104-1054
– volume-title: Nucleation Theory
  year: 2013
  ident: bib32
  doi: 10.1007/978-90-481-3643-8
– volume: 110
  start-page: 20075
  year: 2013
  ident: bib18
  article-title: Unmasking the roles of N- and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation
  publication-title: PNAS
  doi: 10.1073/pnas.1320626110
– volume: 418
  start-page: 291
  year: 2002
  ident: bib36
  article-title: Neurodegenerative disease: amyloid pores from pathogenic mutations
  publication-title: Nature
  doi: 10.1038/418291a
– volume: 93
  start-page: 1125
  year: 1996
  ident: bib38
  article-title: On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants
  publication-title: PNAS
  doi: 10.1073/pnas.93.3.1125
– volume: 112
  start-page: E5237
  year: 2015
  ident: bib4
  article-title: RNA transcription modulates phase transition-driven nuclear body assembly
  publication-title: PNAS
  doi: 10.1073/pnas.1509317112
– volume: 13
  start-page: 351
  year: 2008
  ident: bib22
  article-title: AFM of biological complexes: what can we learn?
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2008.01.004
– volume: 2
  start-page: 2024
  year: 2007
  ident: bib13
  article-title: Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2007.291
– volume: 159
  start-page: 14
  year: 2011
  ident: bib64
  article-title: Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides
  publication-title: Biophysical Chemistry
  doi: 10.1016/j.bpc.2011.04.006
– volume: 435
  start-page: 765
  year: 2005
  ident: bib35
  article-title: Structural insights into a yeast prion illuminate nucleation and strain diversity
  publication-title: Nature
  doi: 10.1038/nature03679
– volume: 283
  start-page: 27575
  year: 2008
  ident: bib67
  article-title: Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M802216200
– volume: 38
  start-page: 585
  year: 2013
  ident: bib58
  article-title: Less is more: improving proteostasis by translation slow down
  publication-title: Trends in Biochemical Sciences
  doi: 10.1016/j.tibs.2013.09.003
– volume: 45
  start-page: 747
  year: 1976
  ident: bib26
  article-title: Intracellular protein degradation in mammalian and bacterial cells: Part 2
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.bi.45.070176.003531
– volume-title: In Protein Misfolding, Aggregation, and Conformational Diseases Protein Reviews
  year: 2006
  ident: bib29
– volume: 50
  start-page: 123
  year: 1997
  ident: bib60
  article-title: The structure of amyloid fibrils by electron microscopy and X-ray diffraction
  publication-title: Advances in Protein Chemistry
  doi: 10.1016/S0065-3233(08)60320-4
– volume: 128
  start-page: 045102
  year: 2008
  ident: bib24
  article-title: Quasihomogeneous nucleation of amyloid beta yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.2822322
– volume: 66
  start-page: 535
  year: 2010
  ident: bib39
  article-title: A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells
  publication-title: Cancer Chemotherapy and Pharmacology
  doi: 10.1007/s00280-009-1194-3
– volume: 186
  start-page: 60
  year: 2010
  ident: bib63
  article-title: Differentiation of mouse Neuro 2A cells into dopamine neurons
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2009.11.004
– volume-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
  year: 1996
  ident: bib19
– volume: 74
  start-page: 29
  year: 2005
  ident: bib17
  article-title: The biochemistry of Parkinson's disease
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.biochem.74.082803.133400
– volume: 125U
  start-page: 236
  year: 1927
  ident: bib20
  article-title: Keimbildungsgeschwindigkeit in übersättigten dämpfen
  publication-title: Zeitschrift Für Physikalische Chemie
  doi: 10.1515/zpch-1927-12513
– volume: 162
  start-page: 1066
  year: 2015
  ident: bib46
  article-title: A Liquid-to-solid phase transition of the als protein fus accelerated by disease mutation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 22
  start-page: 289
  year: 1897
  ident: bib44
  article-title: Studien über die Bildung und Umwandlung fester Körper
  publication-title: Zeitschrift Für Physikalische Chemie
  doi: 10.1515/zpch-1897-2233
– volume: 322
  start-page: 1089
  year: 2002
  ident: bib37
  article-title: Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils
  publication-title: Journal of Molecular Biology
  doi: 10.1016/S0022-2836(02)00735-0
– volume-title: Kinetics of First Order Phase Transitions
  year: 2009
  ident: bib59
  doi: 10.1002/9783527627769
– volume: 28
  start-page: 3256
  year: 2009
  ident: bib34
  article-title: Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson's disease models
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2009.257
– volume: 293
  start-page: 3734
  year: 2018
  ident: bib47
  article-title: Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.RA117.000357
– volume: 3
  start-page: 793
  year: 2006
  ident: bib51
  article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
  publication-title: Nature Methods
  doi: 10.1038/nmeth929
– volume: 34
  start-page: 2363
  year: 2015
  ident: bib68
  article-title: RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils
  publication-title: The EMBO Journal
  doi: 10.15252/embj.201591245
– volume: 361
  start-page: eaar2555
  year: 2018
  ident: bib12
  article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription
  publication-title: Science
  doi: 10.1126/science.aar2555
– volume: 8
  start-page: 600
  year: 2002
  ident: bib66
  article-title: Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease
  publication-title: Nature Medicine
  doi: 10.1038/nm0602-600
– volume-title: Homogeneous Nucleation Theory; the Pretransition Theory of Vapor Condensation
  year: 1974
  ident: bib1
– volume: 361
  start-page: 412
  year: 2018
  ident: bib11
  article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates
  publication-title: Science
  doi: 10.1126/science.aar4199
– volume: 27
  start-page: 1252
  year: 2018
  ident: bib25
  article-title: Inhibition of amyloid beta fibril formation by monomeric human transthyretin
  publication-title: Protein Science
  doi: 10.1002/pro.3396
– volume: 277
  start-page: 48984
  year: 2002
  ident: bib27
  article-title: Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M208194200
– volume: 6
  start-page: ra24
  year: 2013
  ident: bib16
  article-title: Nutrient signaling in protein homeostasis: an increase in quantity at the expense of quality
  publication-title: Science Signaling
  doi: 10.1126/scisignal.2003520
– volume: 279
  start-page: 4625
  year: 2004
  ident: bib61
  article-title: Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M310994200
– volume: 47
  start-page: 521
  year: 2000
  ident: bib65
  article-title: Synphilin-1 is present in Lewy bodies in Parkinson's disease
  publication-title: Annals of Neurology
  doi: 10.1002/1531-8249(200004)47:4<521::AID-ANA18>3.0.CO;2-B
– volume: 19
  start-page: 65
  year: 2010
  ident: bib53
  article-title: Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington's disease
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddp467
– volume: 3
  start-page: R9
  year: 1998
  ident: bib21
  article-title: Protein aggregation: folding aggregates, inclusion bodies and amyloid
  publication-title: Folding and Design
  doi: 10.1016/S1359-0278(98)00002-9
– volume: 1794
  start-page: 375
  year: 2009
  ident: bib41
  article-title: Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature
  publication-title: Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics
  doi: 10.1016/j.bbapap.2008.10.016
SSID ssj0000748819
Score 2.486477
Snippet The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms aggregation
Cell Line, Tumor
Disease
Energy
Growth conditions
Homeostasis
Humans
Kinetics
Lag phase
live cell imaging
Mammalian cells
Microscopy
neurodegeneration
Neurodegenerative diseases
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - pathology
phase separation
Phase Transition
Phase transitions
Physics of Living Systems
Probability distribution
Protein Aggregates - genetics
Protein Aggregates - physiology
Protein Aggregation, Pathological - genetics
Protein Aggregation, Pathological - pathology
Protein Folding
Protein interaction
Proteins
Research Communication
single molecule
Size distribution
super-resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS-UwEB5EWPAi7q671nWXCJ6EYvqaJs3RXVZEVk8K7qkkeRMt2Cq-58F_70xaH-8twl48tg1tOjPJfJNkvgE4kNFiFYuYo_E6V_VE5b5CnRfoKwrHjLVTTnA-v9CnV-rsurpeKvXFZ8IGeuBBcEc2-IkL3tI7o_LKe43RTSssjWPimMTzKa1cCqbSHGzIMAs7JOQZcplH-KeNSBG-5koSSy4oMfW_BS__PSW55HZOtmBzxIvieOjnR1jD_hN8GCpIPn-Gv8citgTgRKLQFA-35JTEnP1POoolOuTM3nbWCU4WeyTAOROJmqHthbuhWPsmaUbQZee6Li16CF7Mn23D1cnvy1-n-VgtIQ_KVPO8UK6q6yBrpzBqX5N7il6VWAaHxhAQ5OBBBq8oJphyCTeULigZShIvby-WX2C9v-9xBwRv5GIx8drLqIyOFNOoSNguliZMYznJ4PBVgE0YqcS5osVdQyEFS7tJ0m6StDM4WDR-GBg03m72kzWxaMK01-kGGUMzGkPzP2PIYO9Vj804FmdNqrplCLmZDPYXj2kUsTRdj_dP3MYQ1DQEjzP4Oqh90ROaBQtNUCgDs2IQK11dfdK3t4mpW5f0WSt33-PfvsEGgTWbToyrPVifPz7hdwJEc_8j2f4LaDUN9w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9wwDBZbx2AvY7-Xthse9GkQmlwcO3kqbVkpY9vTCrenYDvyNdDkbpfrw_77Sk4u642yxySGGMm2PsmSPoCjxJeY-9THqK2KZTGTsc1RxSnanNwxXZY1Fzh__6Eur-TXeT4fA279mFa5PRPDQV0vHcfIjwN3EvncuT5Z_Y6ZNYpvV0cKjcfwJCUkwtQNeq6nGAuZx4Is3lCWp8lwHuO3xiP5-Yr5JO4ZotCv_yGQ-W-u5D3jc_ECno-oUZwOan4Jj7B7BU8HHsk_r-HXqfANwTgRGmmK1TWZJrFhKxQSskSLXN_b9K3gkrE1wc5ehAYNTSfMgjzuRdCPoMfWtG0IfQgO6fdv4Oriy8_zy3jkTIid1PkmTqXJi8IlhZHolS3ISHkrM8ycQa0JDrILkTgryTOomcgNE-Nk4rKZcXzJmL2FvW7Z4XsQfJ2L6cwqm3iplSfPRnpCeD7TrvbZLILPWwFWbmwozrwWNxU5FiztKki7CtKO4GgavBr6aDw87Iw1MQ3h5tfhxXK9qMa9VJXO0mxtScvMSyutVehNnWOmDfcSyiI43OqxGndkX_1dPxF8mj7TXmJpmg6XtzxGE-DUBJIjeDeofZoJnYWpIkAUgd5ZEDtT3f3SNdehX7fK6Ldlsv__aR3AMwJjZcgIl4ewt1nf4gcCPBv7MazqO36CA4M
  priority: 102
  providerName: ProQuest
Title A first order phase transition mechanism underlies protein aggregation in mammalian cells
URI https://www.ncbi.nlm.nih.gov/pubmed/30716021
https://www.proquest.com/docview/2186976157
https://www.proquest.com/docview/2179517115
https://pubmed.ncbi.nlm.nih.gov/PMC6361590
https://doaj.org/article/9cb2acb9f9ef4b4bb6efad5e37a16563
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED_6AaMvY2Nf3rqgQZ8G7mxLlqyn0Y6WMrYyxgLZk5EUKTXUTpeksP33u1PssJTs0dbZFncn3--k-wA4yYL2ZchD6pWVqagKkdrSyzT3tkR3TGk9pQTnr9fyaiw-T8rJHgzNOHsGLne6dtRPary4Pf39689HXPCIX08VWsMP_ksTPDrvUpf7cBgPiiiGr8f58ZesUE9zvc7Pe_jMETxCRc9lVuRbxinW8N8FPB_GT_5jkC6fwOMeSbKzteifwp7vnsHPMxYaBHQsltRkdzdopNiK7FEMzWKtp0zfZtkySh5bIABdsliqoemYmaHvPYuSYnjZmraNmyCMNveXz2F8efHj01Xad09InVDlKs2FKavKZZURPkhbobkKVnDPnfFKITAkZyJzVqCPMKWWbj4zTmSOF8bRcSN_AQfdvPOvgNHBrs8LK20WhJIBfRwREOsFrtw08CKB9wPbateXFqcOF7c1uhjE7jqyu47sTuBkQ3y3rqixm-yc-L8hoTLY8cZ8Mav7VVVrZ3G2VqPCBWGFtdIHMy09V4aqCvEEjgfp1YNq1bELl0IkpxJ4txnGVUXcNJ2f3xONQuipEC4n8HIt7M1MBmVJQG2pwdZUt0e65iZW7pYcP6uz1_995xs4QkSmY1i4OIaD1eLev0XUs7Ij2FcTNYLD84vrb99Hce9gFLX8Lz0xBjc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTghe0PgODDDSeEEKSxMnTh4mtMGmjnUVQps0noLt2F0lkpa2E9o_t7-NO-eDFU287TGxlVjn893vbN_9ALYCm5nY9q1vhEp8nobcV7FJ_L5RMYZjIssKSnA-HiWDU_7lLD5bg6s2F4auVbY20RnqYqppj3zbcSdhzB2Lj7NfPrFG0elqS6EhG2qFYseVGGsSO47M5W8M4RY7h59xvt-F4cH-yaeB37AM-JqLeOn3uYzTVAep5MYmKkWzbhWPTKSlEQIBFIHuQCuOWLog6jMTSM0DHYVS07FchN-9A-ucNlB6sL63P_r6rdvlQQedos-tEwMFuu5tM5xY8yHKEmK0uOYKHWPATTD339ua19zfwQY8aHAr260V7SGsmeoR3K2ZLC8fw_ddZicIJJkr5clm5-gc2ZL8oLsSxkpDGcaTRckoaW2OwHfBXImIScXkGGP-sdMQho-lLEu3-cLoUGHxBE5vRZ5PoVdNK_McGB0om36oEhVYLhKLsRW3iDFtJHRho9CD960Ac92UNCdmjZ85hjYk7dxJO3fS9mCr6zyrK3nc3G2PZqLrQuW33YvpfJw3qznPtMLRqgwV3XLFlUqMlUVsIiGpmlHkwWY7j3ljExb5Xw324G3XjKuZpCkrM72gPgIhr0CY7sGzetq7kaA17icIyTwQKwqxMtTVlmpy7iqGJxH-Ngte_H9Yb-De4OR4mA8PR0cv4T5Cw8zdT-eb0FvOL8wrhF9L9brRcQY_bntZ_QFvoEVr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuqLwDBYxULkiheThxcqhQS7tqaVlViErlFGzH3q7EZpfNVqh_sb-KGedBF1XceszG2ljj8cw39sx8AJuBzU1iQ-sboVKfZxH3VWJSPzQqwXBM5HlJBc5fhunBKf98lpytwFVXC0NplZ1NdIa6nGo6I99y3EkYc2MAb9u0iJO9wcfZL58YpOimtaPTkC3NQrnt2o21RR5H5vI3hnP19uEerv27KBrsf_t04LeMA77mIln4IZdJlukgk9zYVGVo4q3isYm1NEIgmCIAHmjFEVeXRINmAql5oONIarqii_F_78CaQK-PgeDa7v7w5Gt_4oPOOkP_2xQJCnTjW-Z4bM2HOE-J3eKaW3TsATdB3n8zN6-5wsE6PGgxLNtplO4hrJjqEdxtWC0vH8P3HWbHCCqZa-vJZufoKNmCfKJLD2MTQ9XG43rCqIBtjiC4Zq5dxLhicoTx_8hpC8PHiZxM3EEMowuG-gmc3oo8n8JqNa3Mc2B0uWzCSKUqsFykFuMsbhFv2ljo0saRB-87ARa6bW9OLBs_CwxzSNqFk3bhpO3BZj941nT1uHnYLq1EP4RacbsfpvNR0e7sItcKZ6tyVHrLFVcqNVaWiYmFpM5GsQcb3ToWrX2oi7_a7MHb_jXubJKmrMz0gsYIhL8CIbsHz5pl72eCljlMEZ55IJYUYmmqy2-q8bnrHp7G-Nk8ePH_ab2Be7i9iuPD4dFLuI8oMXep6nwDVhfzC_MKkdhCvW5VnMGP295VfwCV40mv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+first+order+phase+transition+mechanism+underlies+protein+aggregation+in+mammalian+cells&rft.jtitle=eLife&rft.au=Narayanan%2C+Arjun&rft.au=Meriin%2C+Anatoli&rft.au=Andrews%2C+J+Owen&rft.au=Spille%2C+Jan-Hendrik&rft.date=2019-02-04&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.39695&rft_id=info%3Apmid%2F30716021&rft.externalDocID=30716021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon