ASAS-NANP symposium: mathematical modeling in animal nutrition—Making sense of big data and machine learning: how open-source code can advance training of animal scientists

Abstract Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal science Vol. 101
Main Authors Brennan, Jameson R, Menendez, Hector M, Ehlert, Krista, Tedeschi, Luis O
Format Journal Article
LanguageEnglish
Published US Oxford University Press 03.01.2023
Subjects
Online AccessGet full text
ISSN0021-8812
1525-3163
1525-3015
1544-7847
1525-3163
DOI10.1093/jas/skad317

Cover

Abstract Abstract Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research. In the era of big data and artificial learning, developing open-source examples specific to animal science is essential to train the next-generation workforce to realize the potential of precision livestock management technology fully. Lay Summary Livestock production is undergoing a new revolution of incorporating advanced technology to inform animal management. As more and more technologies come to market, new challenges arise with developing a workforce trained to handle big datasets generated from these technologies and turning datasets into insight for livestock producers. This can be especially challenging as multiple data streams ranging from climate and weather information to real-time metrics on animal performance need to be efficiently processed and incorporated into animal production models. Open-source code is one possible solution to these challenges because it is designed to be made publicly available so any user can view, alter, and improve upon existing code. This paper aims to highlight how open-source code can help address many of the challenges of precision livestock technology, including efficient data processing, data integration, development of decision tools, and training of future animal scientists. In addition, the need for open-source tutorials and datasets specific to animal science are included to help facilitate greater adoption of open science.
AbstractList Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research.
Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research.Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research.
Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research. In the era of big data and artificial learning, developing open-source examples specific to animal science is essential to train the next-generation workforce to realize the potential of precision livestock management technology fully.
Abstract Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research. In the era of big data and artificial learning, developing open-source examples specific to animal science is essential to train the next-generation workforce to realize the potential of precision livestock management technology fully. Lay Summary Livestock production is undergoing a new revolution of incorporating advanced technology to inform animal management. As more and more technologies come to market, new challenges arise with developing a workforce trained to handle big datasets generated from these technologies and turning datasets into insight for livestock producers. This can be especially challenging as multiple data streams ranging from climate and weather information to real-time metrics on animal performance need to be efficiently processed and incorporated into animal production models. Open-source code is one possible solution to these challenges because it is designed to be made publicly available so any user can view, alter, and improve upon existing code. This paper aims to highlight how open-source code can help address many of the challenges of precision livestock technology, including efficient data processing, data integration, development of decision tools, and training of future animal scientists. In addition, the need for open-source tutorials and datasets specific to animal science are included to help facilitate greater adoption of open science.
Author Brennan, Jameson R
Ehlert, Krista
Menendez, Hector M
Tedeschi, Luis O
Author_xml – sequence: 1
  givenname: Jameson R
  surname: Brennan
  fullname: Brennan, Jameson R
  email: jameson.brennan@sdstate.edu
– sequence: 2
  givenname: Hector M
  orcidid: 0000-0001-9092-7237
  surname: Menendez
  fullname: Menendez, Hector M
– sequence: 3
  givenname: Krista
  surname: Ehlert
  fullname: Ehlert, Krista
– sequence: 4
  givenname: Luis O
  orcidid: 0000-0003-1883-4911
  surname: Tedeschi
  fullname: Tedeschi, Luis O
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37997926$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFFXtkCQkhQagdO07SDRpV_EmlIBXW1o3jmfE0sdM4aTU7HoLn4KF4Em40w18lKja2dO_n4-NzfUD2fPCWkIecveCsFEdriEfxAmrB8ztkxrM0SwRXYo_MGEt5UhQ83ScHMa4Z42lWZvfIvsjLMi9TNSPf5ufz8-RsfvaRxk3bhejG9pi2MKwsLs5AQ9tQ28b5JXWegnctlvw49G5wwX__8vU9XEzNaH20NCxo5Za0hgGQrVHIrJy3tLHQe8SO6Spc09BZn8Qw9sZSg-rUAErXV-CxMPTgJnTS2l0XjbN-cHGI98ndBTTRPtjth-Tz61efTt4mpx_evDuZnyZG5nJIKpFVRorc5PhSWefSliq1VSo4wIKB5AWoBatzVUpRWbvgZQFS1BIqxVSWG3FInm91R9_B5hqaRnc9euk3mjM9xa4xdr2LHfGXW7wbq9bWBt328PtIAKf_7ni30stwhUpKSckUKjzdKfThcrRx0K2LxjYNeBvGqHGiWaGy_0HTohSFKJXiiD6-ga4xdY_JacEkZxkvcoHUoz_d_7L985cgwLeA6UOMvV1o4waY5j8Nq_lHJM9unLk9wCdbOozdreAP7FLxkA
CitedBy_id crossref_primary_10_1007_s10639_024_13233_6
crossref_primary_10_1093_tas_txae092
crossref_primary_10_3390_ani13243844
crossref_primary_10_1093_jas_skad318
Cites_doi 10.1016/j.compag.2020.105394
10.1093/jas/skaa402
10.1093/jas/skab086
10.1016/j.compag.2022.107129
10.1016/j.rama.2019.03.003
10.1016/j.applanim.2022.105566
10.1016/S0168-1699(02)00096-0
10.1016/j.rse.2017.06.031
10.1007/s11192-014-1238-2
10.1016/j.compag.2015.11.005
10.1093/bib/bbab415
10.1093/pnasnexus/pgac106
10.1093/jas/skac111
10.1016/j.biosystemseng.2015.09.007
10.2527/jas1965.242480x
10.1016/j.jtbi.2008.08.014
10.1016/j.compag.2021.106610
10.1038/521261a
10.1016/j.isprsjprs.2017.01.019
10.1016/j.compag.2021.106517
10.1016/j.compag.2017.05.020
10.1093/tas/txab126
10.1093/jas/sky014
10.3389/fvets.2017.00110
10.3168/jds.2019-17145
10.1016/j.jtbi.2008.08.013
10.1016/j.compag.2009.03.002
10.1002/ecs2.3060
10.1016/j.agsy.2017.01.023
10.1016/j.biosystemseng.2015.07.005
10.1071/AN14368
10.1002/ece3.7937
10.1016/j.compag.2021.106595
10.2527/jas.2015-0223
10.3389/fsufs.2021.611915
10.1093/jas/skab022
10.1016/j.applanim.2016.08.001
10.1007/978-3-319-34043-2
10.1300/J144v09n01_02
10.1371/journal.pone.0252881
10.3390/rs10071057
10.1093/af/vfz003
10.1242/jeb.184085
10.1093/jas/skac160
10.1371/journal.pbio.1001195
10.1016/j.compag.2022.107187
10.1016/j.animal.2023.100835
10.1016/j.compag.2020.105957
10.1093/jas/skab038
10.1016/j.landusepol.2017.05.005
10.3389/fgene.2021.740340
10.4236/pos.2013.41012
10.3168/jds.2012-6522
10.1093/jas/skz092
10.1371/journal.pbio.2006022
10.1186/s13062-019-0249-6
10.1016/j.compag.2018.12.007
10.1038/nn.4550
10.1093/jas/skac132
10.3835/plantgenome2016.02.0013
10.3758/BRM.41.2.472
10.1016/j.csda.2008.03.008
10.1016/j.compag.2017.09.037
10.1186/s12711-017-0368-4
10.1038/s41597-020-0534-3
10.3390/rs12040646
10.1016/j.envsoft.2020.104694
10.1016/S1161-0301(02)00107-7
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.rama.2020.10.001
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
U9A
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1093/jas/skad317
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Career and Technical Education (Alumni Edition)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Zoology
EISSN 1525-3163
ExternalDocumentID oai:pubmedcentral.nih.gov:10664406
PMC10664406
37997926
10_1093_jas_skad317
10.1093/jas/skad317
Genre Journal Article
GroupedDBID ---
..I
.55
.GJ
0R~
186
18M
29J
2WC
48X
53G
5GY
5RE
5WD
7RQ
7X2
7X7
7XC
88E
88I
8AF
8FE
8FG
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABCQX
ABDFA
ABEJV
ABGNP
ABIME
ABJCF
ABJNI
ABMNT
ABPIB
ABPQP
ABPTD
ABUWG
ABVGC
ABWST
ABXVV
ABXZS
ABZEO
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACQAM
ACUTJ
ACVCV
ACZBC
ADBBV
ADFRT
ADGKP
ADGZP
ADIPN
ADNBA
ADNWM
ADQBN
ADRTK
ADVEK
AELWJ
AENEX
AETBJ
AEUYN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AHMBA
AI.
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ATCPS
ATDFG
ATGXG
AZQEC
BAYMD
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BGLVJ
BHPHI
BKOMP
BPHCQ
BVXVI
C1A
CCPQU
CS3
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
ELUNK
EYRJQ
F5P
F9R
FHSFR
FJW
FLUFQ
FOEOM
FQBLK
FYUFA
GAUVT
GNUQQ
GUQSH
H13
HCIFZ
HMCUK
HYE
INIJC
JXSIZ
KBUDW
KOP
KSI
KSN
L6V
L7B
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
M7S
MBTAY
ML0
MV1
MW2
NEJ
NHB
NLBLG
NOMLY
NVLIB
O9-
OBOKY
ODMLO
OJZSN
OK1
OWPYF
P-O
P0-
P2P
PATMY
PHGZT
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PYCSY
Q2X
ROX
RPM
RUSNO
RWL
RXW
S0X
SJN
TAE
TCN
TR2
TWZ
UKHRP
VH1
W8F
WH7
WOQ
X7M
XOL
YKV
YR5
YXANX
ZCG
ZGI
ZXP
~KM
AAYXX
AHGBF
AJBYB
CITATION
3V.
88A
CGR
CUY
CVF
DIK
ECM
EIF
M0L
NPM
TJA
ABUFD
K9.
U9A
7X8
7S9
L.6
5PM
ADTOC
PHGZM
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c474t-b35bc437c73794d74e962eb231aaf0a418a6f0d76943beef198a43d4ab60657c3
IEDL.DBID UNPAY
ISSN 0021-8812
1525-3163
1525-3015
1544-7847
IngestDate Sun Oct 26 05:08:36 EDT 2025
Tue Sep 30 17:06:27 EDT 2025
Thu Oct 02 22:47:59 EDT 2025
Thu Oct 02 07:07:38 EDT 2025
Tue Oct 07 06:20:53 EDT 2025
Wed Feb 19 02:12:27 EST 2025
Wed Oct 01 01:49:17 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Wed Apr 02 07:03:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Open-source
big data
livestock management systems
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-b35bc437c73794d74e962eb231aaf0a418a6f0d76943beef198a43d4ab60657c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1883-4911
0000-0001-9092-7237
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10664406/pdf/skad317.pdf
PMID 37997926
PQID 3041051873
PQPubID 49113
ParticipantIDs unpaywall_primary_10_1093_jas_skad317
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10664406
proquest_miscellaneous_3165865406
proquest_miscellaneous_2893839661
proquest_journals_3041051873
pubmed_primary_37997926
crossref_citationtrail_10_1093_jas_skad317
crossref_primary_10_1093_jas_skad317
oup_primary_10_1093_jas_skad317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-03
PublicationDateYYYYMMDD 2023-01-03
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-03
  day: 03
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
– name: Champaign
PublicationTitle Journal of animal science
PublicationTitleAlternate J Anim Sci
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jones (2023112212522268200_CIT0032) 2003; 18
Fisher (2023112212522268200_CIT0022) 1936; 7
Faux (2023112212522268200_CIT0021) 2016; 9
Jia (2023112212522268200_CIT0031) 2022; 23
Morota (2023112212522268200_CIT0045) 2021; 99
Condotta (2023112212522268200_CIT0016) 2020; 173
Brennan (2023112212522268200_CIT0008) 2021
Toelch (2023112212522268200_CIT0072) 2018; 16
Yu (2023112212522268200_CIT0082) 2021; 11
Liebe (2023112212522268200_CIT0035) 2019; 9
Tedeschi (2023112212522268200_CIT0066) 2022; 100
González (2023112212522268200_CIT0025) 2014; 54
Eglen (2023112212522268200_CIT0020) 2017; 20
Molloy (2023112212522268200_CIT0042) 2011; 9
Oliver (2023112212522268200_CIT0057) 2017; 66
Chang (2023112212522268200_CIT0013) 2022; 192
Vihinen (2023112212522268200_CIT0077) 2015; 521
Nicolazzi (2023112212522268200_CIT0052) 2016; 5
Menendez (2023112212522268200_CIT0039) 2022; 100
Vieira (2023112212522268200_CIT0075) 2008; 255
Zhang (2023112212522268200_CIT0084) 2020; 129
NRC (2023112212522268200_CIT0053) 1985
Goldsmith (2023112212522268200_CIT0024) 2022; 199
Jacobs (2023112212522268200_CIT0029) 2022; 100
Mesas-Carrascosa (2023112212522268200_CIT0040) 2015; 137
Wang (2023112212522268200_CIT0078) 2021; 99
Tedeschi (2023112212522268200_CIT0070) 2020
NASEM (2023112212522268200_CIT0050) 2021
Wolfert (2023112212522268200_CIT0080) 2017; 153
Dickinson (2023112212522268200_CIT0018) 2013; 96
Dalby (2023112212522268200_CIT0017) 2021; 16
Tedeschi (2023112212522268200_CIT0069) 2020
Duggan (2023112212522268200_CIT0019) 2016
Vaillant (2023112212522268200_CIT0073) 2016; 120
Sprinkle (2023112212522268200_CIT0062) 2021; 76
Muñoz-Tamayo (2023112212522268200_CIT0046) 2022; 1
Pastorello (2023112212522268200_CIT0058) 2020; 7
Morota (2023112212522268200_CIT0044) 2018; 96
Xiong (2023112212522268200_CIT0081) 2017; 126
Barwick (2023112212522268200_CIT0007) 2020; 12
Hänninen (2023112212522268200_CIT0027) 2009; 41
Campbell (2023112212522268200_CIT0012) 2013; 216
Tedeschi (2023112212522268200_CIT0067) 2023; 17
Sterman (2023112212522268200_CIT0063) 2000
Alvarenga (2023112212522268200_CIT0001) 2016; 183
Kamilaris (2023112212522268200_CIT0033) 2017; 143
MacNeil (2023112212522268200_CIT0038) 2021; 5
Vieira (2023112212522268200_CIT0076) 2008; 255
NASEM (2023112212522268200_CIT0049) 2016
Oczak (2023112212522268200_CIT0056) 2022; 192
Williams (2023112212522268200_CIT0079) 2022; 199
Galyean (2023112212522268200_CIT0023) 2016; 94
Houghton (2023112212522268200_CIT0028) 2015; 2
Anderson (2023112212522268200_CIT0002) 2013; 4
VanderWaal (2023112212522268200_CIT0074) 2017; 4
Cheng (2023112212522268200_CIT0015) 2021; 12
Nash (2023112212522268200_CIT0051) 2008; 52
Light (2023112212522268200_CIT0036) 2014; 101
Riaboff (2023112212522268200_CIT0059) 2022; 192
Tedeschi (2023112212522268200_CIT0065) 2019; 97
Serão (2023112212522268200_CIT0061) 2021; 99
Tedeschi (2023112212522268200_CIT0068) 2021
Brennan (2023112212522268200_CIT0010) 2021; 181
Chang (2023112212522268200_CIT0014) 2022; 247
Lofgreen (2023112212522268200_CIT0037) 1965; 24
Zhang (2023112212522268200_CIT0083) 2002; 36
NRC (2023112212522268200_CIT0054) 2012
Brennan (2023112212522268200_CIT0009) 2019; 72
Mihaylov (2023112212522268200_CIT0041) 2019; 14
Jansen (2023112212522268200_CIT0030) 2018; 10
Cabrera (2023112212522268200_CIT0011) 2020; 103
Koch (2023112212522268200_CIT0034) 2003; 9
Oczak (2023112212522268200_CIT0055) 2015; 140
R Core Team (2023112212522268200_CIT0085) 2020
Bahlo (2023112212522268200_CIT0005) 2019; 156
Gorelick (2023112212522268200_CIT0026) 2017; 202
NANP (2023112212522268200_CIT0047) 2022
Morota (2023112212522268200_CIT0043) 2017; 49
Auker (2023112212522268200_CIT0004) 2020; 11
Bailey (2023112212522268200_CIT0006) 2021; 5
Tatler (2023112212522268200_CIT0064) 2018; 221
Tedeschi (2023112212522268200_CIT0071) 2021; 99
Andriamandroso (2023112212522268200_CIT0003) 2017; 139
Robert (2023112212522268200_CIT0060) 2009; 67
NASEM (2023112212522268200_CIT0048) 2011
References_xml – volume: 173
  start-page: 105394
  year: 2020
  ident: 2023112212522268200_CIT0016
  article-title: Evaluation of low-cost depth cameras for agricultural applications
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2020.105394
– volume: 99
  start-page: skaa402
  year: 2021
  ident: 2023112212522268200_CIT0045
  article-title: ASAS-NANP symposium: prospects for interactive and dynamic graphics in the era of data-rich animal science
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skaa402
– year: 2020
  ident: 2023112212522268200_CIT0085
  article-title: R: A language and environment for statistical computing
– volume: 99
  start-page: skab086
  year: 2021
  ident: 2023112212522268200_CIT0061
  article-title: Assessing the statistical training in animal science graduate programs in the United States: survey on statistical training
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skab086
– year: 2021
  ident: 2023112212522268200_CIT0008
– volume: 216
  start-page: 4501
  year: 2013
  ident: 2023112212522268200_CIT0012
  article-title: Creating a behavioral classification module for acceleration data: using a captive surrogate for difficult to observe species
  publication-title: J. Exp. Biol
– year: 2022
  ident: 2023112212522268200_CIT0047
– volume: 199
  start-page: 107129
  year: 2022
  ident: 2023112212522268200_CIT0024
  article-title: The use of accelerometers for the remote detection of mounting in rams and testosterone-treated wethers
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2022.107129
– volume: 72
  start-page: 615
  year: 2019
  ident: 2023112212522268200_CIT0009
  article-title: Technical note: method to streamline processing of livestock global positioning system collar data
  publication-title: Rangel. Ecol. Manag
  doi: 10.1016/j.rama.2019.03.003
– volume: 247
  start-page: 105566
  year: 2022
  ident: 2023112212522268200_CIT0014
  article-title: Accelerometer derived rumination monitoring detects changes in behaviour around parturition
  publication-title: Appl. Anim. Behav. Sci
  doi: 10.1016/j.applanim.2022.105566
– volume-title: Nutrient requirements of fish and shrimp
  year: 2011
  ident: 2023112212522268200_CIT0048
– volume: 36
  start-page: 113
  year: 2002
  ident: 2023112212522268200_CIT0083
  article-title: Precision agriculture—a worldwide overview
  publication-title: Comput. Electron. Agric
  doi: 10.1016/S0168-1699(02)00096-0
– volume: 202
  start-page: 18
  year: 2017
  ident: 2023112212522268200_CIT0026
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ
  doi: 10.1016/j.rse.2017.06.031
– volume: 101
  start-page: 1535
  year: 2014
  ident: 2023112212522268200_CIT0036
  article-title: Open data and open code for big science of science studies
  publication-title: Scientometrics
  doi: 10.1007/s11192-014-1238-2
– volume: 120
  start-page: 7
  year: 2016
  ident: 2023112212522268200_CIT0073
  article-title: Application note: an open-source JavaScript library to simulate dairy cows and young stock, their growth, requirements and diets
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2015.11.005
– volume: 23
  start-page: bbab415
  year: 2022
  ident: 2023112212522268200_CIT0031
  article-title: Development of interactive biological web applications with R/Shiny
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbab415
– volume: 1
  start-page: 1
  year: 2022
  ident: 2023112212522268200_CIT0046
  article-title: Seven steps to enhance open science practices in animal science
  publication-title: PNAS Nexus
  doi: 10.1093/pnasnexus/pgac106
– volume: 100
  start-page: 1
  year: 2022
  ident: 2023112212522268200_CIT0066
  article-title: ASAS-NANP symposium: mathematical modeling in animal nutrition: the progression of data analytics and artificial intelligence in support of sustainable development in animal science
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skac111
– volume: 140
  start-page: 48
  year: 2015
  ident: 2023112212522268200_CIT0055
  article-title: Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data
  publication-title: Biosyst. Eng
  doi: 10.1016/j.biosystemseng.2015.09.007
– volume: 5
  start-page: 17
  year: 2016
  ident: 2023112212522268200_CIT0052
  article-title: SNPConvert: SNP array standardization and integration in livestock species
  publication-title: Microarrays (Basel, Switzerland)
– volume-title: Nutrient requirements of beef cattle
  year: 2016
  ident: 2023112212522268200_CIT0049
– volume: 24
  start-page: 480
  year: 1965
  ident: 2023112212522268200_CIT0037
  article-title: Net energy of fat and molasses for beef heifers with observations on the method for net energy determination
  publication-title: J. Anim. Sci
  doi: 10.2527/jas1965.242480x
– volume-title: Nutrient requirements of dairy cattle
  year: 2021
  ident: 2023112212522268200_CIT0050
– volume: 255
  start-page: 345
  year: 2008
  ident: 2023112212522268200_CIT0075
  article-title: A generalized compartmental model to estimate the fibre mass in the ruminoreticulum. 1. Estimating parameters of digestion
  publication-title: J. Theor. Biol
  doi: 10.1016/j.jtbi.2008.08.014
– volume: 192
  start-page: 106610
  year: 2022
  ident: 2023112212522268200_CIT0059
  article-title: Predicting livestock behaviour using accelerometers: a systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2021.106610
– volume: 521
  start-page: 261
  year: 2015
  ident: 2023112212522268200_CIT0077
  article-title: No more hidden solutions in bioinformatics
  publication-title: Nature
  doi: 10.1038/521261a
– volume: 126
  start-page: 225
  year: 2017
  ident: 2023112212522268200_CIT0081
  article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing
  publication-title: ISPRS J. Photogramm. Remote Sens
  doi: 10.1016/j.isprsjprs.2017.01.019
– volume: 192
  start-page: 106517
  year: 2022
  ident: 2023112212522268200_CIT0056
  article-title: Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2021.106517
– volume: 139
  start-page: 126
  year: 2017
  ident: 2023112212522268200_CIT0003
  article-title: Development of an open-source algorithm based on inertial measurement units (IMU) of a smartphone to detect cattle grass intake and ruminating behaviors
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2017.05.020
– volume: 5
  start-page: txab126
  year: 2021
  ident: 2023112212522268200_CIT0038
  article-title: Evaluation of partial body weight for predicting body weight and average daily gain in growing beef cattle
  publication-title: Transl. Anim. Sci
  doi: 10.1093/tas/txab126
– volume: 96
  start-page: 1540
  year: 2018
  ident: 2023112212522268200_CIT0044
  article-title: Big data analytics and precision animal agriculture symposium: machine learning and data mining advance predictive big data analysis in precision animal agriculture
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/sky014
– volume: 4
  start-page: 110
  year: 2017
  ident: 2023112212522268200_CIT0074
  article-title: Translating big data into smart data for veterinary epidemiology
  publication-title: Front. Vet. Sci
  doi: 10.3389/fvets.2017.00110
– volume: 103
  start-page: 3856
  year: 2020
  ident: 2023112212522268200_CIT0011
  article-title: Symposium review: real-time continuous decision making using big data on dairy farms
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2019-17145
– volume: 255
  start-page: 357
  year: 2008
  ident: 2023112212522268200_CIT0076
  article-title: A generalized compartmental model to estimate the fibre mass in the ruminoreticulum. 2. Integrating digestion and passage
  publication-title: J. Theor. Biol
  doi: 10.1016/j.jtbi.2008.08.013
– volume: 67
  start-page: 80
  year: 2009
  ident: 2023112212522268200_CIT0060
  article-title: Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2009.03.002
– volume: 11
  start-page: e03060
  year: 2020
  ident: 2023112212522268200_CIT0004
  article-title: Teaching R in the undergraduate ecology classroom: approaches, lessons learned, and recommendations
  publication-title: Ecosphere
  doi: 10.1002/ecs2.3060
– volume-title: The ruminant nutrition system: volume II—tables of equations and coding
  year: 2020
  ident: 2023112212522268200_CIT0070
– volume: 153
  start-page: 69
  year: 2017
  ident: 2023112212522268200_CIT0080
  article-title: Big data in smart farming—a review
  publication-title: Agric. Sys
  doi: 10.1016/j.agsy.2017.01.023
– volume: 137
  start-page: 73
  year: 2015
  ident: 2023112212522268200_CIT0040
  article-title: Open source hardware to monitor environmental parameters in precision agriculture
  publication-title: Biosyst. Eng
  doi: 10.1016/j.biosystemseng.2015.07.005
– volume: 54
  start-page: 1687
  year: 2014
  ident: 2023112212522268200_CIT0025
  article-title: Wireless sensor networks to study, monitor and manage cattle in grazing systems
  publication-title: Anim. Prod. Sci
  doi: 10.1071/AN14368
– volume: 11
  start-page: 12364
  year: 2021
  ident: 2023112212522268200_CIT0082
  article-title: R package for animal behavior classification from accelerometer data—rabc
  publication-title: Ecol. Evol
  doi: 10.1002/ece3.7937
– volume: 192
  start-page: 106595
  year: 2022
  ident: 2023112212522268200_CIT0013
  article-title: Detection of rumination in cattle using an accelerometer ear-tag: a comparison of analytical methods and individual animal and generic models
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2021.106595
– volume: 94
  start-page: 1329
  year: 2016
  ident: 2023112212522268200_CIT0023
  article-title: Board-Invited Review: efficiency of converting digestible energy to metabolizable energy and reevaluation of the California net energy system maintenance requirements and equations for predicting dietary net energy values for beef cattle
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2015-0223
– volume: 5
  start-page: 6111915
  year: 2021
  ident: 2023112212522268200_CIT0006
  article-title: opportunities to apply precision livestock management on rangelands
  publication-title: Front. Sustain. Food Syst
  doi: 10.3389/fsufs.2021.611915
– volume-title: Business dynamics: systems thinking and modeling for a complex world
  year: 2000
  ident: 2023112212522268200_CIT0063
– volume: 99
  start-page: 2
  year: 2021
  ident: 2023112212522268200_CIT0078
  article-title: ASAS-NANP Symposium: applications of machine learning for livestock body weight prediction from digital images
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skab022
– volume: 183
  start-page: 104
  year: 2016
  ident: 2023112212522268200_CIT0001
  article-title: Using a three-axis accelerometer to identify and classify sheep behaviour at pasture
  publication-title: Appl. Anim. Behav. Sci
  doi: 10.1016/j.applanim.2016.08.001
– volume-title: System dynamics modeling with R
  year: 2016
  ident: 2023112212522268200_CIT0019
  doi: 10.1007/978-3-319-34043-2
– volume: 9
  start-page: 361
  year: 2003
  ident: 2023112212522268200_CIT0034
  article-title: The role of precision agriculture in cropping systems
  publication-title: J. Crop Prod
  doi: 10.1300/J144v09n01_02
– volume: 16
  start-page: e0252881
  year: 2021
  ident: 2023112212522268200_CIT0017
  article-title: A mechanistic model of methane emission from animal slurry with a focus on microbial groups
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0252881
– volume: 10
  start-page: 1057
  year: 2018
  ident: 2023112212522268200_CIT0030
  article-title: The development of near real-time biomass and cover estimates for adaptive rangeland management using Landsat 7 and Landsat 8 surface reflectance products
  publication-title: Remote Sens
  doi: 10.3390/rs10071057
– volume-title: Nutrient requirements of swine
  year: 2012
  ident: 2023112212522268200_CIT0054
– volume: 9
  start-page: 16
  year: 2019
  ident: 2023112212522268200_CIT0035
  article-title: Analytics in sustainable precision animal nutrition
  publication-title: Anim. Front
  doi: 10.1093/af/vfz003
– volume: 221
  start-page: jeb184085
  year: 2018
  ident: 2023112212522268200_CIT0064
  article-title: High accuracy at low frequency: detailed behavioural classification from accelerometer data
  publication-title: J. Exp. Bio
  doi: 10.1242/jeb.184085
– volume: 100
  start-page: skac160
  year: 2022
  ident: 2023112212522268200_CIT0039
  article-title: ASAS–NANP symposium: mathematical modeling in animal nutrition: opportunities and challenges of confined and extensive precision livestock production
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skac160
– volume: 9
  start-page: e1001195
  year: 2011
  ident: 2023112212522268200_CIT0042
  article-title: The Open knowledge foundation: open data means better science
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001195
– volume: 199
  start-page: 107187
  year: 2022
  ident: 2023112212522268200_CIT0079
  article-title: Classification of dairy cow excretory events using a tail-mounted accelerometer
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2022.107187
– volume: 17
  start-page: 100835
  year: 2023
  ident: 2023112212522268200_CIT0067
  article-title: Review: harnessing extant energy and protein requirements modelling for sustainable beef production
  publication-title: Animal
  doi: 10.1016/j.animal.2023.100835
– volume: 181
  start-page: 105957
  year: 2021
  ident: 2023112212522268200_CIT0010
  article-title: Classifying season long livestock grazing behavior with the use of a low-cost GPS and accelerometer
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2020.105957
– volume-title: Nutrient requirements of sheep
  year: 1985
  ident: 2023112212522268200_CIT0053
– volume: 99
  start-page: skab038
  year: 2021
  ident: 2023112212522268200_CIT0071
  article-title: Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skab038
– volume: 66
  start-page: 227
  year: 2017
  ident: 2023112212522268200_CIT0057
  article-title: Design of a decision support tool for visualising E. coli risk on agricultural land using a stakeholder-driven approach
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2017.05.005
– volume: 12
  start-page: 740340
  year: 2021
  ident: 2023112212522268200_CIT0015
  article-title: Optimizing sequencing resources in genotyped livestock populations using linear programming
  publication-title: Front. Genet
  doi: 10.3389/fgene.2021.740340
– start-page: 177
  volume-title: Feeding the future: precision nutrition for tomorrow’s animal
  year: 2021
  ident: 2023112212522268200_CIT0068
  article-title: Precision determination of energy and protein requirements of grazing and feedlot animals
– volume: 4
  start-page: 115
  year: 2013
  ident: 2023112212522268200_CIT0002
  article-title: Spatiotemporal cattle data—a plea for protocol standardization
  publication-title: Positioning
  doi: 10.4236/pos.2013.41012
– volume: 96
  start-page: 4477
  year: 2013
  ident: 2023112212522268200_CIT0018
  article-title: An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2012-6522
– volume: 97
  start-page: 1921
  year: 2019
  ident: 2023112212522268200_CIT0065
  article-title: ASAS-NANP symposium: future of data analytics in nutrition: mathematical modeling in ruminant nutrition: approaches and paradigms, extant models, and thoughts for upcoming predictive analytics
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skz092
– volume: 16
  start-page: e2006022
  year: 2018
  ident: 2023112212522268200_CIT0072
  article-title: Digital open science—teaching digital tools for reproducible and transparent research
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2006022
– volume: 14
  start-page: 22
  year: 2019
  ident: 2023112212522268200_CIT0041
  article-title: A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models
  publication-title: Biol. Direct
  doi: 10.1186/s13062-019-0249-6
– volume-title: The ruminant nutrition system: volume I—an applied model for predicting nutrient requirements and feed utilization in ruminants
  year: 2020
  ident: 2023112212522268200_CIT0069
– volume: 156
  start-page: 459
  year: 2019
  ident: 2023112212522268200_CIT0005
  article-title: The role of interoperable data standards in precision livestock farming in extensive livestock systems: a review
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2018.12.007
– volume: 20
  start-page: 770
  year: 2017
  ident: 2023112212522268200_CIT0020
  article-title: Toward standard practices for sharing computer code and programs in neuroscience
  publication-title: Nat. Neurosci
  doi: 10.1038/nn.4550
– volume: 100
  start-page: skac132
  year: 2022
  ident: 2023112212522268200_CIT0029
  article-title: ASAS-NANP symposium: mathematical modeling in animal nutrition: limitations and potential next steps for modeling and modelers in the animal sciences
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skac132
– volume: 2
  start-page: 1436
  year: 2015
  ident: 2023112212522268200_CIT0028
  article-title: Advanced data analytics for system dynamics models using PySD
  publication-title: Proceedings of the 33rd International Conference of the System Dynamics Society
– volume: 9
  year: 2016
  ident: 2023112212522268200_CIT0021
  article-title: AlphaSim: software for breeding program simulation
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2016.02.0013
– volume: 41
  start-page: 472
  year: 2009
  ident: 2023112212522268200_CIT0027
  article-title: CowLog: open-source software for coding behaviors from digital video
  publication-title: Behav. Res. Methods
  doi: 10.3758/BRM.41.2.472
– volume: 52
  start-page: 4602
  year: 2008
  ident: 2023112212522268200_CIT0051
  article-title: Teaching statistics with Excel 2007 and other spreadsheets
  publication-title: Comput. Stat. Data Anal
  doi: 10.1016/j.csda.2008.03.008
– volume: 143
  start-page: 23
  year: 2017
  ident: 2023112212522268200_CIT0033
  article-title: A review on the practice of big data analysis in agriculture
  publication-title: Comput. Electron. Agric
  doi: 10.1016/j.compag.2017.09.037
– volume: 49
  start-page: 91
  year: 2017
  ident: 2023112212522268200_CIT0043
  article-title: ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-017-0368-4
– volume: 7
  start-page: 225
  year: 2020
  ident: 2023112212522268200_CIT0058
  article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0534-3
– volume: 12
  start-page: 646
  year: 2020
  ident: 2023112212522268200_CIT0007
  article-title: Identifying sheep activity from tri-axial acceleration signals using a moving window classification model
  publication-title: Remote Sens
  doi: 10.3390/rs12040646
– volume: 129
  start-page: 104694
  year: 2020
  ident: 2023112212522268200_CIT0084
  article-title: AgKit4EE: a toolkit for agricultural land use modeling of the conterminous United States based on Google Earth Engine
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2020.104694
– volume: 18
  start-page: 235
  year: 2003
  ident: 2023112212522268200_CIT0032
  article-title: The DSSAT cropping system model
  publication-title: Eur. J. Agron
  doi: 10.1016/S1161-0301(02)00107-7
– volume: 7
  start-page: 179
  year: 1936
  ident: 2023112212522268200_CIT0022
  article-title: The Use of multiple measurements in taxonomic problems
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 76
  start-page: 157
  year: 2021
  ident: 2023112212522268200_CIT0062
  article-title: Predicting cattle grazing behavior on rangeland using accelerometers
  publication-title: Rangel. Ecol. Manag
  doi: 10.1016/j.rama.2020.10.001
SSID ssj0012595
Score 2.4212208
SecondaryResourceType review_article
Snippet Abstract Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the...
Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Animal growth
Animal nutrition
animal performance
Animal sciences
Animals
Artificial Intelligence
Big Data
Data analysis
Data collection
Data processing
food and nutrition programs
Humans
Learning algorithms
Livestock
livestock husbandry
Machine Learning
Mathematical analysis
Mathematical models
Models, Theoretical
Nutrition
Open data
Open source software
Pipelining (computers)
Programming languages
Python
Scientists
Software
Source code
Statistical analysis
Zoology
Title ASAS-NANP symposium: mathematical modeling in animal nutrition—Making sense of big data and machine learning: how open-source code can advance training of animal scientists
URI https://www.ncbi.nlm.nih.gov/pubmed/37997926
https://www.proquest.com/docview/3041051873
https://www.proquest.com/docview/2893839661
https://www.proquest.com/docview/3165865406
https://pubmed.ncbi.nlm.nih.gov/PMC10664406
https://pmc.ncbi.nlm.nih.gov/articles/PMC10664406/pdf/skad317.pdf
UnpaywallVersion submittedVersion
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1525-3163
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0012595
  issn: 1525-3163
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1525-3163
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012595
  issn: 1525-3163
  databaseCode: 8FG
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF7R9AAcyj8NlLBI5YK0ie1de-3erIpQISWKVCLBydr1rtPQ2InqRFU58RA8Bw_FkzBrr62GnwqJm-WdjH_y7eyM95sZhA7BMKaR9iSJFFeEuUqQyFGG5EijMHNkqD2TnDwaBydT9v6j37AJTS7MKgctqZz3i0XeL-ZnFbey4YgNJqNjCGFgCXeCwUplg_JcKFgA-3C8g3YDH9zxDtqdjifxp5ra4ZIwrHc8fc8nAGa_PXarLmumGA3hYKJt7h4E-IPPomw0b61WWxlw1xzR3_mUtzfFSlxdisXi2mI1vIdk-5gVR-W8v1nLfvrllwqQ__Ue7qM968riuBZ_gG7p4iG6G88ubDkP_Qh9j0_jUzKOxxNcXuWGILbJj3DeloqFn1eteGD9xPMCi2Kew6mi6RDw4-u3UdUtC5cQbWu8zLCcz7BhtYKsAkWGCaqxbX0xO8Jny0tsGoKRelMCm4x9DOjBluuAm5YYRpe9XJ0TCnAvH6Pp8O2H4xNiO0SQlHG2JpL6MmWUp5yCXVGc6SjwtASfVYjMEcwNRZA5igcRo1LrzI1CwahiQkLc5vOUPkGdYlnofYSZ9rjkrqLco8yPMslUpkOpAjcDDSztojcNEpLUlk83t7xI6m18mgBsEvtHdNFhK7yqq4b8WewlQOpmiYMGbok1LmVCHcPNdUNOu-hVOwxmwez1iEIvN2UCcTQF3xe8r7_LwBTwwwBc9qCLntYIbu8F3mfEIw9Gwi1stwKmLPn2CKC0Kk_eILOLXrfT4KZnfPaPcs_RHQ88zOr7Fz1AnfXFRr8Aj3Ate2gnHL7rVZ_qenb-_wRN32Tl
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELagewAO_C8EFjDSckFym8ROnOwtWrFaIbWqtFSCU2THTrdsk1abRqvlxEPwHDwUT8I4caItPyskblE8nfz083gm_mYGoX0wjFmsfUlixRVhnhIkdpUhOdI4yl0Zad8kJ48n4fGMvf8YdGxCkwuzLkBLJhfDclkMy8Vpw63sOGKj6fgQQhhYwt1wtFb5qDoTChbAIRzfRDthAO74AO3MJtPkU0vt8EgUtTuegR8QAHPQH3tNlzVTjIZwMNE2dw8C_NFnUXWat1arrQy4K47o73zKW3W5FpcXYrm8slgd3UOyf8yGo3I2rDdymH35pQLkf72H--iudWVx0oo_QDd0-RDdSebntpyHfoS-JyfJCZkkkymuLgtDEKuLA1z0pWLh500rHlg_8aLEolwUcKrsOgT8-Ppt3HTLwhVE2xqvciwXc2xYrSCrQJFhgmpsW1_MD_Dp6gKbhmCk3ZTAJmMfA3qw5TrgriWG0WUv1-aEAtyrx2h29O7D4TGxHSJIxjjbEEkDmTHKM07BrijOdBz6WoLPKkTuCuZFIsxdxcOYUal17sWRYFQxISFuC3hGd9GgXJX6KcJM-1xyT1HuUxbEuWQq15FUoZeDBpY56G2HhDSz5dPNLS_TdhufpgCb1P4RDtrvhddt1ZA_i70CSF0vsdfBLbXGpUqpa7i5XsSpg173w2AWzF6PKPWqrlKIoyn4vuB9_V0GpkAQheCyhw560iK4vxd4nzGPfRiJtrDdC5iy5NsjgNKmPHmHTAe96afBdc_47B_lnqPbPniYzfcvuocGm_NavwCPcCNf2jn_E6SuYu8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASAS-NANP+symposium%3A+mathematical+modeling+in+animal+nutrition%E2%80%94Making+sense+of+big+data+and+machine+learning%3A+how+open-source+code+can+advance+training+of+animal+scientists&rft.jtitle=Journal+of+animal+science&rft.au=Brennan%2C+Jameson+R&rft.au=Menendez%2C+Hector+M.+III&rft.au=Ehlert%2C+Krista&rft.au=Tedeschi%2C+Luis+O.&rft.date=2023-01-03&rft.issn=1525-3163&rft.volume=101+p.skad317-&rft_id=info:doi/10.1093%2Fjas%2Fskad317&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8812&client=summon