Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI

Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fibe...

Full description

Saved in:
Bibliographic Details
Published inBrain Structure and Function Vol. 224; no. 4; pp. 1469 - 1488
Main Authors Lee, Hong-Hsi, Yaros, Katarina, Veraart, Jelle, Pathan, Jasmine L., Liang, Feng-Xia, Kim, Sungheon G., Novikov, Dmitry S., Fieremans, Els
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1863-2653
1863-2661
1863-2661
0340-2061
DOI10.1007/s00429-019-01844-6

Cover

Abstract Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g -ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3 d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.
AbstractList Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the "apparent" inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.
Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the "apparent" inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the "apparent" inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.
Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g -ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3 d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.
Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (in, e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and preclinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross-sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of its diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.
Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the “apparent” inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.
Author Yaros, Katarina
Lee, Hong-Hsi
Kim, Sungheon G.
Liang, Feng-Xia
Veraart, Jelle
Pathan, Jasmine L.
Novikov, Dmitry S.
Fieremans, Els
AuthorAffiliation 3 Department of Cell Biology and Microscopy Core, New York University School of Medicine, 520 First Avenue, New York, NY 10016, USA
1 Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
2 Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
AuthorAffiliation_xml – name: 3 Department of Cell Biology and Microscopy Core, New York University School of Medicine, 520 First Avenue, New York, NY 10016, USA
– name: 2 Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
– name: 1 Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
Author_xml – sequence: 1
  givenname: Hong-Hsi
  orcidid: 0000-0002-3663-6559
  surname: Lee
  fullname: Lee, Hong-Hsi
  email: Honghsi.Lee@nyulangone.org
  organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine
– sequence: 2
  givenname: Katarina
  surname: Yaros
  fullname: Yaros, Katarina
  organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine
– sequence: 3
  givenname: Jelle
  surname: Veraart
  fullname: Veraart, Jelle
  organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine
– sequence: 4
  givenname: Jasmine L.
  surname: Pathan
  fullname: Pathan, Jasmine L.
  organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine
– sequence: 5
  givenname: Feng-Xia
  surname: Liang
  fullname: Liang, Feng-Xia
  organization: Department of Cell Biology and Microscopy Core, New York University School of Medicine
– sequence: 6
  givenname: Sungheon G.
  surname: Kim
  fullname: Kim, Sungheon G.
  organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine
– sequence: 7
  givenname: Dmitry S.
  orcidid: 0000-0002-4213-3050
  surname: Novikov
  fullname: Novikov, Dmitry S.
  organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine
– sequence: 8
  givenname: Els
  orcidid: 0000-0002-1384-8591
  surname: Fieremans
  fullname: Fieremans, Els
  organization: Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30790073$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARfcAPsECW2LAJ-JF4EhZIVXlVKkJCsLZuHCfjyrFT25lhPpD_wpkMLXRRYcnyle85R8f3-DQ7ss6qLHtO8GuC8epNwLigdY7JvKuiyPmj7IRUnOWUc3J0W5fsODsN4Rrjsq5I_SQ7ZnhVJwV2kv06N872Ofx0FrUaBhWVRxvwGqJOV2BbNPfAIOe1snG5bnUYlQ9z6dVGgVEt2uq4Ruw9UkbJ6FNn0NK7IN24e4v0MBot9-SAOufRzQQ26m6nbY8aD9qi7VpHhQaIs4OFG_0k4-TVor3WITrj-t3eVau7bto7-PLt8mn2uAMT1LPDeZb9-Pjh-8Xn_Orrp8uL86tcFqsi5m2pqCradLCSEi4JrqGRFS5gVVcUOo5pyboqjQY4gZLWsu1Kzsu6aaSsacHOMrboTnaE3RaMEaPXA_idIFjMoYglFJFCEftQBE-sdwtrnJpBtTKN0cMd04EW_3asXovebQQvCeZkFnh1EPDuZlIhikEHqYwBq9wUBCVVmRYtSIK-vAe9dpNP-e1RBUs_g-GEevG3o1srf_5FAlQLYI4heNUJqZfsk0FtHn4tvUf9rxEdBhsS2PbK39l-gPUbAzzybQ
CitedBy_id crossref_primary_10_1038_s41598_021_82575_9
crossref_primary_10_7554_eLife_79169
crossref_primary_10_1016_j_jmr_2022_107205
crossref_primary_10_1016_j_jneumeth_2020_108861
crossref_primary_10_1016_j_neuroimage_2020_117619
crossref_primary_10_2463_mrms_rev_2021_0091
crossref_primary_10_3389_fbioe_2022_904818
crossref_primary_10_1016_j_neuroimage_2022_118958
crossref_primary_10_1016_j_neuroimage_2020_116533
crossref_primary_10_1073_pnas_2012533117
crossref_primary_10_1007_s10409_023_23278_x
crossref_primary_10_1016_j_neuroimage_2022_118906
crossref_primary_10_1016_j_neuroimage_2020_117107
crossref_primary_10_3389_fnins_2020_00072
crossref_primary_10_1364_BOE_499354
crossref_primary_10_1016_j_tics_2022_01_007
crossref_primary_10_1038_s41598_024_79043_5
crossref_primary_10_1016_j_neuroimage_2022_119199
crossref_primary_10_1016_j_mcn_2022_103782
crossref_primary_10_1016_j_neuroimage_2021_118718
crossref_primary_10_1002_glia_23980
crossref_primary_10_1016_j_neuroimage_2020_117529
crossref_primary_10_1038_s42254_021_00326_1
crossref_primary_10_1109_TBME_2023_3299734
crossref_primary_10_1016_j_neuroimage_2021_118323
crossref_primary_10_1016_j_neuroimage_2021_118445
crossref_primary_10_1162_imag_a_00212
crossref_primary_10_7554_eLife_94917
crossref_primary_10_1002_nbm_5087
crossref_primary_10_1016_j_jneumeth_2020_109018
crossref_primary_10_1016_j_neuroimage_2022_119146
crossref_primary_10_1038_s42003_021_01699_w
crossref_primary_10_1016_j_zemedi_2023_07_003
crossref_primary_10_3389_fninf_2024_1354708
crossref_primary_10_1038_s41598_019_42648_2
crossref_primary_10_7554_eLife_49855
crossref_primary_10_7554_eLife_94917_3
crossref_primary_10_1088_1361_6560_ad66a9
crossref_primary_10_1007_s00429_024_02829_w
crossref_primary_10_1016_j_neuroimage_2021_118530
crossref_primary_10_1162_imag_a_00102
crossref_primary_10_1016_j_neuroimage_2019_116013
crossref_primary_10_1162_imag_a_00463
crossref_primary_10_3389_fneur_2023_1168833
crossref_primary_10_1007_s12311_020_01147_1
crossref_primary_10_1088_1361_6560_aba0cc
crossref_primary_10_1016_j_expneurol_2020_113486
crossref_primary_10_1038_s42003_020_1050_x
crossref_primary_10_1007_s11095_022_03222_0
crossref_primary_10_1007_s12035_021_02589_2
crossref_primary_10_1016_j_media_2023_102767
crossref_primary_10_1016_j_neuroimage_2022_119137
crossref_primary_10_1073_pnas_2218617120
crossref_primary_10_1007_s12021_023_09630_w
crossref_primary_10_1002_glia_24055
crossref_primary_10_1016_j_nicl_2021_102735
crossref_primary_10_1007_s10237_023_01714_5
crossref_primary_10_1016_j_neuroimage_2021_117849
crossref_primary_10_1016_j_neuroimage_2022_118922
crossref_primary_10_1016_j_nicl_2023_103427
crossref_primary_10_1016_j_mri_2020_09_002
crossref_primary_10_1002_nbm_4187
crossref_primary_10_1126_sciadv_adk1817
crossref_primary_10_3389_fnins_2021_646034
crossref_primary_10_1016_j_neuroimage_2020_117313
crossref_primary_10_1016_j_neuroimage_2020_117197
crossref_primary_10_1016_j_jneumeth_2020_108947
Cites_doi 10.1016/j.neuroimage.2012.03.072
10.1016/j.neuroimage.2016.01.018
10.1371/journal.pone.0008595
10.1016/j.neuroimage.2018.01.087
10.1007/s00429-013-0600-0
10.1016/j.neuroimage.2006.10.037
10.1007/978-3-540-78859-1
10.1109/TBME.2006.888830
10.1111/j.1365-2990.1980.tb00219.x
10.1038/nprot.2014.101
10.1016/j.neuroimage.2015.06.038
10.1016/j.neuroimage.2018.09.075
10.1002/mrm.20667
10.1002/mrm.10156
10.1002/mrm.21577
10.1016/j.media.2015.02.001
10.1109/ISBI.2011.5872394
10.1109/TPAMI.2012.120
10.1002/nbm.3462
10.1093/brain/awp042
10.1109/34.295913
10.1016/j.neuroimage.2015.08.017
10.3389/fnana.2015.00142
10.1101/239228
10.1016/j.neuroimage.2016.09.058
10.1016/j.expneurol.2011.10.030
10.1073/pnas.1316944111
10.1523/JNEUROSCI.5200-08.2009
10.1016/j.neuroimage.2007.02.016
10.1016/j.neuroimage.2019.01.015
10.1016/j.neuroimage.2018.03.006
10.1016/j.neuroimage.2012.01.056
10.1073/pnas.0907655106
10.1007/s11263-013-0644-x
10.1016/j.neuroimage.2010.08.068
10.1002/nbm.3998
10.1016/j.neuroimage.2016.01.022
10.1016/j.jneumeth.2016.08.002
10.1109/CVPR.2010.5539939
10.1038/s41598-018-22361-2
10.1073/pnas.1004841107
10.1016/j.neuroimage.2017.09.030
10.1016/0006-8993(92)90178-C
10.1063/1.1680931
10.1002/mrm.27101
10.1038/nmeth.4206
10.1101/501148
10.1016/j.neuroimage.2013.03.074
10.1523/JNEUROSCI.1600-12.2013
10.1016/j.neuroimage.2016.01.046
10.1016/j.neuroimage.2016.04.052
10.1016/j.neuroimage.2017.06.001
10.1073/pnas.052151299
10.1016/j.neuroimage.2009.08.053
10.1016/j.neuroimage.2016.01.047
10.1016/j.neuroimage.2005.03.042
10.3389/fnana.2016.00059
10.1016/j.neuroimage.2010.05.043
10.1016/j.neuroimage.2017.08.039
10.1016/j.neuroimage.2017.12.038
10.1016/S0022-5320(80)90125-2
10.1214/aos/1176342874
10.1007/s00422-014-0626-2
10.1016/j.neuroimage.2015.03.061
10.1038/s41598-018-22181-4
10.1016/j.neuroimage.2015.05.023
10.1016/j.neuroimage.2017.10.046
10.1046/j.0305-1846.2001.00301.x
10.1038/ncomms10884
10.1016/j.dib.2015.08.022
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Brain Structure and Function is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Brain Structure and Function is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00429-019-01844-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Zoology
Medicine
EISSN 1863-2661
0340-2061
EndPage 1488
ExternalDocumentID oai:pubmedcentral.nih.gov:6510616
PMC6510616
30790073
10_1007_s00429_019_01844_6
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke (US)
  grantid: R21 NS081230
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: R01 NS088040
  funderid: http://dx.doi.org/10.13039/100000065
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: P41 EB017183
  funderid: http://dx.doi.org/10.13039/100000070
– fundername: NINDS NIH HHS
  grantid: R01 NS088040
– fundername: NIBIB NIH HHS
  grantid: P41 EB017183
– fundername: NCI NIH HHS
  grantid: R01 CA160620
– fundername: NINDS NIH HHS
  grantid: R21 NS081230
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
78A
7RV
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P9S
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S37
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TT1
TUC
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~KM
-Y2
1SB
2P1
2VQ
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADYPR
AEBTG
AEKMD
AEZWR
AFDZB
AFEXP
AFHIU
AFOHR
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BDATZ
CAG
CITATION
COF
EN4
FINBP
FSGXE
H13
N2Q
O9-
OVD
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
S1Z
SCLPG
TEORI
UZXMN
VFIZW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-d5e2e4dd5e35216c109abc804a7982af60253f8900a61a529cdf56659bbcc9243
IEDL.DBID UNPAY
ISSN 1863-2653
1863-2661
IngestDate Sun Oct 26 04:16:42 EDT 2025
Tue Sep 30 16:59:29 EDT 2025
Fri Sep 05 11:40:10 EDT 2025
Mon Oct 06 18:05:35 EDT 2025
Thu Apr 03 06:59:19 EDT 2025
Wed Oct 01 01:02:48 EDT 2025
Thu Apr 24 22:49:09 EDT 2025
Fri Feb 21 02:35:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 3
axon segmentation
Fiber orientation distribution
Diffusion coarse-graining
electron microscopy
Axonal diameter distribution
Ratio
Diffusion time-dependence
Corpus callosum
Axonal diameter variation
g-Ratio
3d electron microscopy
3d axon segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d5e2e4dd5e35216c109abc804a7982af60253f8900a61a529cdf56659bbcc9243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4213-3050
0000-0002-3663-6559
0000-0002-1384-8591
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6510616
PMID 30790073
PQID 2184326630
PQPubID 38983
PageCount 20
ParticipantIDs unpaywall_primary_10_1007_s00429_019_01844_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6510616
proquest_miscellaneous_2185555241
proquest_journals_2184326630
pubmed_primary_30790073
crossref_citationtrail_10_1007_s00429_019_01844_6
crossref_primary_10_1007_s00429_019_01844_6
springer_journals_10_1007_s00429_019_01844_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Brain Structure and Function
PublicationTitleAbbrev Brain Struct Funct
PublicationTitleAlternate Brain Struct Funct
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ReisertMKellnerEDhitalBHennigJKiselevVGDisentangling micro from mesostructure by diffusion MRI: a Bayesian approachNeuroimage201714796497510.1016/j.neuroimage.2016.09.05827746388
SunDRothSBlackMJA quantitative analysis of current practices in optical flow estimation and the principles behind themInt J Comput Vis201410611513710.1007/s11263-013-0644-x
Marzan DE, West BL, Salzer JL (2018) Microglia are necessary for toxin-mediated demyelination and activation of microglia is sufficient to induce demyelination. https://doi.org/10.1101/501148
SaloRABelevichIManninenEJokitaloEGrohnOSierraAQuantification of anisotropy and orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brainNeuroimage201817240441410.1016/j.neuroimage.2018.01.08729412154
AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res199259814315310.1016/0006-8993(92)90178-C1:STN:280:DyaK3s7jslSjsQ%3D%3D
AssafYBlumenfeld-KatzirTYovelYBasserPJAxCaliber: a method for measuring axon diameter distribution from diffusion MRIMagn Reson Med2008591347135410.1002/mrm.21577185067994667732
DuvalTIn vivo mapping of human spinal cord microstructure at 300 mT/mNeuroimage201511849450710.1016/j.neuroimage.2015.06.038260950934562035
SepehrbandFAlexanderDCKurniawanNDReutensDCYangZTowards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRINMR Biomed20162929330810.1002/nbm.3462267484714949708
WilkeSADeconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapseJ Neurosci20133350752210.1523/JNEUROSCI.1600-12.20131:CAS:528:DC%2BC3sXhtF2itro%3D233039313756657
ZaimiAWabarthaMHermanVAntonsantiPLPeroneCSCohen-AdadJAxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networksSci Rep20188381610.1038/s41598-018-22181-41:CAS:528:DC%2BC1cXhs1OqsrbJ294914785830647
KaynigVLarge-scale automatic reconstruction of neuronal processes from electron microscopy imagesMed Image Anal201522778810.1016/j.media.2015.02.001257914364406409
Arganda-CarrerasICrowdsourcing the creation of image segmentation algorithms for connectomicsFront Neuroanat2015914210.3389/fnana.2015.00142265941564633678
Politis A (2016) Microphone array processing for parametric spatial audio techniques. http://urn.fi/URN:ISBN:978-952-60-7037-7
DorkenwaldSSchubertPJKillingerMFUrbanGMikulaSSvaraFKornfeldJAutomated synaptic connectivity inference for volume electron microscopyNat Methods20171443544210.1038/nmeth.42061:CAS:528:DC%2BC2sXjt1ags7c%3D28250467
VeraartJNovikovDSFieremansETE dependent diffusion imaging (TEdDI) distinguishes between compartmental T-2 relaxation timesNeuroimage201818236036910.1016/j.neuroimage.2017.09.03028935239
LittleGJHeathJWMorphometric analysis of axons myelinated during adult life in the mouse superior cervical ganglionJ Anat1994184Pt 238739880141301259999
TournierJDCalamanteFConnellyARobust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolutionNeuroimage2007351459147210.1016/j.neuroimage.2007.02.01617379540
LeergaardTBWhiteNSde CrespignyABolstadID’ArceuilHBjaalieJGDaleAMQuantitative histological validation of diffusion MRI fiber orientation distributions in the rat brainPLoS One20105e859510.1371/journal.pone.00085951:CAS:528:DC%2BC3cXmtlKlsQ%3D%3D200628222802592
MollinkJEvaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imagingNeuroimage201715756157410.1016/j.neuroimage.2017.06.001286028155607356
ShepherdGMRaastadMAndersenPGeneral and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellumProc Natl Acad Sci USA2002996340634510.1073/pnas.0521512991:CAS:528:DC%2BD38XjslWntrg%3D11972022
GiacciMKBartlettCAHuynhMKilburnMRDunlopSAFitzgeraldMThree dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nervesSci Rep20188397910.1038/s41598-018-22361-21:CAS:528:DC%2BC1cXhsl2jsb7P295074215838102
NovikovDSVeraartJJelescuIOFieremansERotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRINeuroimage201810.1016/j.neuroimage.2018.03.006302928155949281
SchillingKGJanveVGaoYStepniewskaILandmanBAAndersonAWHistological validation of diffusion MRI fiber orientation distributions. and dispersionNeuroimage201816520022110.1016/j.neuroimage.2017.10.04629074279
AndersonAWMeasurement of fiber orientation distributions using high angular resolution diffusion imagingMagn Reson Med20055451194120610.1002/mrm.2066716161109
JespersenSNNeurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopyNeuroimage20104920521610.1016/j.neuroimage.2009.08.05319732836
JespersenSNOlesenJLHansenBShemeshNDiffusion time dependence of microstructural parameters in fixed spinal cordNeuroimage201710.1016/j.neuroimage.2017.08.039291962695845761
KirschnerDAHollingsheadCJProcessing for electron microscopy alters membrane structure and packing in myelinJ Ultrastruct Res19807321123210.1016/S0022-5320(80)90125-21:CAS:528:DyaL3MXitVCqs74%3D6163867
NeumanCSpin echo of spins diffusing in a bounded mediumJ Chem Phys1974604508451110.1063/1.16809311:CAS:528:DyaE2cXksFKht70%3D
CaminitiRGhaziriHGaluskeRHofPRInnocentiGMEvolution amplified processing with temporally dispersed slow neuronal connectivity in primatesProc Natl Acad Sci USA2009106195511955610.1073/pnas.090765510619875694
GrussuFSchneiderTYatesRLZhangHWheeler-KingshottCDeLucaGCAlexanderDCA framework for optimal whole-sample histological quantification of neurite orientation dispersion in the human spinal cordJ Neurosci Methods2016273203210.1016/j.jneumeth.2016.08.00227497747
NovikovDSFieremansEJespersenSNKiselevVGQuantifying brain microstructure with diffusion MRI: theory and parameter estimationNMR Biomed201810.1002/nbm.399830321478
SchneiderRWeilWStochastic and integral geometry2008BerlinSpringer10.1007/978-3-540-78859-1
SturrockRRMyelination of the mouse corpus callosumNeuropathol Appl Neurobiol1980641542010.1111/j.1365-2990.1980.tb00219.x1:STN:280:DyaL3M%2FpvFaitw%3D%3D7453945
Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on IEEE, pp 2432–2439
VeraartJFieremansENovikovDSOn the scaling behavior of water diffusion in human brain white matterNeuroimage201810.1016/j.neuroimage.2018.09.075302928155949281
JespersenSNKroenkeCDOstergaardLAckermanJJYablonskiyDAModeling dendrite density from magnetic resonance diffusion measurementsNeuroimage2007341473148610.1016/j.neuroimage.2006.10.03717188901
StikovNIn vivo histology of the myelin g-ratio with magnetic resonance imagingNeuroimage201511839740510.1016/j.neuroimage.2015.05.02326004502
YangHJVainshteinAMaik-RachlineGPelesEG protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelinationNat Commun201671088410.1038/ncomms108841:CAS:528:DC%2BC28XktValt7o%3D269611744792952
JonesDKDiffusion MRI: theory, methods, and application2010OxfordOxford University Press
WestKLKelmNDCarsonRPDoesMDQuantitative analysis of mouse corpus callosum from electron microscopy imagesData Brief2015512412810.1016/j.dib.2015.08.022265048934576400
BurcawLMFieremansENovikovDSMesoscopic structure of neuronal tracts from time-dependent diffusionNeuroimage2015114183710.1016/j.neuroimage.2015.03.061258375984446209
AlexanderDCHubbardPLHallMGMooreEAPtitoMParkerGJDyrbyTBOrientationally invariant indices of axon diameter and density from diffusionMRI Neuroimage2010521374138910.1016/j.neuroimage.2010.05.04320580932
SotiropoulosSNBehrensTEJbabdiSBall and rackets: inferring fiber fanning from diffusion-weightedMRI Neuroimage2012601412142510.1016/j.neuroimage.2012.01.05622270351
AchantaRShajiASmithKLucchiAFuaPSusstrunkSSLIC superpixels compared to state-of-the-art superpixel methodsIEEE Trans Pattern Anal Mach Intell2012342274228210.1109/TPAMI.2012.12022641706
DhitalBReisertMKellnerEKiselevVGIntra-axonal diffusivity in brain white matterNeuroImage201918954355010.1016/j.neuroimage.2019.01.01530659959
NovikovDSKiselevVGJespersenSNOn modelingMagn Reson Med2018793172319310.1002/mrm.27101294938165905348
WestKLKelmNDCarsonRPDoesMDA revised model for estimating g-ratio from MRINeuroimage20161251155115810.1016/j.neuroimage.2015.08.01726299793
BinghamCAntipodally symmetric distribution on sphereAnn Stat197421201122510.1214/aos/1176342874
ZhangHSchneiderTWheeler-KingshottCAAlexanderDCNODDI: practical in vivo neurite orientation dispersion and density imaging of the human brainNeuroimage2012611000101610.1016/j.neuroimage.2012.03.07222484410
AssafYBasserPJComposite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brainNeuroimage200527485810.1016/j.neuroimage.2005.03.04215979342
FrankLRCharacterization of anisotropy in high angular resolution diffusion-weighted MRIMagn Reson Med20024761083109910.1002/mrm.1015612111955
SepehrbandFAlexanderDCClarkKAKurniawanNDYangZReutensDCParametric probability distribution functions for axon diameters of corpus callosumFront Neuroanat2016105910.3389/fnana.2016.00059273032734880597
FieremansEBurcawLMLeeHHLemberskiyGVeraartJNovikovDSIn vivo observation and biophysical interpretation of time-dependent diffusion in human white matterNeuroimage201612941442710.1016/j.neuroimage.2016.01.018268047824803645
BertholdCHNilssonIRydmarkMAxon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing catJ Anat19831364835081:STN:280:DyaL3s3ptVGjsQ%3D%3D68856141171896
LiewaldDMillerRLogothetisNWagnerHJSchuzADistribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaqueBiol Cybern201410854155710.1007/s00422-014-0626-2251429404228120
SchillingKJanveVGaoYStepniewskaILand
ME Komlosh (1844_CR30) 2013; 78
KL West (1844_CR65) 2015; 5
CN Straehle (1844_CR56) 2011; 14
I Ronen (1844_CR45) 2014; 219
JD Tournier (1844_CR62) 2007; 35
B Dhital (1844_CR204) 2019; 189
R Caminiti (1844_CR15) 2009; 106
B Maco (1844_CR35) 2014; 9
MD Tang-Schomer (1844_CR60) 2012; 233
1844_CR52
S De Santis (1844_CR16) 2016; 130
JA Perge (1844_CR202) 2009; 29
GM Shepherd (1844_CR51) 2002; 99
A Zaimi (1844_CR70) 2018; 8
H-H Lee (1844_CR31) 2017
K Schilling (1844_CR47) 2016; 129
R Adams (1844_CR4) 1994; 16
SA Wilke (1844_CR67) 2013; 33
AW Anderson (1844_CR201) 2005; 54
CH Berthold (1844_CR11) 1983; 136
C Bingham (1844_CR12) 1974; 2
1844_CR58
D Benjamini (1844_CR10) 2016; 135
E Fieremans (1844_CR20) 2016; 129
M Reisert (1844_CR44) 2017; 147
C Neuman (1844_CR38) 1974; 60
DK Jones (1844_CR26) 2010
J Veraart (1844_CR63) 2018
F Sepehrband (1844_CR49) 2016; 10
MD Budde (1844_CR13) 2010; 107
D Barazany (1844_CR9) 2009; 132
SN Jespersen (1844_CR24) 2010; 49
KG Schilling (1844_CR48) 2018; 165
R Achanta (1844_CR3) 2012; 34
RA Salo (1844_CR46) 2018; 172
Y Assaf (1844_CR8) 2008; 59
1844_CR43
DS Novikov (1844_CR40) 2018
LR Frank (1844_CR200) 2002; 47
GJ Little (1844_CR34) 1994; 184
T Duval (1844_CR19) 2015; 118
S Dorkenwald (1844_CR18) 2017; 14
MK Giacci (1844_CR21) 2018; 8
J Mollink (1844_CR37) 2017; 157
J Veraart (1844_CR64) 2018; 182
F Grussu (1844_CR22) 2016; 273
RS Womersley (1844_CR68) 2017
LM Burcaw (1844_CR14) 2015; 114
DS Novikov (1844_CR42) 2018
DS Novikov (1844_CR39) 2014; 111
SN Sotiropoulos (1844_CR53) 2012; 60
V Kaynig (1844_CR27) 2015; 22
D Sun (1844_CR59) 2014; 106
I Arganda-Carreras (1844_CR6) 2015; 9
H Zhang (1844_CR71) 2012; 61
F Sepehrband (1844_CR50) 2016; 29
F Aboitiz (1844_CR2) 1992; 598
SN Jespersen (1844_CR25) 2017
N Stikov (1844_CR55) 2015; 118
M Tariq (1844_CR61) 2016; 133
DS Novikov (1844_CR41) 2018; 79
F Dell’Acqua (1844_CR17) 2007; 54
DA Kirschner (1844_CR28) 1980; 73
Y Assaf (1844_CR7) 2005; 27
D Liewald (1844_CR33) 2014; 108
KL West (1844_CR66) 2016; 125
HJ Yang (1844_CR69) 2016; 7
JL Mason (1844_CR36) 2001; 27
R Schneider (1844_CR210) 2008
N Stikov (1844_CR54) 2011; 54
1844_CR1
TB Leergaard (1844_CR32) 2010; 5
1844_CR203
RR Sturrock (1844_CR57) 1980; 6
SN Jespersen (1844_CR23) 2007; 34
1844_CR29
DC Alexander (1844_CR5) 2010; 52
References_xml – reference: De SantisSJonesDKRoebroeckAIncluding diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human. white matterNeuroimage20161309110310.1016/j.neuroimage.2016.01.047268265144819719
– reference: NovikovDSKiselevVGJespersenSNOn modelingMagn Reson Med2018793172319310.1002/mrm.27101294938165905348
– reference: SunDRothSBlackMJA quantitative analysis of current practices in optical flow estimation and the principles behind themInt J Comput Vis201410611513710.1007/s11263-013-0644-x
– reference: DuvalTIn vivo mapping of human spinal cord microstructure at 300 mT/mNeuroimage201511849450710.1016/j.neuroimage.2015.06.038260950934562035
– reference: BarazanyDBasserPJAssafYIn vivo measurement of axon diameter distribution in the corpus callosum of rat brainBrain20091321210122010.1093/brain/awp042194037882677796
– reference: Tang-SchomerMDJohnsonVEBaasPWStewartWSmithDHPartial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injuryExp Neurol201223336437210.1016/j.expneurol.2011.10.03022079153
– reference: SepehrbandFAlexanderDCKurniawanNDReutensDCYangZTowards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRINMR Biomed20162929330810.1002/nbm.3462267484714949708
– reference: MasonJLLangamanCMorellPSuzukiKMatsushimaGKEpisodic demyelination and subsequent remyelination within the murine central nervous system: changes in axonal calibreNeuropathol Appl Neurobiol200127505810.1046/j.0305-1846.2001.00301.x1:STN:280:DC%2BD3MzisV2isw%3D%3D11299002
– reference: BertholdCHNilssonIRydmarkMAxon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing catJ Anat19831364835081:STN:280:DyaL3s3ptVGjsQ%3D%3D68856141171896
– reference: JespersenSNKroenkeCDOstergaardLAckermanJJYablonskiyDAModeling dendrite density from magnetic resonance diffusion measurementsNeuroimage2007341473148610.1016/j.neuroimage.2006.10.03717188901
– reference: LeeH-HFieremansENovikovDSWhat dominates the time dependence of diffusion transverse to axons: intra- or extra-axonal water?NeuroImage201710.1016/j.neuroimage.2017.12.038295274975898371
– reference: KaynigVLarge-scale automatic reconstruction of neuronal processes from electron microscopy imagesMed Image Anal201522778810.1016/j.media.2015.02.001257914364406409
– reference: Kleinnijenhuis M, Johnson E, Mollink J, Jbabdi S, Miller K (2017) A 3D electron microscopy segmentation pipeline for hyper-realistic diffusion simulations. In: ISMRM 25th annual meeting, Hawaii, USA Proceedings of the ISMRM annual meeting, vol 25, p 1090
– reference: SchillingKJanveVGaoYStepniewskaILandmanBAAndersonAWComparison of 3D orientation distribution functions measured with confocal microscopy and diffusionMRI Neuroimage201612918519710.1016/j.neuroimage.2016.01.02226804781
– reference: ShepherdGMRaastadMAndersenPGeneral and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellumProc Natl Acad Sci USA2002996340634510.1073/pnas.0521512991:CAS:528:DC%2BD38XjslWntrg%3D11972022
– reference: WilkeSADeconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapseJ Neurosci20133350752210.1523/JNEUROSCI.1600-12.20131:CAS:528:DC%2BC3sXhtF2itro%3D233039313756657
– reference: AdamsRBischofLSeeded region growingIEEE Trans Pattern Anal19941664164710.1109/34.295913
– reference: NovikovDSFieremansEJespersenSNKiselevVGQuantifying brain microstructure with diffusion MRI: theory and parameter estimationNMR Biomed201810.1002/nbm.399830321478
– reference: PergeJAKochKMillerRSterlingPBalasubramanianVHow the optic nerve allocates space, energy capacity, and informationJ Neurosci200929247917792810.1523/JNEUROSCI.5200-08.20091:CAS:528:DC%2BD1MXnvVCisrY%3D195356032928227
– reference: Abdollahzadeh A, Belevich I, Jokitalo E, Tohka J, Sierra A (2017) 3D axonal morphometry of white matter. https://doi.org/10.1101/239228
– reference: Marzan DE, West BL, Salzer JL (2018) Microglia are necessary for toxin-mediated demyelination and activation of microglia is sufficient to induce demyelination. https://doi.org/10.1101/501148
– reference: SaloRABelevichIManninenEJokitaloEGrohnOSierraAQuantification of anisotropy and orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brainNeuroimage201817240441410.1016/j.neuroimage.2018.01.08729412154
– reference: MacoBCantoniMHoltmaatAKreshukAHamprechtFAKnottGWSemiautomated correlative 3D electron microscopy of in vivo-imaged axons and dendritesNat Protoc201491354136610.1038/nprot.2014.1011:CAS:528:DC%2BC2cXnvF2rsrY%3D24833174
– reference: StikovNIn vivo histology of the myelin g-ratio with magnetic resonance imagingNeuroimage201511839740510.1016/j.neuroimage.2015.05.02326004502
– reference: DhitalBReisertMKellnerEKiselevVGIntra-axonal diffusivity in brain white matterNeuroImage201918954355010.1016/j.neuroimage.2019.01.01530659959
– reference: SchneiderRWeilWStochastic and integral geometry2008BerlinSpringer10.1007/978-3-540-78859-1
– reference: BenjaminiDKomloshMEHoltzclawLANevoUBasserPJWhite matter microstructure from nonparametric axon diameter distribution mappingNeuroimage201613533334410.1016/j.neuroimage.2016.04.052271260024916903
– reference: SchillingKGJanveVGaoYStepniewskaILandmanBAAndersonAWHistological validation of diffusion MRI fiber orientation distributions. and dispersionNeuroimage201816520022110.1016/j.neuroimage.2017.10.04629074279
– reference: GrussuFSchneiderTYatesRLZhangHWheeler-KingshottCDeLucaGCAlexanderDCA framework for optimal whole-sample histological quantification of neurite orientation dispersion in the human spinal cordJ Neurosci Methods2016273203210.1016/j.jneumeth.2016.08.00227497747
– reference: BuddeMDFrankJANeurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic strokeProc Natl Acad Sci USA2010107144721447710.1073/pnas.100484110720660718
– reference: DorkenwaldSSchubertPJKillingerMFUrbanGMikulaSSvaraFKornfeldJAutomated synaptic connectivity inference for volume electron microscopyNat Methods20171443544210.1038/nmeth.42061:CAS:528:DC%2BC2sXjt1ags7c%3D28250467
– reference: GiacciMKBartlettCAHuynhMKilburnMRDunlopSAFitzgeraldMThree dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nervesSci Rep20188397910.1038/s41598-018-22361-21:CAS:528:DC%2BC1cXhsl2jsb7P295074215838102
– reference: VeraartJNovikovDSFieremansETE dependent diffusion imaging (TEdDI) distinguishes between compartmental T-2 relaxation timesNeuroimage201818236036910.1016/j.neuroimage.2017.09.03028935239
– reference: JespersenSNOlesenJLHansenBShemeshNDiffusion time dependence of microstructural parameters in fixed spinal cordNeuroimage201710.1016/j.neuroimage.2017.08.039291962695845761
– reference: Politis A (2016) Microphone array processing for parametric spatial audio techniques. http://urn.fi/URN:ISBN:978-952-60-7037-7
– reference: WestKLKelmNDCarsonRPDoesMDA revised model for estimating g-ratio from MRINeuroimage20161251155115810.1016/j.neuroimage.2015.08.01726299793
– reference: ZhangHSchneiderTWheeler-KingshottCAAlexanderDCNODDI: practical in vivo neurite orientation dispersion and density imaging of the human brainNeuroimage2012611000101610.1016/j.neuroimage.2012.03.07222484410
– reference: KirschnerDAHollingsheadCJProcessing for electron microscopy alters membrane structure and packing in myelinJ Ultrastruct Res19807321123210.1016/S0022-5320(80)90125-21:CAS:528:DyaL3MXitVCqs74%3D6163867
– reference: AlexanderDCHubbardPLHallMGMooreEAPtitoMParkerGJDyrbyTBOrientationally invariant indices of axon diameter and density from diffusionMRI Neuroimage2010521374138910.1016/j.neuroimage.2010.05.04320580932
– reference: LeergaardTBWhiteNSde CrespignyABolstadID’ArceuilHBjaalieJGDaleAMQuantitative histological validation of diffusion MRI fiber orientation distributions in the rat brainPLoS One20105e859510.1371/journal.pone.00085951:CAS:528:DC%2BC3cXmtlKlsQ%3D%3D200628222802592
– reference: TariqMSchneiderTAlexanderDCGandini Wheeler-KingshottCAZhangHBingham-NODDI: mapping anisotropic orientation dispersion of neurites using diffusionMRI Neuroimage201613320722310.1016/j.neuroimage.2016.01.04626826512
– reference: WomersleyRSEfficient spherical designs with good geometric propertiesContemporary computational mathematics - A celebration of the 80th birthday of Ian Sloan2017ChamSpringer12431285
– reference: AssafYBlumenfeld-KatzirTYovelYBasserPJAxCaliber: a method for measuring axon diameter distribution from diffusion MRIMagn Reson Med2008591347135410.1002/mrm.21577185067994667732
– reference: RonenIBuddeMErcanEAnneseJTechawiboonwongAWebbAMicrostructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histologyBrain Struct Funct20142191773178510.1007/s00429-013-0600-01:CAS:528:DC%2BC2cXhsVCisbrK23794120
– reference: StraehleCNKotheUKnottGHamprechtFACarving: scalable interactive segmentation of neural volume electron microscopy imagesMed Image Comput Comput Assist Interv2011146536601:STN:280:DC%2BC3MbhvVyiuw%3D%3D22003674
– reference: CaminitiRGhaziriHGaluskeRHofPRInnocentiGMEvolution amplified processing with temporally dispersed slow neuronal connectivity in primatesProc Natl Acad Sci USA2009106195511955610.1073/pnas.090765510619875694
– reference: SotiropoulosSNBehrensTEJbabdiSBall and rackets: inferring fiber fanning from diffusion-weightedMRI Neuroimage2012601412142510.1016/j.neuroimage.2012.01.05622270351
– reference: Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: Biomedical imaging: from nano to macro, 2011 IEEE international symposium on IEEE, pp 230–233
– reference: AboitizFScheibelABFisherRSZaidelEFiber composition of the human corpus callosumBrain Res199259814315310.1016/0006-8993(92)90178-C1:STN:280:DyaK3s7jslSjsQ%3D%3D
– reference: JonesDKDiffusion MRI: theory, methods, and application2010OxfordOxford University Press
– reference: SepehrbandFAlexanderDCClarkKAKurniawanNDYangZReutensDCParametric probability distribution functions for axon diameters of corpus callosumFront Neuroanat2016105910.3389/fnana.2016.00059273032734880597
– reference: ZaimiAWabarthaMHermanVAntonsantiPLPeroneCSCohen-AdadJAxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networksSci Rep20188381610.1038/s41598-018-22181-41:CAS:528:DC%2BC1cXhs1OqsrbJ294914785830647
– reference: LiewaldDMillerRLogothetisNWagnerHJSchuzADistribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaqueBiol Cybern201410854155710.1007/s00422-014-0626-2251429404228120
– reference: JespersenSNNeurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopyNeuroimage20104920521610.1016/j.neuroimage.2009.08.05319732836
– reference: VeraartJFieremansENovikovDSOn the scaling behavior of water diffusion in human brain white matterNeuroimage201810.1016/j.neuroimage.2018.09.075302928155949281
– reference: BinghamCAntipodally symmetric distribution on sphereAnn Stat197421201122510.1214/aos/1176342874
– reference: NovikovDSVeraartJJelescuIOFieremansERotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRINeuroimage201810.1016/j.neuroimage.2018.03.006302928155949281
– reference: WestKLKelmNDCarsonRPDoesMDQuantitative analysis of mouse corpus callosum from electron microscopy imagesData Brief2015512412810.1016/j.dib.2015.08.022265048934576400
– reference: BurcawLMFieremansENovikovDSMesoscopic structure of neuronal tracts from time-dependent diffusionNeuroimage2015114183710.1016/j.neuroimage.2015.03.061258375984446209
– reference: TournierJDCalamanteFConnellyARobust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolutionNeuroimage2007351459147210.1016/j.neuroimage.2007.02.01617379540
– reference: SturrockRRMyelination of the mouse corpus callosumNeuropathol Appl Neurobiol1980641542010.1111/j.1365-2990.1980.tb00219.x1:STN:280:DyaL3M%2FpvFaitw%3D%3D7453945
– reference: FrankLRCharacterization of anisotropy in high angular resolution diffusion-weighted MRIMagn Reson Med20024761083109910.1002/mrm.1015612111955
– reference: StikovNPerryLMMezerARykhlevskaiaEWandellBAPaulyJMDoughertyRFBound pool fractions complement diffusion measures to describe white matter micro and macrostructureNeuroimage2011541112112110.1016/j.neuroimage.2010.08.06820828622
– reference: NeumanCSpin echo of spins diffusing in a bounded mediumJ Chem Phys1974604508451110.1063/1.16809311:CAS:528:DyaE2cXksFKht70%3D
– reference: NovikovDSJensenJHHelpernJAFieremansERevealing mesoscopic structural universality with diffusionProc Natl Acad Sci USA20141115088509310.1073/pnas.13169441111:CAS:528:DC%2BC2cXkslGlt7w%3D24706873
– reference: YangHJVainshteinAMaik-RachlineGPelesEG protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelinationNat Commun201671088410.1038/ncomms108841:CAS:528:DC%2BC28XktValt7o%3D269611744792952
– reference: Dell’AcquaFRizzoGScifoPClarkeRAScottiGFazioFA model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imagingIEEE Trans Biomed Eng20075446247210.1109/TBME.2006.88883017355058
– reference: Sun D, Roth S, Black MJ (2010) Secrets of optical flow estimation and their principles. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on IEEE, pp 2432–2439
– reference: KomloshMEOzarslanELizakMJHorkayne-SzakalyIFreidlinRZHorkayFBasserPJMapping average axon diameters in porcine spinal cord white matter and rat corpus callosum using d-PFGMRI Neuroimage20137821021610.1016/j.neuroimage.2013.03.0741:STN:280:DC%2BC3srkvFWjtQ%3D%3D23583426
– reference: MollinkJEvaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imagingNeuroimage201715756157410.1016/j.neuroimage.2017.06.001286028155607356
– reference: ReisertMKellnerEDhitalBHennigJKiselevVGDisentangling micro from mesostructure by diffusion MRI: a Bayesian approachNeuroimage201714796497510.1016/j.neuroimage.2016.09.05827746388
– reference: Arganda-CarrerasICrowdsourcing the creation of image segmentation algorithms for connectomicsFront Neuroanat2015914210.3389/fnana.2015.00142265941564633678
– reference: FieremansEBurcawLMLeeHHLemberskiyGVeraartJNovikovDSIn vivo observation and biophysical interpretation of time-dependent diffusion in human white matterNeuroimage201612941442710.1016/j.neuroimage.2016.01.018268047824803645
– reference: AssafYBasserPJComposite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brainNeuroimage200527485810.1016/j.neuroimage.2005.03.04215979342
– reference: AndersonAWMeasurement of fiber orientation distributions using high angular resolution diffusion imagingMagn Reson Med20055451194120610.1002/mrm.2066716161109
– reference: AchantaRShajiASmithKLucchiAFuaPSusstrunkSSLIC superpixels compared to state-of-the-art superpixel methodsIEEE Trans Pattern Anal Mach Intell2012342274228210.1109/TPAMI.2012.12022641706
– reference: LittleGJHeathJWMorphometric analysis of axons myelinated during adult life in the mouse superior cervical ganglionJ Anat1994184Pt 238739880141301259999
– volume: 14
  start-page: 653
  year: 2011
  ident: 1844_CR56
  publication-title: Med Image Comput Comput Assist Interv
– volume: 61
  start-page: 1000
  year: 2012
  ident: 1844_CR71
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 136
  start-page: 483
  year: 1983
  ident: 1844_CR11
  publication-title: J Anat
– volume: 129
  start-page: 414
  year: 2016
  ident: 1844_CR20
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.018
– volume: 5
  start-page: e8595
  year: 2010
  ident: 1844_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008595
– volume: 172
  start-page: 404
  year: 2018
  ident: 1844_CR46
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.087
– volume: 219
  start-page: 1773
  year: 2014
  ident: 1844_CR45
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0600-0
– volume: 34
  start-page: 1473
  year: 2007
  ident: 1844_CR23
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.037
– volume-title: Stochastic and integral geometry
  year: 2008
  ident: 1844_CR210
  doi: 10.1007/978-3-540-78859-1
– ident: 1844_CR29
– volume: 54
  start-page: 462
  year: 2007
  ident: 1844_CR17
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.888830
– volume: 6
  start-page: 415
  year: 1980
  ident: 1844_CR57
  publication-title: Neuropathol Appl Neurobiol
  doi: 10.1111/j.1365-2990.1980.tb00219.x
– volume: 9
  start-page: 1354
  year: 2014
  ident: 1844_CR35
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.101
– volume: 118
  start-page: 494
  year: 2015
  ident: 1844_CR19
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.06.038
– year: 2018
  ident: 1844_CR63
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.075
– volume: 54
  start-page: 1194
  issue: 5
  year: 2005
  ident: 1844_CR201
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20667
– volume-title: Diffusion MRI: theory, methods, and application
  year: 2010
  ident: 1844_CR26
– volume: 47
  start-page: 1083
  issue: 6
  year: 2002
  ident: 1844_CR200
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10156
– volume: 59
  start-page: 1347
  year: 2008
  ident: 1844_CR8
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21577
– volume: 22
  start-page: 77
  year: 2015
  ident: 1844_CR27
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.02.001
– ident: 1844_CR52
  doi: 10.1109/ISBI.2011.5872394
– volume: 34
  start-page: 2274
  year: 2012
  ident: 1844_CR3
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.120
– volume: 29
  start-page: 293
  year: 2016
  ident: 1844_CR50
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3462
– volume: 132
  start-page: 1210
  year: 2009
  ident: 1844_CR9
  publication-title: Brain
  doi: 10.1093/brain/awp042
– volume: 16
  start-page: 641
  year: 1994
  ident: 1844_CR4
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/34.295913
– volume: 125
  start-page: 1155
  year: 2016
  ident: 1844_CR66
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.017
– volume: 9
  start-page: 142
  year: 2015
  ident: 1844_CR6
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2015.00142
– ident: 1844_CR1
  doi: 10.1101/239228
– volume: 147
  start-page: 964
  year: 2017
  ident: 1844_CR44
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.058
– volume: 233
  start-page: 364
  year: 2012
  ident: 1844_CR60
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2011.10.030
– volume: 111
  start-page: 5088
  year: 2014
  ident: 1844_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1316944111
– volume: 29
  start-page: 7917
  issue: 24
  year: 2009
  ident: 1844_CR202
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5200-08.2009
– volume: 35
  start-page: 1459
  year: 2007
  ident: 1844_CR62
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 189
  start-page: 543
  year: 2019
  ident: 1844_CR204
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.01.015
– ident: 1844_CR43
– year: 2018
  ident: 1844_CR42
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.006
– volume: 60
  start-page: 1412
  year: 2012
  ident: 1844_CR53
  publication-title: MRI Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.056
– volume: 106
  start-page: 19551
  year: 2009
  ident: 1844_CR15
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0907655106
– volume: 106
  start-page: 115
  year: 2014
  ident: 1844_CR59
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-013-0644-x
– volume: 54
  start-page: 1112
  year: 2011
  ident: 1844_CR54
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.068
– year: 2018
  ident: 1844_CR40
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3998
– volume: 129
  start-page: 185
  year: 2016
  ident: 1844_CR47
  publication-title: MRI Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.022
– volume: 273
  start-page: 20
  year: 2016
  ident: 1844_CR22
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2016.08.002
– ident: 1844_CR58
  doi: 10.1109/CVPR.2010.5539939
– volume: 8
  start-page: 3979
  year: 2018
  ident: 1844_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-22361-2
– volume: 107
  start-page: 14472
  year: 2010
  ident: 1844_CR13
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004841107
– volume: 182
  start-page: 360
  year: 2018
  ident: 1844_CR64
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.030
– volume: 598
  start-page: 143
  year: 1992
  ident: 1844_CR2
  publication-title: Brain Res
  doi: 10.1016/0006-8993(92)90178-C
– volume: 184
  start-page: 387
  issue: Pt 2
  year: 1994
  ident: 1844_CR34
  publication-title: J Anat
– volume: 60
  start-page: 4508
  year: 1974
  ident: 1844_CR38
  publication-title: J Chem Phys
  doi: 10.1063/1.1680931
– volume: 79
  start-page: 3172
  year: 2018
  ident: 1844_CR41
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27101
– volume: 14
  start-page: 435
  year: 2017
  ident: 1844_CR18
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4206
– ident: 1844_CR203
  doi: 10.1101/501148
– volume: 78
  start-page: 210
  year: 2013
  ident: 1844_CR30
  publication-title: MRI Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.074
– volume: 33
  start-page: 507
  year: 2013
  ident: 1844_CR67
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1600-12.2013
– volume: 133
  start-page: 207
  year: 2016
  ident: 1844_CR61
  publication-title: MRI Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.046
– volume: 135
  start-page: 333
  year: 2016
  ident: 1844_CR10
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.052
– volume: 157
  start-page: 561
  year: 2017
  ident: 1844_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.001
– volume: 99
  start-page: 6340
  year: 2002
  ident: 1844_CR51
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.052151299
– volume: 49
  start-page: 205
  year: 2010
  ident: 1844_CR24
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.08.053
– start-page: 1243
  volume-title: Contemporary computational mathematics - A celebration of the 80th birthday of Ian Sloan
  year: 2017
  ident: 1844_CR68
– volume: 130
  start-page: 91
  year: 2016
  ident: 1844_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.047
– volume: 27
  start-page: 48
  year: 2005
  ident: 1844_CR7
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.042
– volume: 10
  start-page: 59
  year: 2016
  ident: 1844_CR49
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2016.00059
– volume: 52
  start-page: 1374
  year: 2010
  ident: 1844_CR5
  publication-title: MRI Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.043
– year: 2017
  ident: 1844_CR25
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.039
– year: 2017
  ident: 1844_CR31
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.038
– volume: 73
  start-page: 211
  year: 1980
  ident: 1844_CR28
  publication-title: J Ultrastruct Res
  doi: 10.1016/S0022-5320(80)90125-2
– volume: 2
  start-page: 1201
  year: 1974
  ident: 1844_CR12
  publication-title: Ann Stat
  doi: 10.1214/aos/1176342874
– volume: 108
  start-page: 541
  year: 2014
  ident: 1844_CR33
  publication-title: Biol Cybern
  doi: 10.1007/s00422-014-0626-2
– volume: 114
  start-page: 18
  year: 2015
  ident: 1844_CR14
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.061
– volume: 8
  start-page: 3816
  year: 2018
  ident: 1844_CR70
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-22181-4
– volume: 118
  start-page: 397
  year: 2015
  ident: 1844_CR55
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.023
– volume: 165
  start-page: 200
  year: 2018
  ident: 1844_CR48
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.046
– volume: 27
  start-page: 50
  year: 2001
  ident: 1844_CR36
  publication-title: Neuropathol Appl Neurobiol
  doi: 10.1046/j.0305-1846.2001.00301.x
– volume: 7
  start-page: 10884
  year: 2016
  ident: 1844_CR69
  publication-title: Nat Commun
  doi: 10.1038/ncomms10884
– volume: 5
  start-page: 124
  year: 2015
  ident: 1844_CR65
  publication-title: Data Brief
  doi: 10.1016/j.dib.2015.08.022
SSID ssj0059819
ssj0012825
Score 2.5034938
Snippet Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1469
SubjectTerms Algorithms
Animals
Axons
Axons - ultrastructure
Biomedical and Life Sciences
Biomedicine
Cell Biology
Corpus callosum
Corpus Callosum - diagnostic imaging
Corpus Callosum - ultrastructure
Diffusion Magnetic Resonance Imaging
Female
Histology
Image processing
Imaging, Three-Dimensional - methods
Learning algorithms
Magnetic resonance imaging
Mice, Inbred C57BL
Microscopy
Microscopy, Electron, Scanning
Myelin
Neurology
Neurosciences
Original Article
Scanning electron microscopy
Segmentation
Substantia alba
Variation
White Matter - diagnostic imaging
White Matter - ultrastructure
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwED6NTrx9QNDBKAxkJMQXZi2NYydBQqjApoHUCk1MmvgSObbLKrVJNxZGfyD_izs3yVZNqqhUVa2dxlbO58f38hzAaxfHRggbcKOE4VFuJU-lEzzWRqlEjqX1dsjhSB0eR19P5MkGjJpcGAqrbHSiV9S2NGQj36OjCEINJYIP8zNOVaPIu9qU0NB1aQX73lOM3YLNkJixOrD5cX_07aj1K1CmZvNFpomv-9FPlOChkqLOqfGZdV5R4zmb3kkUcbW6b90AozdjKlvH6n24WxVzvbjU0-m1vevgITyoQScbLKXkEWy4ogtbgwIP3LMFe8N8GKi3r3fhzrD2tnfh9o_S_7gFfwfTsvjJ9Z-yYChQM4qhYb_xmO2fK9OFZdSG9yjPJ3U2E_UkGnIyxzEiisKtyDKy-zLxmTXld9iMIgIpN2bxjk2uhbczRNPsrNIUzESpWCynYhbsktwebOZZQetrPQNude6W_-0JlGnUflRU_6XyIxgefXkMxwf73z8d8roABDdRHF1wK13oIosfCBP7yvSDVOcmCSIdp0moxwoBmxgnaRBo1dcyTI0dIzyVaZ4bgwdL8QQ6RVm4p8CcC6wzsUaAoyJEXWksdIrgD9UTOX9dD_rN481MzY5ORTqmWcvr7EUiQ5HIvEhkqgdv22vmS26Qtb13GqnJaj3xK7uS6h68aptxhZPbRheurHwfiS-EWj3YXgpZezvU0Ck5W3sQr4hf24HYw1dbismpZxFXkqwBOKzdRlCvhrVuFrutMP_HpJ-tn_RzuBf6NUYBpDvQQYFxLxDkXeQv65X7D3LwT1Q
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVohy4NEHBAoyEuJCXSVx7CTcVtBSQOWAWKlwiRzHCyt2k9JuKMv_438x4zzoUlTRSKusZMex5cn4s2fmG4AnNo6NEIXPjRKGR3kheSqt4LE2SiVyLAt3DnnwTu2PojeH8rANCjvpvN07k6TT1H2wm9OduPWlXxJFXF2FFce3NYCV4auPb3c7DSzTxCX0CBIleKikaINl_t3K8oJ0DmWed5bsLaY34HpdHunFqZ5OzyxKe7dg1A2n8UX5ulPP8x3z8y-mx8uO9zbcbFEqGzZidQeu2HIN1ocl7tBnC_aUOb9RdyC_Btc-Ve7fOvwaTqvyM9c_qpKh2M3I04Z9x824m32my4JRGTZcHU_amCeqSWTldGjHiE4KF6yC0ekwEy9Zl6SHzchvkCJoFs_Z5IwTPEPMzb7VmlyeKGCL5ZTygp2ScYTNHHdo-6zjya2PbdO2o1mmXrteUZaY2vXg4P3rDRjt7X54sc_bNBHcRHE054W0oY0KvCGYDJQJ_FTnJvEjjbIR6rFCWCfGSer7WgVahqkpxghiZZrnxuD2U2zCoKxKew-YtX5hTawRBqkIsVkaC50iREQlRiZi60HQyUpmWg51SuUxzXr2ZzdrGc5a5mYtUx486585ahhELqy91Ylg1mqTk4y24QizlfA9eNwXox4g444ubVW7OhIvBGQe3G0ktn8d6vGUTLIexEuy3FcgjvHlknLyxXGNK0lnBtit7U5I_3TrolFs91_Gfwz6_uVafwCrofssyO10CwYoQPYhQsN5_qjVBL8B5UNc1w
  priority: 102
  providerName: Springer Nature
Title Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI
URI https://link.springer.com/article/10.1007/s00429-019-01844-6
https://www.ncbi.nlm.nih.gov/pubmed/30790073
https://www.proquest.com/docview/2184326630
https://www.proquest.com/docview/2185555241
https://pubmed.ncbi.nlm.nih.gov/PMC6510616
https://www.ncbi.nlm.nih.gov/pmc/articles/6510616
UnpaywallVersion submittedVersion
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1863-2661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059819
  issn: 1863-2661
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1863-2661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059819
  issn: 1863-2661
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL3aWiHggY-Nj8CojIR4YemSJnES3lpoGaBVU0Wlbi-R47hQ0SRlNIzy__hf3OsmYWXSxCpVjmQntdWT63Pte48BXijfl46TWKbkjjTdOPHM0FOO6QvJeeBNvUSvQx4N-eHY_TDxJltgV7kwOmhfxrN2Nk_b2eyLjq1cpPKgihM74B55MXwbmtxD-t2A5nh43D0hxyrgjtnhWnmyvOZ2mSij0-W09UXnmb6B65p8czK6xDAvB0rWu6W34WaRLcTqXMznFyakwV0YVUNZx6F8bRfLuC1__aPyeK2x3oM7JT1l3XXVfdhS2Q7sdjN0zdMVe8l0wKheid-BG6e5vtqF3915nn02xc88Y4i3lEJs2A_0wvXfzkSWMKrDB-dnszLZiVqSSjmt1jHSkcKZKmG0LMyct6w6nYelFDBIqTOr12x2IfqdIdlm3wpBsU6UqcViOuuCndOuCEu1aGh5rxbILc7U-tlaX5l6rXtFx8MUugdHo_cPYDzof3pzaJbnQ5jS9d2lmXiqo9wEC2SRNpe2FYpYBpYr_DDoiClHPudMg9CyBLeF1wllMkX26oVxLCX6nc5DaGR5ph4DU8pKlPQF8h_uIikLfUeEyA3RetHesDLAroASyVI8nc7wmEe17LMGV4TgijS4Im7Aq_qexVo65MrWexX-otKMfI_I_0Z-zR3LgOd1NRoA2tURmcoL3cbDDzIxAx6t4Vr_HBrwkPZiDfA3gFw3IHHxzRrEoRYZL6FnwH4F-b_dumoU-_Vr8R-DfnK95k_hVke_vRRvugcNBJB6hpxwGbdg25_4LWh2B73ekMp3Jx_7WPb6w-NRq7QRfwBy3mV5
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am2DwgKBjozDASMDLFpHGsZMgTaiwTS1bKzRt0sRLcBwXKrVJdymlf443_hfnuEm2alLFyypVVWonsZUvx9_xuQG8MUGgOU9dR0uuHT9JhRMJw51AaSlD0ROp3YfsdGXrxP9yKk6X4E8ZC0NulaVMtII6zTXtkb8nVQSphuTux9GZQ1WjyLpaltBQRWmFdMemGCsCOw7MdIIq3MVOexef91vP2987_txyiioDjvYD_9JJhfGMn-IPcpGG1A03UokOXV8FUeipnkRWwHth5LpKNpTwIp32kAOJKEm0Ru2F43XvwIrP_QiVv5VPe92vR5UdgyJDywMRhbbOSCOU3PGk4EUMj43kswsD6vX0DX3fkfPr5A3ye9OHszLkPoDVcTZS04kaDK6tlfuP4GFBcllzhsrHsGSyGqw1M1Twh1P2jlm3U7ufX4N7ncK6X4O733L75xr8bQ7y7IejfucZQwAPyWeH_UK13uKIqSxl1Ib3yM_7RfQU9aS057T9xygxFS59KaN9ZsZ3WVnuhw3JA5FicaYfWP-aOz1D9s7Oxoqcpyj0iyVUPINNyMzChjYLaXGuzbg7Pjeza9uEzTRqOyqqNzO2I-gctZ_Aya1AYR2WszwzT4EZ46ZGBwoJlfSR5UUBVxGSTRSHZGw2dWiUjzfWRTZ2KgoyiKs80hYSMUIitpCIZR22qnNGs1wkC3tvlqiJC7l0EV-9RXV4XTWjRCEzkcpMPrZ9BH6Q2tVhYway6na4IkRk3K1DMAe_qgNlK59vyfo_bdZyKWj3AYe1XQL1aliLZrFdgfk_Jv1s8aRfwWrruHMYH7a7B8_hvmffN3Je3YRlBI95gQTzMnlZvMUMvt-24PgHqM2Lsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ2zwgKDjUhhgJOBli5bEsZMgIVRRqpXRCSEmVbwEx3FHpTbpLqX0r_HO_-IcN8lWTap4WaWqSu0ktvLl-Ds-N4BXJgw155nraMm1E6SZcGJhuBMqLWUkBiKz-5C9Q7l_FHzqi_4a_KliYcitspKJVlBnhaY98j1SRZBqSO7uDUq3iC_tzvvJiUMVpMjSWpXTWEDkwMxnqL6dveu28Vm_9v3Ox28f9p2ywoCjgzA4dzJhfBNk-IM8xJPac2OV6sgNVBhHvhpIZAR8EMWuq6SnhB_rbID8R8RpqjVqLhyvewNuhpzH5E4Y9mtlz6OY0OpAxJGtMOJFkju-FLyM3rExfHZJQI2evlEQOHJ5hbxCe696b9Ym3DuwOc0naj5To9GlVbJzD-6W9Ja1Fni8D2smb8BWK0fVfjxnb5h1OLU7-Q3Y6JV2_Qbc-l7YP7fgb2tU5MeO-l3kDKE7Jm8d9gsVeosgpvKMURveozgdlnFT1JMSntPGH6OUVLjoZYx2mBlvs6rQDxuT7yFF4czfsuElR3qGvJ2dTBW5TVHQF0upbAabkYGFjW3-0fJcm2t3emoW17apmmnUdlRUaWZqR9D72n0AR9cChIewnhe5eQzMGDczOlRIpWSA_C4OuYqRZqIgJDOzaYJXPd5El3nYqRzIKKkzSFtIJAiJxEIikU3Yqc-ZLLKQrOy9XaEmKSXSWXLx_jThZd2MsoQMRCo3xdT2EfhBUteERwuQ1bfDtSAms24TwiX41R0oT_lySz78afOVS0H7Djis3QqoF8NaNYvdGsz_Meknqyf9AjZQXCSfu4cHT-G2b1838lrdhnXEjnmGzPI8fW5fYQY_rltm_APKgolM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anRDjgcvGJTCQkRAvLF1udhLeKmAaSJvQRKXBS-Q4LlRrnDIaRvl__C_OcS6sTJpYpaiR7CS28uX4O_Y5nwGe6zhWYVh4rhKhcqO84G7KdejGUgmR8Akv7DzkwaHYH0fvj_nxGvhdLowN2lf5dGhm5dBMv9rYynmpdrs4sV3ByYsR12BdcKTfA1gfH34YfSLHKhGhGwirPNmeC79NlLHpctb6ovNMRxJFrlgdjC4wzIuBkv1q6U24UZu5XJ7J2ezcgLR3G466rjRxKCfDepEP1a9_VB6v1Nc7cKulp2zUFN2FNW02YWtk0DUvl-wFswGjdiZ-E65_ruzZFvwezSrzxZU_K8MQbyWF2LAf6IXb186kKRiV4Y2r02mb7EQ1SaWcZusY6UjhSFUwmhZm4RvW7c7DSgoYpNSZ5Ss2PRf9zpBss2-1pFgnytRiOe11wc5oVYSVVjS0vdYK5Nanurm31VemVttW0fYwtW3BwdG7ezDee_vx9b7b7g_hqiiOFm7BdaCjAv-QRfpC-V4qc5V4kYzTJJATgXwunCSp50nhSx6kqpgge-VpniuFfmd4HwamMvohMK29QqtYIv8REZKyNA5litwQrRetDWsH_A4omWrF02kPj1nWyz5bcGUIrsyCKxMOvOyvmTfSIZfW3u7wl7Vm5HtG_jfyaxF6Djzri9EA0KqONLqqbR2OP2RiDjxo4No_Dg14SmuxDsQrQO4rkLj4agni0IqMt9BzYKeD_N9mXdaLnf6z-I9OP7pa9cewEdivl-JNt2GAANJPkBMu8qetFfgD7x5f6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Along-axon+diameter+variation+and+axonal+orientation+dispersion+revealed+with+3D+electron+microscopy%3A+implications+for+quantifying+brain+white+matter+microstructure+with+histology+and+diffusion+MRI&rft.jtitle=Brain+Structure+and+Function&rft.au=Hong-Hsi%2C+Lee&rft.au=Yaros%2C+Katarina&rft.au=Veraart%2C+Jelle&rft.au=Pathan%2C+Jasmine+L&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-2653&rft.eissn=0340-2061&rft.volume=224&rft.issue=4&rft.spage=1469&rft.epage=1488&rft_id=info:doi/10.1007%2Fs00429-019-01844-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon