Principal Component Based Diffeomorphic Surface Mapping
We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in whi...
        Saved in:
      
    
          | Published in | IEEE transactions on medical imaging Vol. 31; no. 2; pp. 302 - 311 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.02.2012
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-0062 1558-254X 1558-254X  | 
| DOI | 10.1109/TMI.2011.2168567 | 
Cover
| Abstract | We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior. | 
    
|---|---|
| AbstractList | We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior. We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.  | 
    
| Author | Miller, M. I. Anqi Qiu Younes, L.  | 
    
| Author_xml | – sequence: 1 surname: Anqi Qiu fullname: Anqi Qiu email: bieqa@nus.edu.sg organization: Div. of Bioeng. & Clinical Imaging Res. Center, Nat. Univ. of Singapore, Singapore, Singapore – sequence: 2 givenname: L. surname: Younes fullname: Younes, L. organization: Dept. of Appl. Math. & Stat., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 3 givenname: M. I. surname: Miller fullname: Miller, M. I. organization: Dept. of Bioeng. & Clinical Imaging Res. Center, Nat. Univ. of Singapore, Singapore, Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21937344$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1rFTEYhYNU7G11LwgyuHE113xPshH01o9Ci4IV3IVM5p02ZSaZZmYs_fdmuNeqVxCzySLnnJz3SY7QQYgBEHpK8JoQrF9dnJ-uKSZkTYlUQlYP0IoIoUoq-LcDtMK0UiXGkh6io3G8xphwgfUjdEiJZhXjfIWqz8kH5wfbFZvYDzk-TMVbO0JTnPi2hdjHNFx5V3yZU2sdFOd2GHy4fIwetrYb4cluP0Zf37-72Hwszz59ON28OSsdr_hU1jWDlmlQREghuaVQ1Q2lQjhc15I7sJwT0rREClcpCU5bpVRDaqGkUgyzY0S2uXMY7N2t7TozJN_bdGcINgsEM_XeLBDMDkL2vN56hrnuoXF5pGR_-aL15s-T4K_MZfxumCQ698kBL3cBKd7MME6m96ODrrMB4jwaTaXGPMP9DyVmMq9F-WJPeR3nFDK7RUSJqLTMoue_N7-v_PO9sgBvBS7FcUzQ_kUjf4l9GnLP4vxkJx-X2X33L-OzrdEDwP09ElOqMGU_AM2fwDw | 
    
| CODEN | ITMID4 | 
    
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2016_03_069 crossref_primary_10_1016_j_gmod_2014_04_010 crossref_primary_10_1016_j_media_2017_12_008 crossref_primary_10_1146_annurev_bioeng_071114_040601 crossref_primary_10_1109_TPAMI_2016_2578317 crossref_primary_10_3390_brainsci9090212 crossref_primary_10_1155_2013_205494 crossref_primary_10_1016_j_media_2017_06_013 crossref_primary_10_1109_TMI_2021_3056531 crossref_primary_10_1016_j_media_2015_04_009 crossref_primary_10_1109_TMI_2019_2897112 crossref_primary_10_1016_j_neuroimage_2012_07_033  | 
    
| Cites_doi | 10.1109/TMI.2007.892499 10.1090/qam/1668732 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1109/ISBI.2007.356825 10.1109/TMI.2002.1009388 10.1016/j.neuroimage.2006.08.053 10.1016/j.neuroimage.2009.08.026 10.1023/A:1008001603737 10.1109/TMI.2008.918338 10.1176/appi.ajp.2008.08030426 10.1109/TIP.2010.2042099 10.1109/ICCV.2003.1238383 10.1016/j.neuroimage.2004.07.023 10.1016/S0896-6273(02)00569-X 10.1007/11505730_32 10.1007/978-3-540-75757-3_116 10.1212/WNL.55.11.1636 10.1016/j.neuroimage.2008.04.257 10.1090/qam/1632326 10.1090/S0025-5718-1973-0348991-3 10.1007/11566489_57 10.1176/appi.ajp.158.2.244 10.1007/s10851-005-3624-0 10.1109/TMI.2006.887380 10.1016/j.media.2004.06.009 10.1016/j.neuroimage.2009.12.125 10.1162/jocn.2007.19.9.1498 10.1016/j.media.2009.07.007  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012 2011 IEEE 2011  | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012 – notice: 2011 IEEE 2011  | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1109/TMI.2011.2168567 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Materials Research Database Engineering Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-254X | 
    
| EndPage | 311 | 
    
| ExternalDocumentID | oai:scholarbank.nus.edu.sg:10635/88067 PMC3619441 2580540991 21937344 10_1109_TMI_2011_2168567 6022802  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB000975 – fundername: NCRR NIH HHS grantid: P41 RR015241 – fundername: National Center for Research Resources : NCRR grantid: P41 RR015241 || RR – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB000975 || EB  | 
    
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c474t-bb3ef39e8156564a2e7bd2255c0bb64cea4411df165c786ec9a888d1b58688303 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0278-0062 1558-254X  | 
    
| IngestDate | Sun Oct 26 03:51:58 EDT 2025 Tue Sep 30 16:56:44 EDT 2025 Tue Oct 07 09:21:23 EDT 2025 Mon Sep 29 06:03:28 EDT 2025 Sun Jun 29 12:32:43 EDT 2025 Thu Apr 03 07:00:56 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Wed Oct 01 03:55:21 EDT 2025 Tue Aug 26 17:19:20 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c474t-bb3ef39e8156564a2e7bd2255c0bb64cea4411df165c786ec9a888d1b58688303 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/88067 | 
    
| PMID | 21937344 | 
    
| PQID | 920215796 | 
    
| PQPubID | 85460 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_926904278 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619441 crossref_citationtrail_10_1109_TMI_2011_2168567 ieee_primary_6022802 proquest_miscellaneous_920366668 pubmed_primary_21937344 crossref_primary_10_1109_TMI_2011_2168567 unpaywall_primary_10_1109_tmi_2011_2168567 proquest_journals_920215796  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-02-01 | 
    
| PublicationDateYYYYMMDD | 2012-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on medical imaging | 
    
| PublicationTitleAbbrev | TMI | 
    
| PublicationTitleAlternate | IEEE Trans Med Imaging | 
    
| PublicationYear | 2012 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref31 ref11 ref10 qiu (ref28) 2010; 19 ref2 ref1 ref17 ref16 ref19 grenander (ref20) 1998; 56 ref18 dupuis (ref21) 1998; 56 vaillant (ref23) 2007; 34 ref24 ref26 ref25 ref22 wang (ref8) 2005 ref27 ref29 ref7 golub (ref30) 1996 ref4 ref3 ref6 ref5 vaillant (ref14) 2005; 3565 chung (ref9) 2008  | 
    
| References_xml | – ident: ref11 doi: 10.1109/TMI.2007.892499 – volume: 56 start-page: 617 year: 1998 ident: ref20 article-title: Computational anatomy: An emerging discipline publication-title: Q App Math doi: 10.1090/qam/1668732 – ident: ref6 doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – ident: ref13 doi: 10.1109/ISBI.2007.356825 – ident: ref4 doi: 10.1109/TMI.2002.1009388 – volume: 34 start-page: 1149 year: 2007 ident: ref23 article-title: Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.08.053 – ident: ref15 doi: 10.1016/j.neuroimage.2009.08.026 – ident: ref22 doi: 10.1023/A:1008001603737 – ident: ref10 doi: 10.1109/TMI.2008.918338 – year: 1996 ident: ref30 publication-title: Matrix Computations – ident: ref1 doi: 10.1176/appi.ajp.2008.08030426 – volume: 19 start-page: 1539 year: 2010 ident: ref28 article-title: Atlas generation of subcortical and ventricular structures with its applications in shape analysis publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2042099 – ident: ref24 doi: 10.1109/ICCV.2003.1238383 – ident: ref18 doi: 10.1016/j.neuroimage.2004.07.023 – ident: ref26 doi: 10.1016/S0896-6273(02)00569-X – volume: 3565 start-page: 381 year: 2005 ident: ref14 article-title: Surface matching via currents publication-title: Inform Process Med Imag doi: 10.1007/11505730_32 – ident: ref5 doi: 10.1007/978-3-540-75757-3_116 – start-page: 1061 year: 2005 ident: ref8 article-title: Surface parameterization using Riemann surface structure publication-title: ICCV – ident: ref31 doi: 10.1212/WNL.55.11.1636 – ident: ref27 doi: 10.1016/j.neuroimage.2008.04.257 – volume: 56 start-page: 587 year: 1998 ident: ref21 article-title: Variational problems on flows of diffeomorphisms for image matching publication-title: Q Appl Math doi: 10.1090/qam/1632326 – ident: ref29 doi: 10.1090/S0025-5718-1973-0348991-3 – ident: ref12 doi: 10.1007/11566489_57 – ident: ref2 doi: 10.1176/appi.ajp.158.2.244 – ident: ref17 doi: 10.1007/s10851-005-3624-0 – ident: ref19 doi: 10.1109/TMI.2006.887380 – ident: ref7 doi: 10.1016/j.media.2004.06.009 – ident: ref3 doi: 10.1016/j.neuroimage.2009.12.125 – ident: ref25 doi: 10.1162/jocn.2007.19.9.1498 – ident: ref16 doi: 10.1016/j.media.2009.07.007 – start-page: 128 year: 2008 ident: ref9 article-title: Tiling manifolds with orthonormal basis publication-title: Proc MICCAI 2008 Workshop Math Foundations Computat Anat  | 
    
| SSID | ssj0014509 | 
    
| Score | 2.1952755 | 
    
| Snippet | We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 302 | 
    
| SubjectTerms | Algorithms Brain - anatomy & histology Computer Simulation Diffeomorphisms Hilbert space Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods initial momentum Kernel Magnetic Resonance Imaging - methods Models, Statistical Pattern Recognition, Automated - methods Principal Component Analysis Reproducibility of Results Sensitivity and Specificity Shape Studies surface mapping Surface waves Vectors  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwNFyhALKAy8gZTeHj_ixHFVB2qqIrrQ8RbbjlFW32apNhODXM7aT0NWiCh6jjBVbM-M57HwfwGvDYymxcIikojQitEoiYZSMtI6JZIKKSts-5PSIHc7I5zmdb0FPgthVdErWZ-O69UiCV6cTjziAHo7hcYIWx_gt2GYUs-8RbM-Ojve_uVaKBYuNHYcoRkk0AErm_clkLCbN-cJDdqYJy6kjlv8TiRy1yt-yzM3Lknfa-kL-_CGXy2uR6OABfOn_5_EXUM7GbaPG-tcmvOM_L_Ih3O_S0nDf29Ej2DL1Dty7Bla4A7en3TH8LvBj36LHEXY_WdU46fAdxsMy_GAJV1bnK1TfQodf28tKahNOpYWBOH0Ms4OPJ-8Po46BIdKEkyZSKjNVJoyFlKGMyNRwVeIOQHWsFCPaSMymkrJKGNU8Z0YLiRV1mSiaszzH6PgERjVO4hmEmHkomeVUJxZCrMQoqCudpZIYFedlzAKY9NoodAdPblkyloUrU2JRnEw_FVZ_Rae_AN4MIy48NMcNsrtWwYMcczBAaQB7vcKLznevCpHaPIgLnFI4vEWnsycpsjar1olkWPex_CYRJhyPSQBPvQENH8cgkfGMkAD4mmkNAhbye_1NvfjuoL8z23QiSQBvByPcWDva-dran_-P8B7cxcfU30t_AaPmsjUvMe1q1KvO034DlXAmQQ priority: 102 providerName: Unpaywall  | 
    
| Title | Principal Component Based Diffeomorphic Surface Mapping | 
    
| URI | https://ieeexplore.ieee.org/document/6022802 https://www.ncbi.nlm.nih.gov/pubmed/21937344 https://www.proquest.com/docview/920215796 https://www.proquest.com/docview/920366668 https://www.proquest.com/docview/926904278 https://pubmed.ncbi.nlm.nih.gov/PMC3619441 http://scholarbank.nus.edu.sg/handle/10635/88067  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgJ6oNAHhEKVAxcQ2c3DduJjeVQFKVUlulI5RbbjtKtuk6okquDXM7aTqEurilskj5OMZ-wZe8bfALzTaSgEbhwCISkNCK2igGspAqVCIhinvFLmHDI_Yocz8v2Unq7Ax_EujNbaJp_piXm0sfyyUZ05KpsyC96CC-6jNGPurtYYMSDUpXPEBjE2ZPEQkgz59CT_5rA644hllKUWABjNckLIkjWy5VXu8zTvJkw-6eor8ftGLBa3rNHBBuQDHy4J5WLStXKi_vwD8fi_jD6HZ71b6u87PXoBK7rehPVbYIWb8Djvw_BbkB67I3rsYdaTpsa3-Z_QHpb-F1NwpblsUHxz5f_oriuhtJ8LAwNxtg2zg68nnw-DvgJDoEhK2kDKRFcJ1wZShjIiYp3KElcAqkIpGVFaoDcVlVXEqEKRaMUF7qjLSNKMZRlaxx1YrfEnXoGPnocUSUZVZCDESrSCqlJJLIiWYVaGzIPpIIlC9fDkpkrGorDblJAXKMbCiLHoxejB-7HHlYPmeIB2y4zySNcPsAe7g7CLfu7-Knhs_KCU4y_5YytOOhNJEbVuOkuS4L6PZQ-RMG7rmHjw0inP-PFB-TxIl9RqJDCQ38st9fzcQn8n5tCJRB58GBXwDu_t5XyJ99f3874LT5Eqdhnob2C1ve70W3SwWrlnZ9YerM2Ojvd__gVO_yAR | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKpVy6APaktJHDr20anbzsJ342BdaWoIqdZG4RbbjtCuWBEEiRH99x3YSsQWh3iJ5nGQ8Y8_YM_4G4K1OQyFw4xAISWlAaBUFXEsRKBUSwTjllTLnkPkhmx2Rb8f0eA0-jHdhtNY2-UxPzKON5ZeN6sxR2ZRZ8BZccO9RQgh1t7XGmAGhLqEjNpixIYuHoGTIp_N836F1xhHLKEstBDAa5oSQFXtkC6zc5mveTJnc6OozcXUplstr9mjvEeQDJy4N5WTStXKi_vwD8vi_rD6Gh71j6n90mvQE1nS9BZvX4Aq34H7eB-K3If3hDumxh1lRmhrf5n9Ci1j6X0zJlea0QQEulP-zO6-E0n4uDBDEr6dwtPd1_nkW9DUYAkVS0gZSJrpKuDagMpQREetUlrgGUBVKyYjSAv2pqKwiRlWaMa24wD11GUmasSxD-_gM1mv8iR3w0feQIsmoigyIWIl2UFUqiQXRMszKkHkwHSRRqB6g3NTJWBZ2oxLyAsVYGDEWvRg9eDf2OHPgHHfQbptRHun6AfZgdxB20c_ei4LHxhNKOf6SP7bitDOxFFHrprMkCe78WHYXCeO2kokHz53yjB8flM-DdEWtRgID-r3aUi9-W_DvxBw7kciD96MC3uC9PV2s8P7idt7fwMZsnh8UB_uH33fhAfaIXT76S1hvzzv9Ct2tVr62s-wvcUAhrg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwNFyhALKAy8gZTeHj_ixHFVB2qqIrrQ8RbbjlFW32apNhODXM7aT0NWiCh6jjBVbM-M57HwfwGvDYymxcIikojQitEoiYZSMtI6JZIKKSts-5PSIHc7I5zmdb0FPgthVdErWZ-O69UiCV6cTjziAHo7hcYIWx_gt2GYUs-8RbM-Ojve_uVaKBYuNHYcoRkk0AErm_clkLCbN-cJDdqYJy6kjlv8TiRy1yt-yzM3Lknfa-kL-_CGXy2uR6OABfOn_5_EXUM7GbaPG-tcmvOM_L_Ih3O_S0nDf29Ej2DL1Dty7Bla4A7en3TH8LvBj36LHEXY_WdU46fAdxsMy_GAJV1bnK1TfQodf28tKahNOpYWBOH0Ms4OPJ-8Po46BIdKEkyZSKjNVJoyFlKGMyNRwVeIOQHWsFCPaSMymkrJKGNU8Z0YLiRV1mSiaszzH6PgERjVO4hmEmHkomeVUJxZCrMQoqCudpZIYFedlzAKY9NoodAdPblkyloUrU2JRnEw_FVZ_Rae_AN4MIy48NMcNsrtWwYMcczBAaQB7vcKLznevCpHaPIgLnFI4vEWnsycpsjar1olkWPex_CYRJhyPSQBPvQENH8cgkfGMkAD4mmkNAhbye_1NvfjuoL8z23QiSQBvByPcWDva-dran_-P8B7cxcfU30t_AaPmsjUvMe1q1KvO034DlXAmQQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+component+based+diffeomorphic+surface+mapping&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Qiu%2C+Anqi&rft.au=Younes%2C+Laurent&rft.au=Miller%2C+Michael+I&rft.date=2012-02-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=31&rft.issue=2&rft.spage=302&rft_id=info:doi/10.1109%2FTMI.2011.2168567&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |