Optimal Feature Selection-Based Medical Image Classification Using Deep Learning Model in Internet of Medical Things
Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical disease...
Saved in:
| Published in | IEEE access Vol. 8; pp. 58006 - 58017 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.2981337 |
Cover
| Abstract | Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical diseases. Medical images form an indispensable part of a patient's health record which can be applied to control, handle and treat the diseases. But, classification of images is a challenging task in computer-based diagnostics. In this research article, we have introduced a improved classifier i.e., Optimal Deep Learning (DL) for classification of lung cancer, brain image, and Alzheimer's disease. The researchers proposed the Optimal Feature Selection based Medical Image Classification using DL model by incorporating preprocessing, feature selection and classification. The main goal of the paper is to derive an optimal feature selection model for effective medical image classification. To enhance the performance of the DL classifier, Opposition-based Crow Search (OCS) algorithm is proposed. The OCS algorithm picks the optimal features from pre-processed images, here Multi-texture, grey level features were selected for the analysis. Finally, the optimal features improved the classification result and increased the accuracy, specificity and sensitivity in the diagnosis of medical images. The proposed results were implemented in MATLAB and compared with existing feature selection models and other classification approaches. The proposed model achieved the maximum performance in terms of accuracy, sensitivity and specificity being 95.22%, 86.45 % and 100% for the applied set of images. |
|---|---|
| AbstractList | Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical diseases. Medical images form an indispensable part of a patient's health record which can be applied to control, handle and treat the diseases. But, classification of images is a challenging task in computer-based diagnostics. In this research article, we have introduced a improved classifier i.e., Optimal Deep Learning (DL) for classification of lung cancer, brain image, and Alzheimer's disease. The researchers proposed the Optimal Feature Selection based Medical Image Classification using DL model by incorporating preprocessing, feature selection and classification. The main goal of the paper is to derive an optimal feature selection model for effective medical image classification. To enhance the performance of the DL classifier, Opposition-based Crow Search (OCS) algorithm is proposed. The OCS algorithm picks the optimal features from pre-processed images, here Multi-texture, grey level features were selected for the analysis. Finally, the optimal features improved the classification result and increased the accuracy, specificity and sensitivity in the diagnosis of medical images. The proposed results were implemented in MATLAB and compared with existing feature selection models and other classification approaches. The proposed model achieved the maximum performance in terms of accuracy, sensitivity and specificity being 95.22%, 86.45 % and 100% for the applied set of images. |
| Author | Pustokhin, Denis Alexandrovich Raj, R. Joshua Samuel Shobana, S. Jeya Pustokhina, Irina Valeryevna Shankar, K. Gupta, Deepak |
| Author_xml | – sequence: 1 givenname: R. Joshua Samuel surname: Raj fullname: Raj, R. Joshua Samuel organization: Department of Information Science and Engineering, CMR Institute of Technology, Bengaluru, India – sequence: 2 givenname: S. Jeya surname: Shobana fullname: Shobana, S. Jeya organization: Department of Computer Science, College of Science, Knowledge University, Erbil, Kurdistan Region, Iraq – sequence: 3 givenname: Irina Valeryevna surname: Pustokhina fullname: Pustokhina, Irina Valeryevna organization: Department of Entrepreneurship and Logistics, Plekhanov Russian University of Economics, Moscow, Russia – sequence: 4 givenname: Denis Alexandrovich surname: Pustokhin fullname: Pustokhin, Denis Alexandrovich organization: Department of Logistics, State University of Management, Moscow, Russia – sequence: 5 givenname: Deepak surname: Gupta fullname: Gupta, Deepak organization: Department of Computer Science and Engineering, Maharaja Agrasen Institute of Technology, New Delhi, India – sequence: 6 givenname: K. orcidid: 0000-0002-2803-3846 surname: Shankar fullname: Shankar, K. organization: Department of Computer Applications, Alagappa University, Karaikudi, India |
| BookMark | eNptUctuGyEUHVWp1DTNF2SD1LVdXgPDMp0mjSVHWThZIwYuLtZkZgpYVf4-OBNZkVU2cC_nweV8rc6GcYCquiJ4SQhWP67b9mazWVJM8ZKqhjAmP1XnlAi1YDUTZx_OX6rLlHa4rKa0anle5Ycph2fTo1sweR8BbaAHm8M4LH6aBA7dgwu23K-ezRZQ25uUgi-dAwQ9pTBs0S-ACa3BxOFQ3Y8OehQGtBoyxAEyGv1R5fFPgaRv1Wdv-gSX7_tF9XR789jeLdYPv1ft9XphueR54ZmjQJnsGFbOg8Vc-I6BxNgLcNYbKcu8onPKQUeNbJTDohayEV5RIJJdVKtZ141mp6dYBo0vejRBvzXGuNUm5mB70NQx1zjRFB_BffG0nOCa1KYT1Li6Llp81toPk3n5Z_r-KEiwPgShjbWQkj4Eod-DKLTvM22K4989pKx34z4OZWpNeUlE8IY0BaVmlI1jShG8tiG_fXGOJvRHhznqUwd2wj191_9ZVzMrAMCRoTBTgnP2CmQntc0 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s11042_022_13222_2 crossref_primary_10_1016_j_knosys_2020_106270 crossref_primary_10_1016_j_patcog_2023_109665 crossref_primary_10_3390_s22020506 crossref_primary_10_3390_biomimetics9020120 crossref_primary_10_3934_math_2024119 crossref_primary_10_1007_s11760_021_02130_x crossref_primary_10_1016_j_compbiomed_2021_105027 crossref_primary_10_1007_s10462_024_11063_z crossref_primary_10_7717_peerj_cs_2364 crossref_primary_10_3233_JIFS_222517 crossref_primary_10_32604_cmc_2022_019790 crossref_primary_10_3390_math10234565 crossref_primary_10_1007_s12652_021_03221_w crossref_primary_10_1109_TR_2024_3356515 crossref_primary_10_1016_j_compchemeng_2021_107599 crossref_primary_10_3233_IDT_200041 crossref_primary_10_1109_ACCESS_2024_3463871 crossref_primary_10_1109_ACCESS_2020_3046309 crossref_primary_10_1177_00202940251323768 crossref_primary_10_1007_s00354_022_00190_2 crossref_primary_10_1109_ACCESS_2020_3041370 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_3389_fpsyg_2022_848784 crossref_primary_10_1145_3526194 crossref_primary_10_3233_IDT_200049 crossref_primary_10_32604_csse_2023_035900 crossref_primary_10_32604_cmc_2022_028560 crossref_primary_10_1109_ACCESS_2020_3014346 crossref_primary_10_1051_itmconf_20245901004 crossref_primary_10_1080_13682199_2022_2161149 crossref_primary_10_1111_exsy_12987 crossref_primary_10_1080_02664763_2020_1849057 crossref_primary_10_1007_s11042_020_09874_7 crossref_primary_10_1080_0954898X_2023_2275720 crossref_primary_10_3390_s23104971 crossref_primary_10_1016_j_patcog_2021_108110 crossref_primary_10_1108_IJPCC_08_2020_0109 crossref_primary_10_3934_math_20231237 crossref_primary_10_1016_j_wasman_2024_12_023 crossref_primary_10_1109_ACCESS_2021_3133731 crossref_primary_10_1007_s13198_023_02086_w crossref_primary_10_32604_cmc_2022_020713 crossref_primary_10_1016_j_array_2021_100094 crossref_primary_10_1093_jcde_qwac040 crossref_primary_10_32604_cmc_2020_012441 crossref_primary_10_1016_j_comcom_2020_05_029 crossref_primary_10_1007_s11042_023_17724_5 crossref_primary_10_1007_s40747_023_01049_9 crossref_primary_10_2174_1872212117666230222093128 crossref_primary_10_1007_s12065_024_00949_0 crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_1007_s42235_024_00524_4 crossref_primary_10_1109_ACCESS_2020_3005808 crossref_primary_10_3390_agriculture13030667 crossref_primary_10_3390_app12147096 crossref_primary_10_1109_ACCESS_2021_3074268 crossref_primary_10_1016_j_simpat_2022_102653 crossref_primary_10_32604_cmc_2021_012315 crossref_primary_10_1007_s13198_024_02356_1 crossref_primary_10_1007_s00530_021_00800_x crossref_primary_10_32604_cmc_2020_012398 crossref_primary_10_32604_cmc_2021_012431 crossref_primary_10_1088_1742_6596_1911_1_012003 crossref_primary_10_1016_j_bspc_2025_107504 crossref_primary_10_3389_fpubh_2020_599550 crossref_primary_10_1016_j_neucom_2023_126719 crossref_primary_10_1109_JIOT_2022_3176300 crossref_primary_10_3390_math10152740 crossref_primary_10_1103_PhysRevB_111_085110 crossref_primary_10_3389_fnins_2021_630747 crossref_primary_10_3390_molecules26051285 crossref_primary_10_1007_s13246_023_01254_3 crossref_primary_10_3390_s22030867 crossref_primary_10_1016_j_swevo_2023_101430 crossref_primary_10_32604_cmc_2022_028856 crossref_primary_10_2139_ssrn_4899259 crossref_primary_10_4103_2468_8827_330652 crossref_primary_10_2298_CSIS220813014Y crossref_primary_10_1016_j_compbiomed_2025_109822 crossref_primary_10_1016_j_micpro_2023_104939 crossref_primary_10_32604_csse_2022_024239 crossref_primary_10_32604_cmc_2022_024488 crossref_primary_10_1016_j_phycom_2020_101119 crossref_primary_10_1109_ACCESS_2021_3054735 crossref_primary_10_1177_08944393241269394 crossref_primary_10_1007_s11042_021_11852_6 crossref_primary_10_1016_j_bspc_2024_106870 crossref_primary_10_1016_j_jpdc_2021_03_011 crossref_primary_10_32604_cmc_2024_051420 crossref_primary_10_1016_j_knosys_2022_108230 crossref_primary_10_32604_csse_2023_026128 crossref_primary_10_1016_j_engappai_2023_107360 crossref_primary_10_1080_19479832_2024_2321900 crossref_primary_10_1007_s11571_021_09712_y crossref_primary_10_32604_cmc_2022_024312 crossref_primary_10_1007_s00366_021_01342_6 crossref_primary_10_1016_j_measen_2025_101867 crossref_primary_10_1007_s00521_023_08666_y crossref_primary_10_3390_electronics13081578 crossref_primary_10_4103_jmp_jmp_77_23 crossref_primary_10_3233_IDT_200038 crossref_primary_10_1002_ett_4057 crossref_primary_10_1145_3617999 crossref_primary_10_3390_s25010244 crossref_primary_10_1007_s11831_021_09667_7 crossref_primary_10_26599_IJCS_2023_9100035 crossref_primary_10_1155_2022_9060340 crossref_primary_10_3390_math11030629 crossref_primary_10_1080_10255842_2022_2081504 crossref_primary_10_3390_w13111547 crossref_primary_10_1016_j_asoc_2020_106906 crossref_primary_10_1038_s41598_025_93718_7 crossref_primary_10_1155_2023_3717035 crossref_primary_10_1016_j_bspc_2022_104542 crossref_primary_10_3390_s22020476 crossref_primary_10_1109_ACCESS_2021_3103067 crossref_primary_10_1007_s12652_020_02537_3 crossref_primary_10_32604_cmc_2022_018396 crossref_primary_10_1109_ACCESS_2021_3105485 crossref_primary_10_3390_make2040023 crossref_primary_10_46604_aiti_2022_8538 crossref_primary_10_1016_j_jksuci_2022_09_005 crossref_primary_10_32604_csse_2024_049026 crossref_primary_10_1007_s11042_020_10000_w crossref_primary_10_1007_s42452_023_05339_2 crossref_primary_10_1007_s12530_024_09648_8 crossref_primary_10_3390_bioengineering11100993 |
| Cites_doi | 10.1016/j.neucom.2018.09.013 10.1016/j.comnet.2019.04.016 10.1109/PICC.2018.8384745 10.1016/j.eswa.2017.05.039 10.1109/ICSIPA.2017.8120660 10.1016/j.bbe.2017.12.004 10.4018/jssci.2011040102 10.1109/ICIIECS.2017.8276099 10.1109/ACCESS.2017.2788044 10.1016/j.compeleceng.2018.04.014 10.1016/j.neucom.2017.05.025 10.1016/j.compeleceng.2019.06.001 10.1109/ISBI.2018.8363710 10.1016/j.future.2018.10.009 10.1016/j.irbm.2018.09.006 10.1016/j.patrec.2020.02.026 10.1007/s00521-017-2988-6 10.1109/FSKD.2017.8393365 10.1016/j.dss.2017.12.001 10.1016/j.patrec.2003.10.015 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.2981337 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 58017 |
| ExternalDocumentID | oai_doaj_org_article_2d3d8d68dfe64f37bc410515ab62ad55 10.1109/access.2020.2981337 10_1109_ACCESS_2020_2981337 9039644 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: RUSA-Phase 2.0 grant sanctioned vide Policy (TNMulti-Gen), Dept. of Edn. Govt. of India, Dt. 09.10.2018 grantid: F. 24-51/2014-U |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-f3d2e237b309dfec046fb3e700f6edcfa772986bd9deb2a789d0656786f92e173 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:41:28 EDT 2025 Wed Oct 01 16:53:25 EDT 2025 Sun Jun 29 15:15:43 EDT 2025 Wed Oct 01 02:06:22 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Wed Aug 27 02:35:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-f3d2e237b309dfec046fb3e700f6edcfa772986bd9deb2a789d0656786f92e173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2803-3846 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09039644.pdf |
| PQID | 2453664818 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_2981337 doaj_primary_oai_doaj_org_article_2d3d8d68dfe64f37bc410515ab62ad55 ieee_primary_9039644 crossref_primary_10_1109_ACCESS_2020_2981337 proquest_journals_2453664818 unpaywall_primary_10_1109_access_2020_2981337 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref11 ref10 ref2 khanna (ref25) 2019; 77 ref1 ref17 ref16 ref19 (ref21) 2018 lakshmanaprabu (ref13) 2019; 92 smitha (ref3) 2011 ref24 ref26 ref20 (ref23) 2018 gnanasekar (ref8) 2016 ref7 ref9 ref4 jagatheeswari (ref18) 2009 ref6 ref5 (ref22) 2018 |
| References_xml | – ident: ref10 doi: 10.1016/j.neucom.2018.09.013 – ident: ref26 doi: 10.1016/j.comnet.2019.04.016 – ident: ref20 doi: 10.1109/PICC.2018.8384745 – year: 2018 ident: ref22 – start-page: 34 year: 2011 ident: ref3 article-title: A review of medical image classification techniques publication-title: Proc Int Conf VLSI Commun Intrumrnataiom – ident: ref5 doi: 10.1016/j.eswa.2017.05.039 – year: 2018 ident: ref23 – ident: ref16 doi: 10.1109/ICSIPA.2017.8120660 – ident: ref1 doi: 10.1016/j.bbe.2017.12.004 – ident: ref7 doi: 10.4018/jssci.2011040102 – ident: ref9 doi: 10.1109/ICIIECS.2017.8276099 – ident: ref15 doi: 10.1109/ACCESS.2017.2788044 – year: 2016 ident: ref8 article-title: Investigation on feature extraction and classification of medical images – ident: ref14 doi: 10.1016/j.compeleceng.2018.04.014 – ident: ref4 doi: 10.1016/j.neucom.2017.05.025 – volume: 77 start-page: 230 year: 2019 ident: ref25 article-title: Alzheimer detection using group grey wolf optimization based features with convolutional classifier publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.06.001 – ident: ref6 doi: 10.1109/ISBI.2018.8363710 – volume: 92 start-page: 374 year: 2019 ident: ref13 article-title: Optimal deep learning model for classification of lung cancer on CT images publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.10.009 – ident: ref11 doi: 10.1016/j.irbm.2018.09.006 – ident: ref24 doi: 10.1016/j.patrec.2020.02.026 – ident: ref17 doi: 10.1007/s00521-017-2988-6 – ident: ref19 doi: 10.1109/FSKD.2017.8393365 – ident: ref12 doi: 10.1016/j.dss.2017.12.001 – year: 2018 ident: ref21 – year: 2009 ident: ref18 article-title: Contrast enhancement for medical images based on histogram equalization followed by median filter publication-title: Pro Int Conf Man-Mach Syst – ident: ref2 doi: 10.1016/j.patrec.2003.10.015 |
| SSID | ssj0000816957 |
| Score | 2.5463955 |
| Snippet | Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 58006 |
| SubjectTerms | Accuracy Algorithms Cancer Classification Classifiers Computer networks Crow search algorithm Deep learning Diagnosis Feature extraction Feature selection features Image classification Image enhancement Internet of medical things IoMT Machine learning Medical diagnostic imaging Medical electronics medical image Medical imaging Medical research optimization Sensitivity Solid modeling |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQF-ihoqWoAYp86JEUx3b8cYQFRCsBhxaJm2XHdlVpCSuaVdV_37Fjol0htZceEzmWMzO23ziT9xD6SJ30kvFYAzwONXcE1kFoW7NU2OSidY6ln5Ovb8TVHf9y396vSH2lmrCRHng03An1zCsvlI9B8Mik61JhYtNaJ6j1bWYvJUqvJFN5DVaN0K0sNEMN0Sensxm8ESSElHyiWkFqJte2oszYXyRW1tDm1rJf2N-_7Hy-svFc7qDXBTHi03Gkb9BG6N-iVys8grtouIWJ_wCNEqBbPgX8NavbgMnrM9ilPC6fY_DnB1g-cBbCTCVC2Ss4Vw3g8xAWuLCtfsdJIm2Of_R4PDEMA36MUy-j1uc7dHd58W12VRc5hbrjkg91ZJ4GChZkRIM1O8iMo2NBEhJF8F20CWgr4bz2kG5bqbQHfAKbmYiahkayPbTZP_bhPcJBUq8Ut52wGhCItc42QXTOJ0UzuKoQfbas6QrXeJK8mJuccxBtRneY5A5T3FGh4-mhxUi18ffmZ8llU9PEk51vQPSYEj3mX9FTod3k8KkTTZgGhFihw-cAMGVO_zSUt0wIDginQvUUFC-GarPQ5dpQ9__HUA_QdupzPP45RJvD0zJ8AEA0uKMc-38A0bgGRg priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHvgoiUJAPHJtt1k7s-NguVAWpcIBKvUV2PEao2-yqJELw6xk73qgLCHFLokli6zmeN854HsBrbpVTovQ50WPMS1vQPEi2uQiJTdYba0XYnHz-QZ5dlO8vq8sdOJz2wiBiTD7DWTiM__Ldqh3CUtmRLoQm_70Lu6qW416taT0lCEjoSqXCQvNCHx0vFtQHCgF5MeO6pmBMbTmfWKM_iaps8cs7Q7c2P76b5fKWqzl9AOebRo4ZJlezobez9udv9Rv_txcP4X7inOx4HCSPYAe7x3DvViXCfeg_0tRxTUaBEg43yD5FfRwCLT8hP-dY-qHD3l3TBMSilGZIMoq4sph3wN4grlmq1_qFBZG1JfvasXHNEXu28tNTRrXQJ3Bx-vbz4ixPggx5W6qyz71wHLlQVhTaeWwptvZWoCoKL9G13gSqXkvrtKOA3ahaO2I45A6l1xznSjyFvW7V4TNgqLir69K00mjiMMZYM0fZWhc00egsA75BqmlTtfIgmrFsYtRS6GaEtwnwNgneDA6nm9ZjsY5_m5-EITCZhkrb8QLB1aQPt-FOuNrJmvorS099b0Ni7LwyVnLjqiqD_QDx9JCEbgYHmwHVpFnhW8PLSkhZEkfKIJ8G2R9NNVEqc6upz__-lhdwN1iNS0IHsNffDPiSSFJvX8Wv4xfmYA9T priority: 102 providerName: IEEE |
| Title | Optimal Feature Selection-Based Medical Image Classification Using Deep Learning Model in Internet of Medical Things |
| URI | https://ieeexplore.ieee.org/document/9039644 https://www.proquest.com/docview/2453664818 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09039644.pdf https://doaj.org/article/2d3d8d68dfe64f37bc410515ab62ad55 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQGaPyA48kTW3Hjh-7wjSQGEhQaTxZdmyjiSyrtlR8_PWcHTdaQUKCt6a6JLbucvc7-3w_hF4QI6ygzOcAj13OTAl-EGRzGgqbjNfG0HA4-d0pP1mxt2fVWVpwi2dhnHOx-MwV4Wfcyz937Xcx4yQ0T5OzWjLwqJDLy5JKiObF2vrbaI9XgMUnaG91-mHxOTDKzbmEN4a9yWepseZMRw5CSApJWRBZQ3omdsJR7NqfaFZ2EOedTbfWP77ptr0RfI7vI7Ud9lBz8rXY9KZofv7W0fH_5_UA3Uu4FC8GQ3qIbrnuEbp7o1vhPurfg3u5AKEAGzdXDn-MHDqg2PwIYqHFadMHv7kAJ4Uj3WYoRIq6x7E2Ab9ybo1TT9cvOBCxtfi8w8O6pOvxpR-fMjCKPkar49eflid5Im3IGyZYn3tqiSNUGFpK610D-bc31Imy9NzZxusA52turLSQ1GtRSwsoCEIm95K4uaBP0KS77NxThJ0gtq6ZbriWgHO0NnrueGNs4E2DqwyRre5UkzqaB2KNVsXMppRqsVyCGaugcJUUnqGX403roaHH38WPglGMoqEbd_wDFKjSx62Ipba2vIb5cuZh7k0onp1X2nCibVVlaD8ofXxI0nCGDrcmppLnuFaEgc1yBjgqQ_lodn8MdTDlnaEe_KP8IZr0Vxv3HEBVb6ZxMWIazz9O01f0C_BwH4I |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2Vcigc-CqIQAEfODbbrO3Y8bFdqLbQLQdaqTfLjp0Ksd1dlUQIfj1jxxt1ASFuSeQ4tp7teeOM5wG8pVY6yXiTIz32ObcFroNYNmchsMk2xloWDifPzsT0gn-4LC-3YH84C-O9j8FnfhQu4798t6y7sFV2oAqm0H7fgbsl57zsT2sNOypBQkKVMqUWGhfq4HAywV6gE0iLEVUVumNyw_zELP1JVmWDYe50i5X58d3M57eMzfFDmK2b2ceYfB11rR3VP3_L4Pi__XgEDxLrJIf9MHkMW37xBO7fykW4C-0nXDyusVAghd2NJ5-jQg7Clh-hpXMk_dIhJ9e4BJEophnCjCKyJEYekHfer0jK2HpFgszanHxZkH7X0bdk2Qy19HqhT-Hi-P35ZJonSYa85pK3ecMc9ZRJywrlGl-jd91Y5mVRNMK7ujGBrFfCOuXQZTeyUg45DhpE0Sjqx5I9g-3FcuGfA_GSuqriphZGIYsxxpqxF7V1QRUN7zKga6R0nfKVB9mMuY5-S6F0D68O8OoEbwb7w0urPl3Hv4sfhSEwFA25tuMDhEunqaupY65yosL-Ct5g3-sQGjsujRXUuLLMYDdAPFSS0M1gbz2gdFoXvmnKSyYER5aUQT4Msj-aaqJY5kZTX_z9K29gZ3o-O9WnJ2cfX8K98Ea_QbQH2-1N518hZWrt6zhTfgE2oBKg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJs1nHs-LhdqAoSBQlWKifLjsdVRZquSlY8fj1jx7vqgoQEtySaJLZmMvONPZmPkBfMSicr7nOEx5BzW6IfRNm8CoVN1htrq_Bz8rsTcbzkb0_r07TgFv-FAYBYfAZFOIx7-efQfZdTwULzNDVtFEePirm8KiuF0bxYOX-T7IkasfiE7C1PPsw_B0a5mVD4xrA3-TQ11pyayEGISSErC6YaTM_kTjiKXfsTzcoO4ry17lfmxzfTddeCz9FdojfDHmtOvhTrwRbtz986Ov7_vO6ROwmX0vloSPfJDegfkNvXuhXuk-E9upcLFAqwcX0F9GPk0EHF5ocYCx1Nmz70zQU6KRrpNkMhUtQ9jbUJ9BXAiqaermc0ELF19Lyn47okDPTSb58yMoo-JMuj158Wx3kibchbLvmQ-8oxYJW0Vamchxbzb28rkGXpBbjWmwDnG2GdcpjUG9kohygIQ6bwisFMVo_IpL_s4TGhIJlrGm5aYRTiHGOsmYForQu8aXiWEbbRnW5TR_NArNHpmNmUSs8XCzRjHRSuk8Iz8nJ702ps6PF38cNgFFvR0I07XkAF6vRxa-Yq1zjR4HwF9zj3NhTPzmpjBTOurjOyH5S-fUjScEYONiamk-f4qhlHmxUccVRG8q3Z_THU0ZR3hvrkH-UPyGS4WsMzBFWDfZ6-nF-Hqx2M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Feature+Selection-Based+Medical+Image+Classification+Using+Deep+Learning+Model+in+Internet+of+Medical+Things&rft.jtitle=IEEE+access&rft.au=Raj%2C+R.+Joshua+Samuel&rft.au=Shobana%2C+S.+Jeya&rft.au=Pustokhina%2C+Irina+Valeryevna&rft.au=Pustokhin%2C+Denis+Alexandrovich&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=58006&rft.epage=58017&rft_id=info:doi/10.1109%2FACCESS.2020.2981337&rft.externalDocID=9039644 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |