A first order phase transition mechanism underlies protein aggregation in mammalian cells
The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay base...
Saved in:
Published in | eLife Vol. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
04.02.2019
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2050-084X 2050-084X |
DOI | 10.7554/eLife.39695 |
Cover
Abstract | The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates.
Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter ). |
---|---|
AbstractList | The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed ( see decision letter ). The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter ). The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates.The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates.This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).Editorial noteThis article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). |
Author | Cisse, Ibrahim I Andrews, J Owen Spille, Jan-Hendrik Sherman, Michael Y Narayanan, Arjun Meriin, Anatoli |
Author_xml | – sequence: 1 givenname: Arjun orcidid: 0000-0002-2269-3253 surname: Narayanan fullname: Narayanan, Arjun organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States – sequence: 2 givenname: Anatoli orcidid: 0000-0003-0087-814X surname: Meriin fullname: Meriin, Anatoli organization: Department of Biochemistry, Boston University School of Medicine, Boston, United States – sequence: 3 givenname: J Owen surname: Andrews fullname: Andrews, J Owen organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States – sequence: 4 givenname: Jan-Hendrik surname: Spille fullname: Spille, Jan-Hendrik organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States – sequence: 5 givenname: Michael Y surname: Sherman fullname: Sherman, Michael Y organization: Department of Molecular Biology, Ariel University, Ariel, Israel – sequence: 6 givenname: Ibrahim I orcidid: 0000-0002-8764-1809 surname: Cisse fullname: Cisse, Ibrahim I organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30716021$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1r3DAQQEVJadI0p96LoZdC2FSyJMu6FEJI2sBCLim0JzGWx14ttrSV7ED_fRRvGpJQXfT15jEazXty4INHQj4yeqakFF9x7To847rS8g05KqmkK1qLXwfP1ofkJKUtzUOJumb6HTnkVLGKluyI_D4vOhfTVITYYix2G0hYTBF8cpMLvhjRbsC7NBazz8DgMBW7GCZ0voC-j9jDwuXtCOMIgwNfWByG9IG87WBIePI4H5OfV5e3Fz9W65vv1xfn65UVSk4rJkDWtaU1COyqpuaCdY3gyC2gUlTrUkpNbSOo0C2lnCMFK6jlJVjKJeXH5HrvbQNszS66EeJfE8CZ5SDE3kCcnB3QaNvkqEZ3GjvRiKapsINWIlfAKlnx7Pq2d-3mZsTWos-lGF5IX954tzF9uDMVr1hOMwu-PApi-DNjmszo0kM5wGOYkymZ0pIpxmRGP79Ct2GOPpcqU3WlVTaqTH16ntFTKv9-MAOne8DGkFLE7glh1Dy0iFlaxCwtkmn2irZuWn4wP8cN_425B2XpwFs |
CitedBy_id | crossref_primary_10_1038_s41573_022_00505_4 crossref_primary_10_3390_biom15030406 crossref_primary_10_1016_j_cell_2023_08_018 crossref_primary_10_1021_acs_jpcb_3c01696 crossref_primary_10_1186_s12915_020_0751_4 crossref_primary_10_1093_nar_gkac866 crossref_primary_10_1016_j_tcb_2019_10_006 crossref_primary_10_1039_C9SC06501F crossref_primary_10_1016_j_bpj_2019_03_007 crossref_primary_10_1016_j_celrep_2020_108045 crossref_primary_10_1103_PhysRevLett_123_228101 crossref_primary_10_1016_j_bbamcr_2020_118795 crossref_primary_10_26508_lsa_202402757 crossref_primary_10_1016_j_jmb_2020_11_023 crossref_primary_10_1073_pnas_2102772118 crossref_primary_10_1093_nar_gkab1242 crossref_primary_10_1038_s41586_022_05138_6 crossref_primary_10_1042_ETLS20190187 crossref_primary_10_1042_EBC20220055 crossref_primary_10_3389_fncel_2020_00045 crossref_primary_10_1073_pnas_2202222119 crossref_primary_10_1016_j_jmb_2022_167713 crossref_primary_10_1038_s41596_022_00787_3 crossref_primary_10_1016_j_biomaterials_2020_120452 crossref_primary_10_1016_j_cocis_2021_101421 crossref_primary_10_1111_jnc_15586 crossref_primary_10_1016_j_bpj_2020_06_014 crossref_primary_10_15252_msb_202110272 crossref_primary_10_1016_j_jmb_2021_166848 crossref_primary_10_1021_acs_chemrev_2c00814 crossref_primary_10_1039_D3CS01065A crossref_primary_10_1073_pnas_2008447117 crossref_primary_10_1002_bies_202000036 crossref_primary_10_1016_j_sbi_2020_06_012 crossref_primary_10_1038_s41589_020_0524_y crossref_primary_10_1016_j_tibs_2020_12_005 crossref_primary_10_1042_EBC20220148 crossref_primary_10_1126_sciadv_abh2929 crossref_primary_10_3390_ijms25136825 crossref_primary_10_15302_J_QB_021_0262 crossref_primary_10_1021_acs_chemrev_4c00138 crossref_primary_10_1091_mbc_E24_01_0013 crossref_primary_10_1021_acs_biochem_1c00434 crossref_primary_10_1038_s41467_023_42015_w crossref_primary_10_1523_JNEUROSCI_2104_23_2024 crossref_primary_10_1038_s41467_022_31912_1 crossref_primary_10_1021_acs_nanolett_3c01301 crossref_primary_10_1016_j_devcel_2020_09_003 crossref_primary_10_1038_s41467_023_41864_9 crossref_primary_10_1063_5_0083286 crossref_primary_10_1016_j_cell_2023_09_006 crossref_primary_10_1021_acs_biomac_4c00738 crossref_primary_10_1002_chem_202400277 crossref_primary_10_1016_j_tibs_2020_04_011 crossref_primary_10_1038_s41467_023_40540_2 crossref_primary_10_3390_jdb10010004 crossref_primary_10_1002_smll_202202606 crossref_primary_10_1038_s41467_020_16396_1 crossref_primary_10_1002_cbic_202100285 crossref_primary_10_1021_jacsau_2c00055 crossref_primary_10_1016_j_cocis_2021_101488 crossref_primary_10_15252_embr_201949585 crossref_primary_10_1101_gad_331520_119 crossref_primary_10_7554_eLife_76965 crossref_primary_10_1038_s41467_021_24727_z crossref_primary_10_1038_s41467_022_33433_3 |
Cites_doi | 10.1126/science.289.5483.1317 10.1088/0953-8984/19/3/033101 10.1242/jcs.098954 10.1126/science.aar3958 10.1039/C8CC02204F 10.1074/jbc.M110.148460 10.1007/978-3-662-04884-9 10.1126/science.1172046 10.1111/j.1471-4159.2004.02533.x 10.1529/biophysj.106.091116 10.1038/nmeth.1233 10.1038/s41598-018-25454-0 10.1126/science.1127344 10.1038/nm1001-1144 10.1073/pnas.96.5.1858 10.1016/j.molcel.2015.07.012 10.7554/eLife.13617 10.1093/emboj/16.12.3693 10.1117/1.NPh.3.4.041807 10.1016/0092-8674(93)90635-4 10.1101/146241 10.1073/pnas.1315346111 10.1038/nm1066 10.1126/science.1257998 10.1126/science.1239053 10.1073/pnas.1017150108 10.1038/ncomms15730 10.1038/ncb1104-1054 10.1007/978-90-481-3643-8 10.1073/pnas.1320626110 10.1038/418291a 10.1073/pnas.93.3.1125 10.1073/pnas.1509317112 10.1016/j.cocis.2008.01.004 10.1038/nprot.2007.291 10.1016/j.bpc.2011.04.006 10.1038/nature03679 10.1074/jbc.M802216200 10.1016/j.tibs.2013.09.003 10.1146/annurev.bi.45.070176.003531 10.1016/S0065-3233(08)60320-4 10.1063/1.2822322 10.1007/s00280-009-1194-3 10.1016/j.jneumeth.2009.11.004 10.1146/annurev.biochem.74.082803.133400 10.1515/zpch-1927-12513 10.1016/j.cell.2015.07.047 10.1515/zpch-1897-2233 10.1016/S0022-2836(02)00735-0 10.1002/9783527627769 10.1038/emboj.2009.257 10.1074/jbc.RA117.000357 10.1038/nmeth929 10.15252/embj.201591245 10.1126/science.aar2555 10.1038/nm0602-600 10.1126/science.aar4199 10.1002/pro.3396 10.1074/jbc.M208194200 10.1126/scisignal.2003520 10.1074/jbc.M310994200 10.1002/1531-8249(200004)47:4<521::AID-ANA18>3.0.CO;2-B 10.1093/hmg/ddp467 10.1016/S1359-0278(98)00002-9 10.1016/j.bbapap.2008.10.016 |
ContentType | Journal Article |
Copyright | 2019, Narayanan et al. 2019, Narayanan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019, Narayanan et al 2019 Narayanan et al |
Copyright_xml | – notice: 2019, Narayanan et al. – notice: 2019, Narayanan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019, Narayanan et al 2019 Narayanan et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.39695 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_9cb2acb9f9ef4b4bb6efad5e37a16563 PMC6361590 30716021 10_7554_eLife_39695 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: DP2 CA195769 – fundername: NIH HHS grantid: DP2CA195769 – fundername: ; grantid: DP2CA195769 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. CGR CUY CVF ECM EIF FRP NPM RHF 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c475t-14a588c08a4ef6b8341fb43e3cae7709925590cb4049d0033e0ac40c32ac03503 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:29:45 EDT 2025 Thu Aug 21 14:12:01 EDT 2025 Fri Sep 05 11:45:47 EDT 2025 Sun Sep 07 08:40:38 EDT 2025 Thu Jan 02 22:59:14 EST 2025 Tue Jul 01 03:59:59 EDT 2025 Thu Apr 24 23:00:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | single molecule phase separation super-resolution neurodegeneration aggregation live cell imaging human physics of living systems |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2019, Narayanan et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-14a588c08a4ef6b8341fb43e3cae7709925590cb4049d0033e0ac40c32ac03503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2269-3253 0000-0003-0087-814X 0000-0002-8764-1809 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.39695 |
PMID | 30716021 |
PQID | 2186976157 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cb2acb9f9ef4b4bb6efad5e37a16563 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361590 proquest_miscellaneous_2179517115 proquest_journals_2186976157 pubmed_primary_30716021 crossref_primary_10_7554_eLife_39695 crossref_citationtrail_10_7554_eLife_39695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-04 |
PublicationDateYYYYMMDD | 2019-02-04 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2019 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Jefferies (bib31) 1997; 16 Patel (bib46) 2015; 162 Ross (bib50) 2004; 10 Suppl Andrews (bib2) 2017 Pountney (bib48) 2004; 90 Xu (bib66) 2002; 8 Farkas (bib20) 1927; 125U Karpinar (bib34) 2009; 28 Lomakin (bib38) 1996; 93 Gaczynska (bib22) 2008; 13 Zaarur (bib67) 2008; 283 Cisse (bib15) 2013; 341 Slezov (bib59) 2009 Wakabayashi (bib65) 2000; 47 Chong (bib12) 2018; 361 Garai (bib25) 2018; 27 Betzig (bib5) 2006; 313 Abraham (bib1) 1974 Chudakov (bib13) 2007; 2 Cookson (bib17) 2005; 74 Meriin (bib40) 2012; 125 Cho (bib11) 2018; 361 Sabari (bib52) 2018; 361 Tanaka (bib61) 2004; 279 Conn (bib16) 2013; 6 JA (bib29) 2006 Gao (bib23) 2015; 59 Tremblay (bib63) 2010; 186 Sergé (bib56) 2008; 5 Törnquist (bib62) 2018; 54 Garai (bib24) 2008; 128 Park (bib45) 2017; 8 Kalikmanov (bib32) 2013 Massey (bib39) 2010; 66 Sear (bib54) 2007; 19 Serio (bib57) 2000; 289 Nonaka (bib43) 2010; 285 Goldberg (bib26) 1976; 45 Jarrett (bib30) 1993; 73 Selkoe (bib55) 2004; 6 Nawaz (bib42) 1999; 96 Crick (bib18) 2013; 110 Cho (bib10) 2016; 5 Andrews (bib3) 2018; 8 Hess (bib28) 2006; 91 Kaminski (bib33) 2016; 3 Ostwald (bib44) 1897; 22 Sherman (bib58) 2013; 38 Sunde (bib60) 1997; 50 Krishnan (bib35) 2005; 435 Chen (bib9) 2014; 346 Ratke (bib49) 2002 Zaarur (bib68) 2015; 34 Brangwynne (bib6) 2009; 324 Rust (bib51) 2006; 3 Gosavi (bib27) 2002; 277 Posey (bib47) 2018; 293 Chung (bib14) 2001; 7 Lashuel (bib36) 2002; 418 Sathasivam (bib53) 2010; 19 Brangwynne (bib7) 2011; 108 Lashuel (bib37) 2002; 322 Vitalis (bib64) 2011; 159 Berry (bib4) 2015; 112 Buell (bib8) 2014; 111 Ester (bib19) 1996 Fink (bib21) 1998; 3 Morris (bib41) 2009; 1794 |
References_xml | – volume: 289 start-page: 1317 year: 2000 ident: bib57 article-title: Nucleated conformational conversion and the replication of conformational information by a prion determinant publication-title: Science doi: 10.1126/science.289.5483.1317 – volume: 19 start-page: 033101 year: 2007 ident: bib54 article-title: Nucleation: theory and applications to protein solutions and colloidal suspensions publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/19/3/033101 – volume: 125 start-page: 2665 year: 2012 ident: bib40 article-title: Association of translation factor eEF1A with defective ribosomal products generates a signal for aggresome formation publication-title: Journal of Cell Science doi: 10.1242/jcs.098954 – volume: 361 start-page: eaar3958 year: 2018 ident: bib52 article-title: Coactivator condensation at super-enhancers links phase separation and gene control publication-title: Science doi: 10.1126/science.aar3958 – volume: 54 start-page: 8667 year: 2018 ident: bib62 article-title: Secondary nucleation in amyloid formation publication-title: Chemical Communications doi: 10.1039/C8CC02204F – volume: 285 start-page: 34885 year: 2010 ident: bib43 article-title: Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M110.148460 – volume-title: Growth and Coarsening: Ostwald Ripening in Material Processing year: 2002 ident: bib49 doi: 10.1007/978-3-662-04884-9 – volume: 324 start-page: 1729 year: 2009 ident: bib6 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science doi: 10.1126/science.1172046 – volume: 90 start-page: 502 year: 2004 ident: bib48 article-title: Annular alpha-synuclein species from purified multiple system atrophy inclusions publication-title: Journal of Neurochemistry doi: 10.1111/j.1471-4159.2004.02533.x – volume: 91 start-page: 4258 year: 2006 ident: bib28 article-title: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy publication-title: Biophysical Journal doi: 10.1529/biophysj.106.091116 – volume: 5 start-page: 687 year: 2008 ident: bib56 article-title: Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes publication-title: Nature Methods doi: 10.1038/nmeth.1233 – volume: 8 year: 2018 ident: bib3 article-title: qSR: a quantitative super-resolution analysis tool reveals the cell-cycle dependent organization of RNA polymerase I in live human cells publication-title: Scientific Reports doi: 10.1038/s41598-018-25454-0 – volume: 313 start-page: 1642 year: 2006 ident: bib5 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science doi: 10.1126/science.1127344 – volume: 7 start-page: 1144 year: 2001 ident: bib14 article-title: Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease publication-title: Nature Medicine doi: 10.1038/nm1001-1144 – volume: 96 start-page: 1858 year: 1999 ident: bib42 article-title: Proteasome-dependent degradation of the human estrogen receptor publication-title: PNAS doi: 10.1073/pnas.96.5.1858 – volume: 59 start-page: 781 year: 2015 ident: bib23 article-title: Human Hsp70 disaggregase reverses parkinson's-linked α-synuclein amyloid fibrils publication-title: Molecular Cell doi: 10.1016/j.molcel.2015.07.012 – volume: 5 start-page: e13617 year: 2016 ident: bib10 article-title: RNA Polymerase II cluster dynamics predict mRNA output in living cells publication-title: eLife doi: 10.7554/eLife.13617 – volume: 16 start-page: 3693 year: 1997 ident: bib31 article-title: Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k publication-title: The EMBO Journal doi: 10.1093/emboj/16.12.3693 – volume: 3 start-page: 041807 year: 2016 ident: bib33 article-title: Probing amyloid protein aggregation with optical superresolution methods: from the test tube to models of disease publication-title: Neurophotonics doi: 10.1117/1.NPh.3.4.041807 – volume: 73 start-page: 1055 year: 1993 ident: bib30 article-title: Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? publication-title: Cell doi: 10.1016/0092-8674(93)90635-4 – volume-title: bioRxiv year: 2017 ident: bib2 article-title: qSR: A software for quantitative analysis of single molecule and super-resolution data doi: 10.1101/146241 – volume: 111 start-page: 7671 year: 2014 ident: bib8 article-title: Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation publication-title: PNAS doi: 10.1073/pnas.1315346111 – volume: 10 Suppl start-page: S10 year: 2004 ident: bib50 article-title: Protein aggregation and neurodegenerative disease publication-title: Nature Medicine doi: 10.1038/nm1066 – volume: 346 start-page: 1257998 year: 2014 ident: bib9 article-title: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution publication-title: Science doi: 10.1126/science.1257998 – volume: 341 start-page: 664 year: 2013 ident: bib15 article-title: Real-time dynamics of RNA polymerase II clustering in live human cells publication-title: Science doi: 10.1126/science.1239053 – volume: 108 start-page: 4334 year: 2011 ident: bib7 article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: PNAS doi: 10.1073/pnas.1017150108 – volume: 8 start-page: 15730 year: 2017 ident: bib45 article-title: Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex publication-title: Nature Communications doi: 10.1038/ncomms15730 – volume: 6 start-page: 1054 year: 2004 ident: bib55 article-title: Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases publication-title: Nature Cell Biology doi: 10.1038/ncb1104-1054 – volume-title: Nucleation Theory year: 2013 ident: bib32 doi: 10.1007/978-90-481-3643-8 – volume: 110 start-page: 20075 year: 2013 ident: bib18 article-title: Unmasking the roles of N- and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation publication-title: PNAS doi: 10.1073/pnas.1320626110 – volume: 418 start-page: 291 year: 2002 ident: bib36 article-title: Neurodegenerative disease: amyloid pores from pathogenic mutations publication-title: Nature doi: 10.1038/418291a – volume: 93 start-page: 1125 year: 1996 ident: bib38 article-title: On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants publication-title: PNAS doi: 10.1073/pnas.93.3.1125 – volume: 112 start-page: E5237 year: 2015 ident: bib4 article-title: RNA transcription modulates phase transition-driven nuclear body assembly publication-title: PNAS doi: 10.1073/pnas.1509317112 – volume: 13 start-page: 351 year: 2008 ident: bib22 article-title: AFM of biological complexes: what can we learn? publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2008.01.004 – volume: 2 start-page: 2024 year: 2007 ident: bib13 article-title: Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2 publication-title: Nature Protocols doi: 10.1038/nprot.2007.291 – volume: 159 start-page: 14 year: 2011 ident: bib64 article-title: Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides publication-title: Biophysical Chemistry doi: 10.1016/j.bpc.2011.04.006 – volume: 435 start-page: 765 year: 2005 ident: bib35 article-title: Structural insights into a yeast prion illuminate nucleation and strain diversity publication-title: Nature doi: 10.1038/nature03679 – volume: 283 start-page: 27575 year: 2008 ident: bib67 article-title: Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1 publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M802216200 – volume: 38 start-page: 585 year: 2013 ident: bib58 article-title: Less is more: improving proteostasis by translation slow down publication-title: Trends in Biochemical Sciences doi: 10.1016/j.tibs.2013.09.003 – volume: 45 start-page: 747 year: 1976 ident: bib26 article-title: Intracellular protein degradation in mammalian and bacterial cells: Part 2 publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.bi.45.070176.003531 – volume-title: In Protein Misfolding, Aggregation, and Conformational Diseases Protein Reviews year: 2006 ident: bib29 – volume: 50 start-page: 123 year: 1997 ident: bib60 article-title: The structure of amyloid fibrils by electron microscopy and X-ray diffraction publication-title: Advances in Protein Chemistry doi: 10.1016/S0065-3233(08)60320-4 – volume: 128 start-page: 045102 year: 2008 ident: bib24 article-title: Quasihomogeneous nucleation of amyloid beta yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation publication-title: The Journal of Chemical Physics doi: 10.1063/1.2822322 – volume: 66 start-page: 535 year: 2010 ident: bib39 article-title: A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells publication-title: Cancer Chemotherapy and Pharmacology doi: 10.1007/s00280-009-1194-3 – volume: 186 start-page: 60 year: 2010 ident: bib63 article-title: Differentiation of mouse Neuro 2A cells into dopamine neurons publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2009.11.004 – volume-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining year: 1996 ident: bib19 – volume: 74 start-page: 29 year: 2005 ident: bib17 article-title: The biochemistry of Parkinson's disease publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.biochem.74.082803.133400 – volume: 125U start-page: 236 year: 1927 ident: bib20 article-title: Keimbildungsgeschwindigkeit in übersättigten dämpfen publication-title: Zeitschrift Für Physikalische Chemie doi: 10.1515/zpch-1927-12513 – volume: 162 start-page: 1066 year: 2015 ident: bib46 article-title: A Liquid-to-solid phase transition of the als protein fus accelerated by disease mutation publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 22 start-page: 289 year: 1897 ident: bib44 article-title: Studien über die Bildung und Umwandlung fester Körper publication-title: Zeitschrift Für Physikalische Chemie doi: 10.1515/zpch-1897-2233 – volume: 322 start-page: 1089 year: 2002 ident: bib37 article-title: Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils publication-title: Journal of Molecular Biology doi: 10.1016/S0022-2836(02)00735-0 – volume-title: Kinetics of First Order Phase Transitions year: 2009 ident: bib59 doi: 10.1002/9783527627769 – volume: 28 start-page: 3256 year: 2009 ident: bib34 article-title: Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson's disease models publication-title: The EMBO Journal doi: 10.1038/emboj.2009.257 – volume: 293 start-page: 3734 year: 2018 ident: bib47 article-title: Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.RA117.000357 – volume: 3 start-page: 793 year: 2006 ident: bib51 article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) publication-title: Nature Methods doi: 10.1038/nmeth929 – volume: 34 start-page: 2363 year: 2015 ident: bib68 article-title: RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils publication-title: The EMBO Journal doi: 10.15252/embj.201591245 – volume: 361 start-page: eaar2555 year: 2018 ident: bib12 article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription publication-title: Science doi: 10.1126/science.aar2555 – volume: 8 start-page: 600 year: 2002 ident: bib66 article-title: Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease publication-title: Nature Medicine doi: 10.1038/nm0602-600 – volume-title: Homogeneous Nucleation Theory; the Pretransition Theory of Vapor Condensation year: 1974 ident: bib1 – volume: 361 start-page: 412 year: 2018 ident: bib11 article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates publication-title: Science doi: 10.1126/science.aar4199 – volume: 27 start-page: 1252 year: 2018 ident: bib25 article-title: Inhibition of amyloid beta fibril formation by monomeric human transthyretin publication-title: Protein Science doi: 10.1002/pro.3396 – volume: 277 start-page: 48984 year: 2002 ident: bib27 article-title: Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M208194200 – volume: 6 start-page: ra24 year: 2013 ident: bib16 article-title: Nutrient signaling in protein homeostasis: an increase in quantity at the expense of quality publication-title: Science Signaling doi: 10.1126/scisignal.2003520 – volume: 279 start-page: 4625 year: 2004 ident: bib61 article-title: Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M310994200 – volume: 47 start-page: 521 year: 2000 ident: bib65 article-title: Synphilin-1 is present in Lewy bodies in Parkinson's disease publication-title: Annals of Neurology doi: 10.1002/1531-8249(200004)47:4<521::AID-ANA18>3.0.CO;2-B – volume: 19 start-page: 65 year: 2010 ident: bib53 article-title: Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington's disease publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddp467 – volume: 3 start-page: R9 year: 1998 ident: bib21 article-title: Protein aggregation: folding aggregates, inclusion bodies and amyloid publication-title: Folding and Design doi: 10.1016/S1359-0278(98)00002-9 – volume: 1794 start-page: 375 year: 2009 ident: bib41 article-title: Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature publication-title: Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics doi: 10.1016/j.bbapap.2008.10.016 |
SSID | ssj0000748819 |
Score | 2.486477 |
Snippet | The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | aggregation Cell Line, Tumor Disease Energy Growth conditions Homeostasis Humans Kinetics Lag phase live cell imaging Mammalian cells Microscopy neurodegeneration Neurodegenerative diseases Neurodegenerative Diseases - genetics Neurodegenerative Diseases - pathology phase separation Phase Transition Phase transitions Physics of Living Systems Probability distribution Protein Aggregates - genetics Protein Aggregates - physiology Protein Aggregation, Pathological - genetics Protein Aggregation, Pathological - pathology Protein Folding Protein interaction Proteins Research Communication single molecule Size distribution super-resolution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS-UwEB5EWPAi7q671nWXCJ6EYvqaJs3RXVZEVk8K7qkkeRMt2Cq-58F_70xaH-8twl48tg1tOjPJfJNkvgE4kNFiFYuYo_E6V_VE5b5CnRfoKwrHjLVTTnA-v9CnV-rsurpeKvXFZ8IGeuBBcEc2-IkL3tI7o_LKe43RTSssjWPimMTzKa1cCqbSHGzIMAs7JOQZcplH-KeNSBG-5koSSy4oMfW_BS__PSW55HZOtmBzxIvieOjnR1jD_hN8GCpIPn-Gv8citgTgRKLQFA-35JTEnP1POoolOuTM3nbWCU4WeyTAOROJmqHthbuhWPsmaUbQZee6Li16CF7Mn23D1cnvy1-n-VgtIQ_KVPO8UK6q6yBrpzBqX5N7il6VWAaHxhAQ5OBBBq8oJphyCTeULigZShIvby-WX2C9v-9xBwRv5GIx8drLqIyOFNOoSNguliZMYznJ4PBVgE0YqcS5osVdQyEFS7tJ0m6StDM4WDR-GBg03m72kzWxaMK01-kGGUMzGkPzP2PIYO9Vj804FmdNqrplCLmZDPYXj2kUsTRdj_dP3MYQ1DQEjzP4Oqh90ROaBQtNUCgDs2IQK11dfdK3t4mpW5f0WSt33-PfvsEGgTWbToyrPVifPz7hdwJEc_8j2f4LaDUN9w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9wwDBZbx2AvY7-Xthse9GkQmlwcO3kqbVkpY9vTCrenYDvyNdDkbpfrw_77Sk4u642yxySGGMm2PsmSPoCjxJeY-9THqK2KZTGTsc1RxSnanNwxXZY1Fzh__6Eur-TXeT4fA279mFa5PRPDQV0vHcfIjwN3EvncuT5Z_Y6ZNYpvV0cKjcfwJCUkwtQNeq6nGAuZx4Is3lCWp8lwHuO3xiP5-Yr5JO4ZotCv_yGQ-W-u5D3jc_ECno-oUZwOan4Jj7B7BU8HHsk_r-HXqfANwTgRGmmK1TWZJrFhKxQSskSLXN_b9K3gkrE1wc5ehAYNTSfMgjzuRdCPoMfWtG0IfQgO6fdv4Oriy8_zy3jkTIid1PkmTqXJi8IlhZHolS3ISHkrM8ycQa0JDrILkTgryTOomcgNE-Nk4rKZcXzJmL2FvW7Z4XsQfJ2L6cwqm3iplSfPRnpCeD7TrvbZLILPWwFWbmwozrwWNxU5FiztKki7CtKO4GgavBr6aDw87Iw1MQ3h5tfhxXK9qMa9VJXO0mxtScvMSyutVehNnWOmDfcSyiI43OqxGndkX_1dPxF8mj7TXmJpmg6XtzxGE-DUBJIjeDeofZoJnYWpIkAUgd5ZEDtT3f3SNdehX7fK6Ldlsv__aR3AMwJjZcgIl4ewt1nf4gcCPBv7MazqO36CA4M priority: 102 providerName: ProQuest |
Title | A first order phase transition mechanism underlies protein aggregation in mammalian cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30716021 https://www.proquest.com/docview/2186976157 https://www.proquest.com/docview/2179517115 https://pubmed.ncbi.nlm.nih.gov/PMC6361590 https://doaj.org/article/9cb2acb9f9ef4b4bb6efad5e37a16563 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED_6AaMvY2Nf3rqgQZ8G7mxLlqyn0Y6WMrYyxgLZk5EUKTXUTpeksP33u1PssJTs0dbZFncn3--k-wA4yYL2ZchD6pWVqagKkdrSyzT3tkR3TGk9pQTnr9fyaiw-T8rJHgzNOHsGLne6dtRPary4Pf39689HXPCIX08VWsMP_ksTPDrvUpf7cBgPiiiGr8f58ZesUE9zvc7Pe_jMETxCRc9lVuRbxinW8N8FPB_GT_5jkC6fwOMeSbKzteifwp7vnsHPMxYaBHQsltRkdzdopNiK7FEMzWKtp0zfZtkySh5bIABdsliqoemYmaHvPYuSYnjZmraNmyCMNveXz2F8efHj01Xad09InVDlKs2FKavKZZURPkhbobkKVnDPnfFKITAkZyJzVqCPMKWWbj4zTmSOF8bRcSN_AQfdvPOvgNHBrs8LK20WhJIBfRwREOsFrtw08CKB9wPbateXFqcOF7c1uhjE7jqyu47sTuBkQ3y3rqixm-yc-L8hoTLY8cZ8Mav7VVVrZ3G2VqPCBWGFtdIHMy09V4aqCvEEjgfp1YNq1bELl0IkpxJ4txnGVUXcNJ2f3xONQuipEC4n8HIt7M1MBmVJQG2pwdZUt0e65iZW7pYcP6uz1_995xs4QkSmY1i4OIaD1eLev0XUs7Ij2FcTNYLD84vrb99Hce9gFLX8Lz0xBjc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTghe0PgODDDSeEEKSxMnTh4mtMGmjnUVQps0noLt2F0lkpa2E9o_t7-NO-eDFU287TGxlVjn893vbN_9ALYCm5nY9q1vhEp8nobcV7FJ_L5RMYZjIssKSnA-HiWDU_7lLD5bg6s2F4auVbY20RnqYqppj3zbcSdhzB2Lj7NfPrFG0elqS6EhG2qFYseVGGsSO47M5W8M4RY7h59xvt-F4cH-yaeB37AM-JqLeOn3uYzTVAep5MYmKkWzbhWPTKSlEQIBFIHuQCuOWLog6jMTSM0DHYVS07FchN-9A-ucNlB6sL63P_r6rdvlQQedos-tEwMFuu5tM5xY8yHKEmK0uOYKHWPATTD339ua19zfwQY8aHAr260V7SGsmeoR3K2ZLC8fw_ddZicIJJkr5clm5-gc2ZL8oLsSxkpDGcaTRckoaW2OwHfBXImIScXkGGP-sdMQho-lLEu3-cLoUGHxBE5vRZ5PoVdNK_McGB0om36oEhVYLhKLsRW3iDFtJHRho9CD960Ac92UNCdmjZ85hjYk7dxJO3fS9mCr6zyrK3nc3G2PZqLrQuW33YvpfJw3qznPtMLRqgwV3XLFlUqMlUVsIiGpmlHkwWY7j3ljExb5Xw324G3XjKuZpCkrM72gPgIhr0CY7sGzetq7kaA17icIyTwQKwqxMtTVlmpy7iqGJxH-Ngte_H9Yb-De4OR4mA8PR0cv4T5Cw8zdT-eb0FvOL8wrhF9L9brRcQY_bntZ_QFvoEVr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuqLwDBYxULkiheThxcqhQS7tqaVlViErlFGzH3q7EZpfNVqh_sb-KGedBF1XceszG2ljj8cw39sx8AJuBzU1iQ-sboVKfZxH3VWJSPzQqwXBM5HlJBc5fhunBKf98lpytwFVXC0NplZ1NdIa6nGo6I99y3EkYc2MAb9u0iJO9wcfZL58YpOimtaPTkC3NQrnt2o21RR5H5vI3hnP19uEerv27KBrsf_t04LeMA77mIln4IZdJlukgk9zYVGVo4q3isYm1NEIgmCIAHmjFEVeXRINmAql5oONIarqii_F_78CaQK-PgeDa7v7w5Gt_4oPOOkP_2xQJCnTjW-Z4bM2HOE-J3eKaW3TsATdB3n8zN6-5wsE6PGgxLNtplO4hrJjqEdxtWC0vH8P3HWbHCCqZa-vJZufoKNmCfKJLD2MTQ9XG43rCqIBtjiC4Zq5dxLhicoTx_8hpC8PHiZxM3EEMowuG-gmc3oo8n8JqNa3Mc2B0uWzCSKUqsFykFuMsbhFv2ljo0saRB-87ARa6bW9OLBs_CwxzSNqFk3bhpO3BZj941nT1uHnYLq1EP4RacbsfpvNR0e7sItcKZ6tyVHrLFVcqNVaWiYmFpM5GsQcb3ToWrX2oi7_a7MHb_jXubJKmrMz0gsYIhL8CIbsHz5pl72eCljlMEZ55IJYUYmmqy2-q8bnrHp7G-Nk8ePH_ab2Be7i9iuPD4dFLuI8oMXep6nwDVhfzC_MKkdhCvW5VnMGP295VfwCV40mv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+first+order+phase+transition+mechanism+underlies+protein+aggregation+in+mammalian+cells&rft.jtitle=eLife&rft.au=Narayanan%2C+Arjun&rft.au=Meriin%2C+Anatoli&rft.au=Andrews%2C+J+Owen&rft.au=Spille%2C+Jan-Hendrik&rft.date=2019-02-04&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.39695&rft_id=info%3Apmid%2F30716021&rft.externalDocID=30716021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |