Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI
Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fibe...
Saved in:
| Published in | Brain Structure and Function Vol. 224; no. 4; pp. 1469 - 1488 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1863-2653 1863-2661 1863-2661 0340-2061 |
| DOI | 10.1007/s00429-019-01844-6 |
Cover
| Abstract | Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin
g
-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3
d
measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons. |
|---|---|
| AbstractList | Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the "apparent" inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons. Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the "apparent" inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the "apparent" inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons. Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g -ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3 d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons. Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (in, e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and preclinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross-sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of its diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons. Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons. |
| Author | Yaros, Katarina Lee, Hong-Hsi Kim, Sungheon G. Liang, Feng-Xia Veraart, Jelle Pathan, Jasmine L. Novikov, Dmitry S. Fieremans, Els |
| AuthorAffiliation | 3 Department of Cell Biology and Microscopy Core, New York University School of Medicine, 520 First Avenue, New York, NY 10016, USA 1 Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA 2 Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA |
| AuthorAffiliation_xml | – name: 3 Department of Cell Biology and Microscopy Core, New York University School of Medicine, 520 First Avenue, New York, NY 10016, USA – name: 2 Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA – name: 1 Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA |
| Author_xml | – sequence: 1 givenname: Hong-Hsi orcidid: 0000-0002-3663-6559 surname: Lee fullname: Lee, Hong-Hsi email: Honghsi.Lee@nyulangone.org organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine – sequence: 2 givenname: Katarina surname: Yaros fullname: Yaros, Katarina organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine – sequence: 3 givenname: Jelle surname: Veraart fullname: Veraart, Jelle organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine – sequence: 4 givenname: Jasmine L. surname: Pathan fullname: Pathan, Jasmine L. organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine – sequence: 5 givenname: Feng-Xia surname: Liang fullname: Liang, Feng-Xia organization: Department of Cell Biology and Microscopy Core, New York University School of Medicine – sequence: 6 givenname: Sungheon G. surname: Kim fullname: Kim, Sungheon G. organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine – sequence: 7 givenname: Dmitry S. orcidid: 0000-0002-4213-3050 surname: Novikov fullname: Novikov, Dmitry S. organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine – sequence: 8 givenname: Els orcidid: 0000-0002-1384-8591 surname: Fieremans fullname: Fieremans, Els organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30790073$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1DAUjVARfcAPsECW2LAJ-JF4EhZIVXlVKkJCsLZuHCfjyrFT25lhPpD_wpkMLXRRYcnyle85R8f3-DQ7ss6qLHtO8GuC8epNwLigdY7JvKuiyPmj7IRUnOWUc3J0W5fsODsN4Rrjsq5I_SQ7ZnhVJwV2kv06N872Ofx0FrUaBhWVRxvwGqJOV2BbNPfAIOe1snG5bnUYlQ9z6dVGgVEt2uq4Ruw9UkbJ6FNn0NK7IN24e4v0MBot9-SAOufRzQQ26m6nbY8aD9qi7VpHhQaIs4OFG_0k4-TVor3WITrj-t3eVau7bto7-PLt8mn2uAMT1LPDeZb9-Pjh-8Xn_Orrp8uL86tcFqsi5m2pqCradLCSEi4JrqGRFS5gVVcUOo5pyboqjQY4gZLWsu1Kzsu6aaSsacHOMrboTnaE3RaMEaPXA_idIFjMoYglFJFCEftQBE-sdwtrnJpBtTKN0cMd04EW_3asXovebQQvCeZkFnh1EPDuZlIhikEHqYwBq9wUBCVVmRYtSIK-vAe9dpNP-e1RBUs_g-GEevG3o1srf_5FAlQLYI4heNUJqZfsk0FtHn4tvUf9rxEdBhsS2PbK39l-gPUbAzzybQ |
| CitedBy_id | crossref_primary_10_1038_s41598_021_82575_9 crossref_primary_10_7554_eLife_79169 crossref_primary_10_1016_j_jmr_2022_107205 crossref_primary_10_1016_j_jneumeth_2020_108861 crossref_primary_10_1016_j_neuroimage_2020_117619 crossref_primary_10_2463_mrms_rev_2021_0091 crossref_primary_10_3389_fbioe_2022_904818 crossref_primary_10_1016_j_neuroimage_2022_118958 crossref_primary_10_1016_j_neuroimage_2020_116533 crossref_primary_10_1073_pnas_2012533117 crossref_primary_10_1007_s10409_023_23278_x crossref_primary_10_1016_j_neuroimage_2022_118906 crossref_primary_10_1016_j_neuroimage_2020_117107 crossref_primary_10_3389_fnins_2020_00072 crossref_primary_10_1364_BOE_499354 crossref_primary_10_1016_j_tics_2022_01_007 crossref_primary_10_1038_s41598_024_79043_5 crossref_primary_10_1016_j_neuroimage_2022_119199 crossref_primary_10_1016_j_mcn_2022_103782 crossref_primary_10_1016_j_neuroimage_2021_118718 crossref_primary_10_1002_glia_23980 crossref_primary_10_1016_j_neuroimage_2020_117529 crossref_primary_10_1038_s42254_021_00326_1 crossref_primary_10_1109_TBME_2023_3299734 crossref_primary_10_1016_j_neuroimage_2021_118323 crossref_primary_10_1016_j_neuroimage_2021_118445 crossref_primary_10_1162_imag_a_00212 crossref_primary_10_7554_eLife_94917 crossref_primary_10_1002_nbm_5087 crossref_primary_10_1016_j_jneumeth_2020_109018 crossref_primary_10_1016_j_neuroimage_2022_119146 crossref_primary_10_1038_s42003_021_01699_w crossref_primary_10_1016_j_zemedi_2023_07_003 crossref_primary_10_3389_fninf_2024_1354708 crossref_primary_10_1038_s41598_019_42648_2 crossref_primary_10_7554_eLife_49855 crossref_primary_10_7554_eLife_94917_3 crossref_primary_10_1088_1361_6560_ad66a9 crossref_primary_10_1007_s00429_024_02829_w crossref_primary_10_1016_j_neuroimage_2021_118530 crossref_primary_10_1162_imag_a_00102 crossref_primary_10_1016_j_neuroimage_2019_116013 crossref_primary_10_1162_imag_a_00463 crossref_primary_10_3389_fneur_2023_1168833 crossref_primary_10_1007_s12311_020_01147_1 crossref_primary_10_1088_1361_6560_aba0cc crossref_primary_10_1016_j_expneurol_2020_113486 crossref_primary_10_1038_s42003_020_1050_x crossref_primary_10_1007_s11095_022_03222_0 crossref_primary_10_1007_s12035_021_02589_2 crossref_primary_10_1016_j_media_2023_102767 crossref_primary_10_1016_j_neuroimage_2022_119137 crossref_primary_10_1073_pnas_2218617120 crossref_primary_10_1007_s12021_023_09630_w crossref_primary_10_1002_glia_24055 crossref_primary_10_1016_j_nicl_2021_102735 crossref_primary_10_1007_s10237_023_01714_5 crossref_primary_10_1016_j_neuroimage_2021_117849 crossref_primary_10_1016_j_neuroimage_2022_118922 crossref_primary_10_1016_j_nicl_2023_103427 crossref_primary_10_1016_j_mri_2020_09_002 crossref_primary_10_1002_nbm_4187 crossref_primary_10_1126_sciadv_adk1817 crossref_primary_10_3389_fnins_2021_646034 crossref_primary_10_1016_j_neuroimage_2020_117313 crossref_primary_10_1016_j_neuroimage_2020_117197 crossref_primary_10_1016_j_jneumeth_2020_108947 |
| Cites_doi | 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2016.01.018 10.1371/journal.pone.0008595 10.1016/j.neuroimage.2018.01.087 10.1007/s00429-013-0600-0 10.1016/j.neuroimage.2006.10.037 10.1007/978-3-540-78859-1 10.1109/TBME.2006.888830 10.1111/j.1365-2990.1980.tb00219.x 10.1038/nprot.2014.101 10.1016/j.neuroimage.2015.06.038 10.1016/j.neuroimage.2018.09.075 10.1002/mrm.20667 10.1002/mrm.10156 10.1002/mrm.21577 10.1016/j.media.2015.02.001 10.1109/ISBI.2011.5872394 10.1109/TPAMI.2012.120 10.1002/nbm.3462 10.1093/brain/awp042 10.1109/34.295913 10.1016/j.neuroimage.2015.08.017 10.3389/fnana.2015.00142 10.1101/239228 10.1016/j.neuroimage.2016.09.058 10.1016/j.expneurol.2011.10.030 10.1073/pnas.1316944111 10.1523/JNEUROSCI.5200-08.2009 10.1016/j.neuroimage.2007.02.016 10.1016/j.neuroimage.2019.01.015 10.1016/j.neuroimage.2018.03.006 10.1016/j.neuroimage.2012.01.056 10.1073/pnas.0907655106 10.1007/s11263-013-0644-x 10.1016/j.neuroimage.2010.08.068 10.1002/nbm.3998 10.1016/j.neuroimage.2016.01.022 10.1016/j.jneumeth.2016.08.002 10.1109/CVPR.2010.5539939 10.1038/s41598-018-22361-2 10.1073/pnas.1004841107 10.1016/j.neuroimage.2017.09.030 10.1016/0006-8993(92)90178-C 10.1063/1.1680931 10.1002/mrm.27101 10.1038/nmeth.4206 10.1101/501148 10.1016/j.neuroimage.2013.03.074 10.1523/JNEUROSCI.1600-12.2013 10.1016/j.neuroimage.2016.01.046 10.1016/j.neuroimage.2016.04.052 10.1016/j.neuroimage.2017.06.001 10.1073/pnas.052151299 10.1016/j.neuroimage.2009.08.053 10.1016/j.neuroimage.2016.01.047 10.1016/j.neuroimage.2005.03.042 10.3389/fnana.2016.00059 10.1016/j.neuroimage.2010.05.043 10.1016/j.neuroimage.2017.08.039 10.1016/j.neuroimage.2017.12.038 10.1016/S0022-5320(80)90125-2 10.1214/aos/1176342874 10.1007/s00422-014-0626-2 10.1016/j.neuroimage.2015.03.061 10.1038/s41598-018-22181-4 10.1016/j.neuroimage.2015.05.023 10.1016/j.neuroimage.2017.10.046 10.1046/j.0305-1846.2001.00301.x 10.1038/ncomms10884 10.1016/j.dib.2015.08.022 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Brain Structure and Function is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Brain Structure and Function is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s00429-019-01844-6 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Zoology Medicine |
| EISSN | 1863-2661 0340-2061 |
| EndPage | 1488 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6510616 PMC6510616 30790073 10_1007_s00429_019_01844_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Institute of Neurological Disorders and Stroke (US) grantid: R21 NS081230 – fundername: National Institute of Neurological Disorders and Stroke grantid: R01 NS088040 funderid: http://dx.doi.org/10.13039/100000065 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: P41 EB017183 funderid: http://dx.doi.org/10.13039/100000070 – fundername: NINDS NIH HHS grantid: R01 NS088040 – fundername: NIBIB NIH HHS grantid: P41 EB017183 – fundername: NCI NIH HHS grantid: R01 CA160620 – fundername: NINDS NIH HHS grantid: R21 NS081230 |
| GroupedDBID | --- -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 78A 7RV 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN AZQEC B-. BA0 BBNVY BENPR BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CCPQU CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M0L M1P M2M M4Y M7P MA- N9A NAPCQ NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P9S PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S27 S37 S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TT1 TUC U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z82 Z83 Z87 Z8V Z8W Z91 ZMTXR ZOVNA ~KM -Y2 1SB 2P1 2VQ AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADYPR AEBTG AEKMD AEZWR AFDZB AFEXP AFHIU AFOHR AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BDATZ CAG CITATION COF EN4 FINBP FSGXE H13 N2Q O9- OVD PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO S1Z SCLPG TEORI UZXMN VFIZW CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-d5e2e4dd5e35216c109abc804a7982af60253f8900a61a529cdf56659bbcc9243 |
| IEDL.DBID | UNPAY |
| ISSN | 1863-2653 1863-2661 |
| IngestDate | Sun Oct 26 04:16:42 EDT 2025 Tue Sep 30 16:59:29 EDT 2025 Fri Sep 05 11:40:10 EDT 2025 Mon Oct 06 18:05:35 EDT 2025 Thu Apr 03 06:59:19 EDT 2025 Wed Oct 01 01:02:48 EDT 2025 Thu Apr 24 22:49:09 EDT 2025 Fri Feb 21 02:35:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 3 axon segmentation Fiber orientation distribution Diffusion coarse-graining electron microscopy Axonal diameter distribution Ratio Diffusion time-dependence Corpus callosum Axonal diameter variation g-Ratio 3d electron microscopy 3d axon segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-d5e2e4dd5e35216c109abc804a7982af60253f8900a61a529cdf56659bbcc9243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4213-3050 0000-0002-3663-6559 0000-0002-1384-8591 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6510616 |
| PMID | 30790073 |
| PQID | 2184326630 |
| PQPubID | 38983 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1007_s00429_019_01844_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6510616 proquest_miscellaneous_2185555241 proquest_journals_2184326630 pubmed_primary_30790073 crossref_citationtrail_10_1007_s00429_019_01844_6 crossref_primary_10_1007_s00429_019_01844_6 springer_journals_10_1007_s00429_019_01844_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Brain Structure and Function |
| PublicationTitleAbbrev | Brain Struct Funct |
| PublicationTitleAlternate | Brain Struct Funct |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | ReisertMKellnerEDhitalBHennigJKiselevVGDisentangling micro from mesostructure by diffusion MRI: a Bayesian approachNeuroimage201714796497510.1016/j.neuroimage.2016.09.05827746388 SunDRothSBlackMJA quantitative analysis of current practices in optical flow estimation and the principles behind themInt J Comput Vis201410611513710.1007/s11263-013-0644-x Marzan DE, West BL, Salzer JL (2018) Microglia are necessary for toxin-mediated demyelination and activation of microglia is sufficient to induce demyelination. https://doi.org/10.1101/501148 SaloRABelevichIManninenEJokitaloEGrohnOSierraAQuantification of anisotropy and orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brainNeuroimage201817240441410.1016/j.neuroimage.2018.01.08729412154 AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res199259814315310.1016/0006-8993(92)90178-C1:STN:280:DyaK3s7jslSjsQ%3D%3D AssafYBlumenfeld-KatzirTYovelYBasserPJAxCaliber: a method for measuring axon diameter distribution from diffusion MRIMagn Reson Med2008591347135410.1002/mrm.21577185067994667732 DuvalTIn vivo mapping of human spinal cord microstructure at 300 mT/mNeuroimage201511849450710.1016/j.neuroimage.2015.06.038260950934562035 SepehrbandFAlexanderDCKurniawanNDReutensDCYangZTowards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRINMR Biomed20162929330810.1002/nbm.3462267484714949708 WilkeSADeconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapseJ Neurosci20133350752210.1523/JNEUROSCI.1600-12.20131:CAS:528:DC%2BC3sXhtF2itro%3D233039313756657 ZaimiAWabarthaMHermanVAntonsantiPLPeroneCSCohen-AdadJAxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networksSci Rep20188381610.1038/s41598-018-22181-41:CAS:528:DC%2BC1cXhs1OqsrbJ294914785830647 KaynigVLarge-scale automatic reconstruction of neuronal processes from electron microscopy imagesMed Image Anal201522778810.1016/j.media.2015.02.001257914364406409 Arganda-CarrerasICrowdsourcing the creation of image segmentation algorithms for connectomicsFront Neuroanat2015914210.3389/fnana.2015.00142265941564633678 Politis A (2016) Microphone array processing for parametric spatial audio techniques. http://urn.fi/URN:ISBN:978-952-60-7037-7 DorkenwaldSSchubertPJKillingerMFUrbanGMikulaSSvaraFKornfeldJAutomated synaptic connectivity inference for volume electron microscopyNat Methods20171443544210.1038/nmeth.42061:CAS:528:DC%2BC2sXjt1ags7c%3D28250467 VeraartJNovikovDSFieremansETE dependent diffusion imaging (TEdDI) distinguishes between compartmental T-2 relaxation timesNeuroimage201818236036910.1016/j.neuroimage.2017.09.03028935239 LittleGJHeathJWMorphometric analysis of axons myelinated during adult life in the mouse superior cervical ganglionJ Anat1994184Pt 238739880141301259999 TournierJDCalamanteFConnellyARobust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolutionNeuroimage2007351459147210.1016/j.neuroimage.2007.02.01617379540 LeergaardTBWhiteNSde CrespignyABolstadID’ArceuilHBjaalieJGDaleAMQuantitative histological validation of diffusion MRI fiber orientation distributions in the rat brainPLoS One20105e859510.1371/journal.pone.00085951:CAS:528:DC%2BC3cXmtlKlsQ%3D%3D200628222802592 MollinkJEvaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imagingNeuroimage201715756157410.1016/j.neuroimage.2017.06.001286028155607356 ShepherdGMRaastadMAndersenPGeneral and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellumProc Natl Acad Sci USA2002996340634510.1073/pnas.0521512991:CAS:528:DC%2BD38XjslWntrg%3D11972022 GiacciMKBartlettCAHuynhMKilburnMRDunlopSAFitzgeraldMThree dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nervesSci Rep20188397910.1038/s41598-018-22361-21:CAS:528:DC%2BC1cXhsl2jsb7P295074215838102 NovikovDSVeraartJJelescuIOFieremansERotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRINeuroimage201810.1016/j.neuroimage.2018.03.006302928155949281 SchillingKGJanveVGaoYStepniewskaILandmanBAAndersonAWHistological validation of diffusion MRI fiber orientation distributions. and dispersionNeuroimage201816520022110.1016/j.neuroimage.2017.10.04629074279 AndersonAWMeasurement of fiber orientation distributions using high angular resolution diffusion imagingMagn Reson Med20055451194120610.1002/mrm.2066716161109 JespersenSNNeurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopyNeuroimage20104920521610.1016/j.neuroimage.2009.08.05319732836 JespersenSNOlesenJLHansenBShemeshNDiffusion time dependence of microstructural parameters in fixed spinal cordNeuroimage201710.1016/j.neuroimage.2017.08.039291962695845761 KirschnerDAHollingsheadCJProcessing for electron microscopy alters membrane structure and packing in myelinJ Ultrastruct Res19807321123210.1016/S0022-5320(80)90125-21:CAS:528:DyaL3MXitVCqs74%3D6163867 NeumanCSpin echo of spins diffusing in a bounded mediumJ Chem Phys1974604508451110.1063/1.16809311:CAS:528:DyaE2cXksFKht70%3D CaminitiRGhaziriHGaluskeRHofPRInnocentiGMEvolution amplified processing with temporally dispersed slow neuronal connectivity in primatesProc Natl Acad Sci USA2009106195511955610.1073/pnas.090765510619875694 GrussuFSchneiderTYatesRLZhangHWheeler-KingshottCDeLucaGCAlexanderDCA framework for optimal whole-sample histological quantification of neurite orientation dispersion in the human spinal cordJ Neurosci Methods2016273203210.1016/j.jneumeth.2016.08.00227497747 NovikovDSFieremansEJespersenSNKiselevVGQuantifying brain microstructure with diffusion MRI: theory and parameter estimationNMR Biomed201810.1002/nbm.399830321478 SchneiderRWeilWStochastic and integral geometry2008BerlinSpringer10.1007/978-3-540-78859-1 SturrockRRMyelination of the mouse corpus callosumNeuropathol Appl Neurobiol1980641542010.1111/j.1365-2990.1980.tb00219.x1:STN:280:DyaL3M%2FpvFaitw%3D%3D7453945 Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on IEEE, pp 2432–2439 VeraartJFieremansENovikovDSOn the scaling behavior of water diffusion in human brain white matterNeuroimage201810.1016/j.neuroimage.2018.09.075302928155949281 JespersenSNKroenkeCDOstergaardLAckermanJJYablonskiyDAModeling dendrite density from magnetic resonance diffusion measurementsNeuroimage2007341473148610.1016/j.neuroimage.2006.10.03717188901 StikovNIn vivo histology of the myelin g-ratio with magnetic resonance imagingNeuroimage201511839740510.1016/j.neuroimage.2015.05.02326004502 YangHJVainshteinAMaik-RachlineGPelesEG protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelinationNat Commun201671088410.1038/ncomms108841:CAS:528:DC%2BC28XktValt7o%3D269611744792952 JonesDKDiffusion MRI: theory, methods, and application2010OxfordOxford University Press WestKLKelmNDCarsonRPDoesMDQuantitative analysis of mouse corpus callosum from electron microscopy imagesData Brief2015512412810.1016/j.dib.2015.08.022265048934576400 BurcawLMFieremansENovikovDSMesoscopic structure of neuronal tracts from time-dependent diffusionNeuroimage2015114183710.1016/j.neuroimage.2015.03.061258375984446209 AlexanderDCHubbardPLHallMGMooreEAPtitoMParkerGJDyrbyTBOrientationally invariant indices of axon diameter and density from diffusionMRI Neuroimage2010521374138910.1016/j.neuroimage.2010.05.04320580932 SotiropoulosSNBehrensTEJbabdiSBall and rackets: inferring fiber fanning from diffusion-weightedMRI Neuroimage2012601412142510.1016/j.neuroimage.2012.01.05622270351 AchantaRShajiASmithKLucchiAFuaPSusstrunkSSLIC superpixels compared to state-of-the-art superpixel methodsIEEE Trans Pattern Anal Mach Intell2012342274228210.1109/TPAMI.2012.12022641706 DhitalBReisertMKellnerEKiselevVGIntra-axonal diffusivity in brain white matterNeuroImage201918954355010.1016/j.neuroimage.2019.01.01530659959 NovikovDSKiselevVGJespersenSNOn modelingMagn Reson Med2018793172319310.1002/mrm.27101294938165905348 WestKLKelmNDCarsonRPDoesMDA revised model for estimating g-ratio from MRINeuroimage20161251155115810.1016/j.neuroimage.2015.08.01726299793 BinghamCAntipodally symmetric distribution on sphereAnn Stat197421201122510.1214/aos/1176342874 ZhangHSchneiderTWheeler-KingshottCAAlexanderDCNODDI: practical in vivo neurite orientation dispersion and density imaging of the human brainNeuroimage2012611000101610.1016/j.neuroimage.2012.03.07222484410 AssafYBasserPJComposite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brainNeuroimage200527485810.1016/j.neuroimage.2005.03.04215979342 FrankLRCharacterization of anisotropy in high angular resolution diffusion-weighted MRIMagn Reson Med20024761083109910.1002/mrm.1015612111955 SepehrbandFAlexanderDCClarkKAKurniawanNDYangZReutensDCParametric probability distribution functions for axon diameters of corpus callosumFront Neuroanat2016105910.3389/fnana.2016.00059273032734880597 FieremansEBurcawLMLeeHHLemberskiyGVeraartJNovikovDSIn vivo observation and biophysical interpretation of time-dependent diffusion in human white matterNeuroimage201612941442710.1016/j.neuroimage.2016.01.018268047824803645 BertholdCHNilssonIRydmarkMAxon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing catJ Anat19831364835081:STN:280:DyaL3s3ptVGjsQ%3D%3D68856141171896 LiewaldDMillerRLogothetisNWagnerHJSchuzADistribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaqueBiol Cybern201410854155710.1007/s00422-014-0626-2251429404228120 SchillingKJanveVGaoYStepniewskaILand ME Komlosh (1844_CR30) 2013; 78 KL West (1844_CR65) 2015; 5 CN Straehle (1844_CR56) 2011; 14 I Ronen (1844_CR45) 2014; 219 JD Tournier (1844_CR62) 2007; 35 B Dhital (1844_CR204) 2019; 189 R Caminiti (1844_CR15) 2009; 106 B Maco (1844_CR35) 2014; 9 MD Tang-Schomer (1844_CR60) 2012; 233 1844_CR52 S De Santis (1844_CR16) 2016; 130 JA Perge (1844_CR202) 2009; 29 GM Shepherd (1844_CR51) 2002; 99 A Zaimi (1844_CR70) 2018; 8 H-H Lee (1844_CR31) 2017 K Schilling (1844_CR47) 2016; 129 R Adams (1844_CR4) 1994; 16 SA Wilke (1844_CR67) 2013; 33 AW Anderson (1844_CR201) 2005; 54 CH Berthold (1844_CR11) 1983; 136 C Bingham (1844_CR12) 1974; 2 1844_CR58 D Benjamini (1844_CR10) 2016; 135 E Fieremans (1844_CR20) 2016; 129 M Reisert (1844_CR44) 2017; 147 C Neuman (1844_CR38) 1974; 60 DK Jones (1844_CR26) 2010 J Veraart (1844_CR63) 2018 F Sepehrband (1844_CR49) 2016; 10 MD Budde (1844_CR13) 2010; 107 D Barazany (1844_CR9) 2009; 132 SN Jespersen (1844_CR24) 2010; 49 KG Schilling (1844_CR48) 2018; 165 R Achanta (1844_CR3) 2012; 34 RA Salo (1844_CR46) 2018; 172 Y Assaf (1844_CR8) 2008; 59 1844_CR43 DS Novikov (1844_CR40) 2018 LR Frank (1844_CR200) 2002; 47 GJ Little (1844_CR34) 1994; 184 T Duval (1844_CR19) 2015; 118 S Dorkenwald (1844_CR18) 2017; 14 MK Giacci (1844_CR21) 2018; 8 J Mollink (1844_CR37) 2017; 157 J Veraart (1844_CR64) 2018; 182 F Grussu (1844_CR22) 2016; 273 RS Womersley (1844_CR68) 2017 LM Burcaw (1844_CR14) 2015; 114 DS Novikov (1844_CR42) 2018 DS Novikov (1844_CR39) 2014; 111 SN Sotiropoulos (1844_CR53) 2012; 60 V Kaynig (1844_CR27) 2015; 22 D Sun (1844_CR59) 2014; 106 I Arganda-Carreras (1844_CR6) 2015; 9 H Zhang (1844_CR71) 2012; 61 F Sepehrband (1844_CR50) 2016; 29 F Aboitiz (1844_CR2) 1992; 598 SN Jespersen (1844_CR25) 2017 N Stikov (1844_CR55) 2015; 118 M Tariq (1844_CR61) 2016; 133 DS Novikov (1844_CR41) 2018; 79 F Dell’Acqua (1844_CR17) 2007; 54 DA Kirschner (1844_CR28) 1980; 73 Y Assaf (1844_CR7) 2005; 27 D Liewald (1844_CR33) 2014; 108 KL West (1844_CR66) 2016; 125 HJ Yang (1844_CR69) 2016; 7 JL Mason (1844_CR36) 2001; 27 R Schneider (1844_CR210) 2008 N Stikov (1844_CR54) 2011; 54 1844_CR1 TB Leergaard (1844_CR32) 2010; 5 1844_CR203 RR Sturrock (1844_CR57) 1980; 6 SN Jespersen (1844_CR23) 2007; 34 1844_CR29 DC Alexander (1844_CR5) 2010; 52 |
| References_xml | – reference: De SantisSJonesDKRoebroeckAIncluding diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human. white matterNeuroimage20161309110310.1016/j.neuroimage.2016.01.047268265144819719 – reference: NovikovDSKiselevVGJespersenSNOn modelingMagn Reson Med2018793172319310.1002/mrm.27101294938165905348 – reference: SunDRothSBlackMJA quantitative analysis of current practices in optical flow estimation and the principles behind themInt J Comput Vis201410611513710.1007/s11263-013-0644-x – reference: DuvalTIn vivo mapping of human spinal cord microstructure at 300 mT/mNeuroimage201511849450710.1016/j.neuroimage.2015.06.038260950934562035 – reference: BarazanyDBasserPJAssafYIn vivo measurement of axon diameter distribution in the corpus callosum of rat brainBrain20091321210122010.1093/brain/awp042194037882677796 – reference: Tang-SchomerMDJohnsonVEBaasPWStewartWSmithDHPartial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injuryExp Neurol201223336437210.1016/j.expneurol.2011.10.03022079153 – reference: SepehrbandFAlexanderDCKurniawanNDReutensDCYangZTowards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRINMR Biomed20162929330810.1002/nbm.3462267484714949708 – reference: MasonJLLangamanCMorellPSuzukiKMatsushimaGKEpisodic demyelination and subsequent remyelination within the murine central nervous system: changes in axonal calibreNeuropathol Appl Neurobiol200127505810.1046/j.0305-1846.2001.00301.x1:STN:280:DC%2BD3MzisV2isw%3D%3D11299002 – reference: BertholdCHNilssonIRydmarkMAxon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing catJ Anat19831364835081:STN:280:DyaL3s3ptVGjsQ%3D%3D68856141171896 – reference: JespersenSNKroenkeCDOstergaardLAckermanJJYablonskiyDAModeling dendrite density from magnetic resonance diffusion measurementsNeuroimage2007341473148610.1016/j.neuroimage.2006.10.03717188901 – reference: LeeH-HFieremansENovikovDSWhat dominates the time dependence of diffusion transverse to axons: intra- or extra-axonal water?NeuroImage201710.1016/j.neuroimage.2017.12.038295274975898371 – reference: KaynigVLarge-scale automatic reconstruction of neuronal processes from electron microscopy imagesMed Image Anal201522778810.1016/j.media.2015.02.001257914364406409 – reference: Kleinnijenhuis M, Johnson E, Mollink J, Jbabdi S, Miller K (2017) A 3D electron microscopy segmentation pipeline for hyper-realistic diffusion simulations. In: ISMRM 25th annual meeting, Hawaii, USA Proceedings of the ISMRM annual meeting, vol 25, p 1090 – reference: SchillingKJanveVGaoYStepniewskaILandmanBAAndersonAWComparison of 3D orientation distribution functions measured with confocal microscopy and diffusionMRI Neuroimage201612918519710.1016/j.neuroimage.2016.01.02226804781 – reference: ShepherdGMRaastadMAndersenPGeneral and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellumProc Natl Acad Sci USA2002996340634510.1073/pnas.0521512991:CAS:528:DC%2BD38XjslWntrg%3D11972022 – reference: WilkeSADeconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapseJ Neurosci20133350752210.1523/JNEUROSCI.1600-12.20131:CAS:528:DC%2BC3sXhtF2itro%3D233039313756657 – reference: AdamsRBischofLSeeded region growingIEEE Trans Pattern Anal19941664164710.1109/34.295913 – reference: NovikovDSFieremansEJespersenSNKiselevVGQuantifying brain microstructure with diffusion MRI: theory and parameter estimationNMR Biomed201810.1002/nbm.399830321478 – reference: PergeJAKochKMillerRSterlingPBalasubramanianVHow the optic nerve allocates space, energy capacity, and informationJ Neurosci200929247917792810.1523/JNEUROSCI.5200-08.20091:CAS:528:DC%2BD1MXnvVCisrY%3D195356032928227 – reference: Abdollahzadeh A, Belevich I, Jokitalo E, Tohka J, Sierra A (2017) 3D axonal morphometry of white matter. https://doi.org/10.1101/239228 – reference: Marzan DE, West BL, Salzer JL (2018) Microglia are necessary for toxin-mediated demyelination and activation of microglia is sufficient to induce demyelination. https://doi.org/10.1101/501148 – reference: SaloRABelevichIManninenEJokitaloEGrohnOSierraAQuantification of anisotropy and orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brainNeuroimage201817240441410.1016/j.neuroimage.2018.01.08729412154 – reference: MacoBCantoniMHoltmaatAKreshukAHamprechtFAKnottGWSemiautomated correlative 3D electron microscopy of in vivo-imaged axons and dendritesNat Protoc201491354136610.1038/nprot.2014.1011:CAS:528:DC%2BC2cXnvF2rsrY%3D24833174 – reference: StikovNIn vivo histology of the myelin g-ratio with magnetic resonance imagingNeuroimage201511839740510.1016/j.neuroimage.2015.05.02326004502 – reference: DhitalBReisertMKellnerEKiselevVGIntra-axonal diffusivity in brain white matterNeuroImage201918954355010.1016/j.neuroimage.2019.01.01530659959 – reference: SchneiderRWeilWStochastic and integral geometry2008BerlinSpringer10.1007/978-3-540-78859-1 – reference: BenjaminiDKomloshMEHoltzclawLANevoUBasserPJWhite matter microstructure from nonparametric axon diameter distribution mappingNeuroimage201613533334410.1016/j.neuroimage.2016.04.052271260024916903 – reference: SchillingKGJanveVGaoYStepniewskaILandmanBAAndersonAWHistological validation of diffusion MRI fiber orientation distributions. and dispersionNeuroimage201816520022110.1016/j.neuroimage.2017.10.04629074279 – reference: GrussuFSchneiderTYatesRLZhangHWheeler-KingshottCDeLucaGCAlexanderDCA framework for optimal whole-sample histological quantification of neurite orientation dispersion in the human spinal cordJ Neurosci Methods2016273203210.1016/j.jneumeth.2016.08.00227497747 – reference: BuddeMDFrankJANeurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic strokeProc Natl Acad Sci USA2010107144721447710.1073/pnas.100484110720660718 – reference: DorkenwaldSSchubertPJKillingerMFUrbanGMikulaSSvaraFKornfeldJAutomated synaptic connectivity inference for volume electron microscopyNat Methods20171443544210.1038/nmeth.42061:CAS:528:DC%2BC2sXjt1ags7c%3D28250467 – reference: GiacciMKBartlettCAHuynhMKilburnMRDunlopSAFitzgeraldMThree dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nervesSci Rep20188397910.1038/s41598-018-22361-21:CAS:528:DC%2BC1cXhsl2jsb7P295074215838102 – reference: VeraartJNovikovDSFieremansETE dependent diffusion imaging (TEdDI) distinguishes between compartmental T-2 relaxation timesNeuroimage201818236036910.1016/j.neuroimage.2017.09.03028935239 – reference: JespersenSNOlesenJLHansenBShemeshNDiffusion time dependence of microstructural parameters in fixed spinal cordNeuroimage201710.1016/j.neuroimage.2017.08.039291962695845761 – reference: Politis A (2016) Microphone array processing for parametric spatial audio techniques. http://urn.fi/URN:ISBN:978-952-60-7037-7 – reference: WestKLKelmNDCarsonRPDoesMDA revised model for estimating g-ratio from MRINeuroimage20161251155115810.1016/j.neuroimage.2015.08.01726299793 – reference: ZhangHSchneiderTWheeler-KingshottCAAlexanderDCNODDI: practical in vivo neurite orientation dispersion and density imaging of the human brainNeuroimage2012611000101610.1016/j.neuroimage.2012.03.07222484410 – reference: KirschnerDAHollingsheadCJProcessing for electron microscopy alters membrane structure and packing in myelinJ Ultrastruct Res19807321123210.1016/S0022-5320(80)90125-21:CAS:528:DyaL3MXitVCqs74%3D6163867 – reference: AlexanderDCHubbardPLHallMGMooreEAPtitoMParkerGJDyrbyTBOrientationally invariant indices of axon diameter and density from diffusionMRI Neuroimage2010521374138910.1016/j.neuroimage.2010.05.04320580932 – reference: LeergaardTBWhiteNSde CrespignyABolstadID’ArceuilHBjaalieJGDaleAMQuantitative histological validation of diffusion MRI fiber orientation distributions in the rat brainPLoS One20105e859510.1371/journal.pone.00085951:CAS:528:DC%2BC3cXmtlKlsQ%3D%3D200628222802592 – reference: TariqMSchneiderTAlexanderDCGandini Wheeler-KingshottCAZhangHBingham-NODDI: mapping anisotropic orientation dispersion of neurites using diffusionMRI Neuroimage201613320722310.1016/j.neuroimage.2016.01.04626826512 – reference: WomersleyRSEfficient spherical designs with good geometric propertiesContemporary computational mathematics - A celebration of the 80th birthday of Ian Sloan2017ChamSpringer12431285 – reference: AssafYBlumenfeld-KatzirTYovelYBasserPJAxCaliber: a method for measuring axon diameter distribution from diffusion MRIMagn Reson Med2008591347135410.1002/mrm.21577185067994667732 – reference: RonenIBuddeMErcanEAnneseJTechawiboonwongAWebbAMicrostructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histologyBrain Struct Funct20142191773178510.1007/s00429-013-0600-01:CAS:528:DC%2BC2cXhsVCisbrK23794120 – reference: StraehleCNKotheUKnottGHamprechtFACarving: scalable interactive segmentation of neural volume electron microscopy imagesMed Image Comput Comput Assist Interv2011146536601:STN:280:DC%2BC3MbhvVyiuw%3D%3D22003674 – reference: CaminitiRGhaziriHGaluskeRHofPRInnocentiGMEvolution amplified processing with temporally dispersed slow neuronal connectivity in primatesProc Natl Acad Sci USA2009106195511955610.1073/pnas.090765510619875694 – reference: SotiropoulosSNBehrensTEJbabdiSBall and rackets: inferring fiber fanning from diffusion-weightedMRI Neuroimage2012601412142510.1016/j.neuroimage.2012.01.05622270351 – reference: Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: Biomedical imaging: from nano to macro, 2011 IEEE international symposium on IEEE, pp 230–233 – reference: AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res199259814315310.1016/0006-8993(92)90178-C1:STN:280:DyaK3s7jslSjsQ%3D%3D – reference: JonesDKDiffusion MRI: theory, methods, and application2010OxfordOxford University Press – reference: SepehrbandFAlexanderDCClarkKAKurniawanNDYangZReutensDCParametric probability distribution functions for axon diameters of corpus callosumFront Neuroanat2016105910.3389/fnana.2016.00059273032734880597 – reference: ZaimiAWabarthaMHermanVAntonsantiPLPeroneCSCohen-AdadJAxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networksSci Rep20188381610.1038/s41598-018-22181-41:CAS:528:DC%2BC1cXhs1OqsrbJ294914785830647 – reference: LiewaldDMillerRLogothetisNWagnerHJSchuzADistribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaqueBiol Cybern201410854155710.1007/s00422-014-0626-2251429404228120 – reference: JespersenSNNeurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopyNeuroimage20104920521610.1016/j.neuroimage.2009.08.05319732836 – reference: VeraartJFieremansENovikovDSOn the scaling behavior of water diffusion in human brain white matterNeuroimage201810.1016/j.neuroimage.2018.09.075302928155949281 – reference: BinghamCAntipodally symmetric distribution on sphereAnn Stat197421201122510.1214/aos/1176342874 – reference: NovikovDSVeraartJJelescuIOFieremansERotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRINeuroimage201810.1016/j.neuroimage.2018.03.006302928155949281 – reference: WestKLKelmNDCarsonRPDoesMDQuantitative analysis of mouse corpus callosum from electron microscopy imagesData Brief2015512412810.1016/j.dib.2015.08.022265048934576400 – reference: BurcawLMFieremansENovikovDSMesoscopic structure of neuronal tracts from time-dependent diffusionNeuroimage2015114183710.1016/j.neuroimage.2015.03.061258375984446209 – reference: TournierJDCalamanteFConnellyARobust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolutionNeuroimage2007351459147210.1016/j.neuroimage.2007.02.01617379540 – reference: SturrockRRMyelination of the mouse corpus callosumNeuropathol Appl Neurobiol1980641542010.1111/j.1365-2990.1980.tb00219.x1:STN:280:DyaL3M%2FpvFaitw%3D%3D7453945 – reference: FrankLRCharacterization of anisotropy in high angular resolution diffusion-weighted MRIMagn Reson Med20024761083109910.1002/mrm.1015612111955 – reference: StikovNPerryLMMezerARykhlevskaiaEWandellBAPaulyJMDoughertyRFBound pool fractions complement diffusion measures to describe white matter micro and macrostructureNeuroimage2011541112112110.1016/j.neuroimage.2010.08.06820828622 – reference: NeumanCSpin echo of spins diffusing in a bounded mediumJ Chem Phys1974604508451110.1063/1.16809311:CAS:528:DyaE2cXksFKht70%3D – reference: NovikovDSJensenJHHelpernJAFieremansERevealing mesoscopic structural universality with diffusionProc Natl Acad Sci USA20141115088509310.1073/pnas.13169441111:CAS:528:DC%2BC2cXkslGlt7w%3D24706873 – reference: YangHJVainshteinAMaik-RachlineGPelesEG protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelinationNat Commun201671088410.1038/ncomms108841:CAS:528:DC%2BC28XktValt7o%3D269611744792952 – reference: Dell’AcquaFRizzoGScifoPClarkeRAScottiGFazioFA model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imagingIEEE Trans Biomed Eng20075446247210.1109/TBME.2006.88883017355058 – reference: Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on IEEE, pp 2432–2439 – reference: KomloshMEOzarslanELizakMJHorkayne-SzakalyIFreidlinRZHorkayFBasserPJMapping average axon diameters in porcine spinal cord white matter and rat corpus callosum using d-PFGMRI Neuroimage20137821021610.1016/j.neuroimage.2013.03.0741:STN:280:DC%2BC3srkvFWjtQ%3D%3D23583426 – reference: MollinkJEvaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imagingNeuroimage201715756157410.1016/j.neuroimage.2017.06.001286028155607356 – reference: ReisertMKellnerEDhitalBHennigJKiselevVGDisentangling micro from mesostructure by diffusion MRI: a Bayesian approachNeuroimage201714796497510.1016/j.neuroimage.2016.09.05827746388 – reference: Arganda-CarrerasICrowdsourcing the creation of image segmentation algorithms for connectomicsFront Neuroanat2015914210.3389/fnana.2015.00142265941564633678 – reference: FieremansEBurcawLMLeeHHLemberskiyGVeraartJNovikovDSIn vivo observation and biophysical interpretation of time-dependent diffusion in human white matterNeuroimage201612941442710.1016/j.neuroimage.2016.01.018268047824803645 – reference: AssafYBasserPJComposite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brainNeuroimage200527485810.1016/j.neuroimage.2005.03.04215979342 – reference: AndersonAWMeasurement of fiber orientation distributions using high angular resolution diffusion imagingMagn Reson Med20055451194120610.1002/mrm.2066716161109 – reference: AchantaRShajiASmithKLucchiAFuaPSusstrunkSSLIC superpixels compared to state-of-the-art superpixel methodsIEEE Trans Pattern Anal Mach Intell2012342274228210.1109/TPAMI.2012.12022641706 – reference: LittleGJHeathJWMorphometric analysis of axons myelinated during adult life in the mouse superior cervical ganglionJ Anat1994184Pt 238739880141301259999 – volume: 14 start-page: 653 year: 2011 ident: 1844_CR56 publication-title: Med Image Comput Comput Assist Interv – volume: 61 start-page: 1000 year: 2012 ident: 1844_CR71 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 136 start-page: 483 year: 1983 ident: 1844_CR11 publication-title: J Anat – volume: 129 start-page: 414 year: 2016 ident: 1844_CR20 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.018 – volume: 5 start-page: e8595 year: 2010 ident: 1844_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0008595 – volume: 172 start-page: 404 year: 2018 ident: 1844_CR46 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.087 – volume: 219 start-page: 1773 year: 2014 ident: 1844_CR45 publication-title: Brain Struct Funct doi: 10.1007/s00429-013-0600-0 – volume: 34 start-page: 1473 year: 2007 ident: 1844_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.037 – volume-title: Stochastic and integral geometry year: 2008 ident: 1844_CR210 doi: 10.1007/978-3-540-78859-1 – ident: 1844_CR29 – volume: 54 start-page: 462 year: 2007 ident: 1844_CR17 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.888830 – volume: 6 start-page: 415 year: 1980 ident: 1844_CR57 publication-title: Neuropathol Appl Neurobiol doi: 10.1111/j.1365-2990.1980.tb00219.x – volume: 9 start-page: 1354 year: 2014 ident: 1844_CR35 publication-title: Nat Protoc doi: 10.1038/nprot.2014.101 – volume: 118 start-page: 494 year: 2015 ident: 1844_CR19 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.038 – year: 2018 ident: 1844_CR63 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.075 – volume: 54 start-page: 1194 issue: 5 year: 2005 ident: 1844_CR201 publication-title: Magn Reson Med doi: 10.1002/mrm.20667 – volume-title: Diffusion MRI: theory, methods, and application year: 2010 ident: 1844_CR26 – volume: 47 start-page: 1083 issue: 6 year: 2002 ident: 1844_CR200 publication-title: Magn Reson Med doi: 10.1002/mrm.10156 – volume: 59 start-page: 1347 year: 2008 ident: 1844_CR8 publication-title: Magn Reson Med doi: 10.1002/mrm.21577 – volume: 22 start-page: 77 year: 2015 ident: 1844_CR27 publication-title: Med Image Anal doi: 10.1016/j.media.2015.02.001 – ident: 1844_CR52 doi: 10.1109/ISBI.2011.5872394 – volume: 34 start-page: 2274 year: 2012 ident: 1844_CR3 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.120 – volume: 29 start-page: 293 year: 2016 ident: 1844_CR50 publication-title: NMR Biomed doi: 10.1002/nbm.3462 – volume: 132 start-page: 1210 year: 2009 ident: 1844_CR9 publication-title: Brain doi: 10.1093/brain/awp042 – volume: 16 start-page: 641 year: 1994 ident: 1844_CR4 publication-title: IEEE Trans Pattern Anal doi: 10.1109/34.295913 – volume: 125 start-page: 1155 year: 2016 ident: 1844_CR66 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.017 – volume: 9 start-page: 142 year: 2015 ident: 1844_CR6 publication-title: Front Neuroanat doi: 10.3389/fnana.2015.00142 – ident: 1844_CR1 doi: 10.1101/239228 – volume: 147 start-page: 964 year: 2017 ident: 1844_CR44 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.058 – volume: 233 start-page: 364 year: 2012 ident: 1844_CR60 publication-title: Exp Neurol doi: 10.1016/j.expneurol.2011.10.030 – volume: 111 start-page: 5088 year: 2014 ident: 1844_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1316944111 – volume: 29 start-page: 7917 issue: 24 year: 2009 ident: 1844_CR202 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5200-08.2009 – volume: 35 start-page: 1459 year: 2007 ident: 1844_CR62 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 189 start-page: 543 year: 2019 ident: 1844_CR204 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.01.015 – ident: 1844_CR43 – year: 2018 ident: 1844_CR42 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.006 – volume: 60 start-page: 1412 year: 2012 ident: 1844_CR53 publication-title: MRI Neuroimage doi: 10.1016/j.neuroimage.2012.01.056 – volume: 106 start-page: 19551 year: 2009 ident: 1844_CR15 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0907655106 – volume: 106 start-page: 115 year: 2014 ident: 1844_CR59 publication-title: Int J Comput Vis doi: 10.1007/s11263-013-0644-x – volume: 54 start-page: 1112 year: 2011 ident: 1844_CR54 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.068 – year: 2018 ident: 1844_CR40 publication-title: NMR Biomed doi: 10.1002/nbm.3998 – volume: 129 start-page: 185 year: 2016 ident: 1844_CR47 publication-title: MRI Neuroimage doi: 10.1016/j.neuroimage.2016.01.022 – volume: 273 start-page: 20 year: 2016 ident: 1844_CR22 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2016.08.002 – ident: 1844_CR58 doi: 10.1109/CVPR.2010.5539939 – volume: 8 start-page: 3979 year: 2018 ident: 1844_CR21 publication-title: Sci Rep doi: 10.1038/s41598-018-22361-2 – volume: 107 start-page: 14472 year: 2010 ident: 1844_CR13 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004841107 – volume: 182 start-page: 360 year: 2018 ident: 1844_CR64 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.030 – volume: 598 start-page: 143 year: 1992 ident: 1844_CR2 publication-title: Brain Res doi: 10.1016/0006-8993(92)90178-C – volume: 184 start-page: 387 issue: Pt 2 year: 1994 ident: 1844_CR34 publication-title: J Anat – volume: 60 start-page: 4508 year: 1974 ident: 1844_CR38 publication-title: J Chem Phys doi: 10.1063/1.1680931 – volume: 79 start-page: 3172 year: 2018 ident: 1844_CR41 publication-title: Magn Reson Med doi: 10.1002/mrm.27101 – volume: 14 start-page: 435 year: 2017 ident: 1844_CR18 publication-title: Nat Methods doi: 10.1038/nmeth.4206 – ident: 1844_CR203 doi: 10.1101/501148 – volume: 78 start-page: 210 year: 2013 ident: 1844_CR30 publication-title: MRI Neuroimage doi: 10.1016/j.neuroimage.2013.03.074 – volume: 33 start-page: 507 year: 2013 ident: 1844_CR67 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1600-12.2013 – volume: 133 start-page: 207 year: 2016 ident: 1844_CR61 publication-title: MRI Neuroimage doi: 10.1016/j.neuroimage.2016.01.046 – volume: 135 start-page: 333 year: 2016 ident: 1844_CR10 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.052 – volume: 157 start-page: 561 year: 2017 ident: 1844_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.001 – volume: 99 start-page: 6340 year: 2002 ident: 1844_CR51 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.052151299 – volume: 49 start-page: 205 year: 2010 ident: 1844_CR24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.08.053 – start-page: 1243 volume-title: Contemporary computational mathematics - A celebration of the 80th birthday of Ian Sloan year: 2017 ident: 1844_CR68 – volume: 130 start-page: 91 year: 2016 ident: 1844_CR16 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.047 – volume: 27 start-page: 48 year: 2005 ident: 1844_CR7 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.042 – volume: 10 start-page: 59 year: 2016 ident: 1844_CR49 publication-title: Front Neuroanat doi: 10.3389/fnana.2016.00059 – volume: 52 start-page: 1374 year: 2010 ident: 1844_CR5 publication-title: MRI Neuroimage doi: 10.1016/j.neuroimage.2010.05.043 – year: 2017 ident: 1844_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.039 – year: 2017 ident: 1844_CR31 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.12.038 – volume: 73 start-page: 211 year: 1980 ident: 1844_CR28 publication-title: J Ultrastruct Res doi: 10.1016/S0022-5320(80)90125-2 – volume: 2 start-page: 1201 year: 1974 ident: 1844_CR12 publication-title: Ann Stat doi: 10.1214/aos/1176342874 – volume: 108 start-page: 541 year: 2014 ident: 1844_CR33 publication-title: Biol Cybern doi: 10.1007/s00422-014-0626-2 – volume: 114 start-page: 18 year: 2015 ident: 1844_CR14 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.061 – volume: 8 start-page: 3816 year: 2018 ident: 1844_CR70 publication-title: Sci Rep doi: 10.1038/s41598-018-22181-4 – volume: 118 start-page: 397 year: 2015 ident: 1844_CR55 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.023 – volume: 165 start-page: 200 year: 2018 ident: 1844_CR48 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.046 – volume: 27 start-page: 50 year: 2001 ident: 1844_CR36 publication-title: Neuropathol Appl Neurobiol doi: 10.1046/j.0305-1846.2001.00301.x – volume: 7 start-page: 10884 year: 2016 ident: 1844_CR69 publication-title: Nat Commun doi: 10.1038/ncomms10884 – volume: 5 start-page: 124 year: 2015 ident: 1844_CR65 publication-title: Data Brief doi: 10.1016/j.dib.2015.08.022 |
| SSID | ssj0059819 ssj0012825 |
| Score | 2.5034938 |
| Snippet | Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1469 |
| SubjectTerms | Algorithms Animals Axons Axons - ultrastructure Biomedical and Life Sciences Biomedicine Cell Biology Corpus callosum Corpus Callosum - diagnostic imaging Corpus Callosum - ultrastructure Diffusion Magnetic Resonance Imaging Female Histology Image processing Imaging, Three-Dimensional - methods Learning algorithms Magnetic resonance imaging Mice, Inbred C57BL Microscopy Microscopy, Electron, Scanning Myelin Neurology Neurosciences Original Article Scanning electron microscopy Segmentation Substantia alba Variation White Matter - diagnostic imaging White Matter - ultrastructure |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwED6NTrx9QNDBKAxkJMQXZi2NYydBQqjApoHUCk1MmvgSObbLKrVJNxZGfyD_izs3yVZNqqhUVa2dxlbO58f38hzAaxfHRggbcKOE4VFuJU-lEzzWRqlEjqX1dsjhSB0eR19P5MkGjJpcGAqrbHSiV9S2NGQj36OjCEINJYIP8zNOVaPIu9qU0NB1aQX73lOM3YLNkJixOrD5cX_07aj1K1CmZvNFpomv-9FPlOChkqLOqfGZdV5R4zmb3kkUcbW6b90AozdjKlvH6n24WxVzvbjU0-m1vevgITyoQScbLKXkEWy4ogtbgwIP3LMFe8N8GKi3r3fhzrD2tnfh9o_S_7gFfwfTsvjJ9Z-yYChQM4qhYb_xmO2fK9OFZdSG9yjPJ3U2E_UkGnIyxzEiisKtyDKy-zLxmTXld9iMIgIpN2bxjk2uhbczRNPsrNIUzESpWCynYhbsktwebOZZQetrPQNude6W_-0JlGnUflRU_6XyIxgefXkMxwf73z8d8roABDdRHF1wK13oIosfCBP7yvSDVOcmCSIdp0moxwoBmxgnaRBo1dcyTI0dIzyVaZ4bgwdL8QQ6RVm4p8CcC6wzsUaAoyJEXWksdIrgD9UTOX9dD_rN481MzY5ORTqmWcvr7EUiQ5HIvEhkqgdv22vmS26Qtb13GqnJaj3xK7uS6h68aptxhZPbRheurHwfiS-EWj3YXgpZezvU0Ck5W3sQr4hf24HYw1dbismpZxFXkqwBOKzdRlCvhrVuFrutMP_HpJ-tn_RzuBf6NUYBpDvQQYFxLxDkXeQv65X7D3LwT1Q priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVohy4NEHBAoyEuJCXSVx7CTcVtBSQOWAWKlwiRzHCyt2k9JuKMv_438x4zzoUlTRSKusZMex5cn4s2fmG4AnNo6NEIXPjRKGR3kheSqt4LE2SiVyLAt3DnnwTu2PojeH8rANCjvpvN07k6TT1H2wm9OduPWlXxJFXF2FFce3NYCV4auPb3c7DSzTxCX0CBIleKikaINl_t3K8oJ0DmWed5bsLaY34HpdHunFqZ5OzyxKe7dg1A2n8UX5ulPP8x3z8y-mx8uO9zbcbFEqGzZidQeu2HIN1ocl7tBnC_aUOb9RdyC_Btc-Ve7fOvwaTqvyM9c_qpKh2M3I04Z9x824m32my4JRGTZcHU_amCeqSWTldGjHiE4KF6yC0ekwEy9Zl6SHzchvkCJoFs_Z5IwTPEPMzb7VmlyeKGCL5ZTygp2ScYTNHHdo-6zjya2PbdO2o1mmXrteUZaY2vXg4P3rDRjt7X54sc_bNBHcRHE054W0oY0KvCGYDJQJ_FTnJvEjjbIR6rFCWCfGSer7WgVahqkpxghiZZrnxuD2U2zCoKxKew-YtX5hTawRBqkIsVkaC50iREQlRiZi60HQyUpmWg51SuUxzXr2ZzdrGc5a5mYtUx486585ahhELqy91Ylg1mqTk4y24QizlfA9eNwXox4g444ubVW7OhIvBGQe3G0ktn8d6vGUTLIexEuy3FcgjvHlknLyxXGNK0lnBtit7U5I_3TrolFs91_Gfwz6_uVafwCrofssyO10CwYoQPYhQsN5_qjVBL8B5UNc1w priority: 102 providerName: Springer Nature |
| Title | Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI |
| URI | https://link.springer.com/article/10.1007/s00429-019-01844-6 https://www.ncbi.nlm.nih.gov/pubmed/30790073 https://www.proquest.com/docview/2184326630 https://www.proquest.com/docview/2185555241 https://pubmed.ncbi.nlm.nih.gov/PMC6510616 https://www.ncbi.nlm.nih.gov/pmc/articles/6510616 |
| UnpaywallVersion | submittedVersion |
| Volume | 224 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1863-2661 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059819 issn: 1863-2661 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1863-2661 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059819 issn: 1863-2661 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL3aWiHggY-Nj8CojIR4YemSJnES3lpoGaBVU0Wlbi-R47hQ0SRlNIzy__hf3OsmYWXSxCpVjmQntdWT63Pte48BXijfl46TWKbkjjTdOPHM0FOO6QvJeeBNvUSvQx4N-eHY_TDxJltgV7kwOmhfxrN2Nk_b2eyLjq1cpPKgihM74B55MXwbmtxD-t2A5nh43D0hxyrgjtnhWnmyvOZ2mSij0-W09UXnmb6B65p8czK6xDAvB0rWu6W34WaRLcTqXMznFyakwV0YVUNZx6F8bRfLuC1__aPyeK2x3oM7JT1l3XXVfdhS2Q7sdjN0zdMVe8l0wKheid-BG6e5vtqF3915nn02xc88Y4i3lEJs2A_0wvXfzkSWMKrDB-dnszLZiVqSSjmt1jHSkcKZKmG0LMyct6w6nYelFDBIqTOr12x2IfqdIdlm3wpBsU6UqcViOuuCndOuCEu1aGh5rxbILc7U-tlaX5l6rXtFx8MUugdHo_cPYDzof3pzaJbnQ5jS9d2lmXiqo9wEC2SRNpe2FYpYBpYr_DDoiClHPudMg9CyBLeF1wllMkX26oVxLCX6nc5DaGR5ph4DU8pKlPQF8h_uIikLfUeEyA3RetHesDLAroASyVI8nc7wmEe17LMGV4TgijS4Im7Aq_qexVo65MrWexX-otKMfI_I_0Z-zR3LgOd1NRoA2tURmcoL3cbDDzIxAx6t4Vr_HBrwkPZiDfA3gFw3IHHxzRrEoRYZL6FnwH4F-b_dumoU-_Vr8R-DfnK95k_hVke_vRRvugcNBJB6hpxwGbdg25_4LWh2B73ekMp3Jx_7WPb6w-NRq7QRfwBy3mV5 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am2DwgKBjozDASMDLFpHGsZMgTaiwTS1bKzRt0sRLcBwXKrVJdymlf443_hfnuEm2alLFyypVVWonsZUvx9_xuQG8MUGgOU9dR0uuHT9JhRMJw51AaSlD0ROp3YfsdGXrxP9yKk6X4E8ZC0NulaVMtII6zTXtkb8nVQSphuTux9GZQ1WjyLpaltBQRWmFdMemGCsCOw7MdIIq3MVOexef91vP2987_txyiioDjvYD_9JJhfGMn-IPcpGG1A03UokOXV8FUeipnkRWwHth5LpKNpTwIp32kAOJKEm0Ru2F43XvwIrP_QiVv5VPe92vR5UdgyJDywMRhbbOSCOU3PGk4EUMj43kswsD6vX0DX3fkfPr5A3ye9OHszLkPoDVcTZS04kaDK6tlfuP4GFBcllzhsrHsGSyGqw1M1Twh1P2jlm3U7ufX4N7ncK6X4O733L75xr8bQ7y7IejfucZQwAPyWeH_UK13uKIqSxl1Ib3yM_7RfQU9aS057T9xygxFS59KaN9ZsZ3WVnuhw3JA5FicaYfWP-aOz1D9s7Oxoqcpyj0iyVUPINNyMzChjYLaXGuzbg7Pjeza9uEzTRqOyqqNzO2I-gctZ_Aya1AYR2WszwzT4EZ46ZGBwoJlfSR5UUBVxGSTRSHZGw2dWiUjzfWRTZ2KgoyiKs80hYSMUIitpCIZR22qnNGs1wkC3tvlqiJC7l0EV-9RXV4XTWjRCEzkcpMPrZ9BH6Q2tVhYway6na4IkRk3K1DMAe_qgNlK59vyfo_bdZyKWj3AYe1XQL1aliLZrFdgfk_Jv1s8aRfwWrruHMYH7a7B8_hvmffN3Je3YRlBI95gQTzMnlZvMUMvt-24PgHqM2Lsg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ2zwgKDjUhhgJOBli5bEsZMgIVRRqpXRCSEmVbwEx3FHpTbpLqX0r_HO_-IcN8lWTap4WaWqSu0ktvLl-Ds-N4BXJgw155nraMm1E6SZcGJhuBMqLWUkBiKz-5C9Q7l_FHzqi_4a_KliYcitspKJVlBnhaY98j1SRZBqSO7uDUq3iC_tzvvJiUMVpMjSWpXTWEDkwMxnqL6dveu28Vm_9v3Ox28f9p2ywoCjgzA4dzJhfBNk-IM8xJPac2OV6sgNVBhHvhpIZAR8EMWuq6SnhB_rbID8R8RpqjVqLhyvewNuhpzH5E4Y9mtlz6OY0OpAxJGtMOJFkju-FLyM3rExfHZJQI2evlEQOHJ5hbxCe696b9Ym3DuwOc0naj5To9GlVbJzD-6W9Ja1Fni8D2smb8BWK0fVfjxnb5h1OLU7-Q3Y6JV2_Qbc-l7YP7fgb2tU5MeO-l3kDKE7Jm8d9gsVeosgpvKMURveozgdlnFT1JMSntPGH6OUVLjoZYx2mBlvs6rQDxuT7yFF4czfsuElR3qGvJ2dTBW5TVHQF0upbAabkYGFjW3-0fJcm2t3emoW17apmmnUdlRUaWZqR9D72n0AR9cChIewnhe5eQzMGDczOlRIpWSA_C4OuYqRZqIgJDOzaYJXPd5El3nYqRzIKKkzSFtIJAiJxEIikU3Yqc-ZLLKQrOy9XaEmKSXSWXLx_jThZd2MsoQMRCo3xdT2EfhBUteERwuQ1bfDtSAms24TwiX41R0oT_lySz78afOVS0H7Djis3QqoF8NaNYvdGsz_Meknqyf9AjZQXCSfu4cHT-G2b1838lrdhnXEjnmGzPI8fW5fYQY_rltm_APKgolM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anRDjgcvGJTCQkRAvLF1udhLeKmAaSJvQRKXBS-Q4LlRrnDIaRvl__C_OcS6sTJpYpaiR7CS28uX4O_Y5nwGe6zhWYVh4rhKhcqO84G7KdejGUgmR8Akv7DzkwaHYH0fvj_nxGvhdLowN2lf5dGhm5dBMv9rYynmpdrs4sV3ByYsR12BdcKTfA1gfH34YfSLHKhGhGwirPNmeC79NlLHpctb6ovNMRxJFrlgdjC4wzIuBkv1q6U24UZu5XJ7J2ezcgLR3G466rjRxKCfDepEP1a9_VB6v1Nc7cKulp2zUFN2FNW02YWtk0DUvl-wFswGjdiZ-E65_ruzZFvwezSrzxZU_K8MQbyWF2LAf6IXb186kKRiV4Y2r02mb7EQ1SaWcZusY6UjhSFUwmhZm4RvW7c7DSgoYpNSZ5Ss2PRf9zpBss2-1pFgnytRiOe11wc5oVYSVVjS0vdYK5Nanurm31VemVttW0fYwtW3BwdG7ezDee_vx9b7b7g_hqiiOFm7BdaCjAv-QRfpC-V4qc5V4kYzTJJATgXwunCSp50nhSx6kqpgge-VpniuFfmd4HwamMvohMK29QqtYIv8REZKyNA5litwQrRetDWsH_A4omWrF02kPj1nWyz5bcGUIrsyCKxMOvOyvmTfSIZfW3u7wl7Vm5HtG_jfyaxF6Djzri9EA0KqONLqqbR2OP2RiDjxo4No_Dg14SmuxDsQrQO4rkLj4agni0IqMt9BzYKeD_N9mXdaLnf6z-I9OP7pa9cewEdivl-JNt2GAANJPkBMu8qetFfgD7x5f6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Along-axon+diameter+variation+and+axonal+orientation+dispersion+revealed+with+3D+electron+microscopy%3A+implications+for+quantifying+brain+white+matter+microstructure+with+histology+and+diffusion+MRI&rft.jtitle=Brain+Structure+and+Function&rft.au=Hong-Hsi%2C+Lee&rft.au=Yaros%2C+Katarina&rft.au=Veraart%2C+Jelle&rft.au=Pathan%2C+Jasmine+L&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-2653&rft.eissn=0340-2061&rft.volume=224&rft.issue=4&rft.spage=1469&rft.epage=1488&rft_id=info:doi/10.1007%2Fs00429-019-01844-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon |