Proof of principle study: diagnostic accuracy of a novel algorithm for the estimation of sleep stages and disease severity in patients with sleep-disordered breathing based on actigraphy and respiratory inductance plethysmography

Purpose In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleep TM 1.0 algorithm (Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and respiratory inductance plethysmography (RIP) belts...

Full description

Saved in:
Bibliographic Details
Published inSleep & breathing Vol. 25; no. 4; pp. 1945 - 1952
Main Authors Dietz-Terjung, Sarah, Martin, Amelie Ricarda, Finnsson, Eysteinn, Ágústsson, Jón Skínir, Helgason, Snorri, Helgadóttir, Halla, Welsner, Matthias, Taube, Christian, Weinreich, Gerhard, Schöbel, Christoph
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1520-9512
1522-1709
1522-1709
DOI10.1007/s11325-021-02316-0

Cover

Abstract Purpose In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleep TM 1.0 algorithm (Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and respiratory inductance plethysmography (RIP) belts. Validation was performed against in-lab polysomnography (PSG) in patients with sleep-disordered breathing (SDB). Methods Patients received PSG according to AASM. Sleep stages were manually scored using the AASM criteria and the recording was evaluated by the novel algorithm. The results were analyzed by descriptive statistics methods (IBM SPSS Statistics 25.0). Results We found a strong Pearson correlation ( r =0.91) with a bias of 0.2/h for AHI estimation as well as a good correlation ( r =0.81) and an overestimation of 14 min for total sleep time (TST). Sleep efficiency (SE) was also valued with a good Pearson correlation ( r =0.73) and an overestimation of 2.1%. Wake epochs were estimated with a sensitivity of 0.65 and a specificity of 0.59 while REM and non-REM (NREM) phases were evaluated a sensitivity of 0.72 and 0.74, respectively. Specificity was 0.74 for NREM and 0.68 for REM. Additionally, a Cohen’s kappa of 0.62 was found for this 3-class classification problem. Conclusion The algorithm shows a moderate diagnostic accuracy for the estimation of sleep. In addition, the algorithm determines the AHI with good agreement with the manual scoring and it shows good diagnostic accuracy in estimating wake-sleep transition. The presented algorithm seems to be an appropriate tool to increase the diagnostic accuracy of portable monitoring. The validated diagnostic algorithm promises a more appropriate and cost-effective method if integrated in out-of-center (OOC) testing of patients with suspicion for SDB.
AbstractList In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleepTM 1.0 algorithm (Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and respiratory inductance plethysmography (RIP) belts. Validation was performed against in-lab polysomnography (PSG) in patients with sleep-disordered breathing (SDB).PURPOSEIn this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleepTM 1.0 algorithm (Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and respiratory inductance plethysmography (RIP) belts. Validation was performed against in-lab polysomnography (PSG) in patients with sleep-disordered breathing (SDB).Patients received PSG according to AASM. Sleep stages were manually scored using the AASM criteria and the recording was evaluated by the novel algorithm. The results were analyzed by descriptive statistics methods (IBM SPSS Statistics 25.0).METHODSPatients received PSG according to AASM. Sleep stages were manually scored using the AASM criteria and the recording was evaluated by the novel algorithm. The results were analyzed by descriptive statistics methods (IBM SPSS Statistics 25.0).We found a strong Pearson correlation (r=0.91) with a bias of 0.2/h for AHI estimation as well as a good correlation (r=0.81) and an overestimation of 14 min for total sleep time (TST). Sleep efficiency (SE) was also valued with a good Pearson correlation (r=0.73) and an overestimation of 2.1%. Wake epochs were estimated with a sensitivity of 0.65 and a specificity of 0.59 while REM and non-REM (NREM) phases were evaluated a sensitivity of 0.72 and 0.74, respectively. Specificity was 0.74 for NREM and 0.68 for REM. Additionally, a Cohen's kappa of 0.62 was found for this 3-class classification problem.RESULTSWe found a strong Pearson correlation (r=0.91) with a bias of 0.2/h for AHI estimation as well as a good correlation (r=0.81) and an overestimation of 14 min for total sleep time (TST). Sleep efficiency (SE) was also valued with a good Pearson correlation (r=0.73) and an overestimation of 2.1%. Wake epochs were estimated with a sensitivity of 0.65 and a specificity of 0.59 while REM and non-REM (NREM) phases were evaluated a sensitivity of 0.72 and 0.74, respectively. Specificity was 0.74 for NREM and 0.68 for REM. Additionally, a Cohen's kappa of 0.62 was found for this 3-class classification problem.The algorithm shows a moderate diagnostic accuracy for the estimation of sleep. In addition, the algorithm determines the AHI with good agreement with the manual scoring and it shows good diagnostic accuracy in estimating wake-sleep transition. The presented algorithm seems to be an appropriate tool to increase the diagnostic accuracy of portable monitoring. The validated diagnostic algorithm promises a more appropriate and cost-effective method if integrated in out-of-center (OOC) testing of patients with suspicion for SDB.CONCLUSIONThe algorithm shows a moderate diagnostic accuracy for the estimation of sleep. In addition, the algorithm determines the AHI with good agreement with the manual scoring and it shows good diagnostic accuracy in estimating wake-sleep transition. The presented algorithm seems to be an appropriate tool to increase the diagnostic accuracy of portable monitoring. The validated diagnostic algorithm promises a more appropriate and cost-effective method if integrated in out-of-center (OOC) testing of patients with suspicion for SDB.
In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleep 1.0 algorithm (Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and respiratory inductance plethysmography (RIP) belts. Validation was performed against in-lab polysomnography (PSG) in patients with sleep-disordered breathing (SDB). Patients received PSG according to AASM. Sleep stages were manually scored using the AASM criteria and the recording was evaluated by the novel algorithm. The results were analyzed by descriptive statistics methods (IBM SPSS Statistics 25.0). We found a strong Pearson correlation (r=0.91) with a bias of 0.2/h for AHI estimation as well as a good correlation (r=0.81) and an overestimation of 14 min for total sleep time (TST). Sleep efficiency (SE) was also valued with a good Pearson correlation (r=0.73) and an overestimation of 2.1%. Wake epochs were estimated with a sensitivity of 0.65 and a specificity of 0.59 while REM and non-REM (NREM) phases were evaluated a sensitivity of 0.72 and 0.74, respectively. Specificity was 0.74 for NREM and 0.68 for REM. Additionally, a Cohen's kappa of 0.62 was found for this 3-class classification problem. The algorithm shows a moderate diagnostic accuracy for the estimation of sleep. In addition, the algorithm determines the AHI with good agreement with the manual scoring and it shows good diagnostic accuracy in estimating wake-sleep transition. The presented algorithm seems to be an appropriate tool to increase the diagnostic accuracy of portable monitoring. The validated diagnostic algorithm promises a more appropriate and cost-effective method if integrated in out-of-center (OOC) testing of patients with suspicion for SDB.
Purpose In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleep TM 1.0 algorithm (Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and respiratory inductance plethysmography (RIP) belts. Validation was performed against in-lab polysomnography (PSG) in patients with sleep-disordered breathing (SDB). Methods Patients received PSG according to AASM. Sleep stages were manually scored using the AASM criteria and the recording was evaluated by the novel algorithm. The results were analyzed by descriptive statistics methods (IBM SPSS Statistics 25.0). Results We found a strong Pearson correlation ( r =0.91) with a bias of 0.2/h for AHI estimation as well as a good correlation ( r =0.81) and an overestimation of 14 min for total sleep time (TST). Sleep efficiency (SE) was also valued with a good Pearson correlation ( r =0.73) and an overestimation of 2.1%. Wake epochs were estimated with a sensitivity of 0.65 and a specificity of 0.59 while REM and non-REM (NREM) phases were evaluated a sensitivity of 0.72 and 0.74, respectively. Specificity was 0.74 for NREM and 0.68 for REM. Additionally, a Cohen’s kappa of 0.62 was found for this 3-class classification problem. Conclusion The algorithm shows a moderate diagnostic accuracy for the estimation of sleep. In addition, the algorithm determines the AHI with good agreement with the manual scoring and it shows good diagnostic accuracy in estimating wake-sleep transition. The presented algorithm seems to be an appropriate tool to increase the diagnostic accuracy of portable monitoring. The validated diagnostic algorithm promises a more appropriate and cost-effective method if integrated in out-of-center (OOC) testing of patients with suspicion for SDB.
PurposeIn this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleepTM 1.0 algorithm (Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and respiratory inductance plethysmography (RIP) belts. Validation was performed against in-lab polysomnography (PSG) in patients with sleep-disordered breathing (SDB).MethodsPatients received PSG according to AASM. Sleep stages were manually scored using the AASM criteria and the recording was evaluated by the novel algorithm. The results were analyzed by descriptive statistics methods (IBM SPSS Statistics 25.0).ResultsWe found a strong Pearson correlation (r=0.91) with a bias of 0.2/h for AHI estimation as well as a good correlation (r=0.81) and an overestimation of 14 min for total sleep time (TST). Sleep efficiency (SE) was also valued with a good Pearson correlation (r=0.73) and an overestimation of 2.1%. Wake epochs were estimated with a sensitivity of 0.65 and a specificity of 0.59 while REM and non-REM (NREM) phases were evaluated a sensitivity of 0.72 and 0.74, respectively. Specificity was 0.74 for NREM and 0.68 for REM. Additionally, a Cohen’s kappa of 0.62 was found for this 3-class classification problem.ConclusionThe algorithm shows a moderate diagnostic accuracy for the estimation of sleep. In addition, the algorithm determines the AHI with good agreement with the manual scoring and it shows good diagnostic accuracy in estimating wake-sleep transition. The presented algorithm seems to be an appropriate tool to increase the diagnostic accuracy of portable monitoring. The validated diagnostic algorithm promises a more appropriate and cost-effective method if integrated in out-of-center (OOC) testing of patients with suspicion for SDB.
Author Taube, Christian
Finnsson, Eysteinn
Weinreich, Gerhard
Helgadóttir, Halla
Dietz-Terjung, Sarah
Ágústsson, Jón Skínir
Helgason, Snorri
Martin, Amelie Ricarda
Schöbel, Christoph
Welsner, Matthias
Author_xml – sequence: 1
  givenname: Sarah
  orcidid: 0000-0001-7907-6670
  surname: Dietz-Terjung
  fullname: Dietz-Terjung, Sarah
  email: sarah.terjung@rlk.uk-essen.de
  organization: Faculty of Sleep Medicine and Telemedicine, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen, Department of Pulmonology, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen
– sequence: 2
  givenname: Amelie Ricarda
  surname: Martin
  fullname: Martin, Amelie Ricarda
  organization: Faculty of Sleep Medicine and Telemedicine, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen
– sequence: 3
  givenname: Eysteinn
  surname: Finnsson
  fullname: Finnsson, Eysteinn
  organization: Nox Research, Nox Medical ehf
– sequence: 4
  givenname: Jón Skínir
  surname: Ágústsson
  fullname: Ágústsson, Jón Skínir
  organization: Nox Research, Nox Medical ehf
– sequence: 5
  givenname: Snorri
  surname: Helgason
  fullname: Helgason, Snorri
  organization: Nox Research, Nox Medical ehf
– sequence: 6
  givenname: Halla
  surname: Helgadóttir
  fullname: Helgadóttir, Halla
  organization: Nox Research, Nox Medical ehf
– sequence: 7
  givenname: Matthias
  surname: Welsner
  fullname: Welsner, Matthias
  organization: Department of Pulmonology, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen
– sequence: 8
  givenname: Christian
  surname: Taube
  fullname: Taube, Christian
  organization: Department of Pulmonology, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen
– sequence: 9
  givenname: Gerhard
  surname: Weinreich
  fullname: Weinreich, Gerhard
  organization: Department of Pulmonology, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen
– sequence: 10
  givenname: Christoph
  surname: Schöbel
  fullname: Schöbel, Christoph
  organization: Faculty of Sleep Medicine and Telemedicine, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen, Department of Pulmonology, University Medicine Essen - Ruhrlandklinik, West German Lung Center, University Duisburg-Essen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33594617$$D View this record in MEDLINE/PubMed
BookMark eNqNkl-L1DAUxYusuH_0C_ggAV98qSZtM536ICyL_2BBH_Q53KY3nSydpCbpLP3Afg9vZ0ZX92ERUlLI7xxuzsl5duK8wyx7LvhrwXn9JgpRFjLnhaCvFKucP8rOhCyKXNS8Odn_87yRojjNzmO84VxU60Y8yU7LUjbVStRn2c-vwXvDaI3BOm3HAVlMUze_ZZ2F3vmYrGag9RRAzwsHzPkdDgyG3gebNltmfGBpgwyJ3UKy3i1cHBBH8oIeIwPXkV9EiGSPOyThzKxjI-HoUmS35HSQ5MT50GHAjrUBIW2s61lLyo6RM-hk-wDjZt6bBoyjDZB8WPy6SSdwGhldI23muPUH9Gn22MAQ8dlxv8i-f3j_7epTfv3l4-ery-tcV3WVct2aWkjsjIYOoVwbNNoYU-q6RW6AGzpZmRqMlLpatYKDNEXZ8bZtaxSSlxdZefCd3AjzLQyDoli3EGYluFpKU4fSFJWm9qWpRfXuoBqndoudpkAC3Ck9WPXvibMb1fudWsuGr-qKDF4dDYL_MVENamujxmEAh36KqqiI47IsVoS-vIfe-Ck4CkUVsqm5KGrZEPXi74n-jPL73RCwPgA6-BgDGqVt2ldPA9rh4dsW96T_FdEx2Lg80x7D3dgPqH4Bn80A_Q
CitedBy_id crossref_primary_10_1007_s13665_024_00361_0
crossref_primary_10_1007_s13167_021_00250_5
crossref_primary_10_2196_55575
crossref_primary_10_3389_fdgth_2021_685766
crossref_primary_10_3390_a17060261
crossref_primary_10_2147_NSS_S431650
crossref_primary_10_3390_s21196409
crossref_primary_10_1016_j_bspc_2023_105760
crossref_primary_10_1016_j_jsmc_2021_05_004
Cites_doi 10.1109/EMBC.2019.8857836
10.1515/reveh-2018-0068
10.1186/s12890-018-0748-8
10.1016/j.wjorl.2015.08.001
10.1056/NEJM199304293281704
10.1109/EMBC.2019.8857761
10.1109/EMBC44109.2020.9175419
10.5664/jcsm.8128
10.1016/S2213-2600(19)30198-5
10.1055/s-2002-32322
10.5664/jcsm.7892
10.1109/EMBC.2016.7591322
10.1088/1361-6579/aa9047
10.1007/s00521-016-2365-x
10.1093/sleep/zsx097
10.1093/sleep/zsaa098
10.1093/sleep/zsaa048
10.1007/s11818-016-0093-1
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7T5
7TK
7X7
7XB
88E
88G
88J
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
K9.
M0S
M1P
M2M
M2R
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11325-021-02316-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Immunology Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Social Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Sociology & Social Sciences Collection
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
Sociology & Social Sciences Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
Statistics
EISSN 1522-1709
EndPage 1952
ExternalDocumentID 10.1007/s11325-021-02316-0
PMC8590674
33594617
10_1007_s11325_021_02316_0
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
0-V
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OVD
P9S
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
ROL
RPX
RRX
RSV
RTC
S16
S1Z
S27
S37
S3B
SAP
SCLPG
SDE
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7W
Z82
Z83
Z87
Z8V
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PRQQA
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7XB
8FK
H94
K9.
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-cbf715edfcadea38fefcfff3c7be0fa0fdfc6f7af55c46b10a5f23d0bbb7e1503
IEDL.DBID BENPR
ISSN 1520-9512
1522-1709
IngestDate Sun Oct 26 04:11:53 EDT 2025
Tue Sep 30 16:39:36 EDT 2025
Fri Sep 05 11:39:44 EDT 2025
Tue Oct 07 06:06:07 EDT 2025
Mon Jul 21 06:04:30 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Wed Oct 01 01:26:00 EDT 2025
Fri Feb 21 02:47:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Actigraphy
RIP
Sleep stage estimation
Recurrent neural network
Artificial intelligence
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-cbf715edfcadea38fefcfff3c7be0fa0fdfc6f7af55c46b10a5f23d0bbb7e1503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7907-6670
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11325-021-02316-0.pdf
PMID 33594617
PQID 2597012759
PQPubID 326308
PageCount 8
ParticipantIDs unpaywall_primary_10_1007_s11325_021_02316_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8590674
proquest_miscellaneous_2490605326
proquest_journals_2597012759
pubmed_primary_33594617
crossref_citationtrail_10_1007_s11325_021_02316_0
crossref_primary_10_1007_s11325_021_02316_0
springer_journals_10_1007_s11325_021_02316_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of the Science and Practice of Sleep Medicine
PublicationTitle Sleep & breathing
PublicationTitleAbbrev Sleep Breath
PublicationTitleAlternate Sleep Breath
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References CR3
(CR10) 2007
Beattie, Oyang, Statan, Ghoreyshi, Pantelopoulos, Russell, Heneghan (CR14) 2017; 38
Yang, Keller, Popescu, Skubic (CR19) 2016; 2016
Wickwire, Tom, Vadlamani, Diaz-Abad, Cooper, Johnson, Scharf, Albrecht (CR4) 2020; 16
Hossain, Shapiro (CR7) 2002; 6
Lauteslager, Kampakis, Williams, Maslik, Siddiqui (CR20) 2020; 2020
CR16
Young, Palta, Dempsey, Skatrud, Weber, Badr (CR9) 1993; 328
CR13
Schade, Bauer, Murray, Gahan, Doheny, Kilroy, Zaffaroni, Montgomery-Downs (CR18) 2019; 15
CR12
CR11
Morsy, Farrag, Zaki, Badawy, Abdelhafez, el-Gilany, el Shafey, Pandi-Perumal, Spence, BaHammam (CR1) 2019; 34
Woehrle (CR5) 2018; 18
Lyon, Tiron, Zaffaroni, Osman, Kilroy, Lederer, Fietze, Penzel (CR17) 2019; 2019
Benjafield, Ayas, Eastwood, Heinzer, Ip, Morrell, Nunez, Patel, Penzel, Pépin, Peppard, Sinha, Tufik, Valentine, Malhotra (CR2) 2019; 7
Frost, Sullivan (CR8) 2016
Motin, Kumar Karmakar, Penzel, Palaniswami (CR15) 2019; 2019
Knauert, Naik, Gillespie, Kryger (CR6) 2015; 1
2316_CR13
2316_CR12
T Lauteslager (2316_CR20) 2020; 2020
T Young (2316_CR9) 1993; 328
2316_CR11
M Knauert (2316_CR6) 2015; 1
2316_CR16
American Academy of Sleep Medicine (2316_CR10) 2007
Z Beattie (2316_CR14) 2017; 38
AV Benjafield (2316_CR2) 2019; 7
EM Wickwire (2316_CR4) 2020; 16
2316_CR3
JM Hossain (2316_CR7) 2002; 6
J Yang (2316_CR19) 2016; 2016
MM Schade (2316_CR18) 2019; 15
G Lyon (2316_CR17) 2019; 2019
NE Morsy (2316_CR1) 2019; 34
MA Motin (2316_CR15) 2019; 2019
Frost (2316_CR8) 2016
H Woehrle (2316_CR5) 2018; 18
References_xml – volume: 2019
  start-page: 7193
  year: 2019
  end-page: 7196
  ident: CR17
  article-title: Detection of sleep apnea using sonar smartphone technology
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC.2019.8857836
– volume: 34
  start-page: 153
  year: 2019
  end-page: 169
  ident: CR1
  article-title: Obstructive sleep apnea: personal, societal, public health, and legal implications
  publication-title: Rev Environ Health.
  doi: 10.1515/reveh-2018-0068
– volume: 18
  start-page: 186
  year: 2018
  ident: CR5
  article-title: Predictors of positive airway pressure therapy termination in the first year: analysis of big data from a German homecare provider
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-018-0748-8
– year: 2016
  ident: CR8
  publication-title: Hidden health crisis costing America billions. Underdiagnosing and undertreating obstructive sleep apnea draining healthcare system
– volume: 1
  start-page: 17
  issue: 1
  year: 2015
  end-page: 27
  ident: CR6
  article-title: Clinical consequences and economic costs of untreated obstructive sleep apnea syndrome
  publication-title: World J Otorhinolaryngol Head Neck Surg
  doi: 10.1016/j.wjorl.2015.08.001
– volume: 328
  start-page: 1230
  year: 1993
  end-page: 1235
  ident: CR9
  article-title: The Ourrence of sleep-disordered breathing among middle-aged adults
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199304293281704
– volume: 2019
  start-page: 5564
  year: 2019
  end-page: 5567
  ident: CR15
  article-title: Sleep-wake classification using statistical features extracted from photoplethysmographic signals
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC.2019.8857761
– ident: CR3
– volume: 2020
  start-page: 5150
  year: 2020
  end-page: 5153
  ident: CR20
  article-title: Performance evaluation of the circadia contactless breathing monitor and sleep analysis algorithm for sleep stage classification
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC44109.2020.9175419
– ident: CR16
– volume: 16
  start-page: 81
  year: 2020
  end-page: 89
  ident: CR4
  article-title: Older adult US Medicare beneficiaries with untreated obstructive sleep apnea are heavier users of health care than controls
  publication-title: J Clin Sleep Med.
  doi: 10.5664/jcsm.8128
– ident: CR12
– ident: CR13
– ident: CR11
– volume: 7
  start-page: 687
  issue: 8
  year: 2019
  end-page: 698
  ident: CR2
  article-title: Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(19)30198-5
– volume: 6
  start-page: 85
  issue: 2
  year: 2002
  end-page: 102
  ident: CR7
  article-title: The Prevalence, Cost Implications, and management of sleep disorders: an overview
  publication-title: Sleep Breath
  doi: 10.1055/s-2002-32322
– volume: 15
  start-page: 1051
  issue: 7
  year: 2019
  end-page: 1061
  ident: CR18
  article-title: Sleep validity of a non-contact bedside movement and respiration-sensing device
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.7892
– volume: 2016
  start-page: 2843
  year: 2016
  end-page: 2846
  ident: CR19
  article-title: Sleep stage recognition using respiration signal
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/EMBC.2016.7591322
– year: 2007
  ident: CR10
  publication-title: The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications
– volume: 38
  start-page: 1968
  issue: 11
  year: 2017
  end-page: 1979
  ident: CR14
  article-title: Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals
  publication-title: Physiol Meas.
  doi: 10.1088/1361-6579/aa9047
– volume: 328
  start-page: 1230
  year: 1993
  ident: 2316_CR9
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199304293281704
– volume: 2016
  start-page: 2843
  year: 2016
  ident: 2316_CR19
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/EMBC.2016.7591322
– ident: 2316_CR11
  doi: 10.1007/s00521-016-2365-x
– volume: 15
  start-page: 1051
  issue: 7
  year: 2019
  ident: 2316_CR18
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.7892
– volume: 7
  start-page: 687
  issue: 8
  year: 2019
  ident: 2316_CR2
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(19)30198-5
– ident: 2316_CR13
  doi: 10.1093/sleep/zsx097
– volume: 18
  start-page: 186
  year: 2018
  ident: 2316_CR5
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-018-0748-8
– volume: 6
  start-page: 85
  issue: 2
  year: 2002
  ident: 2316_CR7
  publication-title: Sleep Breath
  doi: 10.1055/s-2002-32322
– volume: 16
  start-page: 81
  year: 2020
  ident: 2316_CR4
  publication-title: J Clin Sleep Med.
  doi: 10.5664/jcsm.8128
– volume: 34
  start-page: 153
  year: 2019
  ident: 2316_CR1
  publication-title: Rev Environ Health.
  doi: 10.1515/reveh-2018-0068
– volume: 2019
  start-page: 7193
  year: 2019
  ident: 2316_CR17
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC.2019.8857836
– ident: 2316_CR12
  doi: 10.1093/sleep/zsaa098
– volume-title: The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications
  year: 2007
  ident: 2316_CR10
– volume: 2020
  start-page: 5150
  year: 2020
  ident: 2316_CR20
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC44109.2020.9175419
– volume: 1
  start-page: 17
  issue: 1
  year: 2015
  ident: 2316_CR6
  publication-title: World J Otorhinolaryngol Head Neck Surg
  doi: 10.1016/j.wjorl.2015.08.001
– volume: 2019
  start-page: 5564
  year: 2019
  ident: 2316_CR15
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC.2019.8857761
– ident: 2316_CR16
  doi: 10.1093/sleep/zsaa048
– ident: 2316_CR3
  doi: 10.1007/s11818-016-0093-1
– volume-title: Hidden health crisis costing America billions. Underdiagnosing and undertreating obstructive sleep apnea draining healthcare system
  year: 2016
  ident: 2316_CR8
– volume: 38
  start-page: 1968
  issue: 11
  year: 2017
  ident: 2316_CR14
  publication-title: Physiol Meas.
  doi: 10.1088/1361-6579/aa9047
SSID ssj0014891
Score 2.3587313
Snippet Purpose In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleep TM 1.0 algorithm (Nox Medical, Iceland) for the...
In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleep 1.0 algorithm (Nox Medical, Iceland) for the estimation of...
PurposeIn this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleepTM 1.0 algorithm (Nox Medical, Iceland) for the...
In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleepTM 1.0 algorithm (Nox Medical, Iceland) for the estimation of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1945
SubjectTerms Accuracy
Actigraphy - standards
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Dentistry
Female
Humans
Internal Medicine
Male
Medicine
Medicine & Public Health
Middle Aged
Neural Networks, Computer
Neurology
Otorhinolaryngology
Patients
Pediatrics
Plethysmography - standards
Pneumology/Respiratory System
Polysomnography - standards
Proof of Concept Study
Respiration
Sensitivity analysis
Severity of Illness Index
Sleep and wakefulness
Sleep Apnea Syndromes - diagnosis
Sleep Apnea Syndromes - physiopathology
Sleep Breathing Physiology and Disorders • Original
Sleep Breathing Physiology and Disorders • Original Article
Sleep disorders
Sleep Stages - physiology
Statistical analysis
Statistics
Young Adult
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVqJw4FFeCwUNEjeaKi8nG24VtFSgIg5UKqfIT7oiza72ASr_l__BTOJkWYoqKuVmZxLLY_sbz8w3AC8jk4dmJEQQk7FMBorLg8IYAnJOuyhMlNQNSdLRx-zwOH1_Ik58Uti8i3bvXJLNTr1KdiPDibOJyfwlUEJ28HXYaPi2BrCx9-7Lh_3ee5C2lfLoaAoDQhCxT5b5t5T1A-kCyrwYLNl7TG_B5rKeyvMfsqr-OJQO7sBxN5w2FuXb7nKhdvXPv5gerzreu3Dbo1Tca9XqHlyz9RZsvuXIIi4OtwU3jrxP_j78-kTg2yE90-7iHhvS2tdo2jg-EoJS6-VM6nPuJ7GefLcVyurrZDZenJ4hIWckJIpM-dHmUnK_eWXtlGTRljdHWRv03iSk09xy0T0c1-iJYefIN8rtK4HxlKLWoGJQzLdsyOe1QZLMqRwtT3cjdLYKNiB5TH_LCwFpGKzDZ57S-wEcH-x_fnMY-OIRgU7zdBFo5fJIWOM4zUAmI2dJ-5xLdK5s6GToqCVzuXRC6DRTUSiFixMTKqVySyg5eQiDelLbx4AiMtpEo2IkZJYa5QrpYhOnGSEfUcSuGELUaVCpPbM6F_ioyhUnNM9lSXNZNnNZhkN41b8zbXlFLu293Slm6feYeUmGa86BA4J-4EXfTLsDu3xkbSdL6pMWYcbFP7IhPGr1uP9ckogiJQA7hHxNw_sOzDy-3lKPTxsG8pEgsXk6hJ1OdVe_ddkodvr18h-DfnI16U_hZsyLpQk12obBYra0zwgwLtRzvz_8BhuVZ9M
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6V9AAceIhXoKBB4kad-rXemFsFVBUSVQ9EKidrn22E61iJ3ar8X_4HM36FUFSBkHKwtOOJRzu7-83uzLeMvQmM8M2Ucy_EYBkDFCe81BgEck67wI-U1A1J0uej5HAWfzrhJ1vsQ18L02S790eSbU0DsTQV1V5p3N668A2DKKosxlAYAQrGxBNsvsW2E46IfMS2Z0fH-18bqlSMjhBEhO1z6AXCT7vamT8r2lyfroHO67mTwwHqXXa7Lkp5dSnz_Jc16uA-s711bWrKt0ldqYn-_hvx4_-a_4Dd60As7Lde95Bt2eIR-3GMINwB_sp-Ax8a8tp3YNp8PpQGqXW9lPqK5CQUiwubg8xPF8t5dXYOiKABESkQ9UdbU0lyq9zaEnXh1LcCWRjoTpUAV3VLl-_BvICOIHYFtLPcvuKZjlrUGlAEjmm3DWjdNoCaqaSj5etulC7XSQeoj2hwaUAAmkG-fN5Rez9ms4OPX94fet0lEp6ORVx5WjkRcGsclRvIaOoseqFzkRbK-k76DlsSJ6TjXMeJCnzJXRgZXyklLKLl6AkbFYvCPmPAA6NNME2nXCaxUS6VLjRhnCAC4mno0jELetfJdMewThd95NmaG5o6LsOOy5qOy_wxezu8U7b8IjdK7_QemXVzzSrDAFZQAgHHD3g9NOMsQUc_srCLGmXi1E_oEpBkzJ62Djz8XRTxNEYgO2Ziw7UHAWIg32wp5mcNE_mUo1oRj9lu77Prz7rJit1hoPyF0c__TfwFuxPSyGhSjnbYqFrW9iUCx0q96uaFnzC8bBw
  priority: 102
  providerName: Unpaywall
Title Proof of principle study: diagnostic accuracy of a novel algorithm for the estimation of sleep stages and disease severity in patients with sleep-disordered breathing based on actigraphy and respiratory inductance plethysmography
URI https://link.springer.com/article/10.1007/s11325-021-02316-0
https://www.ncbi.nlm.nih.gov/pubmed/33594617
https://www.proquest.com/docview/2597012759
https://www.proquest.com/docview/2490605326
https://pubmed.ncbi.nlm.nih.gov/PMC8590674
https://link.springer.com/content/pdf/10.1007/s11325-021-02316-0.pdf
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1522-1709
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014891
  issn: 1520-9512
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1522-1709
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014891
  issn: 1520-9512
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1522-1709
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014891
  issn: 1520-9512
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD60ycO6h7H73HVBg72tZr7JigdjZCFd2VgIY4H0yciWtBZcJ81loz94_2Pn2LKzUAiD4AfrWImcT9InHZ3vALzxlfBUn3M3wMUyLlCMcBOlkMiZ3PhemMm8Ekn6No7Pp9GXGZ8dwLiJhaFjlc2YWA3Uap7THvk7pOmC3KQ8-bi4cSlrFHlXmxQa0qZWUB8qibFD6AakjNWB7qfRePK99StEdQ49nLQ8F7lFYMNo6mA6XJhRtDIur5H04Dp7d6q6wz_vHqNsfan34d6mXMjb37Io_pmuzh7CA8sz2aAGxiM40OVjOCJqWSszP4E_EyTNhuFn0Wy4s0ps9j1T9fk7tGPY5M1S5rdkJ1k5_6ULJouf-GbWl9cMGS9DBslIqqOOgSS7VaH1AuvCoWrFZKmY9QIxnIU1JctjVyWzgq4rRjvB9SOuslKgWrGMyCztjjGaZxXDmikEo9bXripdbg8JYH0kW0sAZtgMwt61leJ-CtOz0Y_huWuTPrh5JKK1m2dG-FwrQ-EBMuwbjagxJsxFpj0jPYMlsRHScJ5HceZ7kpsgVF6WZUIjuw2fQaecl_oFMO6rXPn9pM9lHKnMJNIEKohiZCw8CUzigN_8v2luFdEpMUeRbrWcCRMpYiKtMJF6Drxtn1nUeiB7rU8a2KR2bFilWyQ78Lotxl5NrhpZ6vkGbaLEiylpR-zA8xpl7deFIU8iJJ4OiB38tQakGL5bUl5dVsrhfY7VisiB0wap25-1rxWnLZr_o9HH-xv9Eo4C6mTVkaAT6KyXG_0Kid0668GhmIkedAefL76Oerbv4t1hPMTrNBjgvel4Mrj4CydIV8s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe2g5VLxJKTBIcKIRedjJBqlCPFptabuqUCv1FpzYppXSbNgH1f45_g3_g5nEybKqtOJSaW-eeON4PP7G4_mGsde-ij3VE8IN0FlGB8XEbqIUAjmTG98LM5nXJEnHg6h_xr-ei_MV9rvNhaFrla1NrA21GuZ0Rv4OYXpMYVKRfKh-ulQ1iqKrbQkNaUsrqN2aYswmdhzq2TW6cOPdgy8432-CYH_v9HPftVUG3JzHfOLmmYl9oZWh--gy7BmNr2lMmMeZ9oz0DLZEJpZGiJxHme9JYYJQeVmWxRrhVIj93mFrPOQJOn9rn_YGJ9-6OAZvavbhJum5iGUCm7bTJO-hI0jZ0ejOI8hCv35xa7yBd29e2-xit3fZ-rSs5OxaFsU_2-P-PbZpcS18bBTxPlvR5QO2QVC2YYJ-yP6cIEg3gL-qPeCHmtz2Pajmvh_KAX7i6UjmM5KTUA5_6QJk8QNnYnJxBYiwARErEDVIk3NJcuNC6wr7QtM4BlkqsFEnwF1fU3E-uCzBEsiOgU6em0dcZalHtYKMwDOdxgHt6wqwZ0r5aPi8605H80sJ2B_R5NKCARwG6fqVpf5-xM5uZfofs9VyWOqnDISvcuX3kp6QEVeZSaQJVMAjREgiCUziML-d3zS3DOxUCKRI59zRpBMp6kRa60TqOext90zV8I8sld5u1Sa1tmiczleOw151zWhFKDQkSz2cogxPvIiKhEQOe9JoWfd3YSgSjkDXYfGC_nUCxFC-2FJeXtRM5T2B3cbcYTutps5fa9kodjpt_o9Bby0f9Eu23j89PkqPDgaHz9hGQAuuvo60zVYno6l-jqBykr2wKxfY99s2Fn8BBZOUHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5IN4EChgJTjRqXo4TJIQQZdVSqHqg0t6C4wetlGaXfVDtX-P_8D-YiZMsq0orLpX2Zmc2jsfjb-yZbwBehVoEOuPcj9BZRgfFCj_XGoGcVTYM4lKqhiTp61G6f5J8HvLhBvzucmEorLKziY2h1iNFZ-S7CNMFXZPyfNe2YRHHe4P3458-VZCim9aunIZTkUOzuED3bfruYA_n-nUUDT59-7jvtxUGfJWIZOar0oqQG20pFl3GmTX4itbGSpQmsDKw2JJaIS3nKknLMJDcRrEOyrIUBqFUjHKvwXURxzmFE4ph7-yhl5E7rlZ0zxDFRG3CjkvbQxeQ8qLRkUd4hR796qZ4CeleDtjsb21vwc15PZaLC1lV_2yMgztwu0W07INTwbuwYep7sEUg1nFA34c_xwjPLcPfuDvaZw2t7VumXaQf9mNSqflEqgX1k6we_TIVk9UP_O6z03OG2JohVmVECuKyLanftDJmjLLQKE6ZrDVr75sY7veGyvKxs5q11LFTRmfO7hFft6SjRrOSYDOdwzHa0TVDyZTs4Zi8G6GTZTgCyiOCXFoqDIdBWn7ekn4_gJMrmfyHsFmPavMYGA-10mGWZ1ymiS5tLm2koyRFbMTzyOYehN38FqrlXqcSIFWxZI0mnShQJ4pGJ4rAgzf9M2PHPLK293anNkVrhabFcs148LJvRvtBl0KyNqM59knyIKXyIKkHj5yW9X8XxzxPEOJ6IFb0r-9A3OSrLfXZacNRnnEUKxIPdjpNXb7WulHs9Nr8H4N-sn7QL-AGmojiy8HR4VPYimi9NXFI27A5m8zNM0STs_J5s2wZfL9qO_EXIjSRuA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6V9AAceIhXoKBB4kad-rXemFsFVBUSVQ9EKidrn22E61iJ3ar8X_4HM36FUFSBkHKwtOOJRzu7-83uzLeMvQmM8M2Ucy_EYBkDFCe81BgEck67wI-U1A1J0uej5HAWfzrhJ1vsQ18L02S790eSbU0DsTQV1V5p3N668A2DKKosxlAYAQrGxBNsvsW2E46IfMS2Z0fH-18bqlSMjhBEhO1z6AXCT7vamT8r2lyfroHO67mTwwHqXXa7Lkp5dSnz_Jc16uA-s711bWrKt0ldqYn-_hvx4_-a_4Dd60As7Lde95Bt2eIR-3GMINwB_sp-Ax8a8tp3YNp8PpQGqXW9lPqK5CQUiwubg8xPF8t5dXYOiKABESkQ9UdbU0lyq9zaEnXh1LcCWRjoTpUAV3VLl-_BvICOIHYFtLPcvuKZjlrUGlAEjmm3DWjdNoCaqaSj5etulC7XSQeoj2hwaUAAmkG-fN5Rez9ms4OPX94fet0lEp6ORVx5WjkRcGsclRvIaOoseqFzkRbK-k76DlsSJ6TjXMeJCnzJXRgZXyklLKLl6AkbFYvCPmPAA6NNME2nXCaxUS6VLjRhnCAC4mno0jELetfJdMewThd95NmaG5o6LsOOy5qOy_wxezu8U7b8IjdK7_QemXVzzSrDAFZQAgHHD3g9NOMsQUc_srCLGmXi1E_oEpBkzJ62Djz8XRTxNEYgO2Ziw7UHAWIg32wp5mcNE_mUo1oRj9lu77Prz7rJit1hoPyF0c__TfwFuxPSyGhSjnbYqFrW9iUCx0q96uaFnzC8bBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proof+of+principle+study%3A+diagnostic+accuracy+of+a+novel+algorithm+for+the+estimation+of+sleep+stages+and+disease+severity+in+patients+with+sleep-disordered+breathing+based+on+actigraphy+and+respiratory+inductance+plethysmography&rft.jtitle=Sleep+%26+breathing&rft.au=Dietz-Terjung%2C+Sarah&rft.au=Martin%2C+Amelie+Ricarda&rft.au=Finnsson%2C+Eysteinn&rft.au=%C3%81g%C3%BAstsson%2C+J%C3%B3n+Sk%C3%ADnir&rft.date=2021-12-01&rft.issn=1520-9512&rft.eissn=1522-1709&rft.volume=25&rft.issue=4&rft.spage=1945&rft.epage=1952&rft_id=info:doi/10.1007%2Fs11325-021-02316-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11325_021_02316_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9512&client=summon