Optimal Feature Selection-Based Medical Image Classification Using Deep Learning Model in Internet of Medical Things

Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical disease...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 58006 - 58017
Main Authors Raj, R. Joshua Samuel, Shobana, S. Jeya, Pustokhina, Irina Valeryevna, Pustokhin, Denis Alexandrovich, Gupta, Deepak, Shankar, K.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2981337

Cover

Abstract Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical diseases. Medical images form an indispensable part of a patient's health record which can be applied to control, handle and treat the diseases. But, classification of images is a challenging task in computer-based diagnostics. In this research article, we have introduced a improved classifier i.e., Optimal Deep Learning (DL) for classification of lung cancer, brain image, and Alzheimer's disease. The researchers proposed the Optimal Feature Selection based Medical Image Classification using DL model by incorporating preprocessing, feature selection and classification. The main goal of the paper is to derive an optimal feature selection model for effective medical image classification. To enhance the performance of the DL classifier, Opposition-based Crow Search (OCS) algorithm is proposed. The OCS algorithm picks the optimal features from pre-processed images, here Multi-texture, grey level features were selected for the analysis. Finally, the optimal features improved the classification result and increased the accuracy, specificity and sensitivity in the diagnosis of medical images. The proposed results were implemented in MATLAB and compared with existing feature selection models and other classification approaches. The proposed model achieved the maximum performance in terms of accuracy, sensitivity and specificity being 95.22%, 86.45 % and 100% for the applied set of images.
AbstractList Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical diseases. Medical images form an indispensable part of a patient's health record which can be applied to control, handle and treat the diseases. But, classification of images is a challenging task in computer-based diagnostics. In this research article, we have introduced a improved classifier i.e., Optimal Deep Learning (DL) for classification of lung cancer, brain image, and Alzheimer's disease. The researchers proposed the Optimal Feature Selection based Medical Image Classification using DL model by incorporating preprocessing, feature selection and classification. The main goal of the paper is to derive an optimal feature selection model for effective medical image classification. To enhance the performance of the DL classifier, Opposition-based Crow Search (OCS) algorithm is proposed. The OCS algorithm picks the optimal features from pre-processed images, here Multi-texture, grey level features were selected for the analysis. Finally, the optimal features improved the classification result and increased the accuracy, specificity and sensitivity in the diagnosis of medical images. The proposed results were implemented in MATLAB and compared with existing feature selection models and other classification approaches. The proposed model achieved the maximum performance in terms of accuracy, sensitivity and specificity being 95.22%, 86.45 % and 100% for the applied set of images.
Author Pustokhin, Denis Alexandrovich
Raj, R. Joshua Samuel
Shobana, S. Jeya
Pustokhina, Irina Valeryevna
Shankar, K.
Gupta, Deepak
Author_xml – sequence: 1
  givenname: R. Joshua Samuel
  surname: Raj
  fullname: Raj, R. Joshua Samuel
  organization: Department of Information Science and Engineering, CMR Institute of Technology, Bengaluru, India
– sequence: 2
  givenname: S. Jeya
  surname: Shobana
  fullname: Shobana, S. Jeya
  organization: Department of Computer Science, College of Science, Knowledge University, Erbil, Kurdistan Region, Iraq
– sequence: 3
  givenname: Irina Valeryevna
  surname: Pustokhina
  fullname: Pustokhina, Irina Valeryevna
  organization: Department of Entrepreneurship and Logistics, Plekhanov Russian University of Economics, Moscow, Russia
– sequence: 4
  givenname: Denis Alexandrovich
  surname: Pustokhin
  fullname: Pustokhin, Denis Alexandrovich
  organization: Department of Logistics, State University of Management, Moscow, Russia
– sequence: 5
  givenname: Deepak
  surname: Gupta
  fullname: Gupta, Deepak
  organization: Department of Computer Science and Engineering, Maharaja Agrasen Institute of Technology, New Delhi, India
– sequence: 6
  givenname: K.
  orcidid: 0000-0002-2803-3846
  surname: Shankar
  fullname: Shankar, K.
  organization: Department of Computer Applications, Alagappa University, Karaikudi, India
BookMark eNptUctuGyEUHVWp1DTNF2SD1LVdXgPDMp0mjSVHWThZIwYuLtZkZgpYVf4-OBNZkVU2cC_nweV8rc6GcYCquiJ4SQhWP67b9mazWVJM8ZKqhjAmP1XnlAi1YDUTZx_OX6rLlHa4rKa0anle5Ycph2fTo1sweR8BbaAHm8M4LH6aBA7dgwu23K-ezRZQ25uUgi-dAwQ9pTBs0S-ACa3BxOFQ3Y8OehQGtBoyxAEyGv1R5fFPgaRv1Wdv-gSX7_tF9XR789jeLdYPv1ft9XphueR54ZmjQJnsGFbOg8Vc-I6BxNgLcNYbKcu8onPKQUeNbJTDohayEV5RIJJdVKtZ141mp6dYBo0vejRBvzXGuNUm5mB70NQx1zjRFB_BffG0nOCa1KYT1Li6Llp81toPk3n5Z_r-KEiwPgShjbWQkj4Eod-DKLTvM22K4989pKx34z4OZWpNeUlE8IY0BaVmlI1jShG8tiG_fXGOJvRHhznqUwd2wj191_9ZVzMrAMCRoTBTgnP2CmQntc0
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_022_13222_2
crossref_primary_10_1016_j_knosys_2020_106270
crossref_primary_10_1016_j_patcog_2023_109665
crossref_primary_10_3390_s22020506
crossref_primary_10_3390_biomimetics9020120
crossref_primary_10_3934_math_2024119
crossref_primary_10_1007_s11760_021_02130_x
crossref_primary_10_1016_j_compbiomed_2021_105027
crossref_primary_10_1007_s10462_024_11063_z
crossref_primary_10_7717_peerj_cs_2364
crossref_primary_10_3233_JIFS_222517
crossref_primary_10_32604_cmc_2022_019790
crossref_primary_10_3390_math10234565
crossref_primary_10_1007_s12652_021_03221_w
crossref_primary_10_1109_TR_2024_3356515
crossref_primary_10_1016_j_compchemeng_2021_107599
crossref_primary_10_3233_IDT_200041
crossref_primary_10_1109_ACCESS_2024_3463871
crossref_primary_10_1109_ACCESS_2020_3046309
crossref_primary_10_1177_00202940251323768
crossref_primary_10_1007_s00354_022_00190_2
crossref_primary_10_1109_ACCESS_2020_3041370
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_3389_fpsyg_2022_848784
crossref_primary_10_1145_3526194
crossref_primary_10_3233_IDT_200049
crossref_primary_10_32604_csse_2023_035900
crossref_primary_10_32604_cmc_2022_028560
crossref_primary_10_1109_ACCESS_2020_3014346
crossref_primary_10_1051_itmconf_20245901004
crossref_primary_10_1080_13682199_2022_2161149
crossref_primary_10_1111_exsy_12987
crossref_primary_10_1080_02664763_2020_1849057
crossref_primary_10_1007_s11042_020_09874_7
crossref_primary_10_1080_0954898X_2023_2275720
crossref_primary_10_3390_s23104971
crossref_primary_10_1016_j_patcog_2021_108110
crossref_primary_10_1108_IJPCC_08_2020_0109
crossref_primary_10_3934_math_20231237
crossref_primary_10_1016_j_wasman_2024_12_023
crossref_primary_10_1109_ACCESS_2021_3133731
crossref_primary_10_1007_s13198_023_02086_w
crossref_primary_10_32604_cmc_2022_020713
crossref_primary_10_1016_j_array_2021_100094
crossref_primary_10_1093_jcde_qwac040
crossref_primary_10_32604_cmc_2020_012441
crossref_primary_10_1016_j_comcom_2020_05_029
crossref_primary_10_1007_s11042_023_17724_5
crossref_primary_10_1007_s40747_023_01049_9
crossref_primary_10_2174_1872212117666230222093128
crossref_primary_10_1007_s12065_024_00949_0
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_1007_s42235_024_00524_4
crossref_primary_10_1109_ACCESS_2020_3005808
crossref_primary_10_3390_agriculture13030667
crossref_primary_10_3390_app12147096
crossref_primary_10_1109_ACCESS_2021_3074268
crossref_primary_10_1016_j_simpat_2022_102653
crossref_primary_10_32604_cmc_2021_012315
crossref_primary_10_1007_s13198_024_02356_1
crossref_primary_10_1007_s00530_021_00800_x
crossref_primary_10_32604_cmc_2020_012398
crossref_primary_10_32604_cmc_2021_012431
crossref_primary_10_1088_1742_6596_1911_1_012003
crossref_primary_10_1016_j_bspc_2025_107504
crossref_primary_10_3389_fpubh_2020_599550
crossref_primary_10_1016_j_neucom_2023_126719
crossref_primary_10_1109_JIOT_2022_3176300
crossref_primary_10_3390_math10152740
crossref_primary_10_1103_PhysRevB_111_085110
crossref_primary_10_3389_fnins_2021_630747
crossref_primary_10_3390_molecules26051285
crossref_primary_10_1007_s13246_023_01254_3
crossref_primary_10_3390_s22030867
crossref_primary_10_1016_j_swevo_2023_101430
crossref_primary_10_32604_cmc_2022_028856
crossref_primary_10_2139_ssrn_4899259
crossref_primary_10_4103_2468_8827_330652
crossref_primary_10_2298_CSIS220813014Y
crossref_primary_10_1016_j_compbiomed_2025_109822
crossref_primary_10_1016_j_micpro_2023_104939
crossref_primary_10_32604_csse_2022_024239
crossref_primary_10_32604_cmc_2022_024488
crossref_primary_10_1016_j_phycom_2020_101119
crossref_primary_10_1109_ACCESS_2021_3054735
crossref_primary_10_1177_08944393241269394
crossref_primary_10_1007_s11042_021_11852_6
crossref_primary_10_1016_j_bspc_2024_106870
crossref_primary_10_1016_j_jpdc_2021_03_011
crossref_primary_10_32604_cmc_2024_051420
crossref_primary_10_1016_j_knosys_2022_108230
crossref_primary_10_32604_csse_2023_026128
crossref_primary_10_1016_j_engappai_2023_107360
crossref_primary_10_1080_19479832_2024_2321900
crossref_primary_10_1007_s11571_021_09712_y
crossref_primary_10_32604_cmc_2022_024312
crossref_primary_10_1007_s00366_021_01342_6
crossref_primary_10_1016_j_measen_2025_101867
crossref_primary_10_1007_s00521_023_08666_y
crossref_primary_10_3390_electronics13081578
crossref_primary_10_4103_jmp_jmp_77_23
crossref_primary_10_3233_IDT_200038
crossref_primary_10_1002_ett_4057
crossref_primary_10_1145_3617999
crossref_primary_10_3390_s25010244
crossref_primary_10_1007_s11831_021_09667_7
crossref_primary_10_26599_IJCS_2023_9100035
crossref_primary_10_1155_2022_9060340
crossref_primary_10_3390_math11030629
crossref_primary_10_1080_10255842_2022_2081504
crossref_primary_10_3390_w13111547
crossref_primary_10_1016_j_asoc_2020_106906
crossref_primary_10_1038_s41598_025_93718_7
crossref_primary_10_1155_2023_3717035
crossref_primary_10_1016_j_bspc_2022_104542
crossref_primary_10_3390_s22020476
crossref_primary_10_1109_ACCESS_2021_3103067
crossref_primary_10_1007_s12652_020_02537_3
crossref_primary_10_32604_cmc_2022_018396
crossref_primary_10_1109_ACCESS_2021_3105485
crossref_primary_10_3390_make2040023
crossref_primary_10_46604_aiti_2022_8538
crossref_primary_10_1016_j_jksuci_2022_09_005
crossref_primary_10_32604_csse_2024_049026
crossref_primary_10_1007_s11042_020_10000_w
crossref_primary_10_1007_s42452_023_05339_2
crossref_primary_10_1007_s12530_024_09648_8
crossref_primary_10_3390_bioengineering11100993
Cites_doi 10.1016/j.neucom.2018.09.013
10.1016/j.comnet.2019.04.016
10.1109/PICC.2018.8384745
10.1016/j.eswa.2017.05.039
10.1109/ICSIPA.2017.8120660
10.1016/j.bbe.2017.12.004
10.4018/jssci.2011040102
10.1109/ICIIECS.2017.8276099
10.1109/ACCESS.2017.2788044
10.1016/j.compeleceng.2018.04.014
10.1016/j.neucom.2017.05.025
10.1016/j.compeleceng.2019.06.001
10.1109/ISBI.2018.8363710
10.1016/j.future.2018.10.009
10.1016/j.irbm.2018.09.006
10.1016/j.patrec.2020.02.026
10.1007/s00521-017-2988-6
10.1109/FSKD.2017.8393365
10.1016/j.dss.2017.12.001
10.1016/j.patrec.2003.10.015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.2981337
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 58017
ExternalDocumentID oai_doaj_org_article_2d3d8d68dfe64f37bc410515ab62ad55
10.1109/access.2020.2981337
10_1109_ACCESS_2020_2981337
9039644
Genre orig-research
GrantInformation_xml – fundername: RUSA-Phase 2.0 grant sanctioned vide Policy (TNMulti-Gen), Dept. of Edn. Govt. of India, Dt. 09.10.2018
  grantid: F. 24-51/2014-U
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-f3d2e237b309dfec046fb3e700f6edcfa772986bd9deb2a789d0656786f92e173
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:41:28 EDT 2025
Wed Oct 01 16:53:25 EDT 2025
Sun Jun 29 15:15:43 EDT 2025
Wed Oct 01 02:06:22 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Wed Aug 27 02:35:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-f3d2e237b309dfec046fb3e700f6edcfa772986bd9deb2a789d0656786f92e173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2803-3846
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09039644.pdf
PQID 2453664818
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2020_2981337
doaj_primary_oai_doaj_org_article_2d3d8d68dfe64f37bc410515ab62ad55
ieee_primary_9039644
crossref_primary_10_1109_ACCESS_2020_2981337
proquest_journals_2453664818
unpaywall_primary_10_1109_access_2020_2981337
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
khanna (ref25) 2019; 77
ref1
ref17
ref16
ref19
(ref21) 2018
lakshmanaprabu (ref13) 2019; 92
smitha (ref3) 2011
ref24
ref26
ref20
(ref23) 2018
gnanasekar (ref8) 2016
ref7
ref9
ref4
jagatheeswari (ref18) 2009
ref6
ref5
(ref22) 2018
References_xml – ident: ref10
  doi: 10.1016/j.neucom.2018.09.013
– ident: ref26
  doi: 10.1016/j.comnet.2019.04.016
– ident: ref20
  doi: 10.1109/PICC.2018.8384745
– year: 2018
  ident: ref22
– start-page: 34
  year: 2011
  ident: ref3
  article-title: A review of medical image classification techniques
  publication-title: Proc Int Conf VLSI Commun Intrumrnataiom
– ident: ref5
  doi: 10.1016/j.eswa.2017.05.039
– year: 2018
  ident: ref23
– ident: ref16
  doi: 10.1109/ICSIPA.2017.8120660
– ident: ref1
  doi: 10.1016/j.bbe.2017.12.004
– ident: ref7
  doi: 10.4018/jssci.2011040102
– ident: ref9
  doi: 10.1109/ICIIECS.2017.8276099
– ident: ref15
  doi: 10.1109/ACCESS.2017.2788044
– year: 2016
  ident: ref8
  article-title: Investigation on feature extraction and classification of medical images
– ident: ref14
  doi: 10.1016/j.compeleceng.2018.04.014
– ident: ref4
  doi: 10.1016/j.neucom.2017.05.025
– volume: 77
  start-page: 230
  year: 2019
  ident: ref25
  article-title: Alzheimer detection using group grey wolf optimization based features with convolutional classifier
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.06.001
– ident: ref6
  doi: 10.1109/ISBI.2018.8363710
– volume: 92
  start-page: 374
  year: 2019
  ident: ref13
  article-title: Optimal deep learning model for classification of lung cancer on CT images
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.10.009
– ident: ref11
  doi: 10.1016/j.irbm.2018.09.006
– ident: ref24
  doi: 10.1016/j.patrec.2020.02.026
– ident: ref17
  doi: 10.1007/s00521-017-2988-6
– ident: ref19
  doi: 10.1109/FSKD.2017.8393365
– ident: ref12
  doi: 10.1016/j.dss.2017.12.001
– year: 2018
  ident: ref21
– year: 2009
  ident: ref18
  article-title: Contrast enhancement for medical images based on histogram equalization followed by median filter
  publication-title: Pro Int Conf Man-Mach Syst
– ident: ref2
  doi: 10.1016/j.patrec.2003.10.015
SSID ssj0000816957
Score 2.5463955
Snippet Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 58006
SubjectTerms Accuracy
Algorithms
Cancer
Classification
Classifiers
Computer networks
Crow search algorithm
Deep learning
Diagnosis
Feature extraction
Feature selection
features
Image classification
Image enhancement
Internet of medical things
IoMT
Machine learning
Medical diagnostic imaging
Medical electronics
medical image
Medical imaging
Medical research
optimization
Sensitivity
Solid modeling
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQF-ihoqWoAYp86JEUx3b8cYQFRCsBhxaJm2XHdlVpCSuaVdV_37Fjol0htZceEzmWMzO23ziT9xD6SJ30kvFYAzwONXcE1kFoW7NU2OSidY6ln5Ovb8TVHf9y396vSH2lmrCRHng03An1zCsvlI9B8Mik61JhYtNaJ6j1bWYvJUqvJFN5DVaN0K0sNEMN0Sensxm8ESSElHyiWkFqJte2oszYXyRW1tDm1rJf2N-_7Hy-svFc7qDXBTHi03Gkb9BG6N-iVys8grtouIWJ_wCNEqBbPgX8NavbgMnrM9ilPC6fY_DnB1g-cBbCTCVC2Ss4Vw3g8xAWuLCtfsdJIm2Of_R4PDEMA36MUy-j1uc7dHd58W12VRc5hbrjkg91ZJ4GChZkRIM1O8iMo2NBEhJF8F20CWgr4bz2kG5bqbQHfAKbmYiahkayPbTZP_bhPcJBUq8Ut52wGhCItc42QXTOJ0UzuKoQfbas6QrXeJK8mJuccxBtRneY5A5T3FGh4-mhxUi18ffmZ8llU9PEk51vQPSYEj3mX9FTod3k8KkTTZgGhFihw-cAMGVO_zSUt0wIDginQvUUFC-GarPQ5dpQ9__HUA_QdupzPP45RJvD0zJ8AEA0uKMc-38A0bgGRg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHvgoiUJAPHJtt1k7s-NguVAWpcIBKvUV2PEao2-yqJELw6xk73qgLCHFLokli6zmeN854HsBrbpVTovQ50WPMS1vQPEi2uQiJTdYba0XYnHz-QZ5dlO8vq8sdOJz2wiBiTD7DWTiM__Ldqh3CUtmRLoQm_70Lu6qW416taT0lCEjoSqXCQvNCHx0vFtQHCgF5MeO6pmBMbTmfWKM_iaps8cs7Q7c2P76b5fKWqzl9AOebRo4ZJlezobez9udv9Rv_txcP4X7inOx4HCSPYAe7x3DvViXCfeg_0tRxTUaBEg43yD5FfRwCLT8hP-dY-qHD3l3TBMSilGZIMoq4sph3wN4grlmq1_qFBZG1JfvasXHNEXu28tNTRrXQJ3Bx-vbz4ixPggx5W6qyz71wHLlQVhTaeWwptvZWoCoKL9G13gSqXkvrtKOA3ahaO2I45A6l1xznSjyFvW7V4TNgqLir69K00mjiMMZYM0fZWhc00egsA75BqmlTtfIgmrFsYtRS6GaEtwnwNgneDA6nm9ZjsY5_m5-EITCZhkrb8QLB1aQPt-FOuNrJmvorS099b0Ni7LwyVnLjqiqD_QDx9JCEbgYHmwHVpFnhW8PLSkhZEkfKIJ8G2R9NNVEqc6upz__-lhdwN1iNS0IHsNffDPiSSFJvX8Wv4xfmYA9T
  priority: 102
  providerName: IEEE
Title Optimal Feature Selection-Based Medical Image Classification Using Deep Learning Model in Internet of Medical Things
URI https://ieeexplore.ieee.org/document/9039644
https://www.proquest.com/docview/2453664818
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09039644.pdf
https://doaj.org/article/2d3d8d68dfe64f37bc410515ab62ad55
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQGaPyA48kTW3Hjh-7wjSQGEhQaTxZdmyjiSyrtlR8_PWcHTdaQUKCt6a6JLbucvc7-3w_hF4QI6ygzOcAj13OTAl-EGRzGgqbjNfG0HA4-d0pP1mxt2fVWVpwi2dhnHOx-MwV4Wfcyz937Xcx4yQ0T5OzWjLwqJDLy5JKiObF2vrbaI9XgMUnaG91-mHxOTDKzbmEN4a9yWepseZMRw5CSApJWRBZQ3omdsJR7NqfaFZ2EOedTbfWP77ptr0RfI7vI7Ud9lBz8rXY9KZofv7W0fH_5_UA3Uu4FC8GQ3qIbrnuEbp7o1vhPurfg3u5AKEAGzdXDn-MHDqg2PwIYqHFadMHv7kAJ4Uj3WYoRIq6x7E2Ab9ybo1TT9cvOBCxtfi8w8O6pOvxpR-fMjCKPkar49eflid5Im3IGyZYn3tqiSNUGFpK610D-bc31Imy9NzZxusA52turLSQ1GtRSwsoCEIm95K4uaBP0KS77NxThJ0gtq6ZbriWgHO0NnrueGNs4E2DqwyRre5UkzqaB2KNVsXMppRqsVyCGaugcJUUnqGX403roaHH38WPglGMoqEbd_wDFKjSx62Ipba2vIb5cuZh7k0onp1X2nCibVVlaD8ofXxI0nCGDrcmppLnuFaEgc1yBjgqQ_lodn8MdTDlnaEe_KP8IZr0Vxv3HEBVb6ZxMWIazz9O01f0C_BwH4I
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2Vcigc-CqIQAEfODbbrO3Y8bFdqLbQLQdaqTfLjp0Ksd1dlUQIfj1jxxt1ASFuSeQ4tp7teeOM5wG8pVY6yXiTIz32ObcFroNYNmchsMk2xloWDifPzsT0gn-4LC-3YH84C-O9j8FnfhQu4798t6y7sFV2oAqm0H7fgbsl57zsT2sNOypBQkKVMqUWGhfq4HAywV6gE0iLEVUVumNyw_zELP1JVmWDYe50i5X58d3M57eMzfFDmK2b2ceYfB11rR3VP3_L4Pi__XgEDxLrJIf9MHkMW37xBO7fykW4C-0nXDyusVAghd2NJ5-jQg7Clh-hpXMk_dIhJ9e4BJEophnCjCKyJEYekHfer0jK2HpFgszanHxZkH7X0bdk2Qy19HqhT-Hi-P35ZJonSYa85pK3ecMc9ZRJywrlGl-jd91Y5mVRNMK7ujGBrFfCOuXQZTeyUg45DhpE0Sjqx5I9g-3FcuGfA_GSuqriphZGIYsxxpqxF7V1QRUN7zKga6R0nfKVB9mMuY5-S6F0D68O8OoEbwb7w0urPl3Hv4sfhSEwFA25tuMDhEunqaupY65yosL-Ct5g3-sQGjsujRXUuLLMYDdAPFSS0M1gbz2gdFoXvmnKSyYER5aUQT4Msj-aaqJY5kZTX_z9K29gZ3o-O9WnJ2cfX8K98Ea_QbQH2-1N518hZWrt6zhTfgE2oBKg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJs1nHs-LhdqAoSBQlWKifLjsdVRZquSlY8fj1jx7vqgoQEtySaJLZmMvONPZmPkBfMSicr7nOEx5BzW6IfRNm8CoVN1htrq_Bz8rsTcbzkb0_r07TgFv-FAYBYfAZFOIx7-efQfZdTwULzNDVtFEePirm8KiuF0bxYOX-T7IkasfiE7C1PPsw_B0a5mVD4xrA3-TQ11pyayEGISSErC6YaTM_kTjiKXfsTzcoO4ry17lfmxzfTddeCz9FdojfDHmtOvhTrwRbtz986Ov7_vO6ROwmX0vloSPfJDegfkNvXuhXuk-E9upcLFAqwcX0F9GPk0EHF5ocYCx1Nmz70zQU6KRrpNkMhUtQ9jbUJ9BXAiqaermc0ELF19Lyn47okDPTSb58yMoo-JMuj158Wx3kibchbLvmQ-8oxYJW0Vamchxbzb28rkGXpBbjWmwDnG2GdcpjUG9kohygIQ6bwisFMVo_IpL_s4TGhIJlrGm5aYRTiHGOsmYForQu8aXiWEbbRnW5TR_NArNHpmNmUSs8XCzRjHRSuk8Iz8nJ702ps6PF38cNgFFvR0I07XkAF6vRxa-Yq1zjR4HwF9zj3NhTPzmpjBTOurjOyH5S-fUjScEYONiamk-f4qhlHmxUccVRG8q3Z_THU0ZR3hvrkH-UPyGS4WsMzBFWDfZ6-nF-Hqx2M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Feature+Selection-Based+Medical+Image+Classification+Using+Deep+Learning+Model+in+Internet+of+Medical+Things&rft.jtitle=IEEE+access&rft.au=Raj%2C+R.+Joshua+Samuel&rft.au=Shobana%2C+S.+Jeya&rft.au=Pustokhina%2C+Irina+Valeryevna&rft.au=Pustokhin%2C+Denis+Alexandrovich&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=58006&rft.epage=58017&rft_id=info:doi/10.1109%2FACCESS.2020.2981337&rft.externalDocID=9039644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon