HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications
Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy requirements, physiological signalbased biometric human identification is gaining tremendous attention. This paper focuses on two major impedi...
        Saved in:
      
    
          | Published in | IEEE access Vol. 5; pp. 11805 - 11816 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2017
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2017.2707460 | 
Cover
| Abstract | Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy requirements, physiological signalbased biometric human identification is gaining tremendous attention. This paper focuses on two major impediments: the signal processing technique is usually both complicated and data-dependent and the feature engineering is time-consuming and can fit only specific datasets . To enable a data-independent and highly generalizable signal processing and feature learning process, a novel wavelet domain multiresolution convolutional neural network is proposed. Specifically, it allows for blindly selecting a physiological signal segment for identification purpose, avoiding the complicated signal fiducial characteristics extraction process. To enrich the data representation, the random chosen signal segment is then transformed to the wavelet domain, where multiresolution time-frequency representation is achieved. An auto-correlation operation is applied to the transformed data to remove the phase difference as the result of the blind segmentation operation. Afterward, a multiresolution 1-D-convolutional neural network (1-D-CNN) is introduced to automatically learn the intrinsic hierarchical features from the wavelet domain raw data without datadependent and heavy feature engineering, and perform the user identification task. The effectiveness of the proposed algorithm is thoroughly evaluated on eight electrocardiogram datasets with diverse behaviors, such as with or without severe heart diseases, and with different sensor placement methods. Our evaluation is much more extensive than the state-of-the-art works, and an average identification rate of 93.5% is achieved. The proposed multiresolution 1-D-CNN algorithm can effectively identify human subjects, even from randomly selected signal segments and without heavy feature engineering. This paper is expected to demonstrate the feasibility and effectiveness of applying the blind signal processing and deep learning techniques to biometric human identification, to enable a low algorithm engineering effort and also a high generalization ability. | 
    
|---|---|
| AbstractList | Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy requirements, physiological signalbased biometric human identification is gaining tremendous attention. This paper focuses on two major impediments: the signal processing technique is usually both complicated and data-dependent and the feature engineering is time-consuming and can fit only specific datasets . To enable a data-independent and highly generalizable signal processing and feature learning process, a novel wavelet domain multiresolution convolutional neural network is proposed. Specifically, it allows for blindly selecting a physiological signal segment for identification purpose, avoiding the complicated signal fiducial characteristics extraction process. To enrich the data representation, the random chosen signal segment is then transformed to the wavelet domain, where multiresolution time-frequency representation is achieved. An auto-correlation operation is applied to the transformed data to remove the phase difference as the result of the blind segmentation operation. Afterward, a multiresolution 1-D-convolutional neural network (1-D-CNN) is introduced to automatically learn the intrinsic hierarchical features from the wavelet domain raw data without datadependent and heavy feature engineering, and perform the user identification task. The effectiveness of the proposed algorithm is thoroughly evaluated on eight electrocardiogram datasets with diverse behaviors, such as with or without severe heart diseases, and with different sensor placement methods. Our evaluation is much more extensive than the state-of-the-art works, and an average identification rate of 93.5% is achieved. The proposed multiresolution 1-D-CNN algorithm can effectively identify human subjects, even from randomly selected signal segments and without heavy feature engineering. This paper is expected to demonstrate the feasibility and effectiveness of applying the blind signal processing and deep learning techniques to biometric human identification, to enable a low algorithm engineering effort and also a high generalization ability. | 
    
| Author | Xuan Zeng Qingxue Zhang Dian Zhou  | 
    
| Author_xml | – sequence: 1 givenname: Qingxue orcidid: 0000-0001-7125-7928 surname: Zhang fullname: Zhang, Qingxue – sequence: 2 givenname: Dian surname: Zhou fullname: Zhou, Dian – sequence: 3 givenname: Xuan surname: Zeng fullname: Zeng, Xuan  | 
    
| BookMark | eNqFkU1vEzEQhleoSJTSX9CLJc4b_LUf5pYuoYlU4BA4WxPbCw7OerG9rXrkn-NmowqVA5Ysj8bzPjOa93VxNvjBFMUVwQtCsHi37LrVdrugmDQL2uCG1_hFcU5JLUpWsfrsr_hVcRnjHufT5lTVnBe_1wZC2nx4j5bo0-SSDSZ6NyXrB9T54e4Ug0OfzRSOT7r34SfqfUCr7qa8hmg0urb-YFKwCq2nAwxoo82QbG8VHEl2QNtD7oNyN5d-oOU4utNffFO87MFFc3l6L4pvH1dfu3V5--Vm0y1vS8UbnkroqdCEKsp40zaUc6GgbisCpNeaYmaACUINpn2LNal2wgjKdvVOY94DwTW7KDYzV3vYyzHYPNCD9GDlMeHDd5kntMoZCZoKpRXwWhkOWIHQXOtaNKLtWa-qzOIzaxpGeLgH556ABMtHVyQoZWKUj67IkytZ9naWjcH_mkxMcu-nkJeb63hViXx5m6vYXKWCjzGY_h_27PhztnimUjYdN5wCWPcf7dWstcaYp26NYAzXFfsDfdG6_g | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_3390_s22093446 crossref_primary_10_3390_s23063164 crossref_primary_10_1109_JBHI_2017_2773097 crossref_primary_10_1109_ACCESS_2019_2919407 crossref_primary_10_1109_ACCESS_2022_3185615 crossref_primary_10_1016_j_bspc_2020_101952 crossref_primary_10_1109_LGRS_2020_3014418 crossref_primary_10_3390_su14073950 crossref_primary_10_1016_j_neucom_2020_01_019 crossref_primary_10_1088_2057_1976_ad29a3 crossref_primary_10_1109_ACCESS_2019_2937357 crossref_primary_10_3390_s23104635 crossref_primary_10_1016_j_compbiomed_2020_103801 crossref_primary_10_1016_j_bspc_2021_103335 crossref_primary_10_1109_JIOT_2023_3288767 crossref_primary_10_3390_info14020065 crossref_primary_10_1631_FITEE_2000511 crossref_primary_10_1109_JSEN_2018_2866806 crossref_primary_10_3390_electronics13244974 crossref_primary_10_3390_jimaging9090168 crossref_primary_10_1109_ACCESS_2019_2921568 crossref_primary_10_1016_j_jclepro_2023_137300 crossref_primary_10_1109_ACCESS_2023_3295434 crossref_primary_10_1109_LSENS_2020_3012653 crossref_primary_10_1016_j_dsp_2021_103120 crossref_primary_10_1038_s41528_019_0056_2 crossref_primary_10_3390_app10093304 crossref_primary_10_1016_j_cmpb_2020_105596 crossref_primary_10_3390_s20061670 crossref_primary_10_1016_j_bea_2021_100008 crossref_primary_10_1109_ACCESS_2019_2939947 crossref_primary_10_1109_ACCESS_2021_3095248 crossref_primary_10_1016_j_eswa_2023_121323 crossref_primary_10_3390_s22145111 crossref_primary_10_1109_ACCESS_2019_2927726 crossref_primary_10_1016_j_matchemphys_2024_130107 crossref_primary_10_4108_eetsis_5644 crossref_primary_10_1109_TIM_2021_3119138 crossref_primary_10_3390_e23060733 crossref_primary_10_1007_s00500_021_06094_5 crossref_primary_10_1016_j_patrec_2019_07_009 crossref_primary_10_1109_ACCESS_2021_3128134 crossref_primary_10_1061_JPEODX_0000373 crossref_primary_10_1016_j_engappai_2024_107883 crossref_primary_10_1109_ACCESS_2019_2912519 crossref_primary_10_3390_app12052692 crossref_primary_10_1016_j_patrec_2022_02_014 crossref_primary_10_2478_amns_2024_0543 crossref_primary_10_3390_s20133697 crossref_primary_10_3390_s23020937 crossref_primary_10_1109_ACCESS_2023_3328641 crossref_primary_10_3389_fgene_2021_746181 crossref_primary_10_3390_s20113069 crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1109_ACCESS_2024_3514093 crossref_primary_10_1007_s11042_022_12244_0 crossref_primary_10_1109_TBIOM_2019_2947434 crossref_primary_10_1016_j_dsp_2021_103306 crossref_primary_10_1109_LGRS_2020_2996640 crossref_primary_10_1038_s41598_021_87177_z crossref_primary_10_1145_3534588 crossref_primary_10_1016_j_procs_2020_08_044 crossref_primary_10_1093_braincomms_fcaa096 crossref_primary_10_1109_TIM_2022_3199260 crossref_primary_10_3390_electronics10172052 crossref_primary_10_1016_j_pmcj_2023_101868 crossref_primary_10_1109_ACCESS_2022_3224426 crossref_primary_10_1016_j_bbe_2022_08_004 crossref_primary_10_3390_s21030773 crossref_primary_10_3390_s18082581 crossref_primary_10_3390_app11031125 crossref_primary_10_1016_j_bspc_2021_102689 crossref_primary_10_1109_JIOT_2023_3327738 crossref_primary_10_1109_TBME_2022_3219863 crossref_primary_10_1109_ACCESS_2024_3368854 crossref_primary_10_3233_JCS_220137 crossref_primary_10_3390_info11120556 crossref_primary_10_3390_s22124343 crossref_primary_10_1016_j_talanta_2024_125968 crossref_primary_10_1109_ACCESS_2018_2841991 crossref_primary_10_3390_app132413350 crossref_primary_10_1049_iet_bmt_2018_5183 crossref_primary_10_1109_ACCESS_2019_2954576 crossref_primary_10_1109_JSEN_2021_3139135 crossref_primary_10_3233_JIFS_230721 crossref_primary_10_1007_s00034_020_01510_x crossref_primary_10_1016_j_eswa_2022_118178 crossref_primary_10_1109_ACCESS_2019_2933851 crossref_primary_10_7717_peerj_cs_324 crossref_primary_10_3390_s20102920 crossref_primary_10_1109_ACCESS_2020_3000580 crossref_primary_10_3389_fbioe_2021_780389 crossref_primary_10_1109_ACCESS_2018_2809611 crossref_primary_10_1109_TETCI_2021_3131374 crossref_primary_10_1109_TNNLS_2021_3084827 crossref_primary_10_1007_s11042_023_15407_9 crossref_primary_10_1007_s11042_024_19307_4 crossref_primary_10_1109_ACCESS_2018_2849870 crossref_primary_10_1631_FITEE_1700413 crossref_primary_10_1038_s41598_023_42841_4 crossref_primary_10_3389_fdgth_2024_1463713 crossref_primary_10_3390_s25061864 crossref_primary_10_1007_s11042_020_09608_9 crossref_primary_10_1109_TAI_2022_3159505 crossref_primary_10_1016_j_neucom_2020_05_099 crossref_primary_10_1016_j_jfca_2020_103566 crossref_primary_10_1615_JFlowVisImageProc_2024051591 crossref_primary_10_1109_ACCESS_2019_2953455 crossref_primary_10_3390_s23115275 crossref_primary_10_1109_ACCESS_2020_3004464 crossref_primary_10_2139_ssrn_4118100 crossref_primary_10_1109_OJCS_2021_3055365 crossref_primary_10_1016_j_inffus_2021_11_006 crossref_primary_10_1109_JBHI_2022_3145999 crossref_primary_10_1016_j_compbiomed_2018_06_002 crossref_primary_10_1145_3410158 crossref_primary_10_3390_electronics8060667 crossref_primary_10_1109_ACCESS_2023_3312685 crossref_primary_10_1007_s41870_023_01216_8 crossref_primary_10_1007_s11760_022_02165_8 crossref_primary_10_3390_app13053070 crossref_primary_10_3390_s20154078 crossref_primary_10_1587_transele_2018CDI0001 crossref_primary_10_3390_s21051887 crossref_primary_10_3390_app10134612 crossref_primary_10_3390_a14080242 crossref_primary_10_1016_j_ins_2021_01_001 crossref_primary_10_1049_iet_bmt_2017_0185 crossref_primary_10_1016_j_neuroimage_2019_05_049 crossref_primary_10_3390_app13169454 crossref_primary_10_1016_j_bspc_2022_103692 crossref_primary_10_1109_ACCESS_2020_3008953 crossref_primary_10_1109_ACCESS_2021_3119630 crossref_primary_10_1016_j_ijmedinf_2025_105803 crossref_primary_10_1109_JIOT_2019_2963326 crossref_primary_10_3390_bios11060188 crossref_primary_10_1016_j_neucom_2022_07_059 crossref_primary_10_1109_ACCESS_2024_3444791 crossref_primary_10_1016_j_artmed_2020_101963 crossref_primary_10_1109_TPWRD_2019_2901594 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_3390_s23031230 crossref_primary_10_25046_aj070630 crossref_primary_10_1109_ACCESS_2019_2927079 crossref_primary_10_1109_ACCESS_2019_2946932 crossref_primary_10_3390_s22030796  | 
    
| Cites_doi | 10.1109/TSMCC.2012.2215852 10.1016/j.patcog.2014.01.016 10.1109/BioCAS.2015.7348384 10.1161/01.CIR.101.23.e215 10.1152/ajpregu.1996.271.4.R1078 10.1049/iet-bmt.2012.0055 10.1109/TASSP.1977.1162950 10.1109/TAFFC.2016.2515094 10.1109/TIFS.2012.2215324 10.1109/TIM.2007.909996 10.1016/S0735-1097(00)01054-8 10.1109/PERCOMW.2015.7134074 10.1155/2011/720971 10.1109/BIOMS.2011.6052382 10.1109/ICASSP.2013.6638952 10.1186/s12938-017-0317-z 10.1109/BTAS.2010.5634478 10.1109/RBME.2010.2084078 10.1016/j.inffus.2016.09.005 10.1109/51.932724 10.1016/j.compbiomed.2004.05.001 10.1088/0967-3334/37/11/1945 10.14257/ijmue.2014.9.2.37 10.1109/ISCAS.2015.7168656 10.1109/TBME.2016.2640309 10.1038/nature14539 10.1109/CVPR.2014.222 10.1109/ICCCN.2012.6289252  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2017.2707460 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 11816 | 
    
| ExternalDocumentID | oai_doaj_org_article_ad29cdca46ce4a0ca9d4dd69798f3fc5 10.1109/access.2017.2707460 10_1109_ACCESS_2017_2707460 7933065  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Recruitment Program of Global Experts (the Thousand Talents Plan) – fundername: National Natural Science Foundation of China grantid: 61574044; 61376040; 61574046 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c474t-af29d12c2347872449ca6851a1fdd203ea3912e02f80d15b9e923b6bd04fa1063 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:44:55 EDT 2025 Sun Sep 07 10:49:43 EDT 2025 Sun Sep 07 03:12:45 EDT 2025 Wed Oct 01 04:49:17 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Tue Aug 26 16:39:27 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c474t-af29d12c2347872449ca6851a1fdd203ea3912e02f80d15b9e923b6bd04fa1063 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-7125-7928 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2017.2707460 | 
    
| PQID | 2455945548 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_access_2017_2707460 crossref_primary_10_1109_ACCESS_2017_2707460 proquest_journals_2455945548 ieee_primary_7933065 doaj_primary_oai_doaj_org_article_ad29cdca46ce4a0ca9d4dd69798f3fc5 crossref_citationtrail_10_1109_ACCESS_2017_2707460  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20170000 2017-00-00 20170101 2017-01-01  | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – year: 2017 text: 20170000  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref34 ref12 garcía-gonzález (ref20) 2014 albrecht (ref24) 1983 sra (ref38) 2012 yao (ref13) 2008 ref14 ref31 ref30 ref32 ref10 (ref37) 0 bojarski (ref33) 2016 ref2 ref1 ref39 ref16 ref18 (ref41) 2016 mukhopadhyay (ref19) 2012; 2 garcía-gonzález (ref21) 2013 (ref36) 2016 ref45 eriksson (ref44) 2016 ref25 ref42 goldberger (ref23) 2000; 101 ref43 (ref35) 2016 lourenço (ref15) 2011; 2011 ref28 canento (ref8) 2013 ref29 ref7 ref9 moody (ref26) 1983; 10 ref4 ref3 ref6 ref5 iyengar (ref22) 1996; 271 tantawi (ref11) 2013 ref40 ting (ref17) 0 greenwald (ref27) 1986  | 
    
| References_xml | – ident: ref1 doi: 10.1109/TSMCC.2012.2215852 – year: 1986 ident: ref27 article-title: The development and analysis of a ventricular fibrillation detector – ident: ref4 doi: 10.1016/j.patcog.2014.01.016 – ident: ref10 doi: 10.1109/BioCAS.2015.7348384 – volume: 2 start-page: 2361 year: 2012 ident: ref19 article-title: Wavelet based QRS complex detection of ECG signal publication-title: Int J Eng Res Appl – volume: 101 start-page: 215e year: 2000 ident: ref23 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 271 start-page: 1078r year: 1996 ident: ref22 article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics publication-title: Regulatory Integrative Comparative Physiol Amer J Physiol doi: 10.1152/ajpregu.1996.271.4.R1078 – ident: ref39 doi: 10.1049/iet-bmt.2012.0055 – start-page: 962 year: 2014 ident: ref20 article-title: Differences in QRS locations due to ECG lead: Relationship with breathing publication-title: Proc 13th Medit Conf Med Biol Eng Comput – ident: ref29 doi: 10.1109/TASSP.1977.1162950 – ident: ref45 doi: 10.1109/TAFFC.2016.2515094 – start-page: 1 year: 2016 ident: ref44 article-title: International workshop on the impact of human mobility in pervasive systems and applications (PerMoby 2016)-Welcome and committees: Welcome to PerMoby 2016 publication-title: Proc IEEE Int Conf Perv Comput Commun Workshops (PerCom Workshops) – ident: ref5 doi: 10.1109/TIFS.2012.2215324 – volume: 10 start-page: 227 year: 1983 ident: ref26 article-title: A new method for detecting atrial fibrillation using RR intervals publication-title: Comput Cardiol – ident: ref40 doi: 10.1109/TIM.2007.909996 – ident: ref28 doi: 10.1016/S0735-1097(00)01054-8 – year: 2012 ident: ref38 publication-title: Optimization for Machine Learning – year: 1983 ident: ref24 publication-title: S-T segment characterization for long-term automated ECG analysis – ident: ref43 doi: 10.1109/PERCOMW.2015.7134074 – year: 2013 ident: ref8 article-title: Review and comparison of real time electrocardiogram segmentation algorithms for biometric applications publication-title: Proc Intl Conf on Health Informatics (HEALTHINF) – volume: 2011 year: 2011 ident: ref15 article-title: Unveiling the biometric potential of finger-based ECG signals publication-title: Comput Intell Neurosci doi: 10.1155/2011/720971 – ident: ref7 doi: 10.1109/BIOMS.2011.6052382 – year: 2016 ident: ref33 publication-title: End to End Learning for Self-Driving Cars – ident: ref32 doi: 10.1109/ICASSP.2013.6638952 – ident: ref42 doi: 10.1186/s12938-017-0317-z – ident: ref16 doi: 10.1109/BTAS.2010.5634478 – start-page: 461 year: 2013 ident: ref21 article-title: A comparison of heartbeat detectors for the seismocardiogram publication-title: Proc Comput Cardiol Conf (CinC) – ident: ref6 doi: 10.1109/RBME.2010.2084078 – ident: ref2 doi: 10.1016/j.inffus.2016.09.005 – ident: ref25 doi: 10.1109/51.932724 – ident: ref30 doi: 10.1016/j.compbiomed.2004.05.001 – start-page: 774 year: 0 ident: ref17 article-title: ECG based personal identification using extended Kalman filter – ident: ref18 doi: 10.1088/0967-3334/37/11/1945 – year: 0 ident: ref37 publication-title: CUDA Parallel Computing Platform – year: 2016 ident: ref41 publication-title: Biometric Special Databases and Software – year: 2016 ident: ref35 publication-title: Keras Deep learning library for theano and tensorflow – ident: ref14 doi: 10.14257/ijmue.2014.9.2.37 – ident: ref34 doi: 10.1109/ISCAS.2015.7168656 – start-page: 297 year: 2008 ident: ref13 article-title: A wavelet method for biometric identification using wearable ECG sensors publication-title: Proc 5th Int Summer School Symp Med Devices Biosens (ISSS-MDBS) – year: 2016 ident: ref36 publication-title: GeForce GTX 960M GPU – ident: ref9 doi: 10.1109/TBME.2016.2640309 – ident: ref31 doi: 10.1038/nature14539 – start-page: 100 year: 2013 ident: ref11 article-title: ECG based biometric recognition using wavelets and RBF neural network publication-title: Proc 7th Eur Comput Conf (ECC) – ident: ref12 doi: 10.1109/CVPR.2014.222 – ident: ref3 doi: 10.1109/ICCCN.2012.6289252  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.530635 | 
    
| Snippet | Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 11805 | 
    
| SubjectTerms | Algorithms Artificial neural networks Biometrics blind signal processing Body area networks Convolution convolutional neural network data representation Datasets deep learning Domains ECG Electrocardiography Engineering Feature extraction feature learning Heart diseases Heart rate variability Identification Machine learning Neural networks Physiology Representations Segmentation Segments Signal processing Signal resolution Smart sensors Wavelet domain wavelet transformation Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA_iZfUgu47i7Krk4NFqmmbSxttM_RgF97IK3kI-QRirrKPi0f_clzQzdBD04qG0hDRN8l6S30vzfg-hPW5Aj3iVZz5ENWG0VJnSvsic5YYJX-iSBEfhy798fM0ubgY3nVBf4UxYSw_cdtyhslQYaxTjxjFFjBKWWctFKSpfeBPZS0klOsZUnIOrnItBmWiGciIOh3UNLQpnucoDWoYoG2RhKYqM_SnEygLa_PHUPKjXFzWZdBae059oLSFGPGxr-gstuWYdrXZ4BHvobQz6Oj0_PsJDHD1qwYZOKoXr--Y5PUMpgYsj3uLhbwyIFZ_UZ9kI1jKLR8EVPzD247i1j1snXp929fBtg__dwXdw67qEh51_3xvo-vTkqh5nKbZCZljJppnyVNicGloEdh5Y44VRHNCXyr21lBROFSKnjlBfEZsPtHCABDXXljCvwIwsNtFyc9-4LYS11w5QjQNbF8SrRVUwCsCFwswAeEZVfURn3SxNIh4P8S8mMhogRMhWNjLIRibZ9NH-_KWHlnfj8-yjIL951kCaHRNAlWRSJfmVKvVRL0h_XkgZNns4JG_PtEGmAf4oKQNTDC4GzcvmGvKhqipGvVyo6u_vqOoftBLKbPeCttHy9P-T2wF0NNW7cSC8AxQtCvE priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADr4JYKMgHjs3WcRw75rYbWhakcoFKvVl-SoglW0G2Fdz454wdb7QLCHGIYkWOH5qx_Y3t-Qahl9yCHvGmLEKMasKo0IU2oSq845bJUBlBoqPw-Xu-uGDvLuvLPXQ8-sJ479PlMz-NyXSW71Z2HbfKTkS0vnm9j_ZFwwdfrXE_JQaQkLXIxEIlkSeztoU-xNtbYkpFjKtBdhafxNGfg6rs4Mtb6-5Kf7_Ry-XWUnN2D51vGjncMPk8Xfdman_8xt_4v724j-5mzIlng5I8QHu-e4jubDERHqKfC9D4_u3rV3iGk08uWOFZKXG76q5zGkqJbB7pla6PY8C8-LR9U8xhNXR4Hp35I-c_TocDeHADDnlfEH_q8IcvUA8enJ_wbOv0_BG6ODv92C6KHJ2hsEywvtCBSldSS6vI7wMoQVrNAb_pMjhHSeV1JUvqCQ0NcWVtpAcsabhxhAUNhmj1GB10q84_QdgE4wEXebCWQUGMbCpGAfpQmFsAEelmguhGbMpm6vIYQWOpkglDpBpkraKsVZb1BB2PP10NzB3_zj6P-jBmjbTb6QPITuVRrLSj0jqrGbeeaWK1dMw5LoVsQhVsPUGHUd5jIVnUE3S00S6Vp4hvijIw5uBh0L1i1Lg_mqpT3Mydpj79ey3P0O2Ya9gfOkIH_de1fw6IqTcv0lD5BfGtElw priority: 102 providerName: IEEE  | 
    
| Title | HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications | 
    
| URI | https://ieeexplore.ieee.org/document/7933065 https://www.proquest.com/docview/2455945548 https://doi.org/10.1109/access.2017.2707460 https://doaj.org/article/ad29cdca46ce4a0ca9d4dd69798f3fc5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGLZQd0Ac-BqIwlb5wBGXxHadmFuabRQkJiSoNE6WP6WJkk0sBcGNf85rx6takCY4RIksJ_HHk_h5bb_Pi9BzYQFHoi5JiFFNOK000SYw4p2wXAZmqiI6Cr87FYslf3s2O8s629EXZnv9vizkS53CBsYtWNWUVjE4Btjne2IGxHuE9pan75tPMXxcKSRhaSHy2Q137ow9SaI_x1TZoZe3192l_vFdr1ZbI83JvcGF-yoJFMYNJp-n695M7c8_5Bv_sRL30d3MOHEzQOQBuuW7h-jOlg7hPvq1ALz3b45e4QYnj1ywwTMkcXvRfcvX8JSo5ZFOafM4BsaLj9vXZA5jocPz6MofFf9xWhrAgxNwyLOC-LzDH77Ae_Dg-oSbrbXzR2h5cvyxXZAcm4FYXvGe6EClK6mlLKr7AEeQVgtgb7oMztGCec1kSX1BQ124cmakByZphHEFDxrMUPYYjbqLzj9B2ATjgRV5sJUBHkbWjFMgPhT-LMCHdD1G9LrXlM3C5TF-xkolA6aQqmlbQKuK7aty-47Ri81Nl4Nux83Z5xEOm6xRdDslQDeq_A0r7ai0zmourOe6sFo67pyQlawDC3Y2RvsRTJuHVHGySEDywTW4VP5BXCnKwZSDg0P1yAZwfxV1QM5OUZ_-Z_4DNOq_rv0hcKfeTNKcwyS5OU7y9_MbPc0VHg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBXEQgEfODbbxHEe5rYbWrbQ7YVW6s3yU0Is2QqyILjxzxk73mgXEOIQJYr81Iztb2zPNwAvS416VNZZ4nxUE0YrmUjl8sSaUjPuclWl3lF4fl7OLtnbq-JqBw4HXxhrbbh8Zsf-M5zlm6Ve-a2yo8pb32VxA24WjLGi99YadlR8CAleVJFaKEv50aRpsBf-_lY1ppWPrJFuLT-BpT-GVdlCmHur9lp-_yYXi43F5uQuzNfN7O-YfByvOjXWP35jcPzfftyDOxF1kkmvJvdhx7YP4PYGF-E-_Jyhznenr1-RCQleuWiHR7UkzbL9Gr-xFM_nEV7hAjlB1EuOmzfJFNdDQ6bend-z_pNwPEB6R2AXdwbJh5a8_4T1kN79iUw2zs8fwuXJ8UUzS2J8hkSzinWJdJSbjGqae4YfxAlcyxIRnMycMTTNrcx5Rm1KXZ2arFDcIppUpTIpcxJN0fwR7LbL1j4GopyyiIws2suoIorXOaMIfijOLoiJZD0Cuhab0JG83MfQWIhgxKRc9LIWXtYiynoEh0Om656749_Jp14fhqSeeDv8QNmJOI6FNJRroyUrtWUy1ZIbZkzJK1673OliBPte3kMhUdQjOFhrl4iTxBdBGZpz-DDsXjJo3B9NlSFy5lZTn_y9lhewN7uYn4mz0_N3T-GWz9HvFh3Abvd5ZZ8hfurU8zBsfgFpgBWp | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd0AcYDAQZQP5wBGXxHadmFsaNgoSExJUGifLPyVEl01bOgS3_ec8O17VgjTBIUoUOY5_fLG_F_t9D6GXwgKORF2SEKOacFppok1gxDthuQzMVEV0FP54LOYL_uFkepJ1tqMvzOb6fVnI1zqFDYxbsKoJrWJwDLDPd8QUiPcI7SyOPzVfY_i4UkjC0kLk_i1Pbs09SaI_x1TZopd3V925_vlDL5cbM83Rg8GF-zIJFMYNJt8nq95M7K8_5Bv_sRK76H5mnLgZIPIQ3fHdI3RvQ4dwD13PAe_9-7dvcIOTRy7Y4BmSuD3rrvI15BK1PNIpbR7HwHjxYfuOzGAudHgWXfmj4j9OSwN4cAIO-a8g_tbhz6fwHjy4PuFmY-38MVocHX5p5yTHZiCWV7wnOlDpSmopi-o-wBGk1QLYmy6Dc7RgXjNZUl_QUBeunBrpgUkaYVzBgwYzlD1Bo-6s808RNsF4YEUebGWAh5E14xSID4WRBfiQrseI3vSaslm4PMbPWKpkwBRSNW0LaFWxfVVu3zF6tX7ofNDtuD35LMJhnTSKbqcb0I0qf8NKOyqts5oL67kurJaOOydkJevAgp2O0V4E0zqTKv4sEnD74AZcKg8Ql4pyMOXg4FA9sgbcX0UdkLNV1Gf_mf4AjfqLlX8O3Kk3L_I38xtRuBMo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HeartID%3A+A+Multiresolution+Convolutional+Neural+Network+for+ECG-Based+Biometric+Human+Identification+in+Smart+Health+Applications&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Qingxue&rft.au=Zhou%2C+Dian&rft.au=Zeng%2C+Xuan&rft.date=2017&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=5&rft.spage=11805&rft.epage=11816&rft_id=info:doi/10.1109%2FACCESS.2017.2707460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2017_2707460 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |