Improvement of the /Taguchi/ design optimization using artificial intelligence in three acid azo dyes removal by electrocoagulation

The aim of this research is improvement of the Taguchi design optimization using artificial neural network (ANN) and genetic algorithm (GA) in Acid Orange 7, Acid Brown 14, and Acid Red 18 azo dyes removal by electrocoagulation. For this purpose, 27 tests were undertaken for investigation of five pa...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 34; no. 6; pp. 1568 - 1575
Main Authors Taheri, Mahsa, Moghaddam, Mohammad Reza Alavi, Arami, Mokhtar
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.11.2015
Subjects
Online AccessGet full text
ISSN1944-7442
1944-7450
DOI10.1002/ep.12145

Cover

Abstract The aim of this research is improvement of the Taguchi design optimization using artificial neural network (ANN) and genetic algorithm (GA) in Acid Orange 7, Acid Brown 14, and Acid Red 18 azo dyes removal by electrocoagulation. For this purpose, 27 tests were undertaken for investigation of five parameters including current density, reaction time, initial dye concentration, dye type, and initial pH by using Taguchi's orthogonal array. Additionally, according to analysis of variance, dye type and reaction time were the most important parameters for responses of dye removal efficiency and operating costs in Taguchi design, respectively. Prediction and modeling of the dye removal efficiency response were also accomplished by ANN. High R2 values (≥97%) indicated that the accuracy of the Taguchi and ANN models are acceptable. In addition, ANN was used in GA for finding the best elimination conditions for the selected dyes according to the Taguchi design. Dye removal efficiencies of 96.79%, 98.12%, and 76.47% were reported for Acid Orange 7, Acid Brown 14, and Acid Red 18, respectively, in the ANN model at the best elimination conditions. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1568–1575, 2015
AbstractList The aim of this research is improvement of the Taguchi design optimization using artificial neural network (ANN) and genetic algorithm (GA) in Acid Orange 7, Acid Brown 14, and Acid Red 18 azo dyes removal by electrocoagulation. For this purpose, 27 tests were undertaken for investigation of five parameters including current density, reaction time, initial dye concentration, dye type, and initial pH by using Taguchi's orthogonal array. Additionally, according to analysis of variance, dye type and reaction time were the most important parameters for responses of dye removal efficiency and operating costs in Taguchi design, respectively. Prediction and modeling of the dye removal efficiency response were also accomplished by ANN. High R2 values (≥97%) indicated that the accuracy of the Taguchi and ANN models are acceptable. In addition, ANN was used in GA for finding the best elimination conditions for the selected dyes according to the Taguchi design. Dye removal efficiencies of 96.79%, 98.12%, and 76.47% were reported for Acid Orange 7, Acid Brown 14, and Acid Red 18, respectively, in the ANN model at the best elimination conditions. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1568–1575, 2015
The aim of this research is improvement of the Taguchi design optimization using artificial neural network (ANN) and genetic algorithm (GA) in Acid Orange 7, Acid Brown 14, and Acid Red 18 azo dyes removal by electrocoagulation. For this purpose, 27 tests were undertaken for investigation of five parameters including current density, reaction time, initial dye concentration, dye type, and initial pH by using Taguchi's orthogonal array. Additionally, according to analysis of variance, dye type and reaction time were the most important parameters for responses of dye removal efficiency and operating costs in Taguchi design, respectively. Prediction and modeling of the dye removal efficiency response were also accomplished by ANN. High R 2 values (≥97%) indicated that the accuracy of the Taguchi and ANN models are acceptable. In addition, ANN was used in GA for finding the best elimination conditions for the selected dyes according to the Taguchi design. Dye removal efficiencies of 96.79%, 98.12%, and 76.47% were reported for Acid Orange 7, Acid Brown 14, and Acid Red 18, respectively, in the ANN model at the best elimination conditions. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1568–1575, 2015
The aim of this research is improvement of the Taguchi design optimization using artificial neural network (ANN) and genetic algorithm (GA) in Acid Orange 7, Acid Brown 14, and Acid Red 18 azo dyes removal by electrocoagulation. For this purpose, 27 tests were undertaken for investigation of five parameters including current density, reaction time, initial dye concentration, dye type, and initial pH by using Taguchi's orthogonal array. Additionally, according to analysis of variance, dye type and reaction time were the most important parameters for responses of dye removal efficiency and operating costs in Taguchi design, respectively. Prediction and modeling of the dye removal efficiency response were also accomplished by ANN. High R super(2) values ( greater than or equal to 97%) indicated that the accuracy of the Taguchi and ANN models are acceptable. In addition, ANN was used in GA for finding the best elimination conditions for the selected dyes according to the Taguchi design. Dye removal efficiencies of 96.79%, 98.12%, and 76.47% were reported for Acid Orange 7, Acid Brown 14, and Acid Red 18, respectively, in the ANN model at the best elimination conditions. copyright 2015 American Institute of Chemical Engineers Environ Prog, 34: 1568-1575, 2015
Author Taheri, Mahsa
Moghaddam, Mohammad Reza Alavi
Arami, Mokhtar
Author_xml – sequence: 1
  givenname: Mahsa
  surname: Taheri
  fullname: Taheri, Mahsa
  organization: Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), 15875-4413, Tehran, Iran
– sequence: 2
  givenname: Mohammad Reza Alavi
  surname: Moghaddam
  fullname: Moghaddam, Mohammad Reza Alavi
  email: alavim@yahoo.com
  organization: Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), 15875-4413, Tehran, Iran
– sequence: 3
  givenname: Mokhtar
  surname: Arami
  fullname: Arami, Mokhtar
  organization: Textile Engineering Department, Amirkabir University of Technology (AUT), 15875-4413, Tehran, Iran
BookMark eNp1kEFP3DAQha2KSgVaqT_Bx16yayd2jI8togsSKkiAerSMPVmmTezU9kKXa_94w261SKicZkb65s2bd0D2QgxAyEfOZpyxeg7jjNdcyDdkn2shKiUk29v1on5HDnL-wVjbCK33yZ-zYUzxHgYIhcaOljug82u7XLk7nFMPGZeBxrHggI-2YAx0lTEsqU0FO3Roe4qhQN_jEoKDaZgkEgC1Dj21j5H6NWSaYIj3E3u7ptCDKym6OB3pN5LvydvO9hk-_KuH5ObryfXxaXV-sTg7_nxeOaGkrDivRatb6QV467TwdVNLeauaGkBZr4SW3raMOdUKqRjzktWg5VHjGqcV75pD8mmrO338awW5mAGzm7zbAHGVDVftkVStatSEzraoSzHnBJ1xWDZmS7LYG87MU9oGRrNJ-1l7tzAmHGxa_w-ttugD9rB-lTMnly94zAV-73ibfponr9J8_7Yw7IpLvbg6NV-av9RLn_Q
CitedBy_id crossref_primary_10_1016_j_ultsonch_2016_01_024
crossref_primary_10_1039_D4RA08485C
crossref_primary_10_1007_s40201_022_00835_w
crossref_primary_10_1016_j_jmrt_2020_10_107
crossref_primary_10_2166_ws_2017_073
crossref_primary_10_1016_j_eti_2024_103832
crossref_primary_10_1080_1536383X_2018_1563543
crossref_primary_10_1111_exsy_12740
crossref_primary_10_1007_s13762_019_02413_4
crossref_primary_10_1155_2021_5510401
crossref_primary_10_1002_aoc_3857
crossref_primary_10_1002_gch2_202300052
crossref_primary_10_1155_2021_5683433
crossref_primary_10_1016_j_wri_2022_100191
crossref_primary_10_1088_1757_899X_206_1_012090
crossref_primary_10_1016_j_jclepro_2022_135522
crossref_primary_10_1016_j_ultsonch_2017_09_056
crossref_primary_10_3390_mi14071427
crossref_primary_10_1007_s11356_022_22055_3
crossref_primary_10_1155_2021_5526517
crossref_primary_10_61186_jrr_2405_1024
crossref_primary_10_1007_s10876_024_02668_z
crossref_primary_10_1016_j_clce_2022_100007
crossref_primary_10_1155_2021_5582598
crossref_primary_10_1016_j_jwpe_2021_101969
crossref_primary_10_1007_s11356_023_31362_2
crossref_primary_10_3390_w14030344
crossref_primary_10_1007_s11356_021_15345_9
Cites_doi 10.1016/j.jhydrol.2014.03.057
10.1016/j.jenvman.2013.06.029
10.1016/j.carbpol.2012.08.005
10.1016/j.biortech.2013.02.020
10.1016/j.jiec.2013.11.058
10.1007/s00521-012-1031-1
10.1016/j.jiec.2013.05.034
10.1016/j.desal.2011.01.083
10.1016/j.matdes.2008.10.033
10.1016/j.ibiod.2013.10.022
10.3390/molecules18077646
10.1002/ep.11623
10.1016/j.cej.2012.12.084
10.1186/1735-2746-9-23
10.1016/j.optlaseng.2010.11.005
10.30638/eemj.2014.059
10.1002/ep.11656
ContentType Journal Article
Copyright 2015 American Institute of Chemical Engineers Environ Prog
Copyright_xml – notice: 2015 American Institute of Chemical Engineers Environ Prog
DBID BSCLL
AAYXX
CITATION
7ST
7U6
C1K
DOI 10.1002/ep.12145
DatabaseName Istex
CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-7450
EndPage 1575
ExternalDocumentID 10_1002_ep_12145
EP12145
ark_67375_WNG_0S159GSH_B
Genre article
GroupedDBID ..I
.3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~IA
~WT
.Y3
31~
3V.
8FE
AAHHS
ABJCF
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AEUYN
AFKRA
AFPWT
AIWBW
AJBDE
AZFZN
BCU
BEC
BGLVJ
CCPQU
FEDTE
GUQSH
HF~
HVGLF
M7S
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
RWI
S0X
SJFOW
WRC
AAYXX
CITATION
7ST
7U6
C1K
ID FETCH-LOGICAL-c4755-11246965d4edac94d23255b732ee7ad7495da600c7645700d502e9583c3c971f3
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Tue Oct 07 09:42:19 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Sat Oct 25 05:12:01 EDT 2025
Wed Jan 22 17:06:25 EST 2025
Sun Sep 21 06:21:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4755-11246965d4edac94d23255b732ee7ad7495da600c7645700d502e9583c3c971f3
Notes istex:2CDE4F1C08B0C2D5C86D75683ECDF93AEDCB5ED2
ArticleID:EP12145
ark:/67375/WNG-0S159GSH-B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1768576737
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1768576737
crossref_citationtrail_10_1002_ep_12145
crossref_primary_10_1002_ep_12145
wiley_primary_10_1002_ep_12145_EP12145
istex_primary_ark_67375_WNG_0S159GSH_B
PublicationCentury 2000
PublicationDate November/December 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November/December 2015
PublicationDecade 2010
PublicationTitle Environmental progress & sustainable energy
PublicationTitleAlternate Environ. Prog. Sustainable Energy
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Amani-Ghadim, A.R., Olad, A., Aber, S., & Ashassi-Sorkhabi, H. (2013). Comparison of organic dyes removal mechanism in electrocoagulation process using iron and aluminum anodes, Environmental Progress & Sustainable Energy, 32, 547-556.
Hai, F.I., Yamamoto, K., Nakajima, F., Fukushi, K., Nghiem, L.D., Price, W.E., & Jin, B. (2013). Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolour, Bioresource Technology, 141, 29-34.
Shoabargh, S., Karimi, A., Dehghan, G., & Khataee, A. (2014). A hybrid photocatalytic and enzymatic process using glucose oxidase immobilized on TiO2/polyurethane for removal of a dye, Journal of Industrial & Engineering Chemistry, 20, 3150-3156.
Bhatti, M.S., Kapoor, D., Kali, R.K., Reddy, A.S., & Thukral, A.K. (2011). RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach, Desalination, 274, 74-80.
Lim, C.K., Aris, A., Neoh, C.H., Lam, C.Y., Majid, Z.A., & Ibrahim, Z. (2014). Evaluation of macrocomposite based sequencing batch biofilm reactor (MC-SBBR) for decolorization and biodegradation of azo dye Acid Orange 7, International Biodeterioration & Biodegradation, 87, 9-17.
Taheri, M., Alavi Moghaddam, M.R., & Arami, M. (2014). A comparative study on removal of four types of acid azo dyes using electrocoagulation process, Environmental Engineering & Management Journal, 13, 557-564.
Gen, M., Cheng, R., & Lin, L. (2008). Network models and optimization: Multiobjective genetic algorithm approach (decision engineering), London: Springer.
Basiri Parsa, J., Golmirzaei, M., & Abbasi, M. (2014). Degradation of azo dye C.I. Acid Red 18 in aqueous solution by ozone-electrolysis process, Journal of Industrial & Engineering Chemistry, 20, 689-694.
Taheri, M., Alavi Moghaddam, M.R., & Arami, M. (2013). Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models, Journal of Environmental Management, 128, 798-806.
Constantin, M., Asmarandei, I., Harabagiu, V., Ghimici, L., Ascenzi, P., & Fundueanu, G. (2013). Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres, Carbohydrate Polymers, 91, 74-84.
Xiansheng, N., Zhenggan, Z., Xiongwei, W., & Luming, L. (2011). The use of Taguchi method to optimize the laser welding of sealing neuro-stimulator, Optics & Lasers in Engineering, 49, 297-304.
Maleki, A., Daraei, H., Shahmoradi, B., Razee, S., & Ghobadi, N. (2013). Electrocoagulation efficiency and energy consumption probing by artificial intelligent approaches, Desalination & Water Treatment, 52, 1-12.
Yildiz, Y.S., Şenyiğit, E., & İrdemez, S. (2013). Optimization of specific energy consumption for Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using Taguchi-neural method, Neural Computing & Applications, 23, 1061-1069.
Guo, Y., Zhu, Z., Qiu, Y., & Zhao, J. (2013). Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect, Chemical Engineering Journal, 219, 69-77.
Taheri, M., Alavi Moghaddam, M.R., & Arami, M. (2012). Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology, Iranian Journal of Environmental Health Science & Engineering, 9, 23.
Daneshvar, E., Kousha, M., Koutahzadeh, N., Sohrabi, M.S., & Bhatnagar, A. (2013). Biosorption and bioaccumulation studies of acid Orange 7 dye by Ceratophylum demersum, Environmental Progress & Sustainable Energy, 32, 285-293.
Nourani, V., Hosseini Baghanam, A., Adamowski, J., & Kisi, O. (2014). Applications of hybrid Wavelet-Artificial Intelligence models in hydrology, Journal of Hydrology, 514, 358-377.
Logothetis, N., & Wynn, H.P. (1994). Quality through design: Experimental design, off-line quality control, and Taguchi's contributions, New York: Oxford University Press.
Piuleac, C.G., Curteanu, S., Rodrigo, M.A., Sáez, C., & Fernández, F.J. (2013). Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes, Central European Journal of Chemistry, 11, 1213-1224.
Batista, A.C.L., Freitas Silva, M.C., Batista, J.B., Nascimento, A.E., & Campos-Takaki, G.M. (2013). Eco-friendly chitosan production by Syncephalastrum racemosum and application to the removal of Acid Orange 7 (AO7) from wastewaters, Molecules, 18, 7646-7660.
Satapathy, A., Patnaik, A., & Pradhan, M.K. (2009). A study on processing, characterization and erosion behavior of fish (Labeo rohita) scale filled epoxy matrix composites, Materials & Design, 30, 2359-2371.
2014; 514
2013; 18
2009; 30
2013; 219
2013; 11
2013; 32
2013; 23
2013; 52
2013; 128
2013; 91
2008
2014; 13
2013; 141
1994
2011; 49
2014; 87
2014; 20
2012; 9
2011; 274
e_1_2_6_21_1
Logothetis N. (e_1_2_6_17_1) 1994
Gen M. (e_1_2_6_15_1) 2008
Maleki A. (e_1_2_6_19_1) 2013; 52
Piuleac C.G. (e_1_2_6_20_1) 2013; 11
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_18_1
Taheri M. (e_1_2_6_10_1) 2014; 13
e_1_2_6_16_1
References_xml – reference: Batista, A.C.L., Freitas Silva, M.C., Batista, J.B., Nascimento, A.E., & Campos-Takaki, G.M. (2013). Eco-friendly chitosan production by Syncephalastrum racemosum and application to the removal of Acid Orange 7 (AO7) from wastewaters, Molecules, 18, 7646-7660.
– reference: Lim, C.K., Aris, A., Neoh, C.H., Lam, C.Y., Majid, Z.A., & Ibrahim, Z. (2014). Evaluation of macrocomposite based sequencing batch biofilm reactor (MC-SBBR) for decolorization and biodegradation of azo dye Acid Orange 7, International Biodeterioration & Biodegradation, 87, 9-17.
– reference: Nourani, V., Hosseini Baghanam, A., Adamowski, J., & Kisi, O. (2014). Applications of hybrid Wavelet-Artificial Intelligence models in hydrology, Journal of Hydrology, 514, 358-377.
– reference: Xiansheng, N., Zhenggan, Z., Xiongwei, W., & Luming, L. (2011). The use of Taguchi method to optimize the laser welding of sealing neuro-stimulator, Optics & Lasers in Engineering, 49, 297-304.
– reference: Taheri, M., Alavi Moghaddam, M.R., & Arami, M. (2014). A comparative study on removal of four types of acid azo dyes using electrocoagulation process, Environmental Engineering & Management Journal, 13, 557-564.
– reference: Piuleac, C.G., Curteanu, S., Rodrigo, M.A., Sáez, C., & Fernández, F.J. (2013). Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes, Central European Journal of Chemistry, 11, 1213-1224.
– reference: Logothetis, N., & Wynn, H.P. (1994). Quality through design: Experimental design, off-line quality control, and Taguchi's contributions, New York: Oxford University Press.
– reference: Taheri, M., Alavi Moghaddam, M.R., & Arami, M. (2013). Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models, Journal of Environmental Management, 128, 798-806.
– reference: Satapathy, A., Patnaik, A., & Pradhan, M.K. (2009). A study on processing, characterization and erosion behavior of fish (Labeo rohita) scale filled epoxy matrix composites, Materials & Design, 30, 2359-2371.
– reference: Gen, M., Cheng, R., & Lin, L. (2008). Network models and optimization: Multiobjective genetic algorithm approach (decision engineering), London: Springer.
– reference: Yildiz, Y.S., Şenyiğit, E., & İrdemez, S. (2013). Optimization of specific energy consumption for Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using Taguchi-neural method, Neural Computing & Applications, 23, 1061-1069.
– reference: Shoabargh, S., Karimi, A., Dehghan, G., & Khataee, A. (2014). A hybrid photocatalytic and enzymatic process using glucose oxidase immobilized on TiO2/polyurethane for removal of a dye, Journal of Industrial & Engineering Chemistry, 20, 3150-3156.
– reference: Hai, F.I., Yamamoto, K., Nakajima, F., Fukushi, K., Nghiem, L.D., Price, W.E., & Jin, B. (2013). Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolour, Bioresource Technology, 141, 29-34.
– reference: Bhatti, M.S., Kapoor, D., Kali, R.K., Reddy, A.S., & Thukral, A.K. (2011). RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach, Desalination, 274, 74-80.
– reference: Daneshvar, E., Kousha, M., Koutahzadeh, N., Sohrabi, M.S., & Bhatnagar, A. (2013). Biosorption and bioaccumulation studies of acid Orange 7 dye by Ceratophylum demersum, Environmental Progress & Sustainable Energy, 32, 285-293.
– reference: Maleki, A., Daraei, H., Shahmoradi, B., Razee, S., & Ghobadi, N. (2013). Electrocoagulation efficiency and energy consumption probing by artificial intelligent approaches, Desalination & Water Treatment, 52, 1-12.
– reference: Guo, Y., Zhu, Z., Qiu, Y., & Zhao, J. (2013). Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect, Chemical Engineering Journal, 219, 69-77.
– reference: Amani-Ghadim, A.R., Olad, A., Aber, S., & Ashassi-Sorkhabi, H. (2013). Comparison of organic dyes removal mechanism in electrocoagulation process using iron and aluminum anodes, Environmental Progress & Sustainable Energy, 32, 547-556.
– reference: Constantin, M., Asmarandei, I., Harabagiu, V., Ghimici, L., Ascenzi, P., & Fundueanu, G. (2013). Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres, Carbohydrate Polymers, 91, 74-84.
– reference: Basiri Parsa, J., Golmirzaei, M., & Abbasi, M. (2014). Degradation of azo dye C.I. Acid Red 18 in aqueous solution by ozone-electrolysis process, Journal of Industrial & Engineering Chemistry, 20, 689-694.
– reference: Taheri, M., Alavi Moghaddam, M.R., & Arami, M. (2012). Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology, Iranian Journal of Environmental Health Science & Engineering, 9, 23.
– volume: 11
  start-page: 1213
  year: 2013
  end-page: 1224
  article-title: Optimization methodology based on neural networks and genetic algorithms applied to electro‐coagulation processes
  publication-title: Central European Journal of Chemistry
– volume: 91
  start-page: 74
  year: 2013
  end-page: 84
  article-title: Removal of anionic dyes from aqueous solutions by an ion‐exchanger based on pullulan microspheres
  publication-title: Carbohydrate Polymers
– volume: 87
  start-page: 9
  year: 2014
  end-page: 17
  article-title: Evaluation of macrocomposite based sequencing batch biofilm reactor (MC‐SBBR) for decolorization and biodegradation of azo dye Acid Orange 7
  publication-title: International Biodeterioration & Biodegradation
– volume: 32
  start-page: 285
  year: 2013
  end-page: 293
  article-title: Biosorption and bioaccumulation studies of acid Orange 7 dye by
  publication-title: Environmental Progress & Sustainable Energy
– volume: 20
  start-page: 689
  year: 2014
  end-page: 694
  article-title: Degradation of azo dye C.I. Acid Red 18 in aqueous solution by ozone‐electrolysis process
  publication-title: Journal of Industrial & Engineering Chemistry
– volume: 32
  start-page: 547
  year: 2013
  end-page: 556
  article-title: Comparison of organic dyes removal mechanism in electrocoagulation process using iron and aluminum anodes
  publication-title: Environmental Progress & Sustainable Energy
– volume: 219
  start-page: 69
  year: 2013
  end-page: 77
  article-title: Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect
  publication-title: Chemical Engineering Journal
– year: 2008
– volume: 52
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Electrocoagulation efficiency and energy consumption probing by artificial intelligent approaches
  publication-title: Desalination & Water Treatment
– volume: 18
  start-page: 7646
  year: 2013
  end-page: 7660
  article-title: Eco‐friendly chitosan production by and application to the removal of Acid Orange 7 (AO7) from wastewaters
  publication-title: Molecules
– volume: 141
  start-page: 29
  year: 2013
  end-page: 34
  article-title: Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of
  publication-title: Bioresource Technology
– volume: 30
  start-page: 2359
  year: 2009
  end-page: 2371
  article-title: A study on processing, characterization and erosion behavior of fish ( ) scale filled epoxy matrix composites
  publication-title: Materials & Design
– volume: 13
  start-page: 557
  year: 2014
  end-page: 564
  article-title: A comparative study on removal of four types of acid azo dyes using electrocoagulation process
  publication-title: Environmental Engineering & Management Journal
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  article-title: Applications of hybrid Wavelet‐Artificial Intelligence models in hydrology
  publication-title: Journal of Hydrology
– volume: 49
  start-page: 297
  year: 2011
  end-page: 304
  article-title: The use of Taguchi method to optimize the laser welding of sealing neuro‐stimulator
  publication-title: Optics & Lasers in Engineering
– volume: 23
  start-page: 1061
  year: 2013
  end-page: 1069
  article-title: Optimization of specific energy consumption for Bomaplex Red CR‐L dye removal from aqueous solution by electrocoagulation using Taguchi‐neural method
  publication-title: Neural Computing & Applications
– volume: 274
  start-page: 74
  year: 2011
  end-page: 80
  article-title: RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach
  publication-title: Desalination
– year: 1994
– volume: 128
  start-page: 798
  year: 2013
  end-page: 806
  article-title: Techno‐economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models
  publication-title: Journal of Environmental Management
– volume: 20
  start-page: 3150
  year: 2014
  end-page: 3156
  article-title: A hybrid photocatalytic and enzymatic process using glucose oxidase immobilized on TiO /polyurethane for removal of a dye
  publication-title: Journal of Industrial & Engineering Chemistry
– volume: 9
  start-page: 23
  year: 2012
  article-title: Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology
  publication-title: Iranian Journal of Environmental Health Science & Engineering
– ident: e_1_2_6_13_1
  doi: 10.1016/j.jhydrol.2014.03.057
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jenvman.2013.06.029
– ident: e_1_2_6_6_1
  doi: 10.1016/j.carbpol.2012.08.005
– ident: e_1_2_6_7_1
  doi: 10.1016/j.biortech.2013.02.020
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jiec.2013.11.058
– volume: 52
  start-page: 1
  year: 2013
  ident: e_1_2_6_19_1
  article-title: Electrocoagulation efficiency and energy consumption probing by artificial intelligent approaches
  publication-title: Desalination & Water Treatment
– ident: e_1_2_6_22_1
  doi: 10.1007/s00521-012-1031-1
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jiec.2013.05.034
– ident: e_1_2_6_18_1
  doi: 10.1016/j.desal.2011.01.083
– volume-title: Network models and optimization: Multiobjective genetic algorithm approach (decision engineering)
  year: 2008
  ident: e_1_2_6_15_1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.matdes.2008.10.033
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ibiod.2013.10.022
– ident: e_1_2_6_5_1
  doi: 10.3390/molecules18077646
– ident: e_1_2_6_3_1
  doi: 10.1002/ep.11623
– volume: 11
  start-page: 1213
  year: 2013
  ident: e_1_2_6_20_1
  article-title: Optimization methodology based on neural networks and genetic algorithms applied to electro‐coagulation processes
  publication-title: Central European Journal of Chemistry
– ident: e_1_2_6_4_1
  doi: 10.1016/j.cej.2012.12.084
– ident: e_1_2_6_12_1
  doi: 10.1186/1735-2746-9-23
– ident: e_1_2_6_16_1
  doi: 10.1016/j.optlaseng.2010.11.005
– volume: 13
  start-page: 557
  year: 2014
  ident: e_1_2_6_10_1
  article-title: A comparative study on removal of four types of acid azo dyes using electrocoagulation process
  publication-title: Environmental Engineering & Management Journal
  doi: 10.30638/eemj.2014.059
– volume-title: Quality through design: Experimental design, off‐line quality control, and Taguchi's contributions
  year: 1994
  ident: e_1_2_6_17_1
– ident: e_1_2_6_11_1
  doi: 10.1002/ep.11656
SSID ssj0063499
Score 2.2193604
Snippet The aim of this research is improvement of the Taguchi design optimization using artificial neural network (ANN) and genetic algorithm (GA) in Acid Orange 7,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1568
SubjectTerms acid azo dyes
artificial neural network
electrocoagulation
genetic algorithm
Taguchi design
Title Improvement of the /Taguchi/ design optimization using artificial intelligence in three acid azo dyes removal by electrocoagulation
URI https://api.istex.fr/ark:/67375/WNG-0S159GSH-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12145
https://www.proquest.com/docview/1768576737
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1944-7442
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1944-7450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063499
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYquLSHFlqqUihypaqcwmZjO06OFAErpKKqgEDqwfJjghCwWe1DYvfKH2dsJ8uCqFT1FCUaO4k99nxjj78h5JtllTWZYYl2vEzQHpdJAZIlUMgKH6MFCdGEP4_z3hk_uhAXTVSlPwsT-SHmC25-ZIT52g9wbUadR9JQGHhmBO7Pl3dZHryp33PmqJzxkDoSXXSeSM6zlnc2zTptwSeWaNk36t0TmLkIVoO1OXhH_rTfGYNMrncmY7NjZ88oHP_vR1bI2waE0t2oNavkFfTfkzcL1IQfyH1cbQiLh7SuKOJE2jnVlz53Soe6EPdBa5xvbpuDnNRH0F9Sr4mRlIJeLbB94g1WMQSg2l45qmc1dVMY0SHc1qjr1Expk5DH1viSGKC3Rs4O9k_3ekmTsCGxXAqRIHZDbzsXjoPTtuQO4ZoQRrIMQGon0RlzGhGWlTn3vPpOpBmUomCW2VJ2K_aRLPXrPnwiVLosNeD90dJxU6A-lX4HLxW64q7I9TrZbjtP2YbN3CfVuFGRhzlTMFChWdfJ17nkIDJ4vCDzPfT_XEAPr33EmxTq_PhQpScI-g5PeuoHVtYqiMJx6DdXdB_qyUh10W9D3w3LYGWhu__6NrX_K1w__6vgBnmNOE3EI5CbZGk8nMAXxEJjsxW0_gEc3wTl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1ROLQcSj8FLbSuVLWnsCGx40ScAAHbFlZVWVQOlSzHniBE2ayWXQm48scZ28l2qVqp6ilKZDuJPeN5Y4_fALw3aWXKpEwjbXkRkT0uohxlGmEuK3pMFsRHEx72su4x_3wiTuZgsz0LE_ghpgtuTjP8fO0U3C1Id36xhuLQUSNw8QAWeEZuikNE36bcUVnKffJIctJ5JDlPWubZOOm0Ne_ZogXXrVf3gOYsXPX2Zm8JfrRfGsJMztcn43Ld3PxG4vifv_IEHjc4lG0FwXkKczh4Bosz7ITP4TYsOPj1Q1ZXjKAi6_T1qUuf0mHWh36wmqaci-YsJ3NB9KfMCWPgpWBnM4SfdENNjBCZNmeW6Zua2Wu8ZCO8qEncWXnNmpw8pqaXhBi9F3C8t9vf6UZNzobIcClERPCNHO5MWI5Wm4JbQmxClDJNEKW2kvwxqwlkGZlxR61vRZxgIfLUpKaQG1X6EuYH9QCXgUmbxCU6l7SwvMxJpAq3iRcLXXGbZ3oFPrajp0xDaO7yavxUgYo5UThUvltX4N205DCQePyhzAcvANMCenTugt6kUN97-yo-Ity3f9RV29RYKyGKVNHtr-gB1pNLtUGuG7lvVIca8-P917ep3a_--upfC76Fh93-4YE6-NT78hoeEWwT4UTkKsyPRxNcI2g0Lt94FbgDb3sJBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEJ4gJEYfUFQCCFoTo0_LLbvtdjc8iXAc_rgQgcgDSdNtZwlBbi_HXSK8-o87bXfPw2hifNrsZtrdbWfab9rpNwCvTVqZMinTSFteRDQfF1GOMo0wlxU9phnERxN-7me9E_7hVJzOwXZ7FibwQ0wX3Jxl-PHaGTgObdX5xRqKQ0eNwMU9WOCiyF083-6XKXdUlnKfPJKcdB5JzpOWeTZOOm3JO3PRgmvW73eA5ixc9fNN9xGctV8awkwuNyfjctPc_kbi-J-_8hgWGxzK3gXFWYI5HDyBhzPshE_hR1hw8OuHrK4YQUXWOdbnLn1Kh1kf-sFqGnKumrOczAXRnzOnjIGXgl3MEH7SDVUxQmTaXFimb2tmb_CajfCqJnVn5Q1rcvKYml4SYvSewUl37_h9L2pyNkSGSyEigm_kcGfCcrTaFNwSYhOilGmCKLWV5I9ZTSDLyIw7an0r4gQLkacmNYXcqtJlmB_UA1wBJm0Sl-hc0sLyMieVKtwmXix0xW2e6VV42_aeMg2hucur8U0FKuZE4VD5Zl2FV1PJYSDx-IPMG68AUwE9unRBb1Kor_19FR8R7ts_6qkdqqzVEEWm6PZX9ADrybXaIteN3DcqQ5X5_v7r29Teob-u_avgS7h_uNtVnw76H5_DA0JtIhyIXIf58WiCG4SMxuULbwE_AQtKCIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+the+%2FTaguchi%2F+design+optimization+using+artificial+intelligence+in+three+acid+azo+dyes+removal+by+electrocoagulation&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Taheri%2C+Mahsa&rft.au=Moghaddam%2C+Mohammad+Reza+Alavi&rft.au=Arami%2C+Mokhtar&rft.date=2015-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=34&rft.issue=6&rft.spage=1568&rft.epage=1575&rft_id=info:doi/10.1002%2Fep.12145&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0S159GSH_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon