Single-trial motor imagery electroencephalogram intention recognition by optimal discriminant hyperplane and interpretable discriminative rectangle mixture model
Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (...
Saved in:
Published in | Cognitive neurodynamics Vol. 16; no. 5; pp. 1073 - 1085 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1871-4080 1871-4099 |
DOI | 10.1007/s11571-021-09768-w |
Cover
Abstract | Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (ODH—CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal
N
discriminant vectors corresponding to the
N
extreme value of the criterion are solved and constructed into the
N
-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the
N
-dimensional optimal projection space to obtain the optimal
N
-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI. |
---|---|
AbstractList | Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (ODH—CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal
N
discriminant vectors corresponding to the
N
extreme value of the criterion are solved and constructed into the
N
-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the
N
-dimensional optimal projection space to obtain the optimal
N
-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI. Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (ODH—CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N-dimensional optimal projection space to obtain the optimal N-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI. Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane-common spatial subspace decomposition (ODH-CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal discriminant vectors corresponding to the extreme value of the criterion are solved and constructed into the -dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the -dimensional optimal projection space to obtain the optimal -dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI. The online version contains supplementary material available at 10.1007/s11571-021-09768-w. Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane-common spatial subspace decomposition (ODH-CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N-dimensional optimal projection space to obtain the optimal N-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane-common spatial subspace decomposition (ODH-CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N-dimensional optimal projection space to obtain the optimal N-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.The online version contains supplementary material available at 10.1007/s11571-021-09768-w.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-021-09768-w. |
Author | Shi, Peiming Li, Weishuai Xu, Dong Fu, Rongrong |
Author_xml | – sequence: 1 givenname: Rongrong orcidid: 0000-0002-4129-1778 surname: Fu fullname: Fu, Rongrong email: frr1102@aliyun.com organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University – sequence: 2 givenname: Dong surname: Xu fullname: Xu, Dong organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University – sequence: 3 givenname: Weishuai surname: Li fullname: Li, Weishuai organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University – sequence: 4 givenname: Peiming surname: Shi fullname: Shi, Peiming organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36237407$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAQtVARfcAPsECR2LAJ2E4c2xskVPGSKrEA1pbjTHJdOXawfVvu5_CnOPe2pXTRhTUjzzlHZzTnFB354AGhlwS_JRjzd4kQxkmNaXmSd6K-foJOiChfLZby6K4X-BidpnSJMesEaZ-h46ajDW8xP0F_vls_OahztNpVc8ghVnbWE8RdBQ5MjgG8gWWjXZiinivrM_hsg68imDB5u-_7XRWWXIiuGmwy0c7Wa5-rzW6BuDjtodJ-2JPjEiHr3sE9ZLZXsOplvZqpZvs7b2OpYQD3HD0dtUvw4qaeoZ-fPv44_1JffPv89fzDRW1a3uZ6FI3RGNgghBGiYR0dSNv3grC2AUxYD30ZsFECF6Cl5O0oOB0HJgc9aMyaM_T-oLts-xkGU7aM2qmlONRxp4K26v-Jtxs1hSslGRYNWQXe3AjE8GsLKau5LAhu3T5sk6KcMiKZ5LRAXz-AXoZt9GU9RSURnaBU8IJ6dd_RnZXb6xWAOABMDClFGJWxWa8HKQatUwSrNSjqEBRVgqL2QVHXhUofUG_VHyU1B1IqYF8y8s_2I6y_Gb3X2Q |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_1016_j_asoc_2024_112087 |
Cites_doi | 10.1155/2015/720450 10.1016/j.cogsys.2018.08.018 10.1198/016214502760047131 10.3233/ICA-130439 10.1109/TNSRE.2016.2627809 10.1007/s11571-021-09684-z 10.20965/jaciii.2019.p0274 10.1109/T-C.1975.224208 10.1016/j.bspc.2020.102171 10.1109/TBME.2014.2345458 10.1109/TBME.2018.2875024 10.1109/TBME.2018.2865941 10.1109/TPAMI.2014.2330598 10.1109/TFUZZ.2017.2688423 10.1109/TBME.2015.2487738 10.1016/j.ifacol.2016.10.627 10.1016/j.neunet.2020.02.023 10.1007/s11634-013-0129-3 10.1109/TBME.2004.826688 10.1016/j.bspc.2020.102103 10.1109/TBME.2008.919125 10.1142/S0129065718500156 10.1016/j.neuroimage.2007.01.051 10.1016/0098-3004(84)90020-7 10.1109/LSP.2018.2823683 10.1016/j.neures.2015.10.003 10.1109/TBME.2018.2881051 10.1016/B978-0-12-816179-1.00003-7 10.1109/EMBC.2015.7320066 10.1145/354756.354775 10.1155/2018/9270685 10.1155/2015/265637 10.1109/ICDM.2016.0097 10.1109/TFUZZ.2019.2892921 10.1109/ICDSP.2018.8631618 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0S M7P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ 7X8 5PM |
DOI | 10.1007/s11571-021-09768-w |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Computer Science |
EISSN | 1871-4099 |
EndPage | 1085 |
ExternalDocumentID | PMC9508315 36237407 10_1007_s11571_021_09768_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant No. 61806174 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: the central guidance on local science and technology development fund of hebei province grantid: 206Z0301G – fundername: Natural Science Foundation of Hebei Province grantid: Grant No. F2020203070 funderid: http://dx.doi.org/10.13039/501100003787 – fundername: natural science foundation of hebei province grantid: Grant No. E2018203433 funderid: http://dx.doi.org/10.13039/501100003787 – fundername: china postdoctoral science foundation grantid: Grant No. 2016M600193 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: national natural science foundation of china grantid: Grant No. 62073282; Grant No. 61973262 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: ; grantid: Grant No. F2020203070 – fundername: ; grantid: Grant No. 2016M600193 – fundername: ; grantid: Grant No. E2018203433 – fundername: ; grantid: Grant No. 62073282; Grant No. 61973262 – fundername: ; grantid: 206Z0301G – fundername: ; grantid: Grant No. 61806174 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 7X7 875 8FI 8FJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARMRJ AXYYD B-. BA0 BAWUL BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DIK DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KPH LLZTM M4Y M7P MA- NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 OVD P2P PF0 PSYQQ PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TR2 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 3V. 7XB 8FE 8FG 8FH 8FK AZQEC DWQXO GNUQQ JQ2 K9. LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-f83ca0e5d88c883562d14bb81543e015beb8c85f9e78ea9974f872fd59dada053 |
IEDL.DBID | AGYKE |
ISSN | 1871-4080 |
IngestDate | Tue Sep 30 17:11:21 EDT 2025 Fri Sep 05 13:17:25 EDT 2025 Fri Jul 25 10:59:29 EDT 2025 Wed Feb 19 02:08:56 EST 2025 Thu Apr 24 22:58:54 EDT 2025 Wed Oct 01 03:34:42 EDT 2025 Fri Feb 21 02:45:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Optimal discriminant hyperplane Interpretable clustering Motor imagery Electroencephalogram (EEG) |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-f83ca0e5d88c883562d14bb81543e015beb8c85f9e78ea9974f872fd59dada053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4129-1778 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9508315 |
PMID | 36237407 |
PQID | 2918682287 |
PQPubID | 2043944 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9508315 proquest_miscellaneous_2725195972 proquest_journals_2918682287 pubmed_primary_36237407 crossref_citationtrail_10_1007_s11571_021_09768_w crossref_primary_10_1007_s11571_021_09768_w springer_journals_10_1007_s11571_021_09768_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationTitle | Cognitive neurodynamics |
PublicationTitleAbbrev | Cogn Neurodyn |
PublicationTitleAlternate | Cogn Neurodyn |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Yamada, Inokawa, Hori, Pan, Matsuzaki, Nakamura (CR39) 2016; 105 Foley, Sammon (CR14) 1975; 100 CR19 Zeng, Tang, Ji, Si (CR40) 2020; 126 Bezdek, Ehrlich, Full (CR5) 1984; 10 Cui, Zhang, Wang (CR13) 2016; 49 CR11 CR33 Meng, Yao, Sheng, Zhang, Zhu (CR28) 2014; 62 CR32 Zhang, Tong, Zeng, Jiang, Bu, Yan, Li (CR41) 2015 CR31 Blankertz, Dornhege, Krauledat, Müller, Curio (CR9) 2007; 37 Gaurav, Anand, Kumar (CR20) 2021 Hua, Wang, Wang, Lu, Liu, Khalid (CR21) 2019; 29 Fraiman, Ghattas, Svarc (CR15) 2013; 7 Aghaei, Mahanta, Plataniotis (CR1) 2015; 63 Mishchenko, Kaya, Ozbay, Yanar (CR29) 2018; 66 Wu, Gao, Hong, Gao (CR36) 2008; 55 Ahmed, Al Barazanchi, Jaaz, Abdulshaheed (CR3) 2019; 7 Zhang, Wang, Wu (CR43) 2013; 20 CR4 Chen, Wang, Hua (CR10) 2018; 52 Fraley, Raftery (CR16) 2002; 97 Bishop (CR8) 2006 Fu, Li, Chen, Han (CR17) 2021; 63 Wang, Gittens, Mahoney (CR35) 2019; 20 Zhang, Sun, Cong, Kujala, Ristaniemi, Parviainen (CR42) 2020; 62 CR7 Li, Gao, Liu, Gao (CR25) 2004; 51 CR27 CR26 Agrawal, Tripathy (CR2) 2019; 3 Chen, Jiang, Zhang (CR12) 2019; 23 CR23 CR22 Wu, Chen, Gao, Li, Brown, Gao (CR37) 2014; 37 Mishuhina, Jiang (CR30) 2018; 25 Sun, Fu, Xiong, Yang, Liu, Yu (CR34) 2015; 41 Kshirsagar, Londhe (CR24) 2018; 66 Wu, King, Chuang, Lin, Jung (CR38) 2017; 26 Fu, Xiong, Jiang, Xu, Li, Li (CR18) 2016; 25 Bhattacharyya, Ranta, Le Cam, Louis-Dorr, Tyvaert, Colnat-Coulbois, Pachori (CR6) 2018; 66 B Blankertz (9768_CR9) 2007; 37 9768_CR19 C Zhang (9768_CR43) 2013; 20 Y Mishchenko (9768_CR29) 2018; 66 9768_CR4 S Wang (9768_CR35) 2019; 20 CM Bishop (9768_CR8) 2006 9768_CR7 V Mishuhina (9768_CR30) 2018; 25 CC Hua (9768_CR21) 2019; 29 Y Li (9768_CR25) 2004; 51 C Zhang (9768_CR42) 2020; 62 JC Bezdek (9768_CR5) 1984; 10 JC Chen (9768_CR10) 2018; 52 GB Kshirsagar (9768_CR24) 2018; 66 JX Chen (9768_CR12) 2019; 23 G Gaurav (9768_CR20) 2021 9768_CR11 9768_CR33 9768_CR32 9768_CR31 H Yamada (9768_CR39) 2016; 105 X Cui (9768_CR13) 2016; 49 YF Fu (9768_CR18) 2016; 25 T Zeng (9768_CR40) 2020; 126 DH Foley (9768_CR14) 1975; 100 JJ Meng (9768_CR28) 2014; 62 R Fraiman (9768_CR15) 2013; 7 W Wu (9768_CR36) 2008; 55 W Wu (9768_CR37) 2014; 37 HW Sun (9768_CR34) 2015; 41 DR Wu (9768_CR38) 2017; 26 9768_CR27 AS Aghaei (9768_CR1) 2015; 63 9768_CR26 R Fu (9768_CR17) 2021; 63 C Zhang (9768_CR41) 2015 C Fraley (9768_CR16) 2002; 97 A Agrawal (9768_CR2) 2019; 3 SRA Ahmed (9768_CR3) 2019; 7 9768_CR23 9768_CR22 A Bhattacharyya (9768_CR6) 2018; 66 |
References_xml | – year: 2015 ident: CR41 article-title: Automatic artifact removal from electroencephalogram data based on a priori artifact information publication-title: Biomed Res Int doi: 10.1155/2015/720450 – ident: CR22 – volume: 52 start-page: 715 year: 2018 end-page: 728 ident: CR10 article-title: Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.08.018 – ident: CR4 – volume: 97 start-page: 611 issue: 458 year: 2002 end-page: 631 ident: CR16 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: J Am Stat Ass doi: 10.1198/016214502760047131 – volume: 41 start-page: 1686 issue: 9 year: 2015 end-page: 1692 ident: CR34 article-title: Identification of EEG induced by motor imagery based on hilbert-huang transform publication-title: Acta Automatica Sinica – volume: 20 start-page: 391 issue: 4 year: 2013 end-page: 405 ident: CR43 article-title: EEG-based expert system using complexity measures and probability density function control in alpha sub-band publication-title: Integr Comput-aided Eng doi: 10.3233/ICA-130439 – volume: 25 start-page: 1641 issue: 9 year: 2016 end-page: 1652 ident: CR18 article-title: Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2627809 – ident: CR33 – year: 2021 ident: CR20 article-title: Eeg based cognitive task classification using multifractal detrended fluctuation analysis publication-title: Cogn Neurodyn doi: 10.1007/s11571-021-09684-z – volume: 23 start-page: 274 issue: 2 year: 2019 end-page: 281 ident: CR12 article-title: A common spatial pattern and wavelet packet decomposition combined method for EEG-based emotion recognition publication-title: J Adv Comput Intell Intell Inform doi: 10.20965/jaciii.2019.p0274 – volume: 100 start-page: 281 issue: 3 year: 1975 end-page: 289 ident: CR14 article-title: An optimal set of discriminant vectors publication-title: IEEE Trans Comput doi: 10.1109/T-C.1975.224208 – volume: 63 year: 2021 ident: CR17 article-title: Recognizing single-trial motor imagery eeg based on interpretable clustering method publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102171 – volume: 62 start-page: 227 issue: 1 year: 2014 end-page: 240 ident: CR28 article-title: Simultaneously optimizing spatial spectral features based on mutual information for EEG classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2345458 – volume: 7 start-page: 448 issue: 2 year: 2019 end-page: 457 ident: CR3 article-title: Clustering algorithms subjected to K-mean and gaussian mixture model on multidimensional data set publication-title: Period Eng Nat Sci – volume: 66 start-page: 2992 issue: 11 year: 2018 end-page: 3005 ident: CR24 article-title: Improving performance of Devanagari script input-based P300 speller using deep learning publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2875024 – volume: 66 start-page: 977 issue: 4 year: 2018 end-page: 987 ident: CR29 article-title: Developing a three-to six-state EEG-based brain-computer interface for a virtual robotic manipulator control publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2865941 – volume: 37 start-page: 639 issue: 3 year: 2014 end-page: 653 ident: CR37 article-title: Probabilistic common spatial patterns for multichannel EEG analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2330598 – volume: 26 start-page: 771 issue: 2 year: 2017 end-page: 781 ident: CR38 article-title: Spatial filtering for EEG-based regression problems in brain–computer interface (BCI) publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2688423 – ident: CR27 – volume: 63 start-page: 15 issue: 1 year: 2015 end-page: 29 ident: CR1 article-title: Separable common spatio-spectral patterns for motor imagery BCI systems publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2487738 – volume: 49 start-page: 567 issue: 19 year: 2016 end-page: 572 ident: CR13 article-title: Identification of mental workload using imbalanced EEG data and DySMOTE-based neural network approach publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.627 – ident: CR23 – volume: 126 start-page: 21 year: 2020 end-page: 35 ident: CR40 article-title: Neurobayesslam: neurobiologically inspired bayesian integration of multisensory information for robot navigation publication-title: Neural Netw doi: 10.1016/j.neunet.2020.02.023 – volume: 7 start-page: 125 issue: 2 year: 2013 end-page: 145 ident: CR15 article-title: Interpretable clustering using unsupervised binary trees publication-title: Adv Data Anal Classif doi: 10.1007/s11634-013-0129-3 – volume: 51 start-page: 1019 issue: 6 year: 2004 end-page: 1025 ident: CR25 article-title: Classification of single-trial electroencephalogram during finger movement publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.826688 – ident: CR19 – volume: 62 year: 2020 ident: CR42 article-title: Optimal imaging of multi-channel EEG features based on a novel clustering technique for driver fatigue detection publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102103 – volume: 20 start-page: 431 issue: 1 year: 2019 end-page: 479 ident: CR35 article-title: Scalable kernel K-means clustering with Nyström approximation: relative-error bounds publication-title: J Mach Learn Res – volume: 55 start-page: 1733 issue: 6 year: 2008 end-page: 1743 ident: CR36 article-title: Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL) publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.919125 – volume: 29 start-page: 1850015 issue: 01 year: 2019 ident: CR21 article-title: A novel method of building functional brain network using deep learning algorithm with application in proficiency detection publication-title: Int J Neural Syst doi: 10.1142/S0129065718500156 – ident: CR31 – volume: 3 start-page: 156 year: 2019 end-page: 169 ident: CR2 article-title: Efficiency analysis of hybrid fuzzy C-means clustering algorithms and their application to compute the severity of disease in plant leaves publication-title: Comput Rev J – ident: CR11 – ident: CR32 – volume: 37 start-page: 539 issue: 2 year: 2007 end-page: 550 ident: CR9 article-title: The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – year: 2006 ident: CR8 publication-title: Pattern recognition and machine learning, chapter 9, mixture models and EM – ident: CR7 – volume: 10 start-page: 191 issue: 2–3 year: 1984 end-page: 203 ident: CR5 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – ident: CR26 – volume: 25 start-page: 783 issue: 6 year: 2018 end-page: 787 ident: CR30 article-title: Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2823683 – volume: 105 start-page: 2 year: 2016 end-page: 18 ident: CR39 article-title: Characteristics of fast-spiking neurons in the striatum of behaving monkeys publication-title: Neurosci Res doi: 10.1016/j.neures.2015.10.003 – volume: 66 start-page: 1915 issue: 7 year: 2018 end-page: 1926 ident: CR6 article-title: A multi-channel approach for cortical stimulation artefact suppression in depth EEG signals using time-frequency and spatial filtering publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2881051 – volume: 49 start-page: 567 issue: 19 year: 2016 ident: 9768_CR13 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.627 – ident: 9768_CR7 doi: 10.1016/B978-0-12-816179-1.00003-7 – volume: 97 start-page: 611 issue: 458 year: 2002 ident: 9768_CR16 publication-title: J Am Stat Ass doi: 10.1198/016214502760047131 – volume: 25 start-page: 1641 issue: 9 year: 2016 ident: 9768_CR18 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2627809 – volume: 105 start-page: 2 year: 2016 ident: 9768_CR39 publication-title: Neurosci Res doi: 10.1016/j.neures.2015.10.003 – ident: 9768_CR33 doi: 10.1109/EMBC.2015.7320066 – volume: 23 start-page: 274 issue: 2 year: 2019 ident: 9768_CR12 publication-title: J Adv Comput Intell Intell Inform doi: 10.20965/jaciii.2019.p0274 – volume: 100 start-page: 281 issue: 3 year: 1975 ident: 9768_CR14 publication-title: IEEE Trans Comput doi: 10.1109/T-C.1975.224208 – volume: 62 year: 2020 ident: 9768_CR42 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102103 – year: 2015 ident: 9768_CR41 publication-title: Biomed Res Int doi: 10.1155/2015/720450 – year: 2021 ident: 9768_CR20 publication-title: Cogn Neurodyn doi: 10.1007/s11571-021-09684-z – ident: 9768_CR26 doi: 10.1145/354756.354775 – volume: 41 start-page: 1686 issue: 9 year: 2015 ident: 9768_CR34 publication-title: Acta Automatica Sinica – volume: 55 start-page: 1733 issue: 6 year: 2008 ident: 9768_CR36 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.919125 – volume: 37 start-page: 639 issue: 3 year: 2014 ident: 9768_CR37 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2330598 – volume: 3 start-page: 156 year: 2019 ident: 9768_CR2 publication-title: Comput Rev J – ident: 9768_CR19 doi: 10.1155/2018/9270685 – volume: 7 start-page: 448 issue: 2 year: 2019 ident: 9768_CR3 publication-title: Period Eng Nat Sci – volume: 26 start-page: 771 issue: 2 year: 2017 ident: 9768_CR38 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2688423 – volume: 66 start-page: 2992 issue: 11 year: 2018 ident: 9768_CR24 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2875024 – volume: 62 start-page: 227 issue: 1 year: 2014 ident: 9768_CR28 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2345458 – volume: 7 start-page: 125 issue: 2 year: 2013 ident: 9768_CR15 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-013-0129-3 – volume: 66 start-page: 1915 issue: 7 year: 2018 ident: 9768_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2881051 – ident: 9768_CR23 doi: 10.1155/2015/265637 – volume: 20 start-page: 431 issue: 1 year: 2019 ident: 9768_CR35 publication-title: J Mach Learn Res – volume: 52 start-page: 715 year: 2018 ident: 9768_CR10 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.08.018 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 9768_CR5 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume-title: Pattern recognition and machine learning, chapter 9, mixture models and EM year: 2006 ident: 9768_CR8 – ident: 9768_CR11 doi: 10.1109/ICDM.2016.0097 – ident: 9768_CR27 – ident: 9768_CR31 – ident: 9768_CR4 – volume: 20 start-page: 391 issue: 4 year: 2013 ident: 9768_CR43 publication-title: Integr Comput-aided Eng doi: 10.3233/ICA-130439 – volume: 37 start-page: 539 issue: 2 year: 2007 ident: 9768_CR9 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – volume: 51 start-page: 1019 issue: 6 year: 2004 ident: 9768_CR25 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.826688 – volume: 66 start-page: 977 issue: 4 year: 2018 ident: 9768_CR29 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2865941 – volume: 63 start-page: 15 issue: 1 year: 2015 ident: 9768_CR1 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2487738 – ident: 9768_CR32 doi: 10.1109/TFUZZ.2019.2892921 – volume: 25 start-page: 783 issue: 6 year: 2018 ident: 9768_CR30 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2823683 – volume: 29 start-page: 1850015 issue: 01 year: 2019 ident: 9768_CR21 publication-title: Int J Neural Syst doi: 10.1142/S0129065718500156 – volume: 63 year: 2021 ident: 9768_CR17 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102171 – volume: 126 start-page: 21 year: 2020 ident: 9768_CR40 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.02.023 – ident: 9768_CR22 doi: 10.1109/ICDSP.2018.8631618 |
SSID | ssj0056814 |
Score | 2.2990913 |
Snippet | Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1073 |
SubjectTerms | Algorithms Artificial Intelligence Biochemistry Biomedical and Life Sciences Biomedicine Brain Classification Clustering Cognitive Psychology Computer applications Computer Science Cost function Covariance matrix Criteria Decomposition EEG Eigenvalues Eigenvectors Electroencephalography Extreme values Feature extraction Human-computer interface Hyperplanes Imagery Implants Mental task performance Mixtures Neurosciences Optimization Research Article Spatial filtering |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZguXBBwPIILMhIiAtYNE69dk5ohSgrJLjASnuL4thRKzVJ6Xa19OfwT_nGcVLKir1VseMmmYdnPDPfMPba61SBml4oV8JB8VKLUmW1SK01amIpq5IKhb9-Oz49m345V-fxwO0iplUOOjEoatdVdEb-XuYE7C5h4H9Y_RTUNYqiq7GFxm12J5XgJKoUn30eNDFha4WoMpwC-ElmEotm-tK5VOEqJShMsCMbcbW_MV2zNq8nTf4TOQ0b0uw-uxctSX7Sk_4Bu-Xbh-zwpIUX3Wz5Gx5yO8Oh-SH7_R1LLL0IPTo4qNOt-aIh-Iotj41wSMJX8zJAWDecUCRCHiQfM4zw2255BxXTYA2q5u07grUbPoczu15R2iwvWxdu7hMZ7dL_NZM0K60HexQPw5vFLwpf8NCM5xE7m3368fFUxOYMoprq6UbUJqvKiVfOmMrAjDuWLp2CwDDJMg8bw3qLAVXnXhtf5nBbaqNl7VTuSldC9B-zg7Zr_VPGM13rtLK59zA2QOFcgX0qUzmsWUN_JCwdKFNUEbmcGmgsix3mMlGzADWLQM3iKmFvx3tWPW7HjbOPBoIXUYYvih3HJezVOAzpo5AKvmh3iTlaBngeLRP2pOeP8e9gGmQa_nLC9B7njBMI2Xt_pF3MA8I3tebNUpWwdwOP7R7r_2_x7Oa3eM7uSqrdCJmIR-xgs770L2BRbezLIDZ_AL81I5A priority: 102 providerName: ProQuest |
Title | Single-trial motor imagery electroencephalogram intention recognition by optimal discriminant hyperplane and interpretable discriminative rectangle mixture model |
URI | https://link.springer.com/article/10.1007/s11571-021-09768-w https://www.ncbi.nlm.nih.gov/pubmed/36237407 https://www.proquest.com/docview/2918682287 https://www.proquest.com/docview/2725195972 https://pubmed.ncbi.nlm.nih.gov/PMC9508315 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1871-4099 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1871-4099 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1871-4099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: AFBBN dateStart: 20070301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1871-4099 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1871-4099 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: BENPR dateStart: 20070301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1871-4099 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: 7X7 dateStart: 20070301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1871-4099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1871-4099 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: U2A dateStart: 20070301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7oUXBhsfgTEZCfECmZqknp3HgtpOICYEVCpPUZw4akWTVl2qUf4b_lN-dj5KN0DaQ9Mqvjh2fDnf9e5-R_RSC49jNbXL0xgGivaFG_Mgcz2lJO8qE1VpEoU_Xpydj3vvJ3xSJ4VdNtHujUvSSuptspvHBUxfHx_sodK92qN9bgyUDu33R98-DBoJbDC1rDcZxgDsI9mtk2X-3svuhnRDy7wZLHnNY2o3ouEBjZspVPEn30_XpTpNfl5Dd7ztHO_TvVozZf2KlR7QHV0c0lG_gFWeb9grZmNF7Z_wh3TQFINgtWw4ol9fcKO5dm0ZEAYGWKzYLDcIGRtW19oxhMtpbFGyc2aAKmyoJWuDmPBbbdgCUixHHyZhuCo6VpRsCnt5tTSRuSwuUntxFSup5voPSiO8TX9QeTEYls9-GA8Js_V-HtJ4OPj67tyt6z-4SU_0SjeTQRJ3NU-lTCQ0xTM_9XrgIWh9gYYao7RCA89CLaSOQ1hGmRR-lvIwjdMY0uURdYpFoZ8QC0QmvESFWkOf8WFkcnBoIpMUfWYQUQ55DRNESQ2Obmp0zKMtrLNZmghLE9mlia4cet1es6ygQf5LfdzwVlSLicvID021AoxHOPSibcYLbrw2eKKLNWiEbxGAhO_Q44oV29tB-wgETHKHxA6TtgQGPHy3pZhNLYi4qf4beNyhNw0nbof171k8vR35M7rrm3QRG_x4TJ1ytdbPocSV6oT2xETgKIejk_r9xffbwcWnzzg7mng4jv3-b2o2Sco |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAXRCmPtAWMBFzAInHi2jkgVAHVlj4utNLeQpw42pU2ybLdatmfwx_gNzLjPJalorfeVrHjdTLj8TfxzDcAr6wKJErTcpmn6KBYoXgqw4IHxmjpG4qqpETh07P9wUX0dSiHG_C7y4WhsMrOJjpDndcZfSN_L2IidhcI8D9Of3CqGkWnq10JjUYtju1ygS7b5Yejzyjf10Icfjn_NOBtVQGeRSqa80KHWepbmWudacQf-yIPIpwZYonQ4uZorMEGWcRWaZvGiLcLrUSRyzhP89SnKhFo8u9EoR8RV78a9g4ecXm5U2x0QtAv036bpNOk6gUSr1JAhI8IQPPF-kZ4Dd1eD9L856TWbYCHD-B-i1zZQaNqW7Bhq4ewfVCh114u2RvmYkndR_pt-PUNh5hY7mqCMNSGesbGJdFlLFlbeIcsynSUOsrskhFrhYu7ZH1EE_42S1ajSStxDMoebiqQVXM2Qud5NqUwXZZWubu5CZw0E_tXT7LkNB7iX5wMK8c_6biEueI_j-DiVsT2GDarurJPgYWqUEFmYmsR3KBGxRLVNdNZjmMWaK88CDrJJFnLlE4FOybJiuOZpJmgNBMnzWThwdv-nmnDE3Jj771O4ElrMy6TlYZ78LJvxtVORzj4Rusr7KOEowNSwoMnjX70f4dQJFTon3ug1jSn70BM4ust1XjkGMWpFHAYSA_edTq2mtb_n2Ln5qd4AXcH56cnycnR2fEu3BOUN-KiIPdgcz67ss8Qzc3Nc7eEGHy_7TX7B8k4YOI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkRAXHi0UQ4FFQlzAarz2dtfHCIjKq0KCSL1ZfqyVSLETpana_Bz-Kd-sH2koIHGwFGnH441ndnfGM_MN0SurAwVpWl8VKRwUK7WfqrD0gywzapBxViUXCn89OToeR59O1emVKn6X7d6FJJuaBkZpqleHi6I83BS-BUrDDZa4cJ4a_-Im3YpwVrP7NZbDbi9mdC0XV4ZbAE_JDNqymT_z2D6artmb19Mmf4uduiNpdJ_utrakGDbCf0A3bL1Le8MafnS1Fq-Fy-50n8136V7XvkG0q3mPfn4H15n1XeMOAZHNl2JaMabFWrTdcZhwMUkdrnUlpu4VQZCiTzvC72wt5th3KvDgEt-mTVi9EhN4uMsF59KKtC7czU12YzazVyh5u2V-MFIxGVFNLzmmIVyHnoc0Hn348e7Ybzs2-Hmko5VfmjBPB1YVxuQGtt2RLIIIUoedFloYHpnNMKDK2Gpj0xi-TGm0LAsVF2mRYj94RDv1vLaPSYS61EGexdbCApFwCxV0Kjd5AZ4lNhWPgk5YSd7CmXNXjVmyAWJmAScQcOIEnFx49Ka_Z9GAefyT-qDTgaRd2GeJjLm_AOajPXrZD2NJcpwFb3R-DhotHWaPlh7tNyrTPw72QqjhRHukt5SpJ2C47-2RejpxsN_crzcMlEdvO7XbTOvv_-LJ_5G_oNvf3o-SLx9PPj-lO5JrPVzm4gHtrJbn9hkssFX23C2yX_U6Lnc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-trial+motor+imagery+electroencephalogram+intention+recognition+by+optimal+discriminant+hyperplane+and+interpretable+discriminative+rectangle+mixture+model&rft.jtitle=Cognitive+neurodynamics&rft.au=Fu%2C+Rongrong&rft.au=Xu%2C+Dong&rft.au=Li%2C+Weishuai&rft.au=Shi%2C+Peiming&rft.date=2022-10-01&rft.issn=1871-4080&rft.volume=16&rft.issue=5&rft.spage=1073&rft_id=info:doi/10.1007%2Fs11571-021-09768-w&rft_id=info%3Apmid%2F36237407&rft.externalDocID=36237407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon |