ASAS-NANP symposium: mathematical modeling in animal nutrition—Making sense of big data and machine learning: how open-source code can advance training of animal scientists
Abstract Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating...
        Saved in:
      
    
          | Published in | Journal of animal science Vol. 101 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        US
          Oxford University Press
    
        03.01.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-8812 1525-3163 1525-3015 1544-7847 1525-3163  | 
| DOI | 10.1093/jas/skad317 | 
Cover
| Abstract | Abstract
Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research.
In the era of big data and artificial learning, developing open-source examples specific to animal science is essential to train the next-generation workforce to realize the potential of precision livestock management technology fully.
Lay Summary
Livestock production is undergoing a new revolution of incorporating advanced technology to inform animal management. As more and more technologies come to market, new challenges arise with developing a workforce trained to handle big datasets generated from these technologies and turning datasets into insight for livestock producers. This can be especially challenging as multiple data streams ranging from climate and weather information to real-time metrics on animal performance need to be efficiently processed and incorporated into animal production models. Open-source code is one possible solution to these challenges because it is designed to be made publicly available so any user can view, alter, and improve upon existing code. This paper aims to highlight how open-source code can help address many of the challenges of precision livestock technology, including efficient data processing, data integration, development of decision tools, and training of future animal scientists. In addition, the need for open-source tutorials and datasets specific to animal science are included to help facilitate greater adoption of open science. | 
    
|---|---|
| AbstractList | Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research. Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research.Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research. Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research. In the era of big data and artificial learning, developing open-source examples specific to animal science is essential to train the next-generation workforce to realize the potential of precision livestock management technology fully. Abstract Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research. In the era of big data and artificial learning, developing open-source examples specific to animal science is essential to train the next-generation workforce to realize the potential of precision livestock management technology fully. Lay Summary Livestock production is undergoing a new revolution of incorporating advanced technology to inform animal management. As more and more technologies come to market, new challenges arise with developing a workforce trained to handle big datasets generated from these technologies and turning datasets into insight for livestock producers. This can be especially challenging as multiple data streams ranging from climate and weather information to real-time metrics on animal performance need to be efficiently processed and incorporated into animal production models. Open-source code is one possible solution to these challenges because it is designed to be made publicly available so any user can view, alter, and improve upon existing code. This paper aims to highlight how open-source code can help address many of the challenges of precision livestock technology, including efficient data processing, data integration, development of decision tools, and training of future animal scientists. In addition, the need for open-source tutorials and datasets specific to animal science are included to help facilitate greater adoption of open science.  | 
    
| Author | Brennan, Jameson R Ehlert, Krista Menendez, Hector M Tedeschi, Luis O  | 
    
| Author_xml | – sequence: 1 givenname: Jameson R surname: Brennan fullname: Brennan, Jameson R email: jameson.brennan@sdstate.edu – sequence: 2 givenname: Hector M orcidid: 0000-0001-9092-7237 surname: Menendez fullname: Menendez, Hector M – sequence: 3 givenname: Krista surname: Ehlert fullname: Ehlert, Krista – sequence: 4 givenname: Luis O orcidid: 0000-0003-1883-4911 surname: Tedeschi fullname: Tedeschi, Luis O  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37997926$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNks1u1DAUhS1URKeFFXtkCQkhQagdO07SDRpV_EmlIBXW1o3jmfE0sdM4aTU7HoLn4KF4Em40w18lKja2dO_n4-NzfUD2fPCWkIecveCsFEdriEfxAmrB8ztkxrM0SwRXYo_MGEt5UhQ83ScHMa4Z42lWZvfIvsjLMi9TNSPf5ufz8-RsfvaRxk3bhejG9pi2MKwsLs5AQ9tQ28b5JXWegnctlvw49G5wwX__8vU9XEzNaH20NCxo5Za0hgGQrVHIrJy3tLHQe8SO6Spc09BZn8Qw9sZSg-rUAErXV-CxMPTgJnTS2l0XjbN-cHGI98ndBTTRPtjth-Tz61efTt4mpx_evDuZnyZG5nJIKpFVRorc5PhSWefSliq1VSo4wIKB5AWoBatzVUpRWbvgZQFS1BIqxVSWG3FInm91R9_B5hqaRnc9euk3mjM9xa4xdr2LHfGXW7wbq9bWBt328PtIAKf_7ni30stwhUpKSckUKjzdKfThcrRx0K2LxjYNeBvGqHGiWaGy_0HTohSFKJXiiD6-ga4xdY_JacEkZxkvcoHUoz_d_7L985cgwLeA6UOMvV1o4waY5j8Nq_lHJM9unLk9wCdbOozdreAP7FLxkA | 
    
| CitedBy_id | crossref_primary_10_1007_s10639_024_13233_6 crossref_primary_10_1093_tas_txae092 crossref_primary_10_3390_ani13243844 crossref_primary_10_1093_jas_skad318  | 
    
| Cites_doi | 10.1016/j.compag.2020.105394 10.1093/jas/skaa402 10.1093/jas/skab086 10.1016/j.compag.2022.107129 10.1016/j.rama.2019.03.003 10.1016/j.applanim.2022.105566 10.1016/S0168-1699(02)00096-0 10.1016/j.rse.2017.06.031 10.1007/s11192-014-1238-2 10.1016/j.compag.2015.11.005 10.1093/bib/bbab415 10.1093/pnasnexus/pgac106 10.1093/jas/skac111 10.1016/j.biosystemseng.2015.09.007 10.2527/jas1965.242480x 10.1016/j.jtbi.2008.08.014 10.1016/j.compag.2021.106610 10.1038/521261a 10.1016/j.isprsjprs.2017.01.019 10.1016/j.compag.2021.106517 10.1016/j.compag.2017.05.020 10.1093/tas/txab126 10.1093/jas/sky014 10.3389/fvets.2017.00110 10.3168/jds.2019-17145 10.1016/j.jtbi.2008.08.013 10.1016/j.compag.2009.03.002 10.1002/ecs2.3060 10.1016/j.agsy.2017.01.023 10.1016/j.biosystemseng.2015.07.005 10.1071/AN14368 10.1002/ece3.7937 10.1016/j.compag.2021.106595 10.2527/jas.2015-0223 10.3389/fsufs.2021.611915 10.1093/jas/skab022 10.1016/j.applanim.2016.08.001 10.1007/978-3-319-34043-2 10.1300/J144v09n01_02 10.1371/journal.pone.0252881 10.3390/rs10071057 10.1093/af/vfz003 10.1242/jeb.184085 10.1093/jas/skac160 10.1371/journal.pbio.1001195 10.1016/j.compag.2022.107187 10.1016/j.animal.2023.100835 10.1016/j.compag.2020.105957 10.1093/jas/skab038 10.1016/j.landusepol.2017.05.005 10.3389/fgene.2021.740340 10.4236/pos.2013.41012 10.3168/jds.2012-6522 10.1093/jas/skz092 10.1371/journal.pbio.2006022 10.1186/s13062-019-0249-6 10.1016/j.compag.2018.12.007 10.1038/nn.4550 10.1093/jas/skac132 10.3835/plantgenome2016.02.0013 10.3758/BRM.41.2.472 10.1016/j.csda.2008.03.008 10.1016/j.compag.2017.09.037 10.1186/s12711-017-0368-4 10.1038/s41597-020-0534-3 10.3390/rs12040646 10.1016/j.envsoft.2020.104694 10.1016/S1161-0301(02)00107-7 10.1111/j.1469-1809.1936.tb02137.x 10.1016/j.rama.2020.10.001  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.  | 
    
| Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. U9A 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/jas/skad317 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Career and Technical Education (Alumni Edition) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | CrossRef AGRICOLA ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture Zoology  | 
    
| EISSN | 1525-3163 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10664406 PMC10664406 37997926 10_1093_jas_skad317 10.1093/jas/skad317  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- ..I .55 .GJ 0R~ 186 18M 29J 2WC 48X 53G 5GY 5RE 5WD 7RQ 7X2 7X7 7XC 88E 88I 8AF 8FE 8FG 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAIMJ AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABCQX ABDFA ABEJV ABGNP ABIME ABJCF ABJNI ABMNT ABPIB ABPQP ABPTD ABUWG ABVGC ABWST ABXVV ABXZS ABZEO ACFRR ACGFO ACGFS ACGOD ACIWK ACPRK ACQAM ACUTJ ACVCV ACZBC ADBBV ADFRT ADGKP ADGZP ADIPN ADNBA ADNWM ADQBN ADRTK ADVEK AELWJ AENEX AETBJ AEUYN AFFZL AFGWE AFKRA AFRAH AFYAG AGINJ AGKRT AGMDO AGQXC AHMBA AI. AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AOIJS APJGH AQDSO ASAOO ATCPS ATDFG ATGXG AZQEC BAYMD BBNVY BCRHZ BENPR BES BEYMZ BGLVJ BHPHI BKOMP BPHCQ BVXVI C1A CCPQU CS3 DU5 DWQXO E3Z EBS ECGQY EJD ELUNK EYRJQ F5P F9R FHSFR FJW FLUFQ FOEOM FQBLK FYUFA GAUVT GNUQQ GUQSH H13 HCIFZ HMCUK HYE INIJC JXSIZ KBUDW KOP KSI KSN L6V L7B LK8 M0K M1P M2O M2P M2Q M7P M7S MBTAY ML0 MV1 MW2 NEJ NHB NLBLG NOMLY NVLIB O9- OBOKY ODMLO OJZSN OK1 OWPYF P-O P0- P2P PATMY PHGZT PQQKQ PRG PROAC PSQYO PTHSS PYCSY Q2X ROX RPM RUSNO RWL RXW S0X SJN TAE TCN TR2 TWZ UKHRP VH1 W8F WH7 WOQ X7M XOL YKV YR5 YXANX ZCG ZGI ZXP ~KM AAYXX AHGBF AJBYB CITATION 3V. 88A CGR CUY CVF DIK ECM EIF M0L NPM TJA ABUFD K9. U9A 7X8 7S9 L.6 5PM ADTOC PHGZM PJZUB PPXIY PQGLB UNPAY  | 
    
| ID | FETCH-LOGICAL-c474t-b35bc437c73794d74e962eb231aaf0a418a6f0d76943beef198a43d4ab60657c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0021-8812 1525-3163 1525-3015 1544-7847  | 
    
| IngestDate | Sun Oct 26 05:08:36 EDT 2025 Tue Sep 30 17:06:27 EDT 2025 Thu Oct 02 22:47:59 EDT 2025 Thu Oct 02 07:07:38 EDT 2025 Tue Oct 07 06:20:53 EDT 2025 Wed Feb 19 02:12:27 EST 2025 Wed Oct 01 01:49:17 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Wed Apr 02 07:03:32 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Open-source big data livestock management systems  | 
    
| Language | English | 
    
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c474t-b35bc437c73794d74e962eb231aaf0a418a6f0d76943beef198a43d4ab60657c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-1883-4911 0000-0001-9092-7237  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10664406/pdf/skad317.pdf | 
    
| PMID | 37997926 | 
    
| PQID | 3041051873 | 
    
| PQPubID | 49113 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_jas_skad317 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10664406 proquest_miscellaneous_3165865406 proquest_miscellaneous_2893839661 proquest_journals_3041051873 pubmed_primary_37997926 crossref_citationtrail_10_1093_jas_skad317 crossref_primary_10_1093_jas_skad317 oup_primary_10_1093_jas_skad317  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-01-03 | 
    
| PublicationDateYYYYMMDD | 2023-01-03 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-03 day: 03  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | US | 
    
| PublicationPlace_xml | – name: US – name: United States – name: Champaign  | 
    
| PublicationTitle | Journal of animal science | 
    
| PublicationTitleAlternate | J Anim Sci | 
    
| PublicationYear | 2023 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Jones (2023112212522268200_CIT0032) 2003; 18 Fisher (2023112212522268200_CIT0022) 1936; 7 Faux (2023112212522268200_CIT0021) 2016; 9 Jia (2023112212522268200_CIT0031) 2022; 23 Morota (2023112212522268200_CIT0045) 2021; 99 Condotta (2023112212522268200_CIT0016) 2020; 173 Brennan (2023112212522268200_CIT0008) 2021 Toelch (2023112212522268200_CIT0072) 2018; 16 Yu (2023112212522268200_CIT0082) 2021; 11 Liebe (2023112212522268200_CIT0035) 2019; 9 Tedeschi (2023112212522268200_CIT0066) 2022; 100 González (2023112212522268200_CIT0025) 2014; 54 Eglen (2023112212522268200_CIT0020) 2017; 20 Molloy (2023112212522268200_CIT0042) 2011; 9 Oliver (2023112212522268200_CIT0057) 2017; 66 Chang (2023112212522268200_CIT0013) 2022; 192 Vihinen (2023112212522268200_CIT0077) 2015; 521 Nicolazzi (2023112212522268200_CIT0052) 2016; 5 Menendez (2023112212522268200_CIT0039) 2022; 100 Vieira (2023112212522268200_CIT0075) 2008; 255 Zhang (2023112212522268200_CIT0084) 2020; 129 NRC (2023112212522268200_CIT0053) 1985 Goldsmith (2023112212522268200_CIT0024) 2022; 199 Jacobs (2023112212522268200_CIT0029) 2022; 100 Mesas-Carrascosa (2023112212522268200_CIT0040) 2015; 137 Wang (2023112212522268200_CIT0078) 2021; 99 Tedeschi (2023112212522268200_CIT0070) 2020 NASEM (2023112212522268200_CIT0050) 2021 Wolfert (2023112212522268200_CIT0080) 2017; 153 Dickinson (2023112212522268200_CIT0018) 2013; 96 Dalby (2023112212522268200_CIT0017) 2021; 16 Tedeschi (2023112212522268200_CIT0069) 2020 Duggan (2023112212522268200_CIT0019) 2016 Vaillant (2023112212522268200_CIT0073) 2016; 120 Sprinkle (2023112212522268200_CIT0062) 2021; 76 Muñoz-Tamayo (2023112212522268200_CIT0046) 2022; 1 Pastorello (2023112212522268200_CIT0058) 2020; 7 Morota (2023112212522268200_CIT0044) 2018; 96 Xiong (2023112212522268200_CIT0081) 2017; 126 Barwick (2023112212522268200_CIT0007) 2020; 12 Hänninen (2023112212522268200_CIT0027) 2009; 41 Campbell (2023112212522268200_CIT0012) 2013; 216 Tedeschi (2023112212522268200_CIT0067) 2023; 17 Sterman (2023112212522268200_CIT0063) 2000 Alvarenga (2023112212522268200_CIT0001) 2016; 183 Kamilaris (2023112212522268200_CIT0033) 2017; 143 MacNeil (2023112212522268200_CIT0038) 2021; 5 Vieira (2023112212522268200_CIT0076) 2008; 255 NASEM (2023112212522268200_CIT0049) 2016 Oczak (2023112212522268200_CIT0056) 2022; 192 Williams (2023112212522268200_CIT0079) 2022; 199 Galyean (2023112212522268200_CIT0023) 2016; 94 Houghton (2023112212522268200_CIT0028) 2015; 2 Anderson (2023112212522268200_CIT0002) 2013; 4 VanderWaal (2023112212522268200_CIT0074) 2017; 4 Cheng (2023112212522268200_CIT0015) 2021; 12 Nash (2023112212522268200_CIT0051) 2008; 52 Light (2023112212522268200_CIT0036) 2014; 101 Riaboff (2023112212522268200_CIT0059) 2022; 192 Tedeschi (2023112212522268200_CIT0065) 2019; 97 Serão (2023112212522268200_CIT0061) 2021; 99 Tedeschi (2023112212522268200_CIT0068) 2021 Brennan (2023112212522268200_CIT0010) 2021; 181 Chang (2023112212522268200_CIT0014) 2022; 247 Lofgreen (2023112212522268200_CIT0037) 1965; 24 Zhang (2023112212522268200_CIT0083) 2002; 36 NRC (2023112212522268200_CIT0054) 2012 Brennan (2023112212522268200_CIT0009) 2019; 72 Mihaylov (2023112212522268200_CIT0041) 2019; 14 Jansen (2023112212522268200_CIT0030) 2018; 10 Cabrera (2023112212522268200_CIT0011) 2020; 103 Koch (2023112212522268200_CIT0034) 2003; 9 Oczak (2023112212522268200_CIT0055) 2015; 140 R Core Team (2023112212522268200_CIT0085) 2020 Bahlo (2023112212522268200_CIT0005) 2019; 156 Gorelick (2023112212522268200_CIT0026) 2017; 202 NANP (2023112212522268200_CIT0047) 2022 Morota (2023112212522268200_CIT0043) 2017; 49 Auker (2023112212522268200_CIT0004) 2020; 11 Bailey (2023112212522268200_CIT0006) 2021; 5 Tatler (2023112212522268200_CIT0064) 2018; 221 Tedeschi (2023112212522268200_CIT0071) 2021; 99 Andriamandroso (2023112212522268200_CIT0003) 2017; 139 Robert (2023112212522268200_CIT0060) 2009; 67 NASEM (2023112212522268200_CIT0048) 2011  | 
    
| References_xml | – volume: 173 start-page: 105394 year: 2020 ident: 2023112212522268200_CIT0016 article-title: Evaluation of low-cost depth cameras for agricultural applications publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2020.105394 – volume: 99 start-page: skaa402 year: 2021 ident: 2023112212522268200_CIT0045 article-title: ASAS-NANP symposium: prospects for interactive and dynamic graphics in the era of data-rich animal science publication-title: J. Anim. Sci doi: 10.1093/jas/skaa402 – year: 2020 ident: 2023112212522268200_CIT0085 article-title: R: A language and environment for statistical computing – volume: 99 start-page: skab086 year: 2021 ident: 2023112212522268200_CIT0061 article-title: Assessing the statistical training in animal science graduate programs in the United States: survey on statistical training publication-title: J. Anim. Sci doi: 10.1093/jas/skab086 – year: 2021 ident: 2023112212522268200_CIT0008 – volume: 216 start-page: 4501 year: 2013 ident: 2023112212522268200_CIT0012 article-title: Creating a behavioral classification module for acceleration data: using a captive surrogate for difficult to observe species publication-title: J. Exp. Biol – year: 2022 ident: 2023112212522268200_CIT0047 – volume: 199 start-page: 107129 year: 2022 ident: 2023112212522268200_CIT0024 article-title: The use of accelerometers for the remote detection of mounting in rams and testosterone-treated wethers publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2022.107129 – volume: 72 start-page: 615 year: 2019 ident: 2023112212522268200_CIT0009 article-title: Technical note: method to streamline processing of livestock global positioning system collar data publication-title: Rangel. Ecol. Manag doi: 10.1016/j.rama.2019.03.003 – volume: 247 start-page: 105566 year: 2022 ident: 2023112212522268200_CIT0014 article-title: Accelerometer derived rumination monitoring detects changes in behaviour around parturition publication-title: Appl. Anim. Behav. Sci doi: 10.1016/j.applanim.2022.105566 – volume-title: Nutrient requirements of fish and shrimp year: 2011 ident: 2023112212522268200_CIT0048 – volume: 36 start-page: 113 year: 2002 ident: 2023112212522268200_CIT0083 article-title: Precision agriculture—a worldwide overview publication-title: Comput. Electron. Agric doi: 10.1016/S0168-1699(02)00096-0 – volume: 202 start-page: 18 year: 2017 ident: 2023112212522268200_CIT0026 article-title: Google earth engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ doi: 10.1016/j.rse.2017.06.031 – volume: 101 start-page: 1535 year: 2014 ident: 2023112212522268200_CIT0036 article-title: Open data and open code for big science of science studies publication-title: Scientometrics doi: 10.1007/s11192-014-1238-2 – volume: 120 start-page: 7 year: 2016 ident: 2023112212522268200_CIT0073 article-title: Application note: an open-source JavaScript library to simulate dairy cows and young stock, their growth, requirements and diets publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2015.11.005 – volume: 23 start-page: bbab415 year: 2022 ident: 2023112212522268200_CIT0031 article-title: Development of interactive biological web applications with R/Shiny publication-title: Brief. Bioinform doi: 10.1093/bib/bbab415 – volume: 1 start-page: 1 year: 2022 ident: 2023112212522268200_CIT0046 article-title: Seven steps to enhance open science practices in animal science publication-title: PNAS Nexus doi: 10.1093/pnasnexus/pgac106 – volume: 100 start-page: 1 year: 2022 ident: 2023112212522268200_CIT0066 article-title: ASAS-NANP symposium: mathematical modeling in animal nutrition: the progression of data analytics and artificial intelligence in support of sustainable development in animal science publication-title: J. Anim. Sci doi: 10.1093/jas/skac111 – volume: 140 start-page: 48 year: 2015 ident: 2023112212522268200_CIT0055 article-title: Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data publication-title: Biosyst. Eng doi: 10.1016/j.biosystemseng.2015.09.007 – volume: 5 start-page: 17 year: 2016 ident: 2023112212522268200_CIT0052 article-title: SNPConvert: SNP array standardization and integration in livestock species publication-title: Microarrays (Basel, Switzerland) – volume-title: Nutrient requirements of beef cattle year: 2016 ident: 2023112212522268200_CIT0049 – volume: 24 start-page: 480 year: 1965 ident: 2023112212522268200_CIT0037 article-title: Net energy of fat and molasses for beef heifers with observations on the method for net energy determination publication-title: J. Anim. Sci doi: 10.2527/jas1965.242480x – volume-title: Nutrient requirements of dairy cattle year: 2021 ident: 2023112212522268200_CIT0050 – volume: 255 start-page: 345 year: 2008 ident: 2023112212522268200_CIT0075 article-title: A generalized compartmental model to estimate the fibre mass in the ruminoreticulum. 1. Estimating parameters of digestion publication-title: J. Theor. Biol doi: 10.1016/j.jtbi.2008.08.014 – volume: 192 start-page: 106610 year: 2022 ident: 2023112212522268200_CIT0059 article-title: Predicting livestock behaviour using accelerometers: a systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2021.106610 – volume: 521 start-page: 261 year: 2015 ident: 2023112212522268200_CIT0077 article-title: No more hidden solutions in bioinformatics publication-title: Nature doi: 10.1038/521261a – volume: 126 start-page: 225 year: 2017 ident: 2023112212522268200_CIT0081 article-title: Automated cropland mapping of continental Africa using Google Earth Engine cloud computing publication-title: ISPRS J. Photogramm. Remote Sens doi: 10.1016/j.isprsjprs.2017.01.019 – volume: 192 start-page: 106517 year: 2022 ident: 2023112212522268200_CIT0056 article-title: Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2021.106517 – volume: 139 start-page: 126 year: 2017 ident: 2023112212522268200_CIT0003 article-title: Development of an open-source algorithm based on inertial measurement units (IMU) of a smartphone to detect cattle grass intake and ruminating behaviors publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2017.05.020 – volume: 5 start-page: txab126 year: 2021 ident: 2023112212522268200_CIT0038 article-title: Evaluation of partial body weight for predicting body weight and average daily gain in growing beef cattle publication-title: Transl. Anim. Sci doi: 10.1093/tas/txab126 – volume: 96 start-page: 1540 year: 2018 ident: 2023112212522268200_CIT0044 article-title: Big data analytics and precision animal agriculture symposium: machine learning and data mining advance predictive big data analysis in precision animal agriculture publication-title: J. Anim. Sci doi: 10.1093/jas/sky014 – volume: 4 start-page: 110 year: 2017 ident: 2023112212522268200_CIT0074 article-title: Translating big data into smart data for veterinary epidemiology publication-title: Front. Vet. Sci doi: 10.3389/fvets.2017.00110 – volume: 103 start-page: 3856 year: 2020 ident: 2023112212522268200_CIT0011 article-title: Symposium review: real-time continuous decision making using big data on dairy farms publication-title: J. Dairy Sci doi: 10.3168/jds.2019-17145 – volume: 255 start-page: 357 year: 2008 ident: 2023112212522268200_CIT0076 article-title: A generalized compartmental model to estimate the fibre mass in the ruminoreticulum. 2. Integrating digestion and passage publication-title: J. Theor. Biol doi: 10.1016/j.jtbi.2008.08.013 – volume: 67 start-page: 80 year: 2009 ident: 2023112212522268200_CIT0060 article-title: Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2009.03.002 – volume: 11 start-page: e03060 year: 2020 ident: 2023112212522268200_CIT0004 article-title: Teaching R in the undergraduate ecology classroom: approaches, lessons learned, and recommendations publication-title: Ecosphere doi: 10.1002/ecs2.3060 – volume-title: The ruminant nutrition system: volume II—tables of equations and coding year: 2020 ident: 2023112212522268200_CIT0070 – volume: 153 start-page: 69 year: 2017 ident: 2023112212522268200_CIT0080 article-title: Big data in smart farming—a review publication-title: Agric. Sys doi: 10.1016/j.agsy.2017.01.023 – volume: 137 start-page: 73 year: 2015 ident: 2023112212522268200_CIT0040 article-title: Open source hardware to monitor environmental parameters in precision agriculture publication-title: Biosyst. Eng doi: 10.1016/j.biosystemseng.2015.07.005 – volume: 54 start-page: 1687 year: 2014 ident: 2023112212522268200_CIT0025 article-title: Wireless sensor networks to study, monitor and manage cattle in grazing systems publication-title: Anim. Prod. Sci doi: 10.1071/AN14368 – volume: 11 start-page: 12364 year: 2021 ident: 2023112212522268200_CIT0082 article-title: R package for animal behavior classification from accelerometer data—rabc publication-title: Ecol. Evol doi: 10.1002/ece3.7937 – volume: 192 start-page: 106595 year: 2022 ident: 2023112212522268200_CIT0013 article-title: Detection of rumination in cattle using an accelerometer ear-tag: a comparison of analytical methods and individual animal and generic models publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2021.106595 – volume: 94 start-page: 1329 year: 2016 ident: 2023112212522268200_CIT0023 article-title: Board-Invited Review: efficiency of converting digestible energy to metabolizable energy and reevaluation of the California net energy system maintenance requirements and equations for predicting dietary net energy values for beef cattle publication-title: J. Anim. Sci doi: 10.2527/jas.2015-0223 – volume: 5 start-page: 6111915 year: 2021 ident: 2023112212522268200_CIT0006 article-title: opportunities to apply precision livestock management on rangelands publication-title: Front. Sustain. Food Syst doi: 10.3389/fsufs.2021.611915 – volume-title: Business dynamics: systems thinking and modeling for a complex world year: 2000 ident: 2023112212522268200_CIT0063 – volume: 99 start-page: 2 year: 2021 ident: 2023112212522268200_CIT0078 article-title: ASAS-NANP Symposium: applications of machine learning for livestock body weight prediction from digital images publication-title: J. Anim. Sci doi: 10.1093/jas/skab022 – volume: 183 start-page: 104 year: 2016 ident: 2023112212522268200_CIT0001 article-title: Using a three-axis accelerometer to identify and classify sheep behaviour at pasture publication-title: Appl. Anim. Behav. Sci doi: 10.1016/j.applanim.2016.08.001 – volume-title: System dynamics modeling with R year: 2016 ident: 2023112212522268200_CIT0019 doi: 10.1007/978-3-319-34043-2 – volume: 9 start-page: 361 year: 2003 ident: 2023112212522268200_CIT0034 article-title: The role of precision agriculture in cropping systems publication-title: J. Crop Prod doi: 10.1300/J144v09n01_02 – volume: 16 start-page: e0252881 year: 2021 ident: 2023112212522268200_CIT0017 article-title: A mechanistic model of methane emission from animal slurry with a focus on microbial groups publication-title: PLoS One doi: 10.1371/journal.pone.0252881 – volume: 10 start-page: 1057 year: 2018 ident: 2023112212522268200_CIT0030 article-title: The development of near real-time biomass and cover estimates for adaptive rangeland management using Landsat 7 and Landsat 8 surface reflectance products publication-title: Remote Sens doi: 10.3390/rs10071057 – volume-title: Nutrient requirements of swine year: 2012 ident: 2023112212522268200_CIT0054 – volume: 9 start-page: 16 year: 2019 ident: 2023112212522268200_CIT0035 article-title: Analytics in sustainable precision animal nutrition publication-title: Anim. Front doi: 10.1093/af/vfz003 – volume: 221 start-page: jeb184085 year: 2018 ident: 2023112212522268200_CIT0064 article-title: High accuracy at low frequency: detailed behavioural classification from accelerometer data publication-title: J. Exp. Bio doi: 10.1242/jeb.184085 – volume: 100 start-page: skac160 year: 2022 ident: 2023112212522268200_CIT0039 article-title: ASAS–NANP symposium: mathematical modeling in animal nutrition: opportunities and challenges of confined and extensive precision livestock production publication-title: J. Anim. Sci doi: 10.1093/jas/skac160 – volume: 9 start-page: e1001195 year: 2011 ident: 2023112212522268200_CIT0042 article-title: The Open knowledge foundation: open data means better science publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001195 – volume: 199 start-page: 107187 year: 2022 ident: 2023112212522268200_CIT0079 article-title: Classification of dairy cow excretory events using a tail-mounted accelerometer publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2022.107187 – volume: 17 start-page: 100835 year: 2023 ident: 2023112212522268200_CIT0067 article-title: Review: harnessing extant energy and protein requirements modelling for sustainable beef production publication-title: Animal doi: 10.1016/j.animal.2023.100835 – volume: 181 start-page: 105957 year: 2021 ident: 2023112212522268200_CIT0010 article-title: Classifying season long livestock grazing behavior with the use of a low-cost GPS and accelerometer publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2020.105957 – volume-title: Nutrient requirements of sheep year: 1985 ident: 2023112212522268200_CIT0053 – volume: 99 start-page: skab038 year: 2021 ident: 2023112212522268200_CIT0071 article-title: Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming publication-title: J. Anim. Sci doi: 10.1093/jas/skab038 – volume: 66 start-page: 227 year: 2017 ident: 2023112212522268200_CIT0057 article-title: Design of a decision support tool for visualising E. coli risk on agricultural land using a stakeholder-driven approach publication-title: Land Use Policy doi: 10.1016/j.landusepol.2017.05.005 – volume: 12 start-page: 740340 year: 2021 ident: 2023112212522268200_CIT0015 article-title: Optimizing sequencing resources in genotyped livestock populations using linear programming publication-title: Front. Genet doi: 10.3389/fgene.2021.740340 – start-page: 177 volume-title: Feeding the future: precision nutrition for tomorrow’s animal year: 2021 ident: 2023112212522268200_CIT0068 article-title: Precision determination of energy and protein requirements of grazing and feedlot animals – volume: 4 start-page: 115 year: 2013 ident: 2023112212522268200_CIT0002 article-title: Spatiotemporal cattle data—a plea for protocol standardization publication-title: Positioning doi: 10.4236/pos.2013.41012 – volume: 96 start-page: 4477 year: 2013 ident: 2023112212522268200_CIT0018 article-title: An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows publication-title: J. Dairy Sci doi: 10.3168/jds.2012-6522 – volume: 97 start-page: 1921 year: 2019 ident: 2023112212522268200_CIT0065 article-title: ASAS-NANP symposium: future of data analytics in nutrition: mathematical modeling in ruminant nutrition: approaches and paradigms, extant models, and thoughts for upcoming predictive analytics publication-title: J. Anim. Sci doi: 10.1093/jas/skz092 – volume: 16 start-page: e2006022 year: 2018 ident: 2023112212522268200_CIT0072 article-title: Digital open science—teaching digital tools for reproducible and transparent research publication-title: PLoS Biol doi: 10.1371/journal.pbio.2006022 – volume: 14 start-page: 22 year: 2019 ident: 2023112212522268200_CIT0041 article-title: A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models publication-title: Biol. Direct doi: 10.1186/s13062-019-0249-6 – volume-title: The ruminant nutrition system: volume I—an applied model for predicting nutrient requirements and feed utilization in ruminants year: 2020 ident: 2023112212522268200_CIT0069 – volume: 156 start-page: 459 year: 2019 ident: 2023112212522268200_CIT0005 article-title: The role of interoperable data standards in precision livestock farming in extensive livestock systems: a review publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2018.12.007 – volume: 20 start-page: 770 year: 2017 ident: 2023112212522268200_CIT0020 article-title: Toward standard practices for sharing computer code and programs in neuroscience publication-title: Nat. Neurosci doi: 10.1038/nn.4550 – volume: 100 start-page: skac132 year: 2022 ident: 2023112212522268200_CIT0029 article-title: ASAS-NANP symposium: mathematical modeling in animal nutrition: limitations and potential next steps for modeling and modelers in the animal sciences publication-title: J. Anim. Sci doi: 10.1093/jas/skac132 – volume: 2 start-page: 1436 year: 2015 ident: 2023112212522268200_CIT0028 article-title: Advanced data analytics for system dynamics models using PySD publication-title: Proceedings of the 33rd International Conference of the System Dynamics Society – volume: 9 year: 2016 ident: 2023112212522268200_CIT0021 article-title: AlphaSim: software for breeding program simulation publication-title: Plant Genome doi: 10.3835/plantgenome2016.02.0013 – volume: 41 start-page: 472 year: 2009 ident: 2023112212522268200_CIT0027 article-title: CowLog: open-source software for coding behaviors from digital video publication-title: Behav. Res. Methods doi: 10.3758/BRM.41.2.472 – volume: 52 start-page: 4602 year: 2008 ident: 2023112212522268200_CIT0051 article-title: Teaching statistics with Excel 2007 and other spreadsheets publication-title: Comput. Stat. Data Anal doi: 10.1016/j.csda.2008.03.008 – volume: 143 start-page: 23 year: 2017 ident: 2023112212522268200_CIT0033 article-title: A review on the practice of big data analysis in agriculture publication-title: Comput. Electron. Agric doi: 10.1016/j.compag.2017.09.037 – volume: 49 start-page: 91 year: 2017 ident: 2023112212522268200_CIT0043 article-title: ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas publication-title: Genet. Sel. Evol doi: 10.1186/s12711-017-0368-4 – volume: 7 start-page: 225 year: 2020 ident: 2023112212522268200_CIT0058 article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data publication-title: Sci. Data doi: 10.1038/s41597-020-0534-3 – volume: 12 start-page: 646 year: 2020 ident: 2023112212522268200_CIT0007 article-title: Identifying sheep activity from tri-axial acceleration signals using a moving window classification model publication-title: Remote Sens doi: 10.3390/rs12040646 – volume: 129 start-page: 104694 year: 2020 ident: 2023112212522268200_CIT0084 article-title: AgKit4EE: a toolkit for agricultural land use modeling of the conterminous United States based on Google Earth Engine publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2020.104694 – volume: 18 start-page: 235 year: 2003 ident: 2023112212522268200_CIT0032 article-title: The DSSAT cropping system model publication-title: Eur. J. Agron doi: 10.1016/S1161-0301(02)00107-7 – volume: 7 start-page: 179 year: 1936 ident: 2023112212522268200_CIT0022 article-title: The Use of multiple measurements in taxonomic problems publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 76 start-page: 157 year: 2021 ident: 2023112212522268200_CIT0062 article-title: Predicting cattle grazing behavior on rangeland using accelerometers publication-title: Rangel. Ecol. Manag doi: 10.1016/j.rama.2020.10.001  | 
    
| SSID | ssj0012595 | 
    
| Score | 2.4212208 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Abstract
Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the... Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| SubjectTerms | Animal growth Animal nutrition animal performance Animal sciences Animals Artificial Intelligence Big Data Data analysis Data collection Data processing food and nutrition programs Humans Learning algorithms Livestock livestock husbandry Machine Learning Mathematical analysis Mathematical models Models, Theoretical Nutrition Open data Open source software Pipelining (computers) Programming languages Python Scientists Software Source code Statistical analysis Zoology  | 
    
| Title | ASAS-NANP symposium: mathematical modeling in animal nutrition—Making sense of big data and machine learning: how open-source code can advance training of animal scientists | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37997926 https://www.proquest.com/docview/3041051873 https://www.proquest.com/docview/2893839661 https://www.proquest.com/docview/3165865406 https://pubmed.ncbi.nlm.nih.gov/PMC10664406 https://pmc.ncbi.nlm.nih.gov/articles/PMC10664406/pdf/skad317.pdf  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 101 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1525-3163 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0012595 issn: 1525-3163 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1525-3163 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012595 issn: 1525-3163 databaseCode: 8FG dateStart: 19971001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF7R9AAcyj8NlLBI5YK0ie1de-3erIpQISWKVCLBydr1rtPQ2InqRFU58RA8Bw_FkzBrr62GnwqJm-WdjH_y7eyM95sZhA7BMKaR9iSJFFeEuUqQyFGG5EijMHNkqD2TnDwaBydT9v6j37AJTS7MKgctqZz3i0XeL-ZnFbey4YgNJqNjCGFgCXeCwUplg_JcKFgA-3C8g3YDH9zxDtqdjifxp5ra4ZIwrHc8fc8nAGa_PXarLmumGA3hYKJt7h4E-IPPomw0b61WWxlw1xzR3_mUtzfFSlxdisXi2mI1vIdk-5gVR-W8v1nLfvrllwqQ__Ue7qM968riuBZ_gG7p4iG6G88ubDkP_Qh9j0_jUzKOxxNcXuWGILbJj3DeloqFn1eteGD9xPMCi2Kew6mi6RDw4-u3UdUtC5cQbWu8zLCcz7BhtYKsAkWGCaqxbX0xO8Jny0tsGoKRelMCm4x9DOjBluuAm5YYRpe9XJ0TCnAvH6Pp8O2H4xNiO0SQlHG2JpL6MmWUp5yCXVGc6SjwtASfVYjMEcwNRZA5igcRo1LrzI1CwahiQkLc5vOUPkGdYlnofYSZ9rjkrqLco8yPMslUpkOpAjcDDSztojcNEpLUlk83t7xI6m18mgBsEvtHdNFhK7yqq4b8WewlQOpmiYMGbok1LmVCHcPNdUNOu-hVOwxmwez1iEIvN2UCcTQF3xe8r7_LwBTwwwBc9qCLntYIbu8F3mfEIw9Gwi1stwKmLPn2CKC0Kk_eILOLXrfT4KZnfPaPcs_RHQ88zOr7Fz1AnfXFRr8Aj3Ate2gnHL7rVZ_qenb-_wRN32Tl | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELagewAO_C8EFjDSckFym8ROnOwtWrFaIbWqtFSCU2THTrdsk1abRqvlxEPwHDwUT8I4caItPyskblE8nfz083gm_mYGoX0wjFmsfUlixRVhnhIkdpUhOdI4yl0Zad8kJ48n4fGMvf8YdGxCkwuzLkBLJhfDclkMy8Vpw63sOGKj6fgQQhhYwt1wtFb5qDoTChbAIRzfRDthAO74AO3MJtPkU0vt8EgUtTuegR8QAHPQH3tNlzVTjIZwMNE2dw8C_NFnUXWat1arrQy4K47o73zKW3W5FpcXYrm8slgd3UOyf8yGo3I2rDdymH35pQLkf72H--iudWVx0oo_QDd0-RDdSebntpyHfoS-JyfJCZkkkymuLgtDEKuLA1z0pWLh500rHlg_8aLEolwUcKrsOgT8-Ppt3HTLwhVE2xqvciwXc2xYrSCrQJFhgmpsW1_MD_Dp6gKbhmCk3ZTAJmMfA3qw5TrgriWG0WUv1-aEAtyrx2h29O7D4TGxHSJIxjjbEEkDmTHKM07BrijOdBz6WoLPKkTuCuZFIsxdxcOYUal17sWRYFQxISFuC3hGd9GgXJX6KcJM-1xyT1HuUxbEuWQq15FUoZeDBpY56G2HhDSz5dPNLS_TdhufpgCb1P4RDtrvhddt1ZA_i70CSF0vsdfBLbXGpUqpa7i5XsSpg173w2AWzF6PKPWqrlKIoyn4vuB9_V0GpkAQheCyhw560iK4vxd4nzGPfRiJtrDdC5iy5NsjgNKmPHmHTAe96afBdc_47B_lnqPbPniYzfcvuocGm_NavwCPcCNf2jn_E6SuYu8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASAS-NANP+symposium%3A+mathematical+modeling+in+animal+nutrition%E2%80%94Making+sense+of+big+data+and+machine+learning%3A+how+open-source+code+can+advance+training+of+animal+scientists&rft.jtitle=Journal+of+animal+science&rft.au=Brennan%2C+Jameson+R&rft.au=Menendez%2C+Hector+M.+III&rft.au=Ehlert%2C+Krista&rft.au=Tedeschi%2C+Luis+O.&rft.date=2023-01-03&rft.issn=1525-3163&rft.volume=101+p.skad317-&rft_id=info:doi/10.1093%2Fjas%2Fskad317&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8812&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8812&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8812&client=summon |