Evaluation and source identification of water pollution
Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 289; p. 117499 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0147-6513 1090-2414 1090-2414 |
DOI | 10.1016/j.ecoenv.2024.117499 |
Cover
Abstract | Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water pollution management, we collected extensive water quality monitoring data and applied spatial autocorrelation along with random forest to analyze the sources of heavily polluted areas. Results indicate that the spatial pollution pattern of surface water quality in Henan Province can be generally classified as insignificant pollution in the north, heavy pollution in the central regions, and light pollution in the south. Heavily polluted areas are mainly located in Zhengzhou, Luoyang, and Kaifeng. Key indicators affecting water quality in these regions are chemical oxygen demand (CODMn), dissolved oxygen (DO), ammonia nitrogen (NH3-N), and total phosphorus (TP), with urban sewage and industrial wastewater identified as the main causes of deterioration. These results not only provide a scientific basis for the systematic management of surface water quality pollution in Henan Province but also provide a reference for regional water pollution management.
[Display omitted]
●Achieve the overall evaluation of regional water pollution and local refinement of pollution sources.●Intelligent analysis of tpollution sources using random forests.●Provides new ideas for regional water pollution management and filling the gap of similar studies in the region. |
---|---|
AbstractList | Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water pollution management, we collected extensive water quality monitoring data and applied spatial autocorrelation along with random forest to analyze the sources of heavily polluted areas. Results indicate that the spatial pollution pattern of surface water quality in Henan Province can be generally classified as insignificant pollution in the north, heavy pollution in the central regions, and light pollution in the south. Heavily polluted areas are mainly located in Zhengzhou, Luoyang, and Kaifeng. Key indicators affecting water quality in these regions are chemical oxygen demand (CODMn), dissolved oxygen (DO), ammonia nitrogen (NH3-N), and total phosphorus (TP), with urban sewage and industrial wastewater identified as the main causes of deterioration. These results not only provide a scientific basis for the systematic management of surface water quality pollution in Henan Province but also provide a reference for regional water pollution management.Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water pollution management, we collected extensive water quality monitoring data and applied spatial autocorrelation along with random forest to analyze the sources of heavily polluted areas. Results indicate that the spatial pollution pattern of surface water quality in Henan Province can be generally classified as insignificant pollution in the north, heavy pollution in the central regions, and light pollution in the south. Heavily polluted areas are mainly located in Zhengzhou, Luoyang, and Kaifeng. Key indicators affecting water quality in these regions are chemical oxygen demand (CODMn), dissolved oxygen (DO), ammonia nitrogen (NH3-N), and total phosphorus (TP), with urban sewage and industrial wastewater identified as the main causes of deterioration. These results not only provide a scientific basis for the systematic management of surface water quality pollution in Henan Province but also provide a reference for regional water pollution management. Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water pollution management, we collected extensive water quality monitoring data and applied spatial autocorrelation along with random forest to analyze the sources of heavily polluted areas. Results indicate that the spatial pollution pattern of surface water quality in Henan Province can be generally classified as insignificant pollution in the north, heavy pollution in the central regions, and light pollution in the south. Heavily polluted areas are mainly located in Zhengzhou, Luoyang, and Kaifeng. Key indicators affecting water quality in these regions are chemical oxygen demand (CODMn), dissolved oxygen (DO), ammonia nitrogen (NH3-N), and total phosphorus (TP), with urban sewage and industrial wastewater identified as the main causes of deterioration. These results not only provide a scientific basis for the systematic management of surface water quality pollution in Henan Province but also provide a reference for regional water pollution management. [Display omitted] ●Achieve the overall evaluation of regional water pollution and local refinement of pollution sources.●Intelligent analysis of tpollution sources using random forests.●Provides new ideas for regional water pollution management and filling the gap of similar studies in the region. Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water pollution management, we collected extensive water quality monitoring data and applied spatial autocorrelation along with random forest to analyze the sources of heavily polluted areas. Results indicate that the spatial pollution pattern of surface water quality in Henan Province can be generally classified as insignificant pollution in the north, heavy pollution in the central regions, and light pollution in the south. Heavily polluted areas are mainly located in Zhengzhou, Luoyang, and Kaifeng. Key indicators affecting water quality in these regions are chemical oxygen demand (CODMn), dissolved oxygen (DO), ammonia nitrogen (NH3-N), and total phosphorus (TP), with urban sewage and industrial wastewater identified as the main causes of deterioration. These results not only provide a scientific basis for the systematic management of surface water quality pollution in Henan Province but also provide a reference for regional water pollution management. Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water scarcity and severe water pollution. To support effective management of water pollution in Henan Province and provide insights for regional water pollution management, we collected extensive water quality monitoring data and applied spatial autocorrelation along with random forest to analyze the sources of heavily polluted areas. Results indicate that the spatial pollution pattern of surface water quality in Henan Province can be generally classified as insignificant pollution in the north, heavy pollution in the central regions, and light pollution in the south. Heavily polluted areas are mainly located in Zhengzhou, Luoyang, and Kaifeng. Key indicators affecting water quality in these regions are chemical oxygen demand (COD ), dissolved oxygen (DO), ammonia nitrogen (NH -N), and total phosphorus (TP), with urban sewage and industrial wastewater identified as the main causes of deterioration. These results not only provide a scientific basis for the systematic management of surface water quality pollution in Henan Province but also provide a reference for regional water pollution management. |
ArticleNumber | 117499 |
Author | Wei, Huaibin Zhao, Chenchen Qiu, Haojie Liu, Jing Li, Wen Xu, Hanfei |
Author_xml | – sequence: 1 givenname: Huaibin surname: Wei fullname: Wei, Huaibin email: weihuaibin2008@126.com organization: School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 2 givenname: Haojie surname: Qiu fullname: Qiu, Haojie organization: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 3 givenname: Jing surname: Liu fullname: Liu, Jing email: liujingdx@ncwu.edu.cn organization: College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 4 givenname: Wen surname: Li fullname: Li, Wen organization: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 5 givenname: Chenchen surname: Zhao fullname: Zhao, Chenchen organization: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 6 givenname: Hanfei surname: Xu fullname: Xu, Hanfei organization: School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39672036$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAUxC1URLeFb4BQjlyy2PGf2ByQUFVopUpc4Gy92C_Iq2y82M6ifnu8TemBAz1Zev7NjDRzQc7mOCMhbxndMsrUh90WXcT5uO1oJ7aM9cKYF2TDqKFtJ5g4IxvKRN8qyfg5uch5RynlVMpX5Jwb1XeUqw3pr48wLVBCnBuYfZPjkhw2weNcwhjc-hPH5jcUTM0hTtNyOr0mL0eYMr55fC_Jjy_X369u2rtvX2-vPt-1TvSitDiio70XdDCyB_CcD6Akgu6YV-i14cxpbwahRzMiU53mw9BpI1HKkWvNL8nt6usj7OwhhT2kexsh2IdDTD8tpBLchLZGOOWldoKDYF4CRWo6VNTUROGger1fvQ4p_lowF7sP2eE0wYxxyZYzoXpWazEVffeILsMe_VPw3-IqIFbApZhzwvEJYdSe9rE7u-5jT_vYdZ8q-_iPzIXy0HFJEKbnxJ9WMdbCjwGTzS7g7NCHhK7URsL_Df4A3Quszw |
CitedBy_id | crossref_primary_10_1016_j_comptc_2025_115087 |
Cites_doi | 10.1016/j.jglr.2023.06.004 10.2166/aqua.2022.002 10.1016/j.jclepro.2024.140823 10.1007/s10661-022-10247-w 10.2166/aqua.2023.318 10.1016/j.jenvman.2020.111826 10.1016/j.jenvman.2023.118006 10.1016/j.ecoinf.2023.101991 10.1016/j.compedu.2024.105093 10.1016/j.jenvman.2022.115412 10.1007/s11356-020-11490-9 10.1016/j.totert.2023.100031 10.1007/s00477-021-02152-4 10.3390/rs14071703 10.1007/s10661-023-10989-1 10.1016/j.envpol.2020.115417 10.1080/1573062X.2022.2162426 10.1016/j.envres.2022.113058 10.1016/j.ecolind.2022.108582 10.1016/j.conbuildmat.2023.131116 10.1016/j.watres.2020.115781 10.1016/j.ecolind.2022.109096 10.1016/j.ecolind.2022.109324 10.1007/s00477-024-02752-w 10.1016/j.conbuildmat.2023.130778 10.1016/j.jenvman.2023.117976 10.1016/j.enconman.2024.118397 10.1021/acs.est.3c07576 10.1038/s41598-021-99689-9 10.1016/j.scs.2024.105507 10.1016/j.enconman.2024.118076 10.1016/j.csite.2023.103029 10.1016/j.envpol.2022.119611 10.54097/hset.v48i.8348 10.1016/j.ecoinf.2022.101696 10.1111/gean.12395 10.1016/j.ecolind.2022.109768 10.1080/17421772.2023.2176539 10.1016/j.scitotenv.2024.170757 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.ecoenv.2024.117499 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_b95c6d58c43a41d5a0e092e60965e4ca 39672036 10_1016_j_ecoenv_2024_117499 S0147651324015756 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADVLN AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSJ SSZ T5K ZU3 ~G- 29G 53G AAQFI AAQXK AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ADFGL ADMUD ADNMO AEGFY AGQPQ AI. ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 R2- RIG SEN VH1 WUQ XPP ZMT ZXP ~KM CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c474t-efec07d40b957aad33ba65ea821d6ed8931c8d9b48f9fe16283bb2895e55f3883 |
IEDL.DBID | AIKHN |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Sun Sep 28 08:35:04 EDT 2025 Mon Jul 21 06:04:24 EDT 2025 Tue Jul 01 04:57:53 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Sat Jun 21 16:54:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Random forest Spatial clustering pattern Source analysis Water quality Pollution areas identification |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-efec07d40b957aad33ba65ea821d6ed8931c8d9b48f9fe16283bb2895e55f3883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651324015756 |
PMID | 39672036 |
PQID | 3146710369 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b95c6d58c43a41d5a0e092e60965e4ca proquest_miscellaneous_3146710369 pubmed_primary_39672036 crossref_primary_10_1016_j_ecoenv_2024_117499 crossref_citationtrail_10_1016_j_ecoenv_2024_117499 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2024_117499 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Li, Li, Chen, Shang, Wu, Li, Wang (bib21) 2024; 38 Ludwig, Rausch, Deutscher, Seifried (bib25) 2024; 218 Ding, Zhao, Peng, Zhang, Chen, Fu, Duan (bib8) 2021; 280 Gao, Zhang, Li, Wang, Dzakpasu, Wang (bib12) 2023; 340 Kavurmaci (bib16) 2023; 20 Xue, Wang, Li, Liu, Wei (bib44) 2022; 14 Yan, Shen, Zhou (bib45) 2022; 308 Zamani, Nikoo, Rastad, Nematollahi (bib50) 2023; 341 Manzar, Benaafi, Costache, Alagha, Mu’azu, Zubair, Abdullahi, Abba (bib27) 2022; 70 Yao, Chen, He, Cui, Mo, Pang, Chen (bib47) 2023; 146 Liu, Zheng (bib23) 2022; 43 Tesoriero, Wherry, Dupuy, Johnson (bib38) 2024; 58 Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., 2014. Do we need hundreds of classifiers to solve real world classification problems? 15, 3133-3181. Lv, Jue, Guo, Ling, Yan (bib26) 2022; 71 Li, Huang, Zhu (bib19) 2023; 15 Qu, Li, Hou, Huang, He (bib30) 2024; 308 Xu, Bai, You, Wang, Ma, Zhang (bib43) 2022; 141 Shi, Yang, Zhang, Chen, Fan, Lu, Chen, Zhang (bib36) 2024; 919 Zhao, Liu, Xing, Wang, Wang (bib52) 2022; 211 Shah, Javed, Abunama (bib34) 2021; 28 Alnahit, Mishra, Khan (bib1) 2022; 36 Ren, Zhang, Qian (bib31) 2021; 647 Yang (bib46) 2023; 48 Gao, Yang, Zhu, Xu (bib11) 2023; 371 Chen, Liu, Jiang, Hou, Gao (bib6) 2022; 143 Rowe, Valipour, Redder (bib33) 2023; 49 Giao (bib13) 2022; 4 Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (bib32) 2015; 71 Chen (bib7) 2023; 13 Wen, Wang (bib42) 2023; 72 Wei, Wang, Liu, Cao, Zhang (bib41) 2023; 15 Gani, Sajib, Siddik, Md (bib10) 2023; 195 Lap, Phan, Nguyen, Quang, Hang, Phi, Hoang, Linh, Hang (bib18) 2023; 74 Yuan, Qi, He, Wu, Kong, Ramsey, Degefu (bib49) 2024; 438 Yu, Wang, Xu, Lu, Lin, Gao (bib48) 2022; 135 Kubara, Kopczewska (bib17) 2024; 19 UNESCO, 2021. The United Nations World Water Development Report 2021: Valuing Water. United Nations. Amiri, Oudira, Chouder, Kichou (bib2) 2024; 301 Nong, Shao, Zhong, Liang (bib29) 2020; 178 Janatabadi, F., Ermagun, A.J.G.A., 2024. Access Weight Matrix: A Place and Mobility Infused Spatial Weight Matrix. Nguyen, Tran (bib28) 2023; 377 Tan, Kesina, Elhorst (bib37) 2024 Behrouz, Yazdi, Sample (bib4) 2022; 317 Varol (bib40) 2020; 266 Li, Wang, Hao, Sun, Gao, Gou, Wang, Pei (bib20) 2024; 35 Zhang, Chen, Dai, Han (bib51) 2022; 194 Lin, Xu, Han, Zhang, Peng, Yao (bib22) 2024; 108 Chakraborty, Bera, Adhikary, Bhattacharjee, Roy, Saha, Ghosh, Sengupta, Shit (bib5) 2021; 11 Begum (bib3) 2023; 45 Lu, Gu, Han, Xu, Liu, Jiang, Zhang (bib24) 2023 Shanmugasundharam, Akhina, Adhithya, Singh, Krishnakumar (bib35) 2023; 6 Griffith, Peres-Neto (bib14) 2006; 87 Ren (10.1016/j.ecoenv.2024.117499_bib31) 2021; 647 Tan (10.1016/j.ecoenv.2024.117499_bib37) 2024 Shi (10.1016/j.ecoenv.2024.117499_bib36) 2024; 919 Alnahit (10.1016/j.ecoenv.2024.117499_bib1) 2022; 36 Qu (10.1016/j.ecoenv.2024.117499_bib30) 2024; 308 Giao (10.1016/j.ecoenv.2024.117499_bib13) 2022; 4 Rowe (10.1016/j.ecoenv.2024.117499_bib33) 2023; 49 Ding (10.1016/j.ecoenv.2024.117499_bib8) 2021; 280 10.1016/j.ecoenv.2024.117499_bib15 Gao (10.1016/j.ecoenv.2024.117499_bib12) 2023; 340 Yao (10.1016/j.ecoenv.2024.117499_bib47) 2023; 146 Zhao (10.1016/j.ecoenv.2024.117499_bib52) 2022; 211 Gani (10.1016/j.ecoenv.2024.117499_bib10) 2023; 195 Xu (10.1016/j.ecoenv.2024.117499_bib43) 2022; 141 Kubara (10.1016/j.ecoenv.2024.117499_bib17) 2024; 19 Behrouz (10.1016/j.ecoenv.2024.117499_bib4) 2022; 317 Tesoriero (10.1016/j.ecoenv.2024.117499_bib38) 2024; 58 Nong (10.1016/j.ecoenv.2024.117499_bib29) 2020; 178 Shah (10.1016/j.ecoenv.2024.117499_bib34) 2021; 28 Yang (10.1016/j.ecoenv.2024.117499_bib46) 2023; 48 10.1016/j.ecoenv.2024.117499_bib9 Chen (10.1016/j.ecoenv.2024.117499_bib7) 2023; 13 Griffith (10.1016/j.ecoenv.2024.117499_bib14) 2006; 87 Kavurmaci (10.1016/j.ecoenv.2024.117499_bib16) 2023; 20 Lin (10.1016/j.ecoenv.2024.117499_bib22) 2024; 108 Manzar (10.1016/j.ecoenv.2024.117499_bib27) 2022; 70 Li (10.1016/j.ecoenv.2024.117499_bib19) 2023; 15 Li (10.1016/j.ecoenv.2024.117499_bib20) 2024; 35 Ludwig (10.1016/j.ecoenv.2024.117499_bib25) 2024; 218 Begum (10.1016/j.ecoenv.2024.117499_bib3) 2023; 45 Rodriguez-Galiano (10.1016/j.ecoenv.2024.117499_bib32) 2015; 71 Shanmugasundharam (10.1016/j.ecoenv.2024.117499_bib35) 2023; 6 10.1016/j.ecoenv.2024.117499_bib39 Xue (10.1016/j.ecoenv.2024.117499_bib44) 2022; 14 Varol (10.1016/j.ecoenv.2024.117499_bib40) 2020; 266 Zhang (10.1016/j.ecoenv.2024.117499_bib51) 2022; 194 Yu (10.1016/j.ecoenv.2024.117499_bib48) 2022; 135 Wen (10.1016/j.ecoenv.2024.117499_bib42) 2023; 72 Lv (10.1016/j.ecoenv.2024.117499_bib26) 2022; 71 Gao (10.1016/j.ecoenv.2024.117499_bib11) 2023; 371 Amiri (10.1016/j.ecoenv.2024.117499_bib2) 2024; 301 Chen (10.1016/j.ecoenv.2024.117499_bib6) 2022; 143 Lap (10.1016/j.ecoenv.2024.117499_bib18) 2023; 74 Zamani (10.1016/j.ecoenv.2024.117499_bib50) 2023; 341 Nguyen (10.1016/j.ecoenv.2024.117499_bib28) 2023; 377 Liu (10.1016/j.ecoenv.2024.117499_bib23) 2022; 43 Chakraborty (10.1016/j.ecoenv.2024.117499_bib5) 2021; 11 Li (10.1016/j.ecoenv.2024.117499_bib21) 2024; 38 Yuan (10.1016/j.ecoenv.2024.117499_bib49) 2024; 438 Lu (10.1016/j.ecoenv.2024.117499_bib24) 2023 Wei (10.1016/j.ecoenv.2024.117499_bib41) 2023; 15 Yan (10.1016/j.ecoenv.2024.117499_bib45) 2022; 308 |
References_xml | – reference: UNESCO, 2021. The United Nations World Water Development Report 2021: Valuing Water. United Nations. – volume: 15 start-page: 14754 year: 2023 ident: bib41 article-title: Spatiotemporal Variations of Water Eutrophication and Non-Point Source Pollution Prevention and Control in the Main Stream of the Yellow River in Henan Province from 2012 to 2021 – volume: 20 start-page: 313 year: 2023 end-page: 329 ident: bib16 article-title: Evaluation of the potential corrosivity of groundwater using an Analytic Hierarchy Process-based index publication-title: Urban Water J. – volume: 108 year: 2024 ident: bib22 article-title: Day and night: Impact of 2D/3D urban features on land surface temperature and their spatiotemporal non-stationary relationships in urban building spaces publication-title: Sustain. Cities Soc. – volume: 13 year: 2023 ident: bib7 article-title: Spatial autocorrelation equation based on Moran’s index publication-title: Sci. Rep. – volume: 194 start-page: 559 year: 2022 ident: bib51 article-title: Assessment of the value of regional water conservation services based on SWAT model publication-title: Environ. Monit. Assess. – volume: 301 year: 2024 ident: bib2 article-title: Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier publication-title: Energy Convers. Manag. – start-page: 1 year: 2024 end-page: 15 ident: bib37 article-title: Parameterizing Spatial Weight Matrices in Spatial Econometric Models publication-title: Political Anal. – volume: 4 year: 2022 ident: bib13 article-title: Surface water quality influenced by industrial wastewater effluent in An Giang Province publication-title: Vietnam – volume: 919 year: 2024 ident: bib36 article-title: Forecasting and advancing water carrying capacity in Henan Province in China: Application of ‘four determinations with water’ in AHP and SD modeling publication-title: Sci. Total Environ. – volume: 317 year: 2022 ident: bib4 article-title: Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff publication-title: J. Environ. Manag. – volume: 49 start-page: 993 year: 2023 end-page: 1003 ident: bib33 article-title: Intercomparison of three spatially-resolved, process-based Lake Erie hypoxia models publication-title: J. Gt. Lakes Res. – volume: 58 start-page: 5079 year: 2024 end-page: 5092 ident: bib38 article-title: Predicting redox conditions in groundwater at a national scale using Random forest classification publication-title: Environ. Sci. Technol. – volume: 308 year: 2022 ident: bib45 article-title: Indices and models of surface water quality assessment: Review and perspectives publication-title: Environ. Pollut. – volume: 647 year: 2021 ident: bib31 article-title: Comprehensive assessment of water quality of ten rivers in Zhengzhou main urban area publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 308 year: 2024 ident: bib30 article-title: A structural depth network embedding stacking model based on Moran’s index and seasonal trend for short-term solar irradiance prediction publication-title: Energy Convers. Manag. – volume: 141 year: 2022 ident: bib43 article-title: Water quality assessment and the influence of landscape metrics at multiple scales in Poyang Lake basin publication-title: Ecol. Indic. – volume: 211 year: 2022 ident: bib52 article-title: Evaluation of water quality using a Takagi-Sugeno fuzzy neural network and determination of heavy metal pollution index in a typical site upstream of the Yellow River publication-title: Environ. Res. – volume: 143 year: 2022 ident: bib6 article-title: Source apportionment of surface water pollution in North Anhui Plain, Eastern China, using APCS-MLR model combined with GIS approach and socioeconomic parameters publication-title: Ecol. Indic. – volume: 11 year: 2021 ident: bib5 article-title: Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India publication-title: Sci. Rep. – volume: 71 start-page: 709 year: 2022 end-page: 721 ident: bib26 article-title: Research on quantification method of water pollution ecological environment losses publication-title: J. Water Supply.: Res. Technol. -Aqua – volume: 135 year: 2022 ident: bib48 article-title: Dynamic impacts of changes in river structure and connectivity on water quality under urbanization in the Yangtze River Delta plain publication-title: Ecol. Indic. – volume: 340 year: 2023 ident: bib12 article-title: First flush stormwater pollution in urban catchments: A review of its characterization and quantification towards optimization of control measures publication-title: J. Environ. Manag. – volume: 341 year: 2023 ident: bib50 article-title: A comparative study of data-driven models for runoff, sediment, and nitrate forecasting publication-title: J. Environ. Manag. – volume: 45 year: 2023 ident: bib3 article-title: Advanced modeling based on machine learning for evaluation of drug nanoparticle preparation via green technology: Theoretical assessment of solubility variations publication-title: Case Stud. Therm. Eng. – volume: 72 start-page: 2446 year: 2023 end-page: 2471 ident: bib42 article-title: Numerical simulation of water environment capacity from wet, normal, and dry years: taking the Luo River as an example publication-title: AQUA — Water Infrastruct., Ecosyst. Soc. – volume: 218 year: 2024 ident: bib25 article-title: Predicting problem-solving success in an office simulation applying N-grams and a random forest to behavioral process data publication-title: Comput. Educ. – volume: 146 year: 2023 ident: bib47 article-title: Land use as an important indicator for water quality prediction in a region under rapid urbanization publication-title: Ecol. Indic. – volume: 38 start-page: 3377 year: 2024 end-page: 3392 ident: bib21 article-title: Assessment and driving factor analysis of total nitrogen loads: a case study of counties from 2000 to 2020 in Henan Province, China publication-title: Stoch. Environ. Res. Risk Assess. – volume: 28 start-page: 13202 year: 2021 end-page: 13220 ident: bib34 article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques publication-title: Environ. Sci. Pollut. Res. – volume: 195 start-page: 449 year: 2023 ident: bib10 article-title: Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques publication-title: Environ. Monit. Assess. – volume: 371 year: 2023 ident: bib11 article-title: Estimation of rubberized concrete frost resistance using machine learning techniques publication-title: Constr. Build. Mater. – volume: 178 year: 2020 ident: bib29 article-title: Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method publication-title: Water Res. – volume: 14 year: 2022 ident: bib44 article-title: Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities publication-title: Remote Sens. – volume: 71 start-page: 804 year: 2015 end-page: 818 ident: bib32 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines – volume: 74 year: 2023 ident: bib18 article-title: Predicting Water Quality Index (WQI) by feature selection and machine learning: A case study of An Kim Hai irrigation system publication-title: Ecol. Inform. – volume: 70 year: 2022 ident: bib27 article-title: New generation neurocomputing learning coupled with a hybrid neuro-fuzzy model for quantifying water quality index variable: A case study from Saudi Arabia publication-title: Ecol. Inform. – reference: Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., 2014. Do we need hundreds of classifiers to solve real world classification problems? 15, 3133-3181. – volume: 19 start-page: 73 year: 2024 end-page: 91 ident: bib17 article-title: Akaike information criterion in choosing the optimal k-nearest neighbours of the spatial weight matrix publication-title: Spat. Econ. Anal. – volume: 280 year: 2021 ident: bib8 article-title: Stochastic trophic level index model: A new method for evaluating eutrophication state publication-title: J. Environ. Manag. – volume: 43 start-page: 1332 year: 2022 end-page: 1345 ident: bib23 article-title: [Water Quality Assessment and Spatial-temporal Variation Analysis in Yellow River Basin] publication-title: Huan jing ke xue= Huanjing kexue – volume: 48 year: 2023 ident: bib46 article-title: Storm-event dynamics of nitrogen and dissolved oxygen in Urban River: The Upper Tame, Birmingham publication-title: Highlights Sci., Eng. Technol. – volume: 35 start-page: 3606 year: 2024 end-page: 3626 ident: bib20 article-title: Urbanization intensifies the imbalance between human development and biodiversity conservation: Insights from the coupling analysis of human activities and habitat quality publication-title: Development – volume: 266 year: 2020 ident: bib40 article-title: Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study publication-title: Environ. Pollut. – volume: 36 start-page: 2661 year: 2022 end-page: 2680 ident: bib1 article-title: Stream water quality prediction using boosted regression tree and random forest models publication-title: Stoch. Environ. Res. Risk Assess. – volume: 6 year: 2023 ident: bib35 article-title: Water quality index (WQI), multivariate statistical and GIS for assessment of surface water quality of Karamana river estuary, west coast of India publication-title: Total Environ. Res. Themes – reference: Janatabadi, F., Ermagun, A.J.G.A., 2024. Access Weight Matrix: A Place and Mobility Infused Spatial Weight Matrix. – volume: 438 year: 2024 ident: bib49 article-title: A differential game of water pollution management in the trans-jurisdictional river basin publication-title: J. Clean. Prod. – volume: 15 year: 2023 ident: bib19 article-title: Ecological Health Assessment of an Urban River: The Case Study of Zhengzhou City, China publication-title: Sustainability – volume: 377 year: 2023 ident: bib28 article-title: Data-driven approach for investigating and predicting rutting depth of asphalt concrete containing reclaimed asphalt pavement publication-title: Constr. Build. Mater. – year: 2023 ident: bib24 article-title: Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China publication-title: Water – volume: 87 start-page: 2603 year: 2006 end-page: 2613 ident: bib14 article-title: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses – volume: 647 year: 2021 ident: 10.1016/j.ecoenv.2024.117499_bib31 article-title: Comprehensive assessment of water quality of ten rivers in Zhengzhou main urban area publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 49 start-page: 993 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib33 article-title: Intercomparison of three spatially-resolved, process-based Lake Erie hypoxia models publication-title: J. Gt. Lakes Res. doi: 10.1016/j.jglr.2023.06.004 – volume: 71 start-page: 709 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib26 article-title: Research on quantification method of water pollution ecological environment losses publication-title: J. Water Supply.: Res. Technol. -Aqua doi: 10.2166/aqua.2022.002 – volume: 438 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib49 article-title: A differential game of water pollution management in the trans-jurisdictional river basin publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.140823 – volume: 15 start-page: 14754 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib41 article-title: Spatiotemporal Variations of Water Eutrophication and Non-Point Source Pollution Prevention and Control in the Main Stream of the Yellow River in Henan Province from 2012 to 2021 – volume: 43 start-page: 1332 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib23 article-title: [Water Quality Assessment and Spatial-temporal Variation Analysis in Yellow River Basin] publication-title: Huan jing ke xue= Huanjing kexue – volume: 194 start-page: 559 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib51 article-title: Assessment of the value of regional water conservation services based on SWAT model publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-10247-w – volume: 72 start-page: 2446 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib42 article-title: Numerical simulation of water environment capacity from wet, normal, and dry years: taking the Luo River as an example publication-title: AQUA — Water Infrastruct., Ecosyst. Soc. doi: 10.2166/aqua.2023.318 – volume: 280 year: 2021 ident: 10.1016/j.ecoenv.2024.117499_bib8 article-title: Stochastic trophic level index model: A new method for evaluating eutrophication state publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111826 – volume: 341 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib50 article-title: A comparative study of data-driven models for runoff, sediment, and nitrate forecasting publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.118006 – volume: 74 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib18 article-title: Predicting Water Quality Index (WQI) by feature selection and machine learning: A case study of An Kim Hai irrigation system publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2023.101991 – volume: 218 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib25 article-title: Predicting problem-solving success in an office simulation applying N-grams and a random forest to behavioral process data publication-title: Comput. Educ. doi: 10.1016/j.compedu.2024.105093 – volume: 35 start-page: 3606 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib20 article-title: Urbanization intensifies the imbalance between human development and biodiversity conservation: Insights from the coupling analysis of human activities and habitat quality publication-title: Development – volume: 317 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib4 article-title: Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.115412 – volume: 28 start-page: 13202 year: 2021 ident: 10.1016/j.ecoenv.2024.117499_bib34 article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11490-9 – volume: 15 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib19 article-title: Ecological Health Assessment of an Urban River: The Case Study of Zhengzhou City, China publication-title: Sustainability – volume: 6 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib35 article-title: Water quality index (WQI), multivariate statistical and GIS for assessment of surface water quality of Karamana river estuary, west coast of India publication-title: Total Environ. Res. Themes doi: 10.1016/j.totert.2023.100031 – ident: 10.1016/j.ecoenv.2024.117499_bib39 – volume: 36 start-page: 2661 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib1 article-title: Stream water quality prediction using boosted regression tree and random forest models publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-021-02152-4 – volume: 14 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib44 article-title: Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities publication-title: Remote Sens. doi: 10.3390/rs14071703 – ident: 10.1016/j.ecoenv.2024.117499_bib9 – volume: 195 start-page: 449 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib10 article-title: Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-10989-1 – volume: 266 year: 2020 ident: 10.1016/j.ecoenv.2024.117499_bib40 article-title: Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115417 – volume: 4 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib13 article-title: Surface water quality influenced by industrial wastewater effluent in An Giang Province publication-title: Vietnam – volume: 20 start-page: 313 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib16 article-title: Evaluation of the potential corrosivity of groundwater using an Analytic Hierarchy Process-based index publication-title: Urban Water J. doi: 10.1080/1573062X.2022.2162426 – volume: 87 start-page: 2603 year: 2006 ident: 10.1016/j.ecoenv.2024.117499_bib14 article-title: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses – volume: 211 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib52 article-title: Evaluation of water quality using a Takagi-Sugeno fuzzy neural network and determination of heavy metal pollution index in a typical site upstream of the Yellow River publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113058 – volume: 135 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib48 article-title: Dynamic impacts of changes in river structure and connectivity on water quality under urbanization in the Yangtze River Delta plain publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.108582 – volume: 377 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib28 article-title: Data-driven approach for investigating and predicting rutting depth of asphalt concrete containing reclaimed asphalt pavement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.131116 – volume: 178 year: 2020 ident: 10.1016/j.ecoenv.2024.117499_bib29 article-title: Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method publication-title: Water Res. doi: 10.1016/j.watres.2020.115781 – volume: 141 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib43 article-title: Water quality assessment and the influence of landscape metrics at multiple scales in Poyang Lake basin publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.109096 – volume: 143 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib6 article-title: Source apportionment of surface water pollution in North Anhui Plain, Eastern China, using APCS-MLR model combined with GIS approach and socioeconomic parameters publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.109324 – volume: 38 start-page: 3377 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib21 article-title: Assessment and driving factor analysis of total nitrogen loads: a case study of counties from 2000 to 2020 in Henan Province, China publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-024-02752-w – volume: 371 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib11 article-title: Estimation of rubberized concrete frost resistance using machine learning techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.130778 – volume: 340 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib12 article-title: First flush stormwater pollution in urban catchments: A review of its characterization and quantification towards optimization of control measures publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.117976 – volume: 71 start-page: 804 year: 2015 ident: 10.1016/j.ecoenv.2024.117499_bib32 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines – year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib24 article-title: Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China publication-title: Water – volume: 308 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib30 article-title: A structural depth network embedding stacking model based on Moran’s index and seasonal trend for short-term solar irradiance prediction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2024.118397 – volume: 58 start-page: 5079 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib38 article-title: Predicting redox conditions in groundwater at a national scale using Random forest classification publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c07576 – volume: 11 year: 2021 ident: 10.1016/j.ecoenv.2024.117499_bib5 article-title: Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India publication-title: Sci. Rep. doi: 10.1038/s41598-021-99689-9 – volume: 108 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib22 article-title: Day and night: Impact of 2D/3D urban features on land surface temperature and their spatiotemporal non-stationary relationships in urban building spaces publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2024.105507 – volume: 13 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib7 article-title: Spatial autocorrelation equation based on Moran’s index publication-title: Sci. Rep. – volume: 301 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib2 article-title: Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2024.118076 – volume: 45 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib3 article-title: Advanced modeling based on machine learning for evaluation of drug nanoparticle preparation via green technology: Theoretical assessment of solubility variations publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103029 – volume: 308 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib45 article-title: Indices and models of surface water quality assessment: Review and perspectives publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.119611 – volume: 48 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib46 article-title: Storm-event dynamics of nitrogen and dissolved oxygen in Urban River: The Upper Tame, Birmingham publication-title: Highlights Sci., Eng. Technol. doi: 10.54097/hset.v48i.8348 – volume: 70 year: 2022 ident: 10.1016/j.ecoenv.2024.117499_bib27 article-title: New generation neurocomputing learning coupled with a hybrid neuro-fuzzy model for quantifying water quality index variable: A case study from Saudi Arabia publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101696 – ident: 10.1016/j.ecoenv.2024.117499_bib15 doi: 10.1111/gean.12395 – start-page: 1 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib37 article-title: Parameterizing Spatial Weight Matrices in Spatial Econometric Models publication-title: Political Anal. – volume: 146 year: 2023 ident: 10.1016/j.ecoenv.2024.117499_bib47 article-title: Land use as an important indicator for water quality prediction in a region under rapid urbanization publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.109768 – volume: 19 start-page: 73 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib17 article-title: Akaike information criterion in choosing the optimal k-nearest neighbours of the spatial weight matrix publication-title: Spat. Econ. Anal. doi: 10.1080/17421772.2023.2176539 – volume: 919 year: 2024 ident: 10.1016/j.ecoenv.2024.117499_bib36 article-title: Forecasting and advancing water carrying capacity in Henan Province in China: Application of ‘four determinations with water’ in AHP and SD modeling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.170757 |
SSID | ssj0003055 |
Score | 2.4728723 |
Snippet | Maintaining good surface water quality is essential for protecting ecosystems and human health. Henan Province has long faced challenges related to water... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117499 |
SubjectTerms | Biological Oxygen Demand Analysis China Environmental Monitoring - methods Nitrogen - analysis Phosphorus - analysis Pollution areas identification Random forest Source analysis Spatial clustering pattern Wastewater - analysis Water Pollutants, Chemical - analysis Water Pollution - analysis Water Quality |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCIKIb9cXFbwWm82jzVFlRQQ9KXgLeUxAka7oruK_N5O0qx5kL17TtA2TaeebR74h5ETSoKSXtAxgfcmtgtJgzlU57wI0AjjH8843t_Lqnl8_iIcfrb6wJizTA2fBnVolnPSicZwZTr0wFVRqCBJZS4C7BI0qVfXOVPcPRh6rXLxYl1JQ1h-aS5Vd0a-D9j36hkOOOUueeF-_jVLi7v9lm_7CnskGXa6R1Q48Fmd50etkAdoNsjRKxNOfG2Qlx-CKfLRok9SjGZV3YVpf5EB98ei7CqF8ZRyKjwg4X4sX7HqMQ1vk_nJ0d3FVdo0SSsdrPikhgKtqz6sorNoYz5g1UTqmGVIvwUdIQl3jleVNUAGojJDC2uhpCRAisKZh22SxHbewSwrZKKgFNZjBQ_tmwFYheFGBlzVjakBYLyntOhZxbGbxrPtysSed5atRvjrLd0DK2V0vmUVjzvxz3ITZXOTATgNRM3SnGXqeZgxI3W-h7uBEhgnxUY9zXn_c77iOXxumUEwL4-mbZmhYaLT6cc5OVoXZIpmSmNOWe_-x-H2yPMROwynYc0AWJ69TOIzwZ2KPkqZ_AbAO_8U priority: 102 providerName: Directory of Open Access Journals |
Title | Evaluation and source identification of water pollution |
URI | https://dx.doi.org/10.1016/j.ecoenv.2024.117499 https://www.ncbi.nlm.nih.gov/pubmed/39672036 https://www.proquest.com/docview/3146710369 https://doaj.org/article/b95c6d58c43a41d5a0e092e60965e4ca |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDYVCCG362qRdXOjVXct62DomYcO2pTk1kJuQrFHZUrzLdpPSS397NZbtkkMJ9CpLljwaa0bz-AbgnWJBK69YHtD5XDiNuSWfq258E7CWKATlO3--Ustr8fFG3uzBxZALQ2GV_dmfzvTutO5b5j0155vVak5hSZWSjBDlWFQ61D4clFHa1xM4OPvwaXk1HsgEapUiGaucBgwZdF2YV7zkYXsXL4qlIAem6EBg_0qoDsj_nqD6lyLaCaTLJ3DUa5LZWVrsU9jD9hgeLToU6l_HcJgMclnKM3oG1WLE9c5s67Nktc9Wvg8XSk_WIfsZtc9ttqESyNT0HK4vF18ulnlfNSFvRCV2OQZsisqLwmlZWes5d1ZJtHXJvEIf9RPW1F47UQcdkKmoXzgXr10SpQy8rvkLmLTrFl9BpmqNlWSW3Hkk7Cy6IgQvC_Sq4lxPgQ-UMk0PKU6VLb6bIXbsm0n0NURfk-g7hXwctUmQGg_0P6dNGPsSIHbXsN5-NT1HmPixjfKybgS3gnlpCyx0iYrAbVA0dgrVsIXmHn_FV60emP7tsOMm_nrkT7Etrm9_GE5ShkUVIPZ5mVhhXCTXihzc6uS_5z2FxyXVGu7MPa9hstve4puoAO3cDPbf_2azns1nnRnhD4DyBCA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lLHBKFu3btmnB3s1saIPW49dSUnXNk8t9E1I1mlkDCekacv---ks26MPo9BXWbLk0_nupLv7HcA3xYJWXrE8oPO5cBpzSz5XXfs6YCVRCMp3Pl-o-aX4cSWvduCoz4WhsMpO9ieZ3krrrmXSUXOyXi4nFJZUKskIUY5Fo0M9gV1BRa1HsHt4cjpfDAKZQK1SJGOZ04A-g64N84qHPGxu40FxKsiBKVoQ2H8aqgXyv6eo_meItgrp-CXsdZZkdpgW-wp2sNmHp7MWhfrPPrxIF3JZyjN6DeVswPXObOOzdGufLX0XLpSerEJ2F63PTbamEsjU9AYuj2cXR_O8q5qQ16IU2xwD1kXpReG0LK31nDurJNpqyrxCH-0TVldeO1EFHZCpaF84F49dEqUMvKr4AYyaVYPvIFOVxlIyS-48UnYWXRGClwV6VXKux8B7Spm6gxSnyha_TR879ssk-hqir0n0HUM-jFonSI0H-n-nTRj6EiB227Da_DQdR5j4sbXysqoFt4J5aQss9BQVgdugqO0Yyn4LzT3-iq9aPjD9137HTfz1yJ9iG1zdXBtOWoZFEyD2eZtYYVgk14oc3Or9o-f9As_mF-dn5uxkcfoBnk-p7nB79fMRRtvNDX6KxtDWfe6Y_S-F1QUR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+source+identification+of+water+pollution&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Wei%2C+Huaibin&rft.au=Qiu%2C+Haojie&rft.au=Liu%2C+Jing&rft.au=Li%2C+Wen&rft.date=2025-01-01&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.volume=289&rft_id=info:doi/10.1016%2Fj.ecoenv.2024.117499&rft.externalDocID=S0147651324015756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |