Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology

Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and e...

Full description

Saved in:
Bibliographic Details
Published inJournal of digital imaging Vol. 35; no. 6; pp. 1719 - 1737
Main Authors Bridge, Christopher P., Gorman, Chris, Pieper, Steven, Doyle, Sean W., Lennerz, Jochen K., Kalpathy-Cramer, Jayashree, Clunie, David A., Fedorov, Andriy Y., Herrmann, Markus D.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0897-1889
1618-727X
1618-727X
DOI10.1007/s10278-022-00683-y

Cover

Abstract Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM ® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom .
AbstractList Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom .
Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom .Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom .
Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom.
Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM ® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom .
Author Clunie, David A.
Pieper, Steven
Fedorov, Andriy Y.
Bridge, Christopher P.
Gorman, Chris
Doyle, Sean W.
Kalpathy-Cramer, Jayashree
Herrmann, Markus D.
Lennerz, Jochen K.
Author_xml – sequence: 1
  givenname: Christopher P.
  orcidid: 0000-0002-2242-351X
  surname: Bridge
  fullname: Bridge, Christopher P.
  organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MGH & BWH Center for Clinical Data Science, Mass General Brigham
– sequence: 2
  givenname: Chris
  surname: Gorman
  fullname: Gorman, Chris
  organization: Computational Pathology, Department of Pathology, Massachusetts General Hospital
– sequence: 3
  givenname: Steven
  surname: Pieper
  fullname: Pieper, Steven
  organization: Isomics, Inc
– sequence: 4
  givenname: Sean W.
  surname: Doyle
  fullname: Doyle, Sean W.
  organization: MGH & BWH Center for Clinical Data Science, Mass General Brigham
– sequence: 5
  givenname: Jochen K.
  surname: Lennerz
  fullname: Lennerz, Jochen K.
  organization: Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School
– sequence: 6
  givenname: Jayashree
  surname: Kalpathy-Cramer
  fullname: Kalpathy-Cramer, Jayashree
  organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MGH & BWH Center for Clinical Data Science, Mass General Brigham, Department of Radiology, Harvard Medical School
– sequence: 7
  givenname: David A.
  surname: Clunie
  fullname: Clunie, David A.
  organization: PixelMed Publishing, LLC
– sequence: 8
  givenname: Andriy Y.
  surname: Fedorov
  fullname: Fedorov, Andriy Y.
  organization: Department of Radiology, Harvard Medical School, Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital
– sequence: 9
  givenname: Markus D.
  surname: Herrmann
  fullname: Herrmann, Markus D.
  email: mdherrmann@mgh.harvard.edu
  organization: Computational Pathology, Department of Pathology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35995898$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQhy1URLeFF-CALHHhErCdZG1zQKqqQitt1Yo_Ejdr4jhZV4m9tRNQ-gR9bNzNQqGHipNl-fuNZ745QHvOO4PQS0reUkL4u0gJ4yIjjGWELEWeTU_Qgi6pyDjj3_fQggjJMyqE3EcHMV4RQnnJi2doPy-lLIUUC3R7att1bbXv32PAl9Ow9g6vbBUgTLjxAX8ZwNUQantjanzitK-ta7Fv8FkPrcFHzvkBButdxAnE56DX1hm8MhDcHXnua9Phi3HYjEPE1uFLSH90vp22_Geo7fb2HD1toIvmxe48RN8-nnw9Ps1WF5_Ojo9WmS54MWSaCuB5LnSRl7rW1BRM15I0HIA3TDRlBSCpSBI4qwTklZBAuBAN5TInTZUfonyuO7oNTD-h69Qm2D6NqyhRd17V7FUlr2rrVU0p9WFObcaqN7U2bghwn_Rg1b8vzq5V638oySkTvEgF3uwKBH89mjio3kZtug6c8WNUjJOSl1QQltDXD9ArPwaXpCSqYEKyZV4m6tXfHf1p5fdqEyBmQAcfYzCN0nbeVGrQdo9Pyx5E_0vRTmxMsGtNuG_7kdQvn5za5g
CitedBy_id crossref_primary_10_1186_s13018_024_04602_5
crossref_primary_10_1038_s41597_023_02864_y
crossref_primary_10_1038_s41467_023_37224_2
crossref_primary_10_3390_tomography9050145
crossref_primary_10_5858_arpa_2023_0250_RA
crossref_primary_10_1016_j_isci_2023_108073
crossref_primary_10_1148_rg_230180
crossref_primary_10_1007_s11548_025_03327_y
Cites_doi 10.1007/s10278-019-00308-x
10.1007/s10278-013-9622-7
10.1007/s10278-013-9657-9
10.4103/jpi.jpi_42_18
10.1038/s42256-021-00307-0
10.1038/s41586-021-03512-4
10.1148/radiol.2018171820
10.1038/sdata.2016.18
10.1007/s13735-020-00195-x
10.4103/jpi.jpi_1_18
10.1038/s41591-019-0447-x
10.1038/s41591-018-0177-5
10.1038/s41591-021-01343-4
10.7717/peerj.2057
10.1038/s41586-020-2649-2
10.4103/jpi.jpi_93_18
10.5858/arpa.2016-0471-ED
10.1118/1.3528204
10.1016/j.jneumeth.2016.03.001
10.1038/nature14539
10.1038/s41586-019-1799-6
10.1038/s41591-019-0508-1
10.1126/science.aay5189
10.1158/0008-5472.CAN-17-0336
10.1016/j.jacr.2019.04.014
10.1145/3411764.3445518
10.1158/0008-5472.CAN-21-0950
10.1109/CVPR.2009.5206848
10.7717/peerj.453
10.1109/ICCV.2017.324
10.1118/1.3611983
10.1002/path.5331
10.1007/978-3-030-59722-1_45
10.4103/jpi.jpi_98_20
10.1109/CVPR.2016.90
10.1055/s-0039-1677903
10.1038/s41551-020-00682-w
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
KB0
L7M
LK8
L~C
L~D
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10278-022-00683-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef
ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1618-727X
EndPage 1737
ExternalDocumentID 10.1007/s10278-022-00683-y
PMC9712874
35995898
10_1007_s10278_022_00683_y
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute
  grantid: U24 CA264044
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: National Cancer Institute
  grantid: U01CA242879
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: National Cancer Institute
  grantid: R01 CA241817
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: P41EB028741
  funderid: http://dx.doi.org/10.13039/100000070
– fundername: National Institutes of Health
  grantid: 5R01CA235589; 5P41EB015902
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Cancer Institute
  grantid: HHSN26110071
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: NIH HHS
  grantid: 5P41EB015902
– fundername: NCI NIH HHS
  grantid: HHSN26110071
– fundername: NIBIB NIH HHS
  grantid: P41 EB028741
– fundername: NIBIB NIH HHS
  grantid: P41EB028741
– fundername: NIBIB NIH HHS
  grantid: P41 EB015902
– fundername: NCI NIH HHS
  grantid: R01 CA241817
– fundername: NIH HHS
  grantid: 5R01CA235589
– fundername: NCI NIH HHS
  grantid: U01CA242879
– fundername: ;
  grantid: 5R01CA235589; 5P41EB015902
– fundername: ;
  grantid: HHSN26110071
– fundername: ;
  grantid: U24 CA264044
– fundername: ;
  grantid: P41EB028741
– fundername: ;
  grantid: R01 CA241817
– fundername: ;
  grantid: U01CA242879
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
04C
06C
06D
0R~
0VY
1N0
2.D
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5RE
5VS
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAKDD
AAKPC
AANXM
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DIK
DL5
DNIVK
DPUIP
DU5
EBD
EBS
ECT
EDO
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
Q2X
QOK
QOR
QOS
R89
R9I
RNS
ROL
RPM
RPX
RRX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7W
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
Z92
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ACSTC
ADHKG
AGQPQ
AHPBZ
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-c18a7338c435cdc1e42cd90f7aa7f28f5baa91861872b8a3b89a0788f17930fb3
IEDL.DBID BENPR
ISSN 0897-1889
1618-727X
IngestDate Sun Oct 26 04:11:47 EDT 2025
Tue Sep 30 17:17:37 EDT 2025
Thu Sep 04 23:10:51 EDT 2025
Mon Oct 06 17:20:53 EDT 2025
Tue Apr 29 09:22:39 EDT 2025
Wed Oct 08 04:22:46 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 21 02:44:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 6
Keywords Segmentations
Software
DICOM
Structured reports
Machine learning
Python
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-c18a7338c435cdc1e42cd90f7aa7f28f5baa91861872b8a3b89a0788f17930fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2242-351X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10278-022-00683-y.pdf
PMID 35995898
PQID 2742892635
PQPubID 34218
PageCount 19
ParticipantIDs unpaywall_primary_10_1007_s10278_022_00683_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9712874
proquest_miscellaneous_2705751802
proquest_journals_2742892635
pubmed_primary_35995898
crossref_citationtrail_10_1007_s10278_022_00683_y
crossref_primary_10_1007_s10278_022_00683_y
springer_journals_10_1007_s10278_022_00683_y
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationTitle Journal of digital imaging
PublicationTitleAbbrev J Digit Imaging
PublicationTitleAlternate J Digit Imaging
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Bidgood (CR34) 1998; 37
van der Laak, Litjens, Ciompi (CR4) 2021; 27
Choy, Khalilzadeh, Michalski, Do, Samir, Pianykh, Geis, Pandharipande, Brink, Dreyer (CR6) 2018; 288
Hafiz, Bhat (CR33) 2020; 9
CR31
CR30
Armato, McLennan, Bidaut, McNitt-Gray, Meyer, Reeves, Zhao, Aberle, Henschke, Hoffman, Kazerooni, MacMahon, van Beek, Yankelevitz, Biancardi, Bland, Brown, Engelmann, Laderach, Max, Pais, Qing, Roberts, Smith, Starkey, Batra, Caligiuri, Farooqi, Gladish, Jude, Munden, Petkovska, Quint, Schwartz, Sundaram, Dodd, Fenimore, Gur, Petrick, Freymann, Kirby, Hughes, Vande Casteele, Gupte, Sallam, Heath, Kuhn, Dharaiya, Burns, Fryd, Salganicoff, Anand, Shreter, Vastagh, Croft, Clarke (CR37) 2011; 38
McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (CR5) 2020; 577
Gauriau, Bridge, Chen, Kitamura, Tenenholtz, Kirsch, Andriole, Michalski, Bizzo (CR46) 2020; 33
LeCun, Bengio, Hinton (CR1) 2015; 521
Hosny, Aerts (CR8) 2019; 366
Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak, Blomberg, Boiten, da Silva Santos, Bourne, Bouwman, Brookes, Clark, Crosas, Dillo, Dumon, Edmunds, Evelo, Finkers, Gonzalez-Beltran, Gray, Groth, Goble, Grethe, Heringa, Hoen, Hooft, Kuhn, Kok, Kok, Lusher, Martone, Mons, Packer, Persson, Rocca-Serra, Roos, van Schaik, Sansone, Schultes, Sengstag, Slater, Strawn, Swertz, Thompson, van der Lei, van Mulligen, Velterop, Waagmeester, Wittenburg, Wolstencroft, Zhao, Mons (CR17) 2016; 3
Herz, Fillion-Robin, Onken, Riesmeier, Lasso, Pinter, Fichtinger, Pieper, Clunie, Kikinis, Fedorov (CR19) 2017; 77
CR9
CR48
Campanella, Hanna, Geneslaw, Miraflor, Werneck Krauss Silva, Busam, Brogi, Reuter, Klimstra, Fuchs (CR2) 2019; 25
CR47
Herrmann, Clunie, Fedorov, Doyle, Pieper, Klepeis, Le, Mutter, Milstone, Schultz, Kikinis, Kotecha, Hwang, Andriole, Iafrate, Brink, Boland, Dreyer, Michalski, Golden, Louis, Lennerz (CR14) 2018; 9
CR45
CR44
CR43
Clunie (CR36) 2019; 10
CR42
Fedorov, Clunie, Ulrich, Bauer, Wahle, Brown, Onken, Riesmeier, Pieper, Kikinis, Buatti, Beichel (CR18) 2016; 4
CR41
CR40
Pianykh (CR32) 2008
Roberts, Driggs, Thorpe, Gilbey, Yeung, Ursprung, Aviles-Rivero, Etmann, McCague, Beer (CR51) 2021; 3
Clunie, Hosseinzadeh, Wintell, De Mena, Lajara, Garcia-Rojo, Bueno, Saligrama, Stearrett, Toomey, Abels, Apeldoorn, Langevin, Nichols, Schmid, Horchner, Beckwith, Parwani, Pantanowitz (CR13) 2018; 9
Ardila, Kiraly, Bharadwaj, Choi, Reicher, Peng, Tse, Etemadi, Ye, Corrado, Naidich, Shetty (CR7) 2019; 25
Larobina, Murino (CR49) 2014; 27
Granter, Beck, Papke (CR10) 2017; 141
Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyo, Moreira, Razavian, Tsirigos (CR39) 2018; 24
CR16
CR15
Armato, McLennan, Bidaut, McNitt-Gray, Meyer, Reeves, Zhao, Aberle, Henschke, Hoffman, Kazerooni, MacMahon, van Beek, Yankelevitz, Biancardi, Bland, Brown, Engelmann, Laderach, Max, Pais, Qing, Roberts, Smith, Starkey, Batra, Caligiuri, Farooqi, Gladish, Jude, Munden, Petkovska, Quint, Schwartz, Sundaram, Dodd, Fenimore, Gur, Petrick, Freymann, Kirby, Hughes, Casteele, Gupte, Sallam, Heath, Kuhn, Dharaiya, Burns, Fryd, Salganicoff, Anand, Shreter, Vastagh, Croft, Clarke (CR38) 2015
CR11
CR52
Lu, Chen, Williamson, Zhao, Shady, Lipkova, Mahmood (CR3) 2021; 594
Li, Morgan, Ashburner, Smith, Rorden (CR50) 2016; 264
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR23) 2011; 12
Clark, Vendt, Smith, Freymann, Kirby, Koppel, Moore, Phillips, Maffitt, Pringle, Tarbox, Prior (CR35) 2013; 26
Roth, Lannum, Persons (CR12) 2016; 29
CR29
CR28
CR27
CR26
CR25
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, Del Ró, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (CR22) 2020; 585
CR24
CR21
CR20
683_CR21
S Armato III (683_CR38) 2015
683_CR24
K Clark (683_CR35) 2013; 26
683_CR9
683_CR20
X Li (683_CR50) 2016; 264
M Larobina (683_CR49) 2014; 27
SR Granter (683_CR10) 2017; 141
683_CR15
OS Pianykh (683_CR32) 2008
CR Harris (683_CR22) 2020; 585
SM McKinney (683_CR5) 2020; 577
683_CR16
683_CR11
683_CR52
DA Clunie (683_CR36) 2019; 10
D Ardila (683_CR7) 2019; 25
J van der Laak (683_CR4) 2021; 27
MY Lu (683_CR3) 2021; 594
G Choy (683_CR6) 2018; 288
R Gauriau (683_CR46) 2020; 33
683_CR48
683_CR47
MD Wilkinson (683_CR17) 2016; 3
683_CR44
683_CR43
683_CR45
683_CR40
D Clunie (683_CR13) 2018; 9
683_CR42
683_CR41
MD Herrmann (683_CR14) 2018; 9
N Coudray (683_CR39) 2018; 24
Y LeCun (683_CR1) 2015; 521
AM Hafiz (683_CR33) 2020; 9
F Pedregosa (683_CR23) 2011; 12
C Herz (683_CR19) 2017; 77
683_CR31
683_CR30
A Hosny (683_CR8) 2019; 366
M Roberts (683_CR51) 2021; 3
A Fedorov (683_CR18) 2016; 4
683_CR29
CJ Roth (683_CR12) 2016; 29
WD Bidgood (683_CR34) 1998; 37
683_CR26
SG Armato III (683_CR37) 2011; 38
683_CR25
G Campanella (683_CR2) 2019; 25
683_CR28
683_CR27
References_xml – ident: CR45
– volume: 33
  start-page: 747
  issue: 3
  year: 2020
  end-page: 762
  ident: CR46
  article-title: Using DICOM Metadata for Radiological Image Series Categorization: a Feasibility Study on Large Clinical Brain MRI Datasets
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00308-x
– ident: CR16
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  end-page: 1057
  ident: CR35
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-013-9622-7
– year: 2015
  ident: CR38
  publication-title: Data from lidc-idri
– ident: CR29
– ident: CR25
– ident: CR42
– volume: 27
  start-page: 200
  issue: 2
  year: 2014
  end-page: 206
  ident: CR49
  article-title: Medical image file formats
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9657-9
– ident: CR21
– ident: CR15
– volume: 9
  start-page: 37
  year: 2018
  ident: CR14
  article-title: Implementing the DICOM Standard for Digital Pathology
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/jpi.jpi_42_18
– volume: 3
  start-page: 199
  issue: 3
  year: 2021
  end-page: 217
  ident: CR51
  article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-021-00307-0
– ident: CR11
– ident: CR9
– volume: 594
  start-page: 106
  issue: 7861
  year: 2021
  end-page: 110
  ident: CR3
  article-title: AI-based pathology predicts origins for cancers of unknown primary
  publication-title: Nature
  doi: 10.1038/s41586-021-03512-4
– volume: 288
  start-page: 318
  issue: 2
  year: 2018
  end-page: 328
  ident: CR6
  article-title: Current Applications and Future Impact of Machine Learning in Radiology
  publication-title: Radiology
  doi: 10.1148/radiol.2018171820
– volume: 3
  year: 2016
  ident: CR17
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– volume: 9
  start-page: 171
  issue: 3
  year: 2020
  end-page: 189
  ident: CR33
  article-title: A survey on instance segmentation: state of the art
  publication-title: International Journal of Multimedia Information Retrieval
  doi: 10.1007/s13735-020-00195-x
– ident: CR26
– volume: 9
  start-page: 6
  year: 2018
  ident: CR13
  article-title: Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/jpi.jpi_1_18
– ident: CR43
– volume: 29
  start-page: 530
  issue: 5
  year: 2016
  end-page: 538
  ident: CR12
  publication-title: A Foundation for Enterprise Imaging: HIMSS-SIIM Collaborative White Paper
– ident: CR47
– volume: 25
  start-page: 954
  issue: 6
  year: 2019
  end-page: 961
  ident: CR7
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0447-x
– ident: CR30
– volume: 24
  start-page: 1559
  issue: 10
  year: 2018
  end-page: 1567
  ident: CR39
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0177-5
– volume: 27
  start-page: 775
  issue: 5
  year: 2021
  end-page: 784
  ident: CR4
  article-title: Deep learning in histopathology: the path to the clinic
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01343-4
– volume: 4
  year: 2016
  ident: CR18
  article-title: DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research
  publication-title: PeerJ
  doi: 10.7717/peerj.2057
– ident: CR40
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  end-page: 362
  ident: CR22
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: CR27
– volume: 10
  start-page: 12
  year: 2019
  ident: CR36
  article-title: Dual-Personality DICOM-TIFF for Whole Slide Images: A Migration Technique for Legacy Software
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/jpi.jpi_93_18
– ident: CR44
– volume: 141
  start-page: 619
  issue: 5
  year: 2017
  end-page: 621
  ident: CR10
  article-title: AlphaGo, Deep Learning, and the Future of the Human Microscopist
  publication-title: Archives of Pathology & Laboratory Medicine
  doi: 10.5858/arpa.2016-0471-ED
– ident: CR48
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  end-page: 931
  ident: CR37
  article-title: The lung image database consortium (lidc) and image database resource initiative (idri): A completed reference database of lung nodules on ct scans
  publication-title: Medical Physics
  doi: 10.1118/1.3528204
– year: 2008
  ident: CR32
  publication-title: Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide,
– ident: CR52
– volume: 264
  start-page: 47
  year: 2016
  end-page: 56
  ident: CR50
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2016.03.001
– ident: CR31
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR23
  article-title: Scikit-learn: Machine learning in python
  publication-title: J Mach Learn Res
– volume: 37
  start-page: 404
  issue: 4–5
  year: 1998
  end-page: 414
  ident: CR34
  article-title: The SNOMED DICOM microglossary: controlled terminology resource for data interchange in biomedical imaging
  publication-title: Methods Inf Med
– ident: CR28
– ident: CR41
– volume: 577
  start-page: 89
  issue: 7788
  year: 2020
  end-page: 94
  ident: CR5
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– volume: 25
  start-page: 1301
  issue: 8
  year: 2019
  end-page: 1309
  ident: CR2
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nature Medicine
  doi: 10.1038/s41591-019-0508-1
– ident: CR24
– volume: 366
  start-page: 955
  issue: 6468
  year: 2019
  end-page: 956
  ident: CR8
  article-title: Artificial intelligence for global health
  publication-title: Science
  doi: 10.1126/science.aay5189
– ident: CR20
– volume: 77
  start-page: e87
  issue: 21
  year: 2017
  end-page: e90
  ident: CR19
  article-title: dcmqi: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results Using DICOM
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-17-0336
– ident: 683_CR45
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 683_CR1
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 3
  year: 2016
  ident: 683_CR17
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– ident: 683_CR9
  doi: 10.1016/j.jacr.2019.04.014
– ident: 683_CR16
– ident: 683_CR27
  doi: 10.1145/3411764.3445518
– volume: 27
  start-page: 200
  issue: 2
  year: 2014
  ident: 683_CR49
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9657-9
– volume: 9
  start-page: 171
  issue: 3
  year: 2020
  ident: 683_CR33
  publication-title: International Journal of Multimedia Information Retrieval
  doi: 10.1007/s13735-020-00195-x
– volume-title: Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide,
  year: 2008
  ident: 683_CR32
– ident: 683_CR26
– ident: 683_CR21
– ident: 683_CR52
  doi: 10.1158/0008-5472.CAN-21-0950
– ident: 683_CR31
– ident: 683_CR41
  doi: 10.1109/CVPR.2009.5206848
– volume: 27
  start-page: 775
  issue: 5
  year: 2021
  ident: 683_CR4
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01343-4
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: 683_CR35
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 577
  start-page: 89
  issue: 7788
  year: 2020
  ident: 683_CR5
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– ident: 683_CR29
– volume: 264
  start-page: 47
  year: 2016
  ident: 683_CR50
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2016.03.001
– volume: 10
  start-page: 12
  year: 2019
  ident: 683_CR36
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/jpi.jpi_93_18
– volume: 25
  start-page: 1301
  issue: 8
  year: 2019
  ident: 683_CR2
  publication-title: Nature Medicine
  doi: 10.1038/s41591-019-0508-1
– ident: 683_CR20
– volume: 141
  start-page: 619
  issue: 5
  year: 2017
  ident: 683_CR10
  publication-title: Archives of Pathology & Laboratory Medicine
  doi: 10.5858/arpa.2016-0471-ED
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 683_CR37
  publication-title: Medical Physics
  doi: 10.1118/1.3528204
– ident: 683_CR24
  doi: 10.7717/peerj.453
– volume: 29
  start-page: 530
  issue: 5
  year: 2016
  ident: 683_CR12
  publication-title: A Foundation for Enterprise Imaging: HIMSS-SIIM Collaborative White Paper
– volume: 77
  start-page: e87
  issue: 21
  year: 2017
  ident: 683_CR19
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-17-0336
– ident: 683_CR44
  doi: 10.1109/ICCV.2017.324
– ident: 683_CR30
– volume: 25
  start-page: 954
  issue: 6
  year: 2019
  ident: 683_CR7
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0447-x
– ident: 683_CR25
  doi: 10.1118/1.3611983
– ident: 683_CR11
  doi: 10.1002/path.5331
– volume-title: Data from lidc-idri
  year: 2015
  ident: 683_CR38
– ident: 683_CR42
  doi: 10.1007/978-3-030-59722-1_45
– volume: 37
  start-page: 404
  issue: 4–5
  year: 1998
  ident: 683_CR34
  publication-title: Methods Inf Med
– volume: 12
  start-page: 2825
  year: 2011
  ident: 683_CR23
  publication-title: J Mach Learn Res
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 683_CR22
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 594
  start-page: 106
  issue: 7861
  year: 2021
  ident: 683_CR3
  publication-title: Nature
  doi: 10.1038/s41586-021-03512-4
– volume: 4
  year: 2016
  ident: 683_CR18
  publication-title: PeerJ
  doi: 10.7717/peerj.2057
– ident: 683_CR15
  doi: 10.4103/jpi.jpi_98_20
– ident: 683_CR28
– volume: 9
  start-page: 37
  year: 2018
  ident: 683_CR14
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/jpi.jpi_42_18
– ident: 683_CR40
  doi: 10.1109/CVPR.2016.90
– ident: 683_CR47
  doi: 10.1055/s-0039-1677903
– volume: 24
  start-page: 1559
  issue: 10
  year: 2018
  ident: 683_CR39
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0177-5
– volume: 33
  start-page: 747
  issue: 3
  year: 2020
  ident: 683_CR46
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00308-x
– volume: 366
  start-page: 955
  issue: 6468
  year: 2019
  ident: 683_CR8
  publication-title: Science
  doi: 10.1126/science.aay5189
– volume: 9
  start-page: 6
  year: 2018
  ident: 683_CR13
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/jpi.jpi_1_18
– ident: 683_CR43
  doi: 10.1038/s41551-020-00682-w
– ident: 683_CR48
– volume: 288
  start-page: 318
  issue: 2
  year: 2018
  ident: 683_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2018171820
– volume: 3
  start-page: 199
  issue: 3
  year: 2021
  ident: 683_CR51
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-021-00307-0
SSID ssj0017574
Score 2.0325408
Snippet Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1719
SubjectTerms Computed tomography
Data Curation
Decoding
Digital imaging
Ecosystem
Format
Freeware
Humans
Image annotation
Image processing
Imaging
Interoperability
Learning algorithms
Libraries
Machine Learning
Medical imaging
Medical research
Medicine
Medicine & Public Health
Methods Paper
Pathology
Programming languages
Python
Radiology
Radiology Information Systems
Representations
Software
Standardization
State-of-the-art reviews
Tomography, X-Ray Computed
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEO8GCjISNxopiZPY5lZVrQrSQgVU6i2ynbistHVW3UQo_AJ-Nh7Hm7IUVXCMPHFizUw8zjfzDcCbnCqhODNxqeoszhVPY1WYOtZCUWpEnlDfRWH2sTw6yT-cFqeBJgdrYf7A77HELUMOWHdkwmoGGg834ZbbpEoPzJb7E2LAipFxmQsWp5yLUCDz9zk2N6ErkeXVBMkJJb0Hd3q7lMN3uVj8thEdPoD7IYIke6PKH8KNxj6C27OAkT-Gn5i64S7a83dEkuMByQFIKE8gLkQlX8Lfg_mPpiYHVre4fZHWkPfn7uNC9qxtR3x-RZwgmfl0y4YEJtYzgu3TFuRT3y37bkXmlhzLzn9DBy__WdZjCcwTODk8-Lp_FId-C7HOWd7FOuWSuSOrdiGUrnXa5JmuRWKYlMxk3BRKSpHyMuUsU1xSxYV0EQY36OSJUfQpbNnWNttAZKELjUerxpicZlIVvKlNqqko8tIYGkG6VkClAxk59sRYVJc0yqi0yimt8kqrhgjeTvcsRyqOa6V31nqtgluuKsSluUD-nQheT8POoRAlkbZpe5RJPBaVZBE8G81gehxFejYueARsw0AmASTr3hyx82-etFuwFFsLRLC7NqXL17puFbuTuf3Dop__3-wv4G6GXuGzc3Zgq7vom5cuxurUK-9cvwDogB4N
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToLxwPdHYCAj8cbSJXHS2LxVsGkgdVRApfIU2Y4N1TqnoolQ9hfwZ2M7H1sZmkA8Rr58nH2-O-fufgfwMsaccpIqf8TzyI85CX2eqNwXlGOsaBxg10Vhcjw6msXv58l8C952tTAu270LSTY1DRalSZf7q1ztXyh8iywyrDlI2RoH7NdDM3wNtkeJ8cgHsD07no6_OAeSpn5IXCc8Cw3vG3M9b2tn_vygTft0yem8nDvZB1Bvwo1Kr1j9gy2XF2zU4W2QHXdNasrJsCr5UJz9Bvz4v-zfgVutE4vGjdTdhS2p78H1SRumvw8_bfaIuShOXyOGprXFJ0BthQQyXjL61P7AWJzJHB1oUVgLigqF3p0a_YbGWhdNisAaGUI0cRmfErVgsF-R7eC2RB-qclWVa7TQaMpKp8ZrR_-R5U0VzgOYHR58fnPkty0ffBGncemLkLDUnJqF8eJELkIZRyKngUoZS1VEVMIZoyExK5lGnDDMCWXGySHK6plAcfwQBrrQ8jEglohE2NOdVCrGEeMJkbkKBaZJPFIKexB2C52JFg_dtuVYZudIznaaMzPNmZvmrPbgVX_PqkEDuZJ6t5OfrNUM68yGxgm1EEAevOiHzZ62gRqmZVFZmsCFw4LIg0eNuPWvwxYhjlDiQbohiD2BxQvfHNGLbw43nKah7W7gwV4nYeefdRUXe71Y_wXTT_6N_CnsRFaOXYLQLgzK75V8Zty8kj9vd_EvrllLBg
  priority: 102
  providerName: Unpaywall
Title Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology
URI https://link.springer.com/article/10.1007/s10278-022-00683-y
https://www.ncbi.nlm.nih.gov/pubmed/35995898
https://www.proquest.com/docview/2742892635
https://www.proquest.com/docview/2705751802
https://pubmed.ncbi.nlm.nih.gov/PMC9712874
https://link.springer.com/content/pdf/10.1007/s10278-022-00683-y.pdf
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: ADMLS
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: GX1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: RPM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1618-727X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: 7X7
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1618-727X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 1618-727X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_uWvDxQXwbPcsKfvOCzau7K4jU0t6ptJbTQu9T2N1ktdBLqk2R-hf4Z7uTbFLLQfHLQrITkmUeO5uZ-Q3AyzCQXDKq3Z5MfDeUzHNlpBNXcRkEmofdoOyiMJ70zmfhx3k0P4JJXQuDaZW1TSwNdZIr_Ef-GkOKjCN0yrvVDxe7RmF0tW6hIWxrheRtCTF2DG0fkbFa0H4_nEwvmrgCjSpcZsap6zHGbRmNLabzEW3WHM6wbiJwt_tb1TX_83oaZRNLvQ03N9lKbH-J5fKf7Wp0F-5YP5P0K8G4B0dpdh9ujG0k_QH8wQQPc5FfvSGCTLcIIUBsEQMxjiz5Yv8xLH6nCRlmKsdNjuSafLgyJoj0syyvovhrYgjJuEzKTInFa_1GsMnaknzeFKtNsSaLjExFUVrabUl_IZKqUOYhzEbDr4Nz13ZlcFVIw8JVHhPUHGyVcbRUorw09FXCu5oKQbXPdCSF4B7reYz6kolAMi6MH8I0moKulsEjaGV5lj4BIiIVKTyApVqHgS9kxNJEeyrgUdjTOnDAqxkQKwtZjp0zlvEObBmZFhumxSXT4q0Dr5pnVhVgx0Hqk5qvsVXedbwTNQdeNNNG7TCWIrI03yBNt4xYdX0HHldi0LwuQBA3xpkDdE9AGgKE9N6fyRbfS2hvTj1sQODAaS1Ku886tIrTRtz-Y9FPDy_6GdzyUQvKnJ0TaBU_N-lz43kVsgPHdE7NyEZnHWj3zy4_DTtWxczdQW9gxrO5Z8aZ3zczs8m0f_kXE7gzGw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLwgPgmMMBI8MQimjhpbKQJDejUsrVUY5P2FmwnhkpdUmiqKfwF_FX8bfgSJ6WaVPGyxyiXD-s-fOe7-x3Ay4BKLlmk3a5MfDeQzHNlqBNXcUmp5kGHVlMUhqNu_zT4dBaebcCfphcGyyobm1gZ6iRXeEb-BlOKjCN0yrvZDxenRmF2tRmhIexohWSvghizjR2HaXlhQrj53uCj4fcr3z_onXzou3bKgKuCKChc5TERmUBNGcdBJcpLA18lvKMjISLtMx1KIbjHuh6LfMkElYwLs68yjaLd0ZKa916DrYAG3AR_W-97o_Fxm8eIwhoHmvHI9Rjjtm3HNu_5iG5rgkHs06Buubo1XvJ3L5dttrnbm7C9yGaivBDT6T_b48FtuGX9WrJfC-Id2Eizu3B9aDP39-A3FpSYi_z8LRFkXCJkAbFNE8Q4zuSLPdOY_EoT0stUjpsqyTUZnBuTR_azLK-rBubEEJJhVQSaEosP-43gULcp-bwoZotiTiYZGYuisuxlRX8skrox5z6cXgl_HsBmlmfpIyAiVKHCgC_VOqC-kCFLE-0pysOgqzV1wGsYECsLkY6TOqbxEtwZmRYbpsUV0-LSgdftM7MaIGQt9U7D19gai3m8FG0HXrS3jZpj7kZkab5Amk6VIev4DjysxaD9HEXQOMaZA9GKgLQECCG-eiebfK-gxHnk4cADB3YbUVr-1rpV7Lbi9h-Lfrx-0c9hu38yPIqPBqPDJ3DDR42o6oV2YLP4uUifGq-vkM-sahH4etXa_Bf-bmgv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IN4YCiwSnKhVP-NdJIQq2qihpERApdzM7nq3jZTagTiqzC_gN_Hr2LHXDlGliEuPkcd2VvP2zHwD8CoKBRM00W5PZIEbCeq7ItaZK5kIQ80iL6y3KAyPe4cn0cdxPN6AP-0sDLZVtjaxNtRZIfEb-S6WFClD6JRdbdsiRvv997MfLm6Qwkpru06jEZEjVV2Y9G3-brBveP06CPoH3z4cunbDgCujJCpd6VOemCRNmqBBZtJXUSAz5umE80QHVMeCc-bTnk-TQFAeCsq48alUo1h7WoTmudfgunkEw3bCZNwle8YrNwjQlCWuTymzAzt2bC9AXFuTBuKERuhWq07xUqR7uWGzq9reghuLfMarCz6d_uMY-3fgto1oyV4jgndhQ-X3YGtoa_b34Te2kpgfxflbwsmoQrACYscliAmZyVf7NWPyS2XkIJcFulNSaDI4N8aO7OV50fQLzIkhJMO6_VMRiwx7SnCd25R8XpSzRTknk5yMeFnb9Kqm_8KzZiTnAZxcCXcewmZe5OoxEB7LWGKqp7SOwoCLmKpM-9LwLeppHTrgtwxIpQVHxx0d03QJ64xMSw3T0pppaeXAm-6eWQMNspZ6u-Vras3EPF0KtQMvu8tGwbFqw3NVLJDGq2tjXuDAo0YMuteFCBdHGXUgWRGQjgDBw1ev5JOzGkScJT6uOnBgpxWl5d9ad4qdTtz-49BP1h_6BWwZHU4_DY6PnsLNABWibhTahs3y50I9M-FeKZ7XekXg-1Ur8l8aFmXJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToLxwPdHYCAj8cbSJXHS2LxVsGkgdVRApfIU2Y4N1TqnoolQ9hfwZ2M7H1sZmkA8Rr58nH2-O-fufgfwMsaccpIqf8TzyI85CX2eqNwXlGOsaBxg10Vhcjw6msXv58l8C952tTAu270LSTY1DRalSZf7q1ztXyh8iywyrDlI2RoH7NdDM3wNtkeJ8cgHsD07no6_OAeSpn5IXCc8Cw3vG3M9b2tn_vygTft0yem8nDvZB1Bvwo1Kr1j9gy2XF2zU4W2QHXdNasrJsCr5UJz9Bvz4v-zfgVutE4vGjdTdhS2p78H1SRumvw8_bfaIuShOXyOGprXFJ0BthQQyXjL61P7AWJzJHB1oUVgLigqF3p0a_YbGWhdNisAaGUI0cRmfErVgsF-R7eC2RB-qclWVa7TQaMpKp8ZrR_-R5U0VzgOYHR58fnPkty0ffBGncemLkLDUnJqF8eJELkIZRyKngUoZS1VEVMIZoyExK5lGnDDMCWXGySHK6plAcfwQBrrQ8jEglohE2NOdVCrGEeMJkbkKBaZJPFIKexB2C52JFg_dtuVYZudIznaaMzPNmZvmrPbgVX_PqkEDuZJ6t5OfrNUM68yGxgm1EEAevOiHzZ62gRqmZVFZmsCFw4LIg0eNuPWvwxYhjlDiQbohiD2BxQvfHNGLbw43nKah7W7gwV4nYeefdRUXe71Y_wXTT_6N_CnsRFaOXYLQLgzK75V8Zty8kj9vd_EvrllLBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highdicom%3A+a+Python+Library+for+Standardized+Encoding+of+Image+Annotations+and+Machine+Learning+Model+Outputs+in+Pathology+and+Radiology&rft.jtitle=Journal+of+digital+imaging&rft.au=Bridge%2C+Christopher+P.&rft.au=Gorman%2C+Chris&rft.au=Pieper%2C+Steven&rft.au=Doyle%2C+Sean+W.&rft.date=2022-12-01&rft.pub=Springer+International+Publishing&rft.issn=0897-1889&rft.eissn=1618-727X&rft.volume=35&rft.issue=6&rft.spage=1719&rft.epage=1737&rft_id=info:doi/10.1007%2Fs10278-022-00683-y&rft_id=info%3Apmid%2F35995898&rft.externalDocID=PMC9712874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-1889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-1889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-1889&client=summon