Principal Component Based Diffeomorphic Surface Mapping

We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in whi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 31; no. 2; pp. 302 - 311
Main Authors Anqi Qiu, Younes, L., Miller, M. I.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2011.2168567

Cover

Abstract We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.
AbstractList We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.
We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.
Author Miller, M. I.
Anqi Qiu
Younes, L.
Author_xml – sequence: 1
  surname: Anqi Qiu
  fullname: Anqi Qiu
  email: bieqa@nus.edu.sg
  organization: Div. of Bioeng. & Clinical Imaging Res. Center, Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 2
  givenname: L.
  surname: Younes
  fullname: Younes, L.
  organization: Dept. of Appl. Math. & Stat., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 3
  givenname: M. I.
  surname: Miller
  fullname: Miller, M. I.
  organization: Dept. of Bioeng. & Clinical Imaging Res. Center, Nat. Univ. of Singapore, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21937344$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rFTEYhYNU7G11LwgyuHE113xPshH01o9Ci4IV3IVM5p02ZSaZZmYs_fdmuNeqVxCzySLnnJz3SY7QQYgBEHpK8JoQrF9dnJ-uKSZkTYlUQlYP0IoIoUoq-LcDtMK0UiXGkh6io3G8xphwgfUjdEiJZhXjfIWqz8kH5wfbFZvYDzk-TMVbO0JTnPi2hdjHNFx5V3yZU2sdFOd2GHy4fIwetrYb4cluP0Zf37-72Hwszz59ON28OSsdr_hU1jWDlmlQREghuaVQ1Q2lQjhc15I7sJwT0rREClcpCU5bpVRDaqGkUgyzY0S2uXMY7N2t7TozJN_bdGcINgsEM_XeLBDMDkL2vN56hrnuoXF5pGR_-aL15s-T4K_MZfxumCQ698kBL3cBKd7MME6m96ODrrMB4jwaTaXGPMP9DyVmMq9F-WJPeR3nFDK7RUSJqLTMoue_N7-v_PO9sgBvBS7FcUzQ_kUjf4l9GnLP4vxkJx-X2X33L-OzrdEDwP09ElOqMGU_AM2fwDw
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_neuroimage_2016_03_069
crossref_primary_10_1016_j_gmod_2014_04_010
crossref_primary_10_1016_j_media_2017_12_008
crossref_primary_10_1146_annurev_bioeng_071114_040601
crossref_primary_10_1109_TPAMI_2016_2578317
crossref_primary_10_3390_brainsci9090212
crossref_primary_10_1155_2013_205494
crossref_primary_10_1016_j_media_2017_06_013
crossref_primary_10_1109_TMI_2021_3056531
crossref_primary_10_1016_j_media_2015_04_009
crossref_primary_10_1109_TMI_2019_2897112
crossref_primary_10_1016_j_neuroimage_2012_07_033
Cites_doi 10.1109/TMI.2007.892499
10.1090/qam/1668732
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1109/ISBI.2007.356825
10.1109/TMI.2002.1009388
10.1016/j.neuroimage.2006.08.053
10.1016/j.neuroimage.2009.08.026
10.1023/A:1008001603737
10.1109/TMI.2008.918338
10.1176/appi.ajp.2008.08030426
10.1109/TIP.2010.2042099
10.1109/ICCV.2003.1238383
10.1016/j.neuroimage.2004.07.023
10.1016/S0896-6273(02)00569-X
10.1007/11505730_32
10.1007/978-3-540-75757-3_116
10.1212/WNL.55.11.1636
10.1016/j.neuroimage.2008.04.257
10.1090/qam/1632326
10.1090/S0025-5718-1973-0348991-3
10.1007/11566489_57
10.1176/appi.ajp.158.2.244
10.1007/s10851-005-3624-0
10.1109/TMI.2006.887380
10.1016/j.media.2004.06.009
10.1016/j.neuroimage.2009.12.125
10.1162/jocn.2007.19.9.1498
10.1016/j.media.2009.07.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012
2011 IEEE 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012
– notice: 2011 IEEE 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TMI.2011.2168567
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 311
ExternalDocumentID oai:scholarbank.nus.edu.sg:10635/88067
PMC3619441
2580540991
21937344
10_1109_TMI_2011_2168567
6022802
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB000975
– fundername: NCRR NIH HHS
  grantid: P41 RR015241
– fundername: National Center for Research Resources : NCRR
  grantid: P41 RR015241 || RR
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB000975 || EB
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-bb3ef39e8156564a2e7bd2255c0bb64cea4411df165c786ec9a888d1b58688303
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Oct 26 03:51:58 EDT 2025
Tue Sep 30 16:56:44 EDT 2025
Tue Oct 07 09:21:23 EDT 2025
Mon Sep 29 06:03:28 EDT 2025
Sun Jun 29 12:32:43 EDT 2025
Thu Apr 03 07:00:56 EDT 2025
Thu Apr 24 23:11:46 EDT 2025
Wed Oct 01 03:55:21 EDT 2025
Tue Aug 26 17:19:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-bb3ef39e8156564a2e7bd2255c0bb64cea4411df165c786ec9a888d1b58688303
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/88067
PMID 21937344
PQID 920215796
PQPubID 85460
PageCount 10
ParticipantIDs proquest_miscellaneous_926904278
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619441
crossref_citationtrail_10_1109_TMI_2011_2168567
ieee_primary_6022802
proquest_miscellaneous_920366668
pubmed_primary_21937344
crossref_primary_10_1109_TMI_2011_2168567
unpaywall_primary_10_1109_tmi_2011_2168567
proquest_journals_920215796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2012
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref31
ref11
ref10
qiu (ref28) 2010; 19
ref2
ref1
ref17
ref16
ref19
grenander (ref20) 1998; 56
ref18
dupuis (ref21) 1998; 56
vaillant (ref23) 2007; 34
ref24
ref26
ref25
ref22
wang (ref8) 2005
ref27
ref29
ref7
golub (ref30) 1996
ref4
ref3
ref6
ref5
vaillant (ref14) 2005; 3565
chung (ref9) 2008
References_xml – ident: ref11
  doi: 10.1109/TMI.2007.892499
– volume: 56
  start-page: 617
  year: 1998
  ident: ref20
  article-title: Computational anatomy: An emerging discipline
  publication-title: Q App Math
  doi: 10.1090/qam/1668732
– ident: ref6
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– ident: ref13
  doi: 10.1109/ISBI.2007.356825
– ident: ref4
  doi: 10.1109/TMI.2002.1009388
– volume: 34
  start-page: 1149
  year: 2007
  ident: ref23
  article-title: Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.053
– ident: ref15
  doi: 10.1016/j.neuroimage.2009.08.026
– ident: ref22
  doi: 10.1023/A:1008001603737
– ident: ref10
  doi: 10.1109/TMI.2008.918338
– year: 1996
  ident: ref30
  publication-title: Matrix Computations
– ident: ref1
  doi: 10.1176/appi.ajp.2008.08030426
– volume: 19
  start-page: 1539
  year: 2010
  ident: ref28
  article-title: Atlas generation of subcortical and ventricular structures with its applications in shape analysis
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2042099
– ident: ref24
  doi: 10.1109/ICCV.2003.1238383
– ident: ref18
  doi: 10.1016/j.neuroimage.2004.07.023
– ident: ref26
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 3565
  start-page: 381
  year: 2005
  ident: ref14
  article-title: Surface matching via currents
  publication-title: Inform Process Med Imag
  doi: 10.1007/11505730_32
– ident: ref5
  doi: 10.1007/978-3-540-75757-3_116
– start-page: 1061
  year: 2005
  ident: ref8
  article-title: Surface parameterization using Riemann surface structure
  publication-title: ICCV
– ident: ref31
  doi: 10.1212/WNL.55.11.1636
– ident: ref27
  doi: 10.1016/j.neuroimage.2008.04.257
– volume: 56
  start-page: 587
  year: 1998
  ident: ref21
  article-title: Variational problems on flows of diffeomorphisms for image matching
  publication-title: Q Appl Math
  doi: 10.1090/qam/1632326
– ident: ref29
  doi: 10.1090/S0025-5718-1973-0348991-3
– ident: ref12
  doi: 10.1007/11566489_57
– ident: ref2
  doi: 10.1176/appi.ajp.158.2.244
– ident: ref17
  doi: 10.1007/s10851-005-3624-0
– ident: ref19
  doi: 10.1109/TMI.2006.887380
– ident: ref7
  doi: 10.1016/j.media.2004.06.009
– ident: ref3
  doi: 10.1016/j.neuroimage.2009.12.125
– ident: ref25
  doi: 10.1162/jocn.2007.19.9.1498
– ident: ref16
  doi: 10.1016/j.media.2009.07.007
– start-page: 128
  year: 2008
  ident: ref9
  article-title: Tiling manifolds with orthonormal basis
  publication-title: Proc MICCAI 2008 Workshop Math Foundations Computat Anat
SSID ssj0014509
Score 2.1952755
Snippet We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 302
SubjectTerms Algorithms
Brain - anatomy & histology
Computer Simulation
Diffeomorphisms
Hilbert space
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
initial momentum
Kernel
Magnetic Resonance Imaging - methods
Models, Statistical
Pattern Recognition, Automated - methods
Principal Component Analysis
Reproducibility of Results
Sensitivity and Specificity
Shape
Studies
surface mapping
Surface waves
Vectors
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwNFyhALKAy8gZTeHj_ixHFVB2qqIrrQ8RbbjlFW32apNhODXM7aT0NWiCh6jjBVbM-M57HwfwGvDYymxcIikojQitEoiYZSMtI6JZIKKSts-5PSIHc7I5zmdb0FPgthVdErWZ-O69UiCV6cTjziAHo7hcYIWx_gt2GYUs-8RbM-Ojve_uVaKBYuNHYcoRkk0AErm_clkLCbN-cJDdqYJy6kjlv8TiRy1yt-yzM3Lknfa-kL-_CGXy2uR6OABfOn_5_EXUM7GbaPG-tcmvOM_L_Ih3O_S0nDf29Ej2DL1Dty7Bla4A7en3TH8LvBj36LHEXY_WdU46fAdxsMy_GAJV1bnK1TfQodf28tKahNOpYWBOH0Ms4OPJ-8Po46BIdKEkyZSKjNVJoyFlKGMyNRwVeIOQHWsFCPaSMymkrJKGNU8Z0YLiRV1mSiaszzH6PgERjVO4hmEmHkomeVUJxZCrMQoqCudpZIYFedlzAKY9NoodAdPblkyloUrU2JRnEw_FVZ_Rae_AN4MIy48NMcNsrtWwYMcczBAaQB7vcKLznevCpHaPIgLnFI4vEWnsycpsjar1olkWPex_CYRJhyPSQBPvQENH8cgkfGMkAD4mmkNAhbye_1NvfjuoL8z23QiSQBvByPcWDva-dran_-P8B7cxcfU30t_AaPmsjUvMe1q1KvO034DlXAmQQ
  priority: 102
  providerName: Unpaywall
Title Principal Component Based Diffeomorphic Surface Mapping
URI https://ieeexplore.ieee.org/document/6022802
https://www.ncbi.nlm.nih.gov/pubmed/21937344
https://www.proquest.com/docview/920215796
https://www.proquest.com/docview/920366668
https://www.proquest.com/docview/926904278
https://pubmed.ncbi.nlm.nih.gov/PMC3619441
http://scholarbank.nus.edu.sg/handle/10635/88067
UnpaywallVersion submittedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgJ6oNAHhEKVAxcQ2c3DduJjeVQFKVUlulI5RbbjtKtuk6okquDXM7aTqEurilskj5OMZ-wZe8bfALzTaSgEbhwCISkNCK2igGspAqVCIhinvFLmHDI_Yocz8v2Unq7Ax_EujNbaJp_piXm0sfyyUZ05KpsyC96CC-6jNGPurtYYMSDUpXPEBjE2ZPEQkgz59CT_5rA644hllKUWABjNckLIkjWy5VXu8zTvJkw-6eor8ftGLBa3rNHBBuQDHy4J5WLStXKi_vwD8fi_jD6HZ71b6u87PXoBK7rehPVbYIWb8Djvw_BbkB67I3rsYdaTpsa3-Z_QHpb-F1NwpblsUHxz5f_oriuhtJ8LAwNxtg2zg68nnw-DvgJDoEhK2kDKRFcJ1wZShjIiYp3KElcAqkIpGVFaoDcVlVXEqEKRaMUF7qjLSNKMZRlaxx1YrfEnXoGPnocUSUZVZCDESrSCqlJJLIiWYVaGzIPpIIlC9fDkpkrGorDblJAXKMbCiLHoxejB-7HHlYPmeIB2y4zySNcPsAe7g7CLfu7-Knhs_KCU4y_5YytOOhNJEbVuOkuS4L6PZQ-RMG7rmHjw0inP-PFB-TxIl9RqJDCQ38st9fzcQn8n5tCJRB58GBXwDu_t5XyJ99f3874LT5Eqdhnob2C1ve70W3SwWrlnZ9YerM2Ojvd__gVO_yAR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKpVy6APaktJHDr20anbzsJ342BdaWoIqdZG4RbbjtCuWBEEiRH99x3YSsQWh3iJ5nGQ8Y8_YM_4G4K1OQyFw4xAISWlAaBUFXEsRKBUSwTjllTLnkPkhmx2Rb8f0eA0-jHdhtNY2-UxPzKON5ZeN6sxR2ZRZ8BZccO9RQgh1t7XGmAGhLqEjNpixIYuHoGTIp_N836F1xhHLKEstBDAa5oSQFXtkC6zc5mveTJnc6OozcXUplstr9mjvEeQDJy4N5WTStXKi_vwD8vi_rD6Gh71j6n90mvQE1nS9BZvX4Aq34H7eB-K3If3hDumxh1lRmhrf5n9Ci1j6X0zJlea0QQEulP-zO6-E0n4uDBDEr6dwtPd1_nkW9DUYAkVS0gZSJrpKuDagMpQREetUlrgGUBVKyYjSAv2pqKwiRlWaMa24wD11GUmasSxD-_gM1mv8iR3w0feQIsmoigyIWIl2UFUqiQXRMszKkHkwHSRRqB6g3NTJWBZ2oxLyAsVYGDEWvRg9eDf2OHPgHHfQbptRHun6AfZgdxB20c_ei4LHxhNKOf6SP7bitDOxFFHrprMkCe78WHYXCeO2kokHz53yjB8flM-DdEWtRgID-r3aUi9-W_DvxBw7kciD96MC3uC9PV2s8P7idt7fwMZsnh8UB_uH33fhAfaIXT76S1hvzzv9Ct2tVr62s-wvcUAhrg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwNFyhALKAy8gZTeHj_ixHFVB2qqIrrQ8RbbjlFW32apNhODXM7aT0NWiCh6jjBVbM-M57HwfwGvDYymxcIikojQitEoiYZSMtI6JZIKKSts-5PSIHc7I5zmdb0FPgthVdErWZ-O69UiCV6cTjziAHo7hcYIWx_gt2GYUs-8RbM-Ojve_uVaKBYuNHYcoRkk0AErm_clkLCbN-cJDdqYJy6kjlv8TiRy1yt-yzM3Lknfa-kL-_CGXy2uR6OABfOn_5_EXUM7GbaPG-tcmvOM_L_Ih3O_S0nDf29Ej2DL1Dty7Bla4A7en3TH8LvBj36LHEXY_WdU46fAdxsMy_GAJV1bnK1TfQodf28tKahNOpYWBOH0Ms4OPJ-8Po46BIdKEkyZSKjNVJoyFlKGMyNRwVeIOQHWsFCPaSMymkrJKGNU8Z0YLiRV1mSiaszzH6PgERjVO4hmEmHkomeVUJxZCrMQoqCudpZIYFedlzAKY9NoodAdPblkyloUrU2JRnEw_FVZ_Rae_AN4MIy48NMcNsrtWwYMcczBAaQB7vcKLznevCpHaPIgLnFI4vEWnsycpsjar1olkWPex_CYRJhyPSQBPvQENH8cgkfGMkAD4mmkNAhbye_1NvfjuoL8z23QiSQBvByPcWDva-dran_-P8B7cxcfU30t_AaPmsjUvMe1q1KvO034DlXAmQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+component+based+diffeomorphic+surface+mapping&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Qiu%2C+Anqi&rft.au=Younes%2C+Laurent&rft.au=Miller%2C+Michael+I&rft.date=2012-02-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=31&rft.issue=2&rft.spage=302&rft_id=info:doi/10.1109%2FTMI.2011.2168567&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon