Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology
Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and e...
Saved in:
| Published in | Journal of digital imaging Vol. 35; no. 6; pp. 1719 - 1737 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.12.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0897-1889 1618-727X 1618-727X |
| DOI | 10.1007/s10278-022-00683-y |
Cover
| Abstract | Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM
®
standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the
highdicom
library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The
highdicom
library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files,
highdicom
achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems,
highdicom
enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at
https://github.com/herrmannlab/highdicom
. |
|---|---|
| AbstractList | Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM
standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom . Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom .Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom . Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom. Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has been a major barrier for clinical integration and evaluation. The DICOM ® standard specifies information object definitions (IODs) and services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with datasets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface (API) for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library leverages NumPy arrays for efficient data representation and ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers and researchers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source at https://github.com/herrmannlab/highdicom . |
| Author | Clunie, David A. Pieper, Steven Fedorov, Andriy Y. Bridge, Christopher P. Gorman, Chris Doyle, Sean W. Kalpathy-Cramer, Jayashree Herrmann, Markus D. Lennerz, Jochen K. |
| Author_xml | – sequence: 1 givenname: Christopher P. orcidid: 0000-0002-2242-351X surname: Bridge fullname: Bridge, Christopher P. organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MGH & BWH Center for Clinical Data Science, Mass General Brigham – sequence: 2 givenname: Chris surname: Gorman fullname: Gorman, Chris organization: Computational Pathology, Department of Pathology, Massachusetts General Hospital – sequence: 3 givenname: Steven surname: Pieper fullname: Pieper, Steven organization: Isomics, Inc – sequence: 4 givenname: Sean W. surname: Doyle fullname: Doyle, Sean W. organization: MGH & BWH Center for Clinical Data Science, Mass General Brigham – sequence: 5 givenname: Jochen K. surname: Lennerz fullname: Lennerz, Jochen K. organization: Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School – sequence: 6 givenname: Jayashree surname: Kalpathy-Cramer fullname: Kalpathy-Cramer, Jayashree organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MGH & BWH Center for Clinical Data Science, Mass General Brigham, Department of Radiology, Harvard Medical School – sequence: 7 givenname: David A. surname: Clunie fullname: Clunie, David A. organization: PixelMed Publishing, LLC – sequence: 8 givenname: Andriy Y. surname: Fedorov fullname: Fedorov, Andriy Y. organization: Department of Radiology, Harvard Medical School, Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital – sequence: 9 givenname: Markus D. surname: Herrmann fullname: Herrmann, Markus D. email: mdherrmann@mgh.harvard.edu organization: Computational Pathology, Department of Pathology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35995898$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc9u1DAQhy1URLeFF-CALHHhErCdZG1zQKqqQitt1Yo_Ejdr4jhZV4m9tRNQ-gR9bNzNQqGHipNl-fuNZ745QHvOO4PQS0reUkL4u0gJ4yIjjGWELEWeTU_Qgi6pyDjj3_fQggjJMyqE3EcHMV4RQnnJi2doPy-lLIUUC3R7att1bbXv32PAl9Ow9g6vbBUgTLjxAX8ZwNUQantjanzitK-ta7Fv8FkPrcFHzvkBButdxAnE56DX1hm8MhDcHXnua9Phi3HYjEPE1uFLSH90vp22_Geo7fb2HD1toIvmxe48RN8-nnw9Ps1WF5_Ojo9WmS54MWSaCuB5LnSRl7rW1BRM15I0HIA3TDRlBSCpSBI4qwTklZBAuBAN5TInTZUfonyuO7oNTD-h69Qm2D6NqyhRd17V7FUlr2rrVU0p9WFObcaqN7U2bghwn_Rg1b8vzq5V638oySkTvEgF3uwKBH89mjio3kZtug6c8WNUjJOSl1QQltDXD9ArPwaXpCSqYEKyZV4m6tXfHf1p5fdqEyBmQAcfYzCN0nbeVGrQdo9Pyx5E_0vRTmxMsGtNuG_7kdQvn5za5g |
| CitedBy_id | crossref_primary_10_1186_s13018_024_04602_5 crossref_primary_10_1038_s41597_023_02864_y crossref_primary_10_1038_s41467_023_37224_2 crossref_primary_10_3390_tomography9050145 crossref_primary_10_5858_arpa_2023_0250_RA crossref_primary_10_1016_j_isci_2023_108073 crossref_primary_10_1148_rg_230180 crossref_primary_10_1007_s11548_025_03327_y |
| Cites_doi | 10.1007/s10278-019-00308-x 10.1007/s10278-013-9622-7 10.1007/s10278-013-9657-9 10.4103/jpi.jpi_42_18 10.1038/s42256-021-00307-0 10.1038/s41586-021-03512-4 10.1148/radiol.2018171820 10.1038/sdata.2016.18 10.1007/s13735-020-00195-x 10.4103/jpi.jpi_1_18 10.1038/s41591-019-0447-x 10.1038/s41591-018-0177-5 10.1038/s41591-021-01343-4 10.7717/peerj.2057 10.1038/s41586-020-2649-2 10.4103/jpi.jpi_93_18 10.5858/arpa.2016-0471-ED 10.1118/1.3528204 10.1016/j.jneumeth.2016.03.001 10.1038/nature14539 10.1038/s41586-019-1799-6 10.1038/s41591-019-0508-1 10.1126/science.aay5189 10.1158/0008-5472.CAN-17-0336 10.1016/j.jacr.2019.04.014 10.1145/3411764.3445518 10.1158/0008-5472.CAN-21-0950 10.1109/CVPR.2009.5206848 10.7717/peerj.453 10.1109/ICCV.2017.324 10.1118/1.3611983 10.1002/path.5331 10.1007/978-3-030-59722-1_45 10.4103/jpi.jpi_98_20 10.1109/CVPR.2016.90 10.1055/s-0039-1677903 10.1038/s41551-020-00682-w |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7SC 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K9. KB0 L7M LK8 L~C L~D M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s10278-022-00683-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1618-727X |
| EndPage | 1737 |
| ExternalDocumentID | 10.1007/s10278-022-00683-y PMC9712874 35995898 10_1007_s10278_022_00683_y |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Cancer Institute grantid: U24 CA264044 funderid: http://dx.doi.org/10.13039/100000054 – fundername: National Cancer Institute grantid: U01CA242879 funderid: http://dx.doi.org/10.13039/100000054 – fundername: National Cancer Institute grantid: R01 CA241817 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: P41EB028741 funderid: http://dx.doi.org/10.13039/100000070 – fundername: National Institutes of Health grantid: 5R01CA235589; 5P41EB015902 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Cancer Institute grantid: HHSN26110071 funderid: http://dx.doi.org/10.13039/100000054 – fundername: NIH HHS grantid: 5P41EB015902 – fundername: NCI NIH HHS grantid: HHSN26110071 – fundername: NIBIB NIH HHS grantid: P41 EB028741 – fundername: NIBIB NIH HHS grantid: P41EB028741 – fundername: NIBIB NIH HHS grantid: P41 EB015902 – fundername: NCI NIH HHS grantid: R01 CA241817 – fundername: NIH HHS grantid: 5R01CA235589 – fundername: NCI NIH HHS grantid: U01CA242879 – fundername: ; grantid: 5R01CA235589; 5P41EB015902 – fundername: ; grantid: HHSN26110071 – fundername: ; grantid: U24 CA264044 – fundername: ; grantid: P41EB028741 – fundername: ; grantid: R01 CA241817 – fundername: ; grantid: U01CA242879 |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 04C 06C 06D 0R~ 0VY 1N0 2.D 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5RE 5VS 67Z 6NX 6PF 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAKDD AAKPC AANXM AANZL AARHV AARTL AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAWUL BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DIK DL5 DNIVK DPUIP DU5 EBD EBS ECT EDO EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HYE HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX KDC KOV KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 P2P P62 P9S PF0 PQQKQ PROAC PSQYO Q2X QOK QOR QOS R89 R9I RNS ROL RPM RPX RRX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC TUS U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7W Z7X Z82 Z83 Z88 Z8R Z8V Z8W Z92 ZMTXR ZOVNA ~A9 AAPKM AAYXX ACSTC ADHKG AGQPQ AHPBZ AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QO 7SC 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-c18a7338c435cdc1e42cd90f7aa7f28f5baa91861872b8a3b89a0788f17930fb3 |
| IEDL.DBID | BENPR |
| ISSN | 0897-1889 1618-727X |
| IngestDate | Sun Oct 26 04:11:47 EDT 2025 Tue Sep 30 17:17:37 EDT 2025 Thu Sep 04 23:10:51 EDT 2025 Mon Oct 06 17:20:53 EDT 2025 Tue Apr 29 09:22:39 EDT 2025 Wed Oct 08 04:22:46 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 21 02:44:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 6 |
| Keywords | Segmentations Software DICOM Structured reports Machine learning Python |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-c18a7338c435cdc1e42cd90f7aa7f28f5baa91861872b8a3b89a0788f17930fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2242-351X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10278-022-00683-y.pdf |
| PMID | 35995898 |
| PQID | 2742892635 |
| PQPubID | 34218 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1007_s10278_022_00683_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_9712874 proquest_miscellaneous_2705751802 proquest_journals_2742892635 pubmed_primary_35995898 crossref_citationtrail_10_1007_s10278_022_00683_y crossref_primary_10_1007_s10278_022_00683_y springer_journals_10_1007_s10278_022_00683_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: United States – name: New York |
| PublicationTitle | Journal of digital imaging |
| PublicationTitleAbbrev | J Digit Imaging |
| PublicationTitleAlternate | J Digit Imaging |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Bidgood (CR34) 1998; 37 van der Laak, Litjens, Ciompi (CR4) 2021; 27 Choy, Khalilzadeh, Michalski, Do, Samir, Pianykh, Geis, Pandharipande, Brink, Dreyer (CR6) 2018; 288 Hafiz, Bhat (CR33) 2020; 9 CR31 CR30 Armato, McLennan, Bidaut, McNitt-Gray, Meyer, Reeves, Zhao, Aberle, Henschke, Hoffman, Kazerooni, MacMahon, van Beek, Yankelevitz, Biancardi, Bland, Brown, Engelmann, Laderach, Max, Pais, Qing, Roberts, Smith, Starkey, Batra, Caligiuri, Farooqi, Gladish, Jude, Munden, Petkovska, Quint, Schwartz, Sundaram, Dodd, Fenimore, Gur, Petrick, Freymann, Kirby, Hughes, Vande Casteele, Gupte, Sallam, Heath, Kuhn, Dharaiya, Burns, Fryd, Salganicoff, Anand, Shreter, Vastagh, Croft, Clarke (CR37) 2011; 38 McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (CR5) 2020; 577 Gauriau, Bridge, Chen, Kitamura, Tenenholtz, Kirsch, Andriole, Michalski, Bizzo (CR46) 2020; 33 LeCun, Bengio, Hinton (CR1) 2015; 521 Hosny, Aerts (CR8) 2019; 366 Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak, Blomberg, Boiten, da Silva Santos, Bourne, Bouwman, Brookes, Clark, Crosas, Dillo, Dumon, Edmunds, Evelo, Finkers, Gonzalez-Beltran, Gray, Groth, Goble, Grethe, Heringa, Hoen, Hooft, Kuhn, Kok, Kok, Lusher, Martone, Mons, Packer, Persson, Rocca-Serra, Roos, van Schaik, Sansone, Schultes, Sengstag, Slater, Strawn, Swertz, Thompson, van der Lei, van Mulligen, Velterop, Waagmeester, Wittenburg, Wolstencroft, Zhao, Mons (CR17) 2016; 3 Herz, Fillion-Robin, Onken, Riesmeier, Lasso, Pinter, Fichtinger, Pieper, Clunie, Kikinis, Fedorov (CR19) 2017; 77 CR9 CR48 Campanella, Hanna, Geneslaw, Miraflor, Werneck Krauss Silva, Busam, Brogi, Reuter, Klimstra, Fuchs (CR2) 2019; 25 CR47 Herrmann, Clunie, Fedorov, Doyle, Pieper, Klepeis, Le, Mutter, Milstone, Schultz, Kikinis, Kotecha, Hwang, Andriole, Iafrate, Brink, Boland, Dreyer, Michalski, Golden, Louis, Lennerz (CR14) 2018; 9 CR45 CR44 CR43 Clunie (CR36) 2019; 10 CR42 Fedorov, Clunie, Ulrich, Bauer, Wahle, Brown, Onken, Riesmeier, Pieper, Kikinis, Buatti, Beichel (CR18) 2016; 4 CR41 CR40 Pianykh (CR32) 2008 Roberts, Driggs, Thorpe, Gilbey, Yeung, Ursprung, Aviles-Rivero, Etmann, McCague, Beer (CR51) 2021; 3 Clunie, Hosseinzadeh, Wintell, De Mena, Lajara, Garcia-Rojo, Bueno, Saligrama, Stearrett, Toomey, Abels, Apeldoorn, Langevin, Nichols, Schmid, Horchner, Beckwith, Parwani, Pantanowitz (CR13) 2018; 9 Ardila, Kiraly, Bharadwaj, Choi, Reicher, Peng, Tse, Etemadi, Ye, Corrado, Naidich, Shetty (CR7) 2019; 25 Larobina, Murino (CR49) 2014; 27 Granter, Beck, Papke (CR10) 2017; 141 Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyo, Moreira, Razavian, Tsirigos (CR39) 2018; 24 CR16 CR15 Armato, McLennan, Bidaut, McNitt-Gray, Meyer, Reeves, Zhao, Aberle, Henschke, Hoffman, Kazerooni, MacMahon, van Beek, Yankelevitz, Biancardi, Bland, Brown, Engelmann, Laderach, Max, Pais, Qing, Roberts, Smith, Starkey, Batra, Caligiuri, Farooqi, Gladish, Jude, Munden, Petkovska, Quint, Schwartz, Sundaram, Dodd, Fenimore, Gur, Petrick, Freymann, Kirby, Hughes, Casteele, Gupte, Sallam, Heath, Kuhn, Dharaiya, Burns, Fryd, Salganicoff, Anand, Shreter, Vastagh, Croft, Clarke (CR38) 2015 CR11 CR52 Lu, Chen, Williamson, Zhao, Shady, Lipkova, Mahmood (CR3) 2021; 594 Li, Morgan, Ashburner, Smith, Rorden (CR50) 2016; 264 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR23) 2011; 12 Clark, Vendt, Smith, Freymann, Kirby, Koppel, Moore, Phillips, Maffitt, Pringle, Tarbox, Prior (CR35) 2013; 26 Roth, Lannum, Persons (CR12) 2016; 29 CR29 CR28 CR27 CR26 CR25 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, Del Ró, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (CR22) 2020; 585 CR24 CR21 CR20 683_CR21 S Armato III (683_CR38) 2015 683_CR24 K Clark (683_CR35) 2013; 26 683_CR9 683_CR20 X Li (683_CR50) 2016; 264 M Larobina (683_CR49) 2014; 27 SR Granter (683_CR10) 2017; 141 683_CR15 OS Pianykh (683_CR32) 2008 CR Harris (683_CR22) 2020; 585 SM McKinney (683_CR5) 2020; 577 683_CR16 683_CR11 683_CR52 DA Clunie (683_CR36) 2019; 10 D Ardila (683_CR7) 2019; 25 J van der Laak (683_CR4) 2021; 27 MY Lu (683_CR3) 2021; 594 G Choy (683_CR6) 2018; 288 R Gauriau (683_CR46) 2020; 33 683_CR48 683_CR47 MD Wilkinson (683_CR17) 2016; 3 683_CR44 683_CR43 683_CR45 683_CR40 D Clunie (683_CR13) 2018; 9 683_CR42 683_CR41 MD Herrmann (683_CR14) 2018; 9 N Coudray (683_CR39) 2018; 24 Y LeCun (683_CR1) 2015; 521 AM Hafiz (683_CR33) 2020; 9 F Pedregosa (683_CR23) 2011; 12 C Herz (683_CR19) 2017; 77 683_CR31 683_CR30 A Hosny (683_CR8) 2019; 366 M Roberts (683_CR51) 2021; 3 A Fedorov (683_CR18) 2016; 4 683_CR29 CJ Roth (683_CR12) 2016; 29 WD Bidgood (683_CR34) 1998; 37 683_CR26 SG Armato III (683_CR37) 2011; 38 683_CR25 G Campanella (683_CR2) 2019; 25 683_CR28 683_CR27 |
| References_xml | – ident: CR45 – volume: 33 start-page: 747 issue: 3 year: 2020 end-page: 762 ident: CR46 article-title: Using DICOM Metadata for Radiological Image Series Categorization: a Feasibility Study on Large Clinical Brain MRI Datasets publication-title: J Digit Imaging doi: 10.1007/s10278-019-00308-x – ident: CR16 – volume: 26 start-page: 1045 issue: 6 year: 2013 end-page: 1057 ident: CR35 article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository publication-title: Journal of Digital Imaging doi: 10.1007/s10278-013-9622-7 – year: 2015 ident: CR38 publication-title: Data from lidc-idri – ident: CR29 – ident: CR25 – ident: CR42 – volume: 27 start-page: 200 issue: 2 year: 2014 end-page: 206 ident: CR49 article-title: Medical image file formats publication-title: J Digit Imaging doi: 10.1007/s10278-013-9657-9 – ident: CR21 – ident: CR15 – volume: 9 start-page: 37 year: 2018 ident: CR14 article-title: Implementing the DICOM Standard for Digital Pathology publication-title: Journal of Pathology Informatics doi: 10.4103/jpi.jpi_42_18 – volume: 3 start-page: 199 issue: 3 year: 2021 end-page: 217 ident: CR51 article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans publication-title: Nature Machine Intelligence doi: 10.1038/s42256-021-00307-0 – ident: CR11 – ident: CR9 – volume: 594 start-page: 106 issue: 7861 year: 2021 end-page: 110 ident: CR3 article-title: AI-based pathology predicts origins for cancers of unknown primary publication-title: Nature doi: 10.1038/s41586-021-03512-4 – volume: 288 start-page: 318 issue: 2 year: 2018 end-page: 328 ident: CR6 article-title: Current Applications and Future Impact of Machine Learning in Radiology publication-title: Radiology doi: 10.1148/radiol.2018171820 – volume: 3 year: 2016 ident: CR17 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data doi: 10.1038/sdata.2016.18 – volume: 9 start-page: 171 issue: 3 year: 2020 end-page: 189 ident: CR33 article-title: A survey on instance segmentation: state of the art publication-title: International Journal of Multimedia Information Retrieval doi: 10.1007/s13735-020-00195-x – ident: CR26 – volume: 9 start-page: 6 year: 2018 ident: CR13 article-title: Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017 publication-title: Journal of Pathology Informatics doi: 10.4103/jpi.jpi_1_18 – ident: CR43 – volume: 29 start-page: 530 issue: 5 year: 2016 end-page: 538 ident: CR12 publication-title: A Foundation for Enterprise Imaging: HIMSS-SIIM Collaborative White Paper – ident: CR47 – volume: 25 start-page: 954 issue: 6 year: 2019 end-page: 961 ident: CR7 article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography publication-title: Nat Med doi: 10.1038/s41591-019-0447-x – ident: CR30 – volume: 24 start-page: 1559 issue: 10 year: 2018 end-page: 1567 ident: CR39 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nature Medicine doi: 10.1038/s41591-018-0177-5 – volume: 27 start-page: 775 issue: 5 year: 2021 end-page: 784 ident: CR4 article-title: Deep learning in histopathology: the path to the clinic publication-title: Nat Med doi: 10.1038/s41591-021-01343-4 – volume: 4 year: 2016 ident: CR18 article-title: DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research publication-title: PeerJ doi: 10.7717/peerj.2057 – ident: CR40 – volume: 585 start-page: 357 issue: 7825 year: 2020 end-page: 362 ident: CR22 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: CR27 – volume: 10 start-page: 12 year: 2019 ident: CR36 article-title: Dual-Personality DICOM-TIFF for Whole Slide Images: A Migration Technique for Legacy Software publication-title: Journal of Pathology Informatics doi: 10.4103/jpi.jpi_93_18 – ident: CR44 – volume: 141 start-page: 619 issue: 5 year: 2017 end-page: 621 ident: CR10 article-title: AlphaGo, Deep Learning, and the Future of the Human Microscopist publication-title: Archives of Pathology & Laboratory Medicine doi: 10.5858/arpa.2016-0471-ED – ident: CR48 – volume: 38 start-page: 915 issue: 2 year: 2011 end-page: 931 ident: CR37 article-title: The lung image database consortium (lidc) and image database resource initiative (idri): A completed reference database of lung nodules on ct scans publication-title: Medical Physics doi: 10.1118/1.3528204 – year: 2008 ident: CR32 publication-title: Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide, – ident: CR52 – volume: 264 start-page: 47 year: 2016 end-page: 56 ident: CR50 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2016.03.001 – ident: CR31 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR23 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res – volume: 37 start-page: 404 issue: 4–5 year: 1998 end-page: 414 ident: CR34 article-title: The SNOMED DICOM microglossary: controlled terminology resource for data interchange in biomedical imaging publication-title: Methods Inf Med – ident: CR28 – ident: CR41 – volume: 577 start-page: 89 issue: 7788 year: 2020 end-page: 94 ident: CR5 article-title: International evaluation of an AI system for breast cancer screening publication-title: Nature doi: 10.1038/s41586-019-1799-6 – volume: 25 start-page: 1301 issue: 8 year: 2019 end-page: 1309 ident: CR2 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nature Medicine doi: 10.1038/s41591-019-0508-1 – ident: CR24 – volume: 366 start-page: 955 issue: 6468 year: 2019 end-page: 956 ident: CR8 article-title: Artificial intelligence for global health publication-title: Science doi: 10.1126/science.aay5189 – ident: CR20 – volume: 77 start-page: e87 issue: 21 year: 2017 end-page: e90 ident: CR19 article-title: dcmqi: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results Using DICOM publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-17-0336 – ident: 683_CR45 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 683_CR1 publication-title: Nature doi: 10.1038/nature14539 – volume: 3 year: 2016 ident: 683_CR17 publication-title: Sci Data doi: 10.1038/sdata.2016.18 – ident: 683_CR9 doi: 10.1016/j.jacr.2019.04.014 – ident: 683_CR16 – ident: 683_CR27 doi: 10.1145/3411764.3445518 – volume: 27 start-page: 200 issue: 2 year: 2014 ident: 683_CR49 publication-title: J Digit Imaging doi: 10.1007/s10278-013-9657-9 – volume: 9 start-page: 171 issue: 3 year: 2020 ident: 683_CR33 publication-title: International Journal of Multimedia Information Retrieval doi: 10.1007/s13735-020-00195-x – volume-title: Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide, year: 2008 ident: 683_CR32 – ident: 683_CR26 – ident: 683_CR21 – ident: 683_CR52 doi: 10.1158/0008-5472.CAN-21-0950 – ident: 683_CR31 – ident: 683_CR41 doi: 10.1109/CVPR.2009.5206848 – volume: 27 start-page: 775 issue: 5 year: 2021 ident: 683_CR4 publication-title: Nat Med doi: 10.1038/s41591-021-01343-4 – volume: 26 start-page: 1045 issue: 6 year: 2013 ident: 683_CR35 publication-title: Journal of Digital Imaging doi: 10.1007/s10278-013-9622-7 – volume: 577 start-page: 89 issue: 7788 year: 2020 ident: 683_CR5 publication-title: Nature doi: 10.1038/s41586-019-1799-6 – ident: 683_CR29 – volume: 264 start-page: 47 year: 2016 ident: 683_CR50 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2016.03.001 – volume: 10 start-page: 12 year: 2019 ident: 683_CR36 publication-title: Journal of Pathology Informatics doi: 10.4103/jpi.jpi_93_18 – volume: 25 start-page: 1301 issue: 8 year: 2019 ident: 683_CR2 publication-title: Nature Medicine doi: 10.1038/s41591-019-0508-1 – ident: 683_CR20 – volume: 141 start-page: 619 issue: 5 year: 2017 ident: 683_CR10 publication-title: Archives of Pathology & Laboratory Medicine doi: 10.5858/arpa.2016-0471-ED – volume: 38 start-page: 915 issue: 2 year: 2011 ident: 683_CR37 publication-title: Medical Physics doi: 10.1118/1.3528204 – ident: 683_CR24 doi: 10.7717/peerj.453 – volume: 29 start-page: 530 issue: 5 year: 2016 ident: 683_CR12 publication-title: A Foundation for Enterprise Imaging: HIMSS-SIIM Collaborative White Paper – volume: 77 start-page: e87 issue: 21 year: 2017 ident: 683_CR19 publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-17-0336 – ident: 683_CR44 doi: 10.1109/ICCV.2017.324 – ident: 683_CR30 – volume: 25 start-page: 954 issue: 6 year: 2019 ident: 683_CR7 publication-title: Nat Med doi: 10.1038/s41591-019-0447-x – ident: 683_CR25 doi: 10.1118/1.3611983 – ident: 683_CR11 doi: 10.1002/path.5331 – volume-title: Data from lidc-idri year: 2015 ident: 683_CR38 – ident: 683_CR42 doi: 10.1007/978-3-030-59722-1_45 – volume: 37 start-page: 404 issue: 4–5 year: 1998 ident: 683_CR34 publication-title: Methods Inf Med – volume: 12 start-page: 2825 year: 2011 ident: 683_CR23 publication-title: J Mach Learn Res – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 683_CR22 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 594 start-page: 106 issue: 7861 year: 2021 ident: 683_CR3 publication-title: Nature doi: 10.1038/s41586-021-03512-4 – volume: 4 year: 2016 ident: 683_CR18 publication-title: PeerJ doi: 10.7717/peerj.2057 – ident: 683_CR15 doi: 10.4103/jpi.jpi_98_20 – ident: 683_CR28 – volume: 9 start-page: 37 year: 2018 ident: 683_CR14 publication-title: Journal of Pathology Informatics doi: 10.4103/jpi.jpi_42_18 – ident: 683_CR40 doi: 10.1109/CVPR.2016.90 – ident: 683_CR47 doi: 10.1055/s-0039-1677903 – volume: 24 start-page: 1559 issue: 10 year: 2018 ident: 683_CR39 publication-title: Nature Medicine doi: 10.1038/s41591-018-0177-5 – volume: 33 start-page: 747 issue: 3 year: 2020 ident: 683_CR46 publication-title: J Digit Imaging doi: 10.1007/s10278-019-00308-x – volume: 366 start-page: 955 issue: 6468 year: 2019 ident: 683_CR8 publication-title: Science doi: 10.1126/science.aay5189 – volume: 9 start-page: 6 year: 2018 ident: 683_CR13 publication-title: Journal of Pathology Informatics doi: 10.4103/jpi.jpi_1_18 – ident: 683_CR43 doi: 10.1038/s41551-020-00682-w – ident: 683_CR48 – volume: 288 start-page: 318 issue: 2 year: 2018 ident: 683_CR6 publication-title: Radiology doi: 10.1148/radiol.2018171820 – volume: 3 start-page: 199 issue: 3 year: 2021 ident: 683_CR51 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-021-00307-0 |
| SSID | ssj0017574 |
| Score | 2.0325408 |
| Snippet | Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1719 |
| SubjectTerms | Computed tomography Data Curation Decoding Digital imaging Ecosystem Format Freeware Humans Image annotation Image processing Imaging Interoperability Learning algorithms Libraries Machine Learning Medical imaging Medical research Medicine Medicine & Public Health Methods Paper Pathology Programming languages Python Radiology Radiology Information Systems Representations Software Standardization State-of-the-art reviews Tomography, X-Ray Computed |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEO8GCjISNxopiZPY5lZVrQrSQgVU6i2ynbistHVW3UQo_AJ-Nh7Hm7IUVXCMPHFizUw8zjfzDcCbnCqhODNxqeoszhVPY1WYOtZCUWpEnlDfRWH2sTw6yT-cFqeBJgdrYf7A77HELUMOWHdkwmoGGg834ZbbpEoPzJb7E2LAipFxmQsWp5yLUCDz9zk2N6ErkeXVBMkJJb0Hd3q7lMN3uVj8thEdPoD7IYIke6PKH8KNxj6C27OAkT-Gn5i64S7a83dEkuMByQFIKE8gLkQlX8Lfg_mPpiYHVre4fZHWkPfn7uNC9qxtR3x-RZwgmfl0y4YEJtYzgu3TFuRT3y37bkXmlhzLzn9DBy__WdZjCcwTODk8-Lp_FId-C7HOWd7FOuWSuSOrdiGUrnXa5JmuRWKYlMxk3BRKSpHyMuUsU1xSxYV0EQY36OSJUfQpbNnWNttAZKELjUerxpicZlIVvKlNqqko8tIYGkG6VkClAxk59sRYVJc0yqi0yimt8kqrhgjeTvcsRyqOa6V31nqtgluuKsSluUD-nQheT8POoRAlkbZpe5RJPBaVZBE8G81gehxFejYueARsw0AmASTr3hyx82-etFuwFFsLRLC7NqXL17puFbuTuf3Dop__3-wv4G6GXuGzc3Zgq7vom5cuxurUK-9cvwDogB4N priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToLxwPdHYCAj8cbSJXHS2LxVsGkgdVRApfIU2Y4N1TqnoolQ9hfwZ2M7H1sZmkA8Rr58nH2-O-fufgfwMsaccpIqf8TzyI85CX2eqNwXlGOsaBxg10Vhcjw6msXv58l8C952tTAu270LSTY1DRalSZf7q1ztXyh8iywyrDlI2RoH7NdDM3wNtkeJ8cgHsD07no6_OAeSpn5IXCc8Cw3vG3M9b2tn_vygTft0yem8nDvZB1Bvwo1Kr1j9gy2XF2zU4W2QHXdNasrJsCr5UJz9Bvz4v-zfgVutE4vGjdTdhS2p78H1SRumvw8_bfaIuShOXyOGprXFJ0BthQQyXjL61P7AWJzJHB1oUVgLigqF3p0a_YbGWhdNisAaGUI0cRmfErVgsF-R7eC2RB-qclWVa7TQaMpKp8ZrR_-R5U0VzgOYHR58fnPkty0ffBGncemLkLDUnJqF8eJELkIZRyKngUoZS1VEVMIZoyExK5lGnDDMCWXGySHK6plAcfwQBrrQ8jEglohE2NOdVCrGEeMJkbkKBaZJPFIKexB2C52JFg_dtuVYZudIznaaMzPNmZvmrPbgVX_PqkEDuZJ6t5OfrNUM68yGxgm1EEAevOiHzZ62gRqmZVFZmsCFw4LIg0eNuPWvwxYhjlDiQbohiD2BxQvfHNGLbw43nKah7W7gwV4nYeefdRUXe71Y_wXTT_6N_CnsRFaOXYLQLgzK75V8Zty8kj9vd_EvrllLBg priority: 102 providerName: Unpaywall |
| Title | Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology |
| URI | https://link.springer.com/article/10.1007/s10278-022-00683-y https://www.ncbi.nlm.nih.gov/pubmed/35995898 https://www.proquest.com/docview/2742892635 https://www.proquest.com/docview/2705751802 https://pubmed.ncbi.nlm.nih.gov/PMC9712874 https://link.springer.com/content/pdf/10.1007/s10278-022-00683-y.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1618-727X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: ADMLS dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1618-727X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1618-727X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: GX1 dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1618-727X dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: RPM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1618-727X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1618-727X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: 7X7 dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1618-727X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1618-727X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1618-727X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017574 issn: 1618-727X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_uWvDxQXwbPcsKfvOCzau7K4jU0t6ptJbTQu9T2N1ktdBLqk2R-hf4Z7uTbFLLQfHLQrITkmUeO5uZ-Q3AyzCQXDKq3Z5MfDeUzHNlpBNXcRkEmofdoOyiMJ70zmfhx3k0P4JJXQuDaZW1TSwNdZIr_Ef-GkOKjCN0yrvVDxe7RmF0tW6hIWxrheRtCTF2DG0fkbFa0H4_nEwvmrgCjSpcZsap6zHGbRmNLabzEW3WHM6wbiJwt_tb1TX_83oaZRNLvQ03N9lKbH-J5fKf7Wp0F-5YP5P0K8G4B0dpdh9ujG0k_QH8wQQPc5FfvSGCTLcIIUBsEQMxjiz5Yv8xLH6nCRlmKsdNjuSafLgyJoj0syyvovhrYgjJuEzKTInFa_1GsMnaknzeFKtNsSaLjExFUVrabUl_IZKqUOYhzEbDr4Nz13ZlcFVIw8JVHhPUHGyVcbRUorw09FXCu5oKQbXPdCSF4B7reYz6kolAMi6MH8I0moKulsEjaGV5lj4BIiIVKTyApVqHgS9kxNJEeyrgUdjTOnDAqxkQKwtZjp0zlvEObBmZFhumxSXT4q0Dr5pnVhVgx0Hqk5qvsVXedbwTNQdeNNNG7TCWIrI03yBNt4xYdX0HHldi0LwuQBA3xpkDdE9AGgKE9N6fyRbfS2hvTj1sQODAaS1Ku886tIrTRtz-Y9FPDy_6GdzyUQvKnJ0TaBU_N-lz43kVsgPHdE7NyEZnHWj3zy4_DTtWxczdQW9gxrO5Z8aZ3zczs8m0f_kXE7gzGw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLwgPgmMMBI8MQimjhpbKQJDejUsrVUY5P2FmwnhkpdUmiqKfwF_FX8bfgSJ6WaVPGyxyiXD-s-fOe7-x3Ay4BKLlmk3a5MfDeQzHNlqBNXcUmp5kGHVlMUhqNu_zT4dBaebcCfphcGyyobm1gZ6iRXeEb-BlOKjCN0yrvZDxenRmF2tRmhIexohWSvghizjR2HaXlhQrj53uCj4fcr3z_onXzou3bKgKuCKChc5TERmUBNGcdBJcpLA18lvKMjISLtMx1KIbjHuh6LfMkElYwLs68yjaLd0ZKa916DrYAG3AR_W-97o_Fxm8eIwhoHmvHI9Rjjtm3HNu_5iG5rgkHs06Buubo1XvJ3L5dttrnbm7C9yGaivBDT6T_b48FtuGX9WrJfC-Id2Eizu3B9aDP39-A3FpSYi_z8LRFkXCJkAbFNE8Q4zuSLPdOY_EoT0stUjpsqyTUZnBuTR_azLK-rBubEEJJhVQSaEosP-43gULcp-bwoZotiTiYZGYuisuxlRX8skrox5z6cXgl_HsBmlmfpIyAiVKHCgC_VOqC-kCFLE-0pysOgqzV1wGsYECsLkY6TOqbxEtwZmRYbpsUV0-LSgdftM7MaIGQt9U7D19gai3m8FG0HXrS3jZpj7kZkab5Amk6VIev4DjysxaD9HEXQOMaZA9GKgLQECCG-eiebfK-gxHnk4cADB3YbUVr-1rpV7Lbi9h-Lfrx-0c9hu38yPIqPBqPDJ3DDR42o6oV2YLP4uUifGq-vkM-sahH4etXa_Bf-bmgv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IN4YCiwSnKhVP-NdJIQq2qihpERApdzM7nq3jZTagTiqzC_gN_Hr2LHXDlGliEuPkcd2VvP2zHwD8CoKBRM00W5PZIEbCeq7ItaZK5kIQ80iL6y3KAyPe4cn0cdxPN6AP-0sDLZVtjaxNtRZIfEb-S6WFClD6JRdbdsiRvv997MfLm6Qwkpru06jEZEjVV2Y9G3-brBveP06CPoH3z4cunbDgCujJCpd6VOemCRNmqBBZtJXUSAz5umE80QHVMeCc-bTnk-TQFAeCsq48alUo1h7WoTmudfgunkEw3bCZNwle8YrNwjQlCWuTymzAzt2bC9AXFuTBuKERuhWq07xUqR7uWGzq9reghuLfMarCz6d_uMY-3fgto1oyV4jgndhQ-X3YGtoa_b34Te2kpgfxflbwsmoQrACYscliAmZyVf7NWPyS2XkIJcFulNSaDI4N8aO7OV50fQLzIkhJMO6_VMRiwx7SnCd25R8XpSzRTknk5yMeFnb9Kqm_8KzZiTnAZxcCXcewmZe5OoxEB7LWGKqp7SOwoCLmKpM-9LwLeppHTrgtwxIpQVHxx0d03QJ64xMSw3T0pppaeXAm-6eWQMNspZ6u-Vras3EPF0KtQMvu8tGwbFqw3NVLJDGq2tjXuDAo0YMuteFCBdHGXUgWRGQjgDBw1ev5JOzGkScJT6uOnBgpxWl5d9ad4qdTtz-49BP1h_6BWwZHU4_DY6PnsLNABWibhTahs3y50I9M-FeKZ7XekXg-1Ur8l8aFmXJ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToLxwPdHYCAj8cbSJXHS2LxVsGkgdVRApfIU2Y4N1TqnoolQ9hfwZ2M7H1sZmkA8Rr58nH2-O-fufgfwMsaccpIqf8TzyI85CX2eqNwXlGOsaBxg10Vhcjw6msXv58l8C952tTAu270LSTY1DRalSZf7q1ztXyh8iywyrDlI2RoH7NdDM3wNtkeJ8cgHsD07no6_OAeSpn5IXCc8Cw3vG3M9b2tn_vygTft0yem8nDvZB1Bvwo1Kr1j9gy2XF2zU4W2QHXdNasrJsCr5UJz9Bvz4v-zfgVutE4vGjdTdhS2p78H1SRumvw8_bfaIuShOXyOGprXFJ0BthQQyXjL61P7AWJzJHB1oUVgLigqF3p0a_YbGWhdNisAaGUI0cRmfErVgsF-R7eC2RB-qclWVa7TQaMpKp8ZrR_-R5U0VzgOYHR58fnPkty0ffBGncemLkLDUnJqF8eJELkIZRyKngUoZS1VEVMIZoyExK5lGnDDMCWXGySHK6plAcfwQBrrQ8jEglohE2NOdVCrGEeMJkbkKBaZJPFIKexB2C52JFg_dtuVYZudIznaaMzPNmZvmrPbgVX_PqkEDuZJ6t5OfrNUM68yGxgm1EEAevOiHzZ62gRqmZVFZmsCFw4LIg0eNuPWvwxYhjlDiQbohiD2BxQvfHNGLbw43nKah7W7gwV4nYeefdRUXe71Y_wXTT_6N_CnsRFaOXYLQLgzK75V8Zty8kj9vd_EvrllLBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highdicom%3A+a+Python+Library+for+Standardized+Encoding+of+Image+Annotations+and+Machine+Learning+Model+Outputs+in+Pathology+and+Radiology&rft.jtitle=Journal+of+digital+imaging&rft.au=Bridge%2C+Christopher+P.&rft.au=Gorman%2C+Chris&rft.au=Pieper%2C+Steven&rft.au=Doyle%2C+Sean+W.&rft.date=2022-12-01&rft.pub=Springer+International+Publishing&rft.issn=0897-1889&rft.eissn=1618-727X&rft.volume=35&rft.issue=6&rft.spage=1719&rft.epage=1737&rft_id=info:doi/10.1007%2Fs10278-022-00683-y&rft_id=info%3Apmid%2F35995898&rft.externalDocID=PMC9712874 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-1889&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-1889&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-1889&client=summon |