Single-trial motor imagery electroencephalogram intention recognition by optimal discriminant hyperplane and interpretable discriminative rectangle mixture model

Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (...

Full description

Saved in:
Bibliographic Details
Published inCognitive neurodynamics Vol. 16; no. 5; pp. 1073 - 1085
Main Authors Fu, Rongrong, Xu, Dong, Li, Weishuai, Shi, Peiming
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1871-4080
1871-4099
DOI10.1007/s11571-021-09768-w

Cover

Abstract Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (ODH—CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N -dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N -dimensional optimal projection space to obtain the optimal N -dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.
AbstractList Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (ODH—CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N -dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N -dimensional optimal projection space to obtain the optimal N -dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.
Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (ODH—CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N-dimensional optimal projection space to obtain the optimal N-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.
Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane-common spatial subspace decomposition (ODH-CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal discriminant vectors corresponding to the extreme value of the criterion are solved and constructed into the -dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the -dimensional optimal projection space to obtain the optimal -dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI. The online version contains supplementary material available at 10.1007/s11571-021-09768-w.
Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane-common spatial subspace decomposition (ODH-CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N-dimensional optimal projection space to obtain the optimal N-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane-common spatial subspace decomposition (ODH-CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N-dimensional optimal projection space to obtain the optimal N-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.The online version contains supplementary material available at 10.1007/s11571-021-09768-w.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-021-09768-w.
Author Shi, Peiming
Li, Weishuai
Xu, Dong
Fu, Rongrong
Author_xml – sequence: 1
  givenname: Rongrong
  orcidid: 0000-0002-4129-1778
  surname: Fu
  fullname: Fu, Rongrong
  email: frr1102@aliyun.com
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University
– sequence: 2
  givenname: Dong
  surname: Xu
  fullname: Xu, Dong
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University
– sequence: 3
  givenname: Weishuai
  surname: Li
  fullname: Li, Weishuai
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University
– sequence: 4
  givenname: Peiming
  surname: Shi
  fullname: Shi, Peiming
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36237407$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQtVARfcAPsECR2LAJ2E4c2xskVPGSKrEA1pbjTHJdOXawfVvu5_CnOPe2pXTRhTUjzzlHZzTnFB354AGhlwS_JRjzd4kQxkmNaXmSd6K-foJOiChfLZby6K4X-BidpnSJMesEaZ-h46ajDW8xP0F_vls_OahztNpVc8ghVnbWE8RdBQ5MjgG8gWWjXZiinivrM_hsg68imDB5u-_7XRWWXIiuGmwy0c7Wa5-rzW6BuDjtodJ-2JPjEiHr3sE9ZLZXsOplvZqpZvs7b2OpYQD3HD0dtUvw4qaeoZ-fPv44_1JffPv89fzDRW1a3uZ6FI3RGNgghBGiYR0dSNv3grC2AUxYD30ZsFECF6Cl5O0oOB0HJgc9aMyaM_T-oLts-xkGU7aM2qmlONRxp4K26v-Jtxs1hSslGRYNWQXe3AjE8GsLKau5LAhu3T5sk6KcMiKZ5LRAXz-AXoZt9GU9RSURnaBU8IJ6dd_RnZXb6xWAOABMDClFGJWxWa8HKQatUwSrNSjqEBRVgqL2QVHXhUofUG_VHyU1B1IqYF8y8s_2I6y_Gb3X2Q
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1088_1741_2552_ad6593
crossref_primary_10_1016_j_asoc_2024_112087
Cites_doi 10.1155/2015/720450
10.1016/j.cogsys.2018.08.018
10.1198/016214502760047131
10.3233/ICA-130439
10.1109/TNSRE.2016.2627809
10.1007/s11571-021-09684-z
10.20965/jaciii.2019.p0274
10.1109/T-C.1975.224208
10.1016/j.bspc.2020.102171
10.1109/TBME.2014.2345458
10.1109/TBME.2018.2875024
10.1109/TBME.2018.2865941
10.1109/TPAMI.2014.2330598
10.1109/TFUZZ.2017.2688423
10.1109/TBME.2015.2487738
10.1016/j.ifacol.2016.10.627
10.1016/j.neunet.2020.02.023
10.1007/s11634-013-0129-3
10.1109/TBME.2004.826688
10.1016/j.bspc.2020.102103
10.1109/TBME.2008.919125
10.1142/S0129065718500156
10.1016/j.neuroimage.2007.01.051
10.1016/0098-3004(84)90020-7
10.1109/LSP.2018.2823683
10.1016/j.neures.2015.10.003
10.1109/TBME.2018.2881051
10.1016/B978-0-12-816179-1.00003-7
10.1109/EMBC.2015.7320066
10.1145/354756.354775
10.1155/2018/9270685
10.1155/2015/265637
10.1109/ICDM.2016.0097
10.1109/TFUZZ.2019.2892921
10.1109/ICDSP.2018.8631618
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0S
M7P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
7X8
5PM
DOI 10.1007/s11571-021-09768-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1871-4099
EndPage 1085
ExternalDocumentID PMC9508315
36237407
10_1007_s11571_021_09768_w
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant No. 61806174
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: the central guidance on local science and technology development fund of hebei province
  grantid: 206Z0301G
– fundername: Natural Science Foundation of Hebei Province
  grantid: Grant No. F2020203070
  funderid: http://dx.doi.org/10.13039/501100003787
– fundername: natural science foundation of hebei province
  grantid: Grant No. E2018203433
  funderid: http://dx.doi.org/10.13039/501100003787
– fundername: china postdoctoral science foundation
  grantid: Grant No. 2016M600193
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: national natural science foundation of china
  grantid: Grant No. 62073282; Grant No. 61973262
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: ;
  grantid: Grant No. F2020203070
– fundername: ;
  grantid: Grant No. 2016M600193
– fundername: ;
  grantid: Grant No. E2018203433
– fundername: ;
  grantid: Grant No. 62073282; Grant No. 61973262
– fundername: ;
  grantid: 206Z0301G
– fundername: ;
  grantid: Grant No. 61806174
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
7X7
875
8FI
8FJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KPH
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
OVD
P2P
PF0
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
3V.
7XB
8FE
8FG
8FH
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-f83ca0e5d88c883562d14bb81543e015beb8c85f9e78ea9974f872fd59dada053
IEDL.DBID AGYKE
ISSN 1871-4080
IngestDate Tue Sep 30 17:11:21 EDT 2025
Fri Sep 05 13:17:25 EDT 2025
Fri Jul 25 10:59:29 EDT 2025
Wed Feb 19 02:08:56 EST 2025
Thu Apr 24 22:58:54 EDT 2025
Wed Oct 01 03:34:42 EDT 2025
Fri Feb 21 02:45:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Optimal discriminant hyperplane
Interpretable clustering
Motor imagery
Electroencephalogram (EEG)
Language English
License The Author(s), under exclusive licence to Springer Nature B.V. 2021.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-f83ca0e5d88c883562d14bb81543e015beb8c85f9e78ea9974f872fd59dada053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4129-1778
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9508315
PMID 36237407
PQID 2918682287
PQPubID 2043944
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9508315
proquest_miscellaneous_2725195972
proquest_journals_2918682287
pubmed_primary_36237407
crossref_citationtrail_10_1007_s11571_021_09768_w
crossref_primary_10_1007_s11571_021_09768_w
springer_journals_10_1007_s11571_021_09768_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle Cognitive neurodynamics
PublicationTitleAbbrev Cogn Neurodyn
PublicationTitleAlternate Cogn Neurodyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Yamada, Inokawa, Hori, Pan, Matsuzaki, Nakamura (CR39) 2016; 105
Foley, Sammon (CR14) 1975; 100
CR19
Zeng, Tang, Ji, Si (CR40) 2020; 126
Bezdek, Ehrlich, Full (CR5) 1984; 10
Cui, Zhang, Wang (CR13) 2016; 49
CR11
CR33
Meng, Yao, Sheng, Zhang, Zhu (CR28) 2014; 62
CR32
Zhang, Tong, Zeng, Jiang, Bu, Yan, Li (CR41) 2015
CR31
Blankertz, Dornhege, Krauledat, Müller, Curio (CR9) 2007; 37
Gaurav, Anand, Kumar (CR20) 2021
Hua, Wang, Wang, Lu, Liu, Khalid (CR21) 2019; 29
Fraiman, Ghattas, Svarc (CR15) 2013; 7
Aghaei, Mahanta, Plataniotis (CR1) 2015; 63
Mishchenko, Kaya, Ozbay, Yanar (CR29) 2018; 66
Wu, Gao, Hong, Gao (CR36) 2008; 55
Ahmed, Al Barazanchi, Jaaz, Abdulshaheed (CR3) 2019; 7
Zhang, Wang, Wu (CR43) 2013; 20
CR4
Chen, Wang, Hua (CR10) 2018; 52
Fraley, Raftery (CR16) 2002; 97
Bishop (CR8) 2006
Fu, Li, Chen, Han (CR17) 2021; 63
Wang, Gittens, Mahoney (CR35) 2019; 20
Zhang, Sun, Cong, Kujala, Ristaniemi, Parviainen (CR42) 2020; 62
CR7
Li, Gao, Liu, Gao (CR25) 2004; 51
CR27
CR26
Agrawal, Tripathy (CR2) 2019; 3
Chen, Jiang, Zhang (CR12) 2019; 23
CR23
CR22
Wu, Chen, Gao, Li, Brown, Gao (CR37) 2014; 37
Mishuhina, Jiang (CR30) 2018; 25
Sun, Fu, Xiong, Yang, Liu, Yu (CR34) 2015; 41
Kshirsagar, Londhe (CR24) 2018; 66
Wu, King, Chuang, Lin, Jung (CR38) 2017; 26
Fu, Xiong, Jiang, Xu, Li, Li (CR18) 2016; 25
Bhattacharyya, Ranta, Le Cam, Louis-Dorr, Tyvaert, Colnat-Coulbois, Pachori (CR6) 2018; 66
B Blankertz (9768_CR9) 2007; 37
9768_CR19
C Zhang (9768_CR43) 2013; 20
Y Mishchenko (9768_CR29) 2018; 66
9768_CR4
S Wang (9768_CR35) 2019; 20
CM Bishop (9768_CR8) 2006
9768_CR7
V Mishuhina (9768_CR30) 2018; 25
CC Hua (9768_CR21) 2019; 29
Y Li (9768_CR25) 2004; 51
C Zhang (9768_CR42) 2020; 62
JC Bezdek (9768_CR5) 1984; 10
JC Chen (9768_CR10) 2018; 52
GB Kshirsagar (9768_CR24) 2018; 66
JX Chen (9768_CR12) 2019; 23
G Gaurav (9768_CR20) 2021
9768_CR11
9768_CR33
9768_CR32
9768_CR31
H Yamada (9768_CR39) 2016; 105
X Cui (9768_CR13) 2016; 49
YF Fu (9768_CR18) 2016; 25
T Zeng (9768_CR40) 2020; 126
DH Foley (9768_CR14) 1975; 100
JJ Meng (9768_CR28) 2014; 62
R Fraiman (9768_CR15) 2013; 7
W Wu (9768_CR36) 2008; 55
W Wu (9768_CR37) 2014; 37
HW Sun (9768_CR34) 2015; 41
DR Wu (9768_CR38) 2017; 26
9768_CR27
AS Aghaei (9768_CR1) 2015; 63
9768_CR26
R Fu (9768_CR17) 2021; 63
C Zhang (9768_CR41) 2015
C Fraley (9768_CR16) 2002; 97
A Agrawal (9768_CR2) 2019; 3
SRA Ahmed (9768_CR3) 2019; 7
9768_CR23
9768_CR22
A Bhattacharyya (9768_CR6) 2018; 66
References_xml – year: 2015
  ident: CR41
  article-title: Automatic artifact removal from electroencephalogram data based on a priori artifact information
  publication-title: Biomed Res Int
  doi: 10.1155/2015/720450
– ident: CR22
– volume: 52
  start-page: 715
  year: 2018
  end-page: 728
  ident: CR10
  article-title: Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.08.018
– ident: CR4
– volume: 97
  start-page: 611
  issue: 458
  year: 2002
  end-page: 631
  ident: CR16
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: J Am Stat Ass
  doi: 10.1198/016214502760047131
– volume: 41
  start-page: 1686
  issue: 9
  year: 2015
  end-page: 1692
  ident: CR34
  article-title: Identification of EEG induced by motor imagery based on hilbert-huang transform
  publication-title: Acta Automatica Sinica
– volume: 20
  start-page: 391
  issue: 4
  year: 2013
  end-page: 405
  ident: CR43
  article-title: EEG-based expert system using complexity measures and probability density function control in alpha sub-band
  publication-title: Integr Comput-aided Eng
  doi: 10.3233/ICA-130439
– volume: 25
  start-page: 1641
  issue: 9
  year: 2016
  end-page: 1652
  ident: CR18
  article-title: Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2627809
– ident: CR33
– year: 2021
  ident: CR20
  article-title: Eeg based cognitive task classification using multifractal detrended fluctuation analysis
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-021-09684-z
– volume: 23
  start-page: 274
  issue: 2
  year: 2019
  end-page: 281
  ident: CR12
  article-title: A common spatial pattern and wavelet packet decomposition combined method for EEG-based emotion recognition
  publication-title: J Adv Comput Intell Intell Inform
  doi: 10.20965/jaciii.2019.p0274
– volume: 100
  start-page: 281
  issue: 3
  year: 1975
  end-page: 289
  ident: CR14
  article-title: An optimal set of discriminant vectors
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1975.224208
– volume: 63
  year: 2021
  ident: CR17
  article-title: Recognizing single-trial motor imagery eeg based on interpretable clustering method
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102171
– volume: 62
  start-page: 227
  issue: 1
  year: 2014
  end-page: 240
  ident: CR28
  article-title: Simultaneously optimizing spatial spectral features based on mutual information for EEG classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2345458
– volume: 7
  start-page: 448
  issue: 2
  year: 2019
  end-page: 457
  ident: CR3
  article-title: Clustering algorithms subjected to K-mean and gaussian mixture model on multidimensional data set
  publication-title: Period Eng Nat Sci
– volume: 66
  start-page: 2992
  issue: 11
  year: 2018
  end-page: 3005
  ident: CR24
  article-title: Improving performance of Devanagari script input-based P300 speller using deep learning
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2875024
– volume: 66
  start-page: 977
  issue: 4
  year: 2018
  end-page: 987
  ident: CR29
  article-title: Developing a three-to six-state EEG-based brain-computer interface for a virtual robotic manipulator control
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2865941
– volume: 37
  start-page: 639
  issue: 3
  year: 2014
  end-page: 653
  ident: CR37
  article-title: Probabilistic common spatial patterns for multichannel EEG analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2330598
– volume: 26
  start-page: 771
  issue: 2
  year: 2017
  end-page: 781
  ident: CR38
  article-title: Spatial filtering for EEG-based regression problems in brain–computer interface (BCI)
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2017.2688423
– ident: CR27
– volume: 63
  start-page: 15
  issue: 1
  year: 2015
  end-page: 29
  ident: CR1
  article-title: Separable common spatio-spectral patterns for motor imagery BCI systems
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2487738
– volume: 49
  start-page: 567
  issue: 19
  year: 2016
  end-page: 572
  ident: CR13
  article-title: Identification of mental workload using imbalanced EEG data and DySMOTE-based neural network approach
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.627
– ident: CR23
– volume: 126
  start-page: 21
  year: 2020
  end-page: 35
  ident: CR40
  article-title: Neurobayesslam: neurobiologically inspired bayesian integration of multisensory information for robot navigation
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.02.023
– volume: 7
  start-page: 125
  issue: 2
  year: 2013
  end-page: 145
  ident: CR15
  article-title: Interpretable clustering using unsupervised binary trees
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-013-0129-3
– volume: 51
  start-page: 1019
  issue: 6
  year: 2004
  end-page: 1025
  ident: CR25
  article-title: Classification of single-trial electroencephalogram during finger movement
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.826688
– ident: CR19
– volume: 62
  year: 2020
  ident: CR42
  article-title: Optimal imaging of multi-channel EEG features based on a novel clustering technique for driver fatigue detection
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102103
– volume: 20
  start-page: 431
  issue: 1
  year: 2019
  end-page: 479
  ident: CR35
  article-title: Scalable kernel K-means clustering with Nyström approximation: relative-error bounds
  publication-title: J Mach Learn Res
– volume: 55
  start-page: 1733
  issue: 6
  year: 2008
  end-page: 1743
  ident: CR36
  article-title: Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.919125
– volume: 29
  start-page: 1850015
  issue: 01
  year: 2019
  ident: CR21
  article-title: A novel method of building functional brain network using deep learning algorithm with application in proficiency detection
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065718500156
– ident: CR31
– volume: 3
  start-page: 156
  year: 2019
  end-page: 169
  ident: CR2
  article-title: Efficiency analysis of hybrid fuzzy C-means clustering algorithms and their application to compute the severity of disease in plant leaves
  publication-title: Comput Rev J
– ident: CR11
– ident: CR32
– volume: 37
  start-page: 539
  issue: 2
  year: 2007
  end-page: 550
  ident: CR9
  article-title: The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– year: 2006
  ident: CR8
  publication-title: Pattern recognition and machine learning, chapter 9, mixture models and EM
– ident: CR7
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  end-page: 203
  ident: CR5
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– ident: CR26
– volume: 25
  start-page: 783
  issue: 6
  year: 2018
  end-page: 787
  ident: CR30
  article-title: Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2823683
– volume: 105
  start-page: 2
  year: 2016
  end-page: 18
  ident: CR39
  article-title: Characteristics of fast-spiking neurons in the striatum of behaving monkeys
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2015.10.003
– volume: 66
  start-page: 1915
  issue: 7
  year: 2018
  end-page: 1926
  ident: CR6
  article-title: A multi-channel approach for cortical stimulation artefact suppression in depth EEG signals using time-frequency and spatial filtering
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2881051
– volume: 49
  start-page: 567
  issue: 19
  year: 2016
  ident: 9768_CR13
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.627
– ident: 9768_CR7
  doi: 10.1016/B978-0-12-816179-1.00003-7
– volume: 97
  start-page: 611
  issue: 458
  year: 2002
  ident: 9768_CR16
  publication-title: J Am Stat Ass
  doi: 10.1198/016214502760047131
– volume: 25
  start-page: 1641
  issue: 9
  year: 2016
  ident: 9768_CR18
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2627809
– volume: 105
  start-page: 2
  year: 2016
  ident: 9768_CR39
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2015.10.003
– ident: 9768_CR33
  doi: 10.1109/EMBC.2015.7320066
– volume: 23
  start-page: 274
  issue: 2
  year: 2019
  ident: 9768_CR12
  publication-title: J Adv Comput Intell Intell Inform
  doi: 10.20965/jaciii.2019.p0274
– volume: 100
  start-page: 281
  issue: 3
  year: 1975
  ident: 9768_CR14
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1975.224208
– volume: 62
  year: 2020
  ident: 9768_CR42
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102103
– year: 2015
  ident: 9768_CR41
  publication-title: Biomed Res Int
  doi: 10.1155/2015/720450
– year: 2021
  ident: 9768_CR20
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-021-09684-z
– ident: 9768_CR26
  doi: 10.1145/354756.354775
– volume: 41
  start-page: 1686
  issue: 9
  year: 2015
  ident: 9768_CR34
  publication-title: Acta Automatica Sinica
– volume: 55
  start-page: 1733
  issue: 6
  year: 2008
  ident: 9768_CR36
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.919125
– volume: 37
  start-page: 639
  issue: 3
  year: 2014
  ident: 9768_CR37
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2330598
– volume: 3
  start-page: 156
  year: 2019
  ident: 9768_CR2
  publication-title: Comput Rev J
– ident: 9768_CR19
  doi: 10.1155/2018/9270685
– volume: 7
  start-page: 448
  issue: 2
  year: 2019
  ident: 9768_CR3
  publication-title: Period Eng Nat Sci
– volume: 26
  start-page: 771
  issue: 2
  year: 2017
  ident: 9768_CR38
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2017.2688423
– volume: 66
  start-page: 2992
  issue: 11
  year: 2018
  ident: 9768_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2875024
– volume: 62
  start-page: 227
  issue: 1
  year: 2014
  ident: 9768_CR28
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2345458
– volume: 7
  start-page: 125
  issue: 2
  year: 2013
  ident: 9768_CR15
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-013-0129-3
– volume: 66
  start-page: 1915
  issue: 7
  year: 2018
  ident: 9768_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2881051
– ident: 9768_CR23
  doi: 10.1155/2015/265637
– volume: 20
  start-page: 431
  issue: 1
  year: 2019
  ident: 9768_CR35
  publication-title: J Mach Learn Res
– volume: 52
  start-page: 715
  year: 2018
  ident: 9768_CR10
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.08.018
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 9768_CR5
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume-title: Pattern recognition and machine learning, chapter 9, mixture models and EM
  year: 2006
  ident: 9768_CR8
– ident: 9768_CR11
  doi: 10.1109/ICDM.2016.0097
– ident: 9768_CR27
– ident: 9768_CR31
– ident: 9768_CR4
– volume: 20
  start-page: 391
  issue: 4
  year: 2013
  ident: 9768_CR43
  publication-title: Integr Comput-aided Eng
  doi: 10.3233/ICA-130439
– volume: 37
  start-page: 539
  issue: 2
  year: 2007
  ident: 9768_CR9
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– volume: 51
  start-page: 1019
  issue: 6
  year: 2004
  ident: 9768_CR25
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.826688
– volume: 66
  start-page: 977
  issue: 4
  year: 2018
  ident: 9768_CR29
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2865941
– volume: 63
  start-page: 15
  issue: 1
  year: 2015
  ident: 9768_CR1
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2487738
– ident: 9768_CR32
  doi: 10.1109/TFUZZ.2019.2892921
– volume: 25
  start-page: 783
  issue: 6
  year: 2018
  ident: 9768_CR30
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2823683
– volume: 29
  start-page: 1850015
  issue: 01
  year: 2019
  ident: 9768_CR21
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065718500156
– volume: 63
  year: 2021
  ident: 9768_CR17
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102171
– volume: 126
  start-page: 21
  year: 2020
  ident: 9768_CR40
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.02.023
– ident: 9768_CR22
  doi: 10.1109/ICDSP.2018.8631618
SSID ssj0056814
Score 2.2990913
Snippet Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1073
SubjectTerms Algorithms
Artificial Intelligence
Biochemistry
Biomedical and Life Sciences
Biomedicine
Brain
Classification
Clustering
Cognitive Psychology
Computer applications
Computer Science
Cost function
Covariance matrix
Criteria
Decomposition
EEG
Eigenvalues
Eigenvectors
Electroencephalography
Extreme values
Feature extraction
Human-computer interface
Hyperplanes
Imagery
Implants
Mental task performance
Mixtures
Neurosciences
Optimization
Research Article
Spatial filtering
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZguXBBwPIILMhIiAtYNE69dk5ohSgrJLjASnuL4thRKzVJ6Xa19OfwT_nGcVLKir1VseMmmYdnPDPfMPba61SBml4oV8JB8VKLUmW1SK01amIpq5IKhb9-Oz49m345V-fxwO0iplUOOjEoatdVdEb-XuYE7C5h4H9Y_RTUNYqiq7GFxm12J5XgJKoUn30eNDFha4WoMpwC-ElmEotm-tK5VOEqJShMsCMbcbW_MV2zNq8nTf4TOQ0b0uw-uxctSX7Sk_4Bu-Xbh-zwpIUX3Wz5Gx5yO8Oh-SH7_R1LLL0IPTo4qNOt-aIh-Iotj41wSMJX8zJAWDecUCRCHiQfM4zw2255BxXTYA2q5u07grUbPoczu15R2iwvWxdu7hMZ7dL_NZM0K60HexQPw5vFLwpf8NCM5xE7m3368fFUxOYMoprq6UbUJqvKiVfOmMrAjDuWLp2CwDDJMg8bw3qLAVXnXhtf5nBbaqNl7VTuSldC9B-zg7Zr_VPGM13rtLK59zA2QOFcgX0qUzmsWUN_JCwdKFNUEbmcGmgsix3mMlGzADWLQM3iKmFvx3tWPW7HjbOPBoIXUYYvih3HJezVOAzpo5AKvmh3iTlaBngeLRP2pOeP8e9gGmQa_nLC9B7njBMI2Xt_pF3MA8I3tebNUpWwdwOP7R7r_2_x7Oa3eM7uSqrdCJmIR-xgs770L2BRbezLIDZ_AL81I5A
  priority: 102
  providerName: ProQuest
Title Single-trial motor imagery electroencephalogram intention recognition by optimal discriminant hyperplane and interpretable discriminative rectangle mixture model
URI https://link.springer.com/article/10.1007/s11571-021-09768-w
https://www.ncbi.nlm.nih.gov/pubmed/36237407
https://www.proquest.com/docview/2918682287
https://www.proquest.com/docview/2725195972
https://pubmed.ncbi.nlm.nih.gov/PMC9508315
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: AFBBN
  dateStart: 20070301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1871-4099
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: BENPR
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: 7X7
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: U2A
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7oUXBhsfgTEZCfECmZqknp3HgtpOICYEVCpPUZw4akWTVl2qUf4b_lN-dj5KN0DaQ9Mqvjh2fDnf9e5-R_RSC49jNbXL0xgGivaFG_Mgcz2lJO8qE1VpEoU_Xpydj3vvJ3xSJ4VdNtHujUvSSuptspvHBUxfHx_sodK92qN9bgyUDu33R98-DBoJbDC1rDcZxgDsI9mtk2X-3svuhnRDy7wZLHnNY2o3ouEBjZspVPEn30_XpTpNfl5Dd7ztHO_TvVozZf2KlR7QHV0c0lG_gFWeb9grZmNF7Z_wh3TQFINgtWw4ol9fcKO5dm0ZEAYGWKzYLDcIGRtW19oxhMtpbFGyc2aAKmyoJWuDmPBbbdgCUixHHyZhuCo6VpRsCnt5tTSRuSwuUntxFSup5voPSiO8TX9QeTEYls9-GA8Js_V-HtJ4OPj67tyt6z-4SU_0SjeTQRJ3NU-lTCQ0xTM_9XrgIWh9gYYao7RCA89CLaSOQ1hGmRR-lvIwjdMY0uURdYpFoZ8QC0QmvESFWkOf8WFkcnBoIpMUfWYQUQ55DRNESQ2Obmp0zKMtrLNZmghLE9mlia4cet1es6ygQf5LfdzwVlSLicvID021AoxHOPSibcYLbrw2eKKLNWiEbxGAhO_Q44oV29tB-wgETHKHxA6TtgQGPHy3pZhNLYi4qf4beNyhNw0nbof171k8vR35M7rrm3QRG_x4TJ1ytdbPocSV6oT2xETgKIejk_r9xffbwcWnzzg7mng4jv3-b2o2Sco
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAXRCmPtAWMBFzAInHi2jkgVAHVlj4utNLeQpw42pU2ybLdatmfwx_gNzLjPJalorfeVrHjdTLj8TfxzDcAr6wKJErTcpmn6KBYoXgqw4IHxmjpG4qqpETh07P9wUX0dSiHG_C7y4WhsMrOJjpDndcZfSN_L2IidhcI8D9Of3CqGkWnq10JjUYtju1ygS7b5Yejzyjf10Icfjn_NOBtVQGeRSqa80KHWepbmWudacQf-yIPIpwZYonQ4uZorMEGWcRWaZvGiLcLrUSRyzhP89SnKhFo8u9EoR8RV78a9g4ecXm5U2x0QtAv036bpNOk6gUSr1JAhI8IQPPF-kZ4Dd1eD9L856TWbYCHD-B-i1zZQaNqW7Bhq4ewfVCh114u2RvmYkndR_pt-PUNh5hY7mqCMNSGesbGJdFlLFlbeIcsynSUOsrskhFrhYu7ZH1EE_42S1ajSStxDMoebiqQVXM2Qud5NqUwXZZWubu5CZw0E_tXT7LkNB7iX5wMK8c_6biEueI_j-DiVsT2GDarurJPgYWqUEFmYmsR3KBGxRLVNdNZjmMWaK88CDrJJFnLlE4FOybJiuOZpJmgNBMnzWThwdv-nmnDE3Jj771O4ElrMy6TlYZ78LJvxtVORzj4Rusr7KOEowNSwoMnjX70f4dQJFTon3ug1jSn70BM4ust1XjkGMWpFHAYSA_edTq2mtb_n2Ln5qd4AXcH56cnycnR2fEu3BOUN-KiIPdgcz67ss8Qzc3Nc7eEGHy_7TX7B8k4YOI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkRAXHi0UQ4FFQlzAarz2dtfHCIjKq0KCSL1ZfqyVSLETpana_Bz-Kd-sH2koIHGwFGnH441ndnfGM_MN0SurAwVpWl8VKRwUK7WfqrD0gywzapBxViUXCn89OToeR59O1emVKn6X7d6FJJuaBkZpqleHi6I83BS-BUrDDZa4cJ4a_-Im3YpwVrP7NZbDbi9mdC0XV4ZbAE_JDNqymT_z2D6artmb19Mmf4uduiNpdJ_utrakGDbCf0A3bL1Le8MafnS1Fq-Fy-50n8136V7XvkG0q3mPfn4H15n1XeMOAZHNl2JaMabFWrTdcZhwMUkdrnUlpu4VQZCiTzvC72wt5th3KvDgEt-mTVi9EhN4uMsF59KKtC7czU12YzazVyh5u2V-MFIxGVFNLzmmIVyHnoc0Hn348e7Ybzs2-Hmko5VfmjBPB1YVxuQGtt2RLIIIUoedFloYHpnNMKDK2Gpj0xi-TGm0LAsVF2mRYj94RDv1vLaPSYS61EGexdbCApFwCxV0Kjd5AZ4lNhWPgk5YSd7CmXNXjVmyAWJmAScQcOIEnFx49Ka_Z9GAefyT-qDTgaRd2GeJjLm_AOajPXrZD2NJcpwFb3R-DhotHWaPlh7tNyrTPw72QqjhRHukt5SpJ2C47-2RejpxsN_crzcMlEdvO7XbTOvv_-LJ_5G_oNvf3o-SLx9PPj-lO5JrPVzm4gHtrJbn9hkssFX23C2yX_U6Lnc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-trial+motor+imagery+electroencephalogram+intention+recognition+by+optimal+discriminant+hyperplane+and+interpretable+discriminative+rectangle+mixture+model&rft.jtitle=Cognitive+neurodynamics&rft.au=Fu%2C+Rongrong&rft.au=Xu%2C+Dong&rft.au=Li%2C+Weishuai&rft.au=Shi%2C+Peiming&rft.date=2022-10-01&rft.issn=1871-4080&rft.volume=16&rft.issue=5&rft.spage=1073&rft_id=info:doi/10.1007%2Fs11571-021-09768-w&rft_id=info%3Apmid%2F36237407&rft.externalDocID=36237407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon