HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications

Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy requirements, physiological signalbased biometric human identification is gaining tremendous attention. This paper focuses on two major impedi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 5; pp. 11805 - 11816
Main Authors Zhang, Qingxue, Zhou, Dian, Zeng, Xuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2017.2707460

Cover

Abstract Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy requirements, physiological signalbased biometric human identification is gaining tremendous attention. This paper focuses on two major impediments: the signal processing technique is usually both complicated and data-dependent and the feature engineering is time-consuming and can fit only specific datasets . To enable a data-independent and highly generalizable signal processing and feature learning process, a novel wavelet domain multiresolution convolutional neural network is proposed. Specifically, it allows for blindly selecting a physiological signal segment for identification purpose, avoiding the complicated signal fiducial characteristics extraction process. To enrich the data representation, the random chosen signal segment is then transformed to the wavelet domain, where multiresolution time-frequency representation is achieved. An auto-correlation operation is applied to the transformed data to remove the phase difference as the result of the blind segmentation operation. Afterward, a multiresolution 1-D-convolutional neural network (1-D-CNN) is introduced to automatically learn the intrinsic hierarchical features from the wavelet domain raw data without datadependent and heavy feature engineering, and perform the user identification task. The effectiveness of the proposed algorithm is thoroughly evaluated on eight electrocardiogram datasets with diverse behaviors, such as with or without severe heart diseases, and with different sensor placement methods. Our evaluation is much more extensive than the state-of-the-art works, and an average identification rate of 93.5% is achieved. The proposed multiresolution 1-D-CNN algorithm can effectively identify human subjects, even from randomly selected signal segments and without heavy feature engineering. This paper is expected to demonstrate the feasibility and effectiveness of applying the blind signal processing and deep learning techniques to biometric human identification, to enable a low algorithm engineering effort and also a high generalization ability.
AbstractList Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy requirements, physiological signalbased biometric human identification is gaining tremendous attention. This paper focuses on two major impediments: the signal processing technique is usually both complicated and data-dependent and the feature engineering is time-consuming and can fit only specific datasets . To enable a data-independent and highly generalizable signal processing and feature learning process, a novel wavelet domain multiresolution convolutional neural network is proposed. Specifically, it allows for blindly selecting a physiological signal segment for identification purpose, avoiding the complicated signal fiducial characteristics extraction process. To enrich the data representation, the random chosen signal segment is then transformed to the wavelet domain, where multiresolution time-frequency representation is achieved. An auto-correlation operation is applied to the transformed data to remove the phase difference as the result of the blind segmentation operation. Afterward, a multiresolution 1-D-convolutional neural network (1-D-CNN) is introduced to automatically learn the intrinsic hierarchical features from the wavelet domain raw data without datadependent and heavy feature engineering, and perform the user identification task. The effectiveness of the proposed algorithm is thoroughly evaluated on eight electrocardiogram datasets with diverse behaviors, such as with or without severe heart diseases, and with different sensor placement methods. Our evaluation is much more extensive than the state-of-the-art works, and an average identification rate of 93.5% is achieved. The proposed multiresolution 1-D-CNN algorithm can effectively identify human subjects, even from randomly selected signal segments and without heavy feature engineering. This paper is expected to demonstrate the feasibility and effectiveness of applying the blind signal processing and deep learning techniques to biometric human identification, to enable a low algorithm engineering effort and also a high generalization ability.
Author Xuan Zeng
Qingxue Zhang
Dian Zhou
Author_xml – sequence: 1
  givenname: Qingxue
  orcidid: 0000-0001-7125-7928
  surname: Zhang
  fullname: Zhang, Qingxue
– sequence: 2
  givenname: Dian
  surname: Zhou
  fullname: Zhou, Dian
– sequence: 3
  givenname: Xuan
  surname: Zeng
  fullname: Zeng, Xuan
BookMark eNqFkU1vEzEQhleoSJTSX9CLJc4b_LUf5pYuoYlU4BA4WxPbCw7OerG9rXrkn-NmowqVA5Ysj8bzPjOa93VxNvjBFMUVwQtCsHi37LrVdrugmDQL2uCG1_hFcU5JLUpWsfrsr_hVcRnjHufT5lTVnBe_1wZC2nx4j5bo0-SSDSZ6NyXrB9T54e4Ug0OfzRSOT7r34SfqfUCr7qa8hmg0urb-YFKwCq2nAwxoo82QbG8VHEl2QNtD7oNyN5d-oOU4utNffFO87MFFc3l6L4pvH1dfu3V5--Vm0y1vS8UbnkroqdCEKsp40zaUc6GgbisCpNeaYmaACUINpn2LNal2wgjKdvVOY94DwTW7KDYzV3vYyzHYPNCD9GDlMeHDd5kntMoZCZoKpRXwWhkOWIHQXOtaNKLtWa-qzOIzaxpGeLgH556ABMtHVyQoZWKUj67IkytZ9naWjcH_mkxMcu-nkJeb63hViXx5m6vYXKWCjzGY_h_27PhztnimUjYdN5wCWPcf7dWstcaYp26NYAzXFfsDfdG6_g
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s22093446
crossref_primary_10_3390_s23063164
crossref_primary_10_1109_JBHI_2017_2773097
crossref_primary_10_1109_ACCESS_2019_2919407
crossref_primary_10_1109_ACCESS_2022_3185615
crossref_primary_10_1016_j_bspc_2020_101952
crossref_primary_10_1109_LGRS_2020_3014418
crossref_primary_10_3390_su14073950
crossref_primary_10_1016_j_neucom_2020_01_019
crossref_primary_10_1088_2057_1976_ad29a3
crossref_primary_10_1109_ACCESS_2019_2937357
crossref_primary_10_3390_s23104635
crossref_primary_10_1016_j_compbiomed_2020_103801
crossref_primary_10_1016_j_bspc_2021_103335
crossref_primary_10_1109_JIOT_2023_3288767
crossref_primary_10_3390_info14020065
crossref_primary_10_1631_FITEE_2000511
crossref_primary_10_1109_JSEN_2018_2866806
crossref_primary_10_3390_electronics13244974
crossref_primary_10_3390_jimaging9090168
crossref_primary_10_1109_ACCESS_2019_2921568
crossref_primary_10_1016_j_jclepro_2023_137300
crossref_primary_10_1109_ACCESS_2023_3295434
crossref_primary_10_1109_LSENS_2020_3012653
crossref_primary_10_1016_j_dsp_2021_103120
crossref_primary_10_1038_s41528_019_0056_2
crossref_primary_10_3390_app10093304
crossref_primary_10_1016_j_cmpb_2020_105596
crossref_primary_10_3390_s20061670
crossref_primary_10_1016_j_bea_2021_100008
crossref_primary_10_1109_ACCESS_2019_2939947
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_1016_j_eswa_2023_121323
crossref_primary_10_3390_s22145111
crossref_primary_10_1109_ACCESS_2019_2927726
crossref_primary_10_1016_j_matchemphys_2024_130107
crossref_primary_10_4108_eetsis_5644
crossref_primary_10_1109_TIM_2021_3119138
crossref_primary_10_3390_e23060733
crossref_primary_10_1007_s00500_021_06094_5
crossref_primary_10_1016_j_patrec_2019_07_009
crossref_primary_10_1109_ACCESS_2021_3128134
crossref_primary_10_1061_JPEODX_0000373
crossref_primary_10_1016_j_engappai_2024_107883
crossref_primary_10_1109_ACCESS_2019_2912519
crossref_primary_10_3390_app12052692
crossref_primary_10_1016_j_patrec_2022_02_014
crossref_primary_10_2478_amns_2024_0543
crossref_primary_10_3390_s20133697
crossref_primary_10_3390_s23020937
crossref_primary_10_1109_ACCESS_2023_3328641
crossref_primary_10_3389_fgene_2021_746181
crossref_primary_10_3390_s20113069
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1109_ACCESS_2024_3514093
crossref_primary_10_1007_s11042_022_12244_0
crossref_primary_10_1109_TBIOM_2019_2947434
crossref_primary_10_1016_j_dsp_2021_103306
crossref_primary_10_1109_LGRS_2020_2996640
crossref_primary_10_1038_s41598_021_87177_z
crossref_primary_10_1145_3534588
crossref_primary_10_1016_j_procs_2020_08_044
crossref_primary_10_1093_braincomms_fcaa096
crossref_primary_10_1109_TIM_2022_3199260
crossref_primary_10_3390_electronics10172052
crossref_primary_10_1016_j_pmcj_2023_101868
crossref_primary_10_1109_ACCESS_2022_3224426
crossref_primary_10_1016_j_bbe_2022_08_004
crossref_primary_10_3390_s21030773
crossref_primary_10_3390_s18082581
crossref_primary_10_3390_app11031125
crossref_primary_10_1016_j_bspc_2021_102689
crossref_primary_10_1109_JIOT_2023_3327738
crossref_primary_10_1109_TBME_2022_3219863
crossref_primary_10_1109_ACCESS_2024_3368854
crossref_primary_10_3233_JCS_220137
crossref_primary_10_3390_info11120556
crossref_primary_10_3390_s22124343
crossref_primary_10_1016_j_talanta_2024_125968
crossref_primary_10_1109_ACCESS_2018_2841991
crossref_primary_10_3390_app132413350
crossref_primary_10_1049_iet_bmt_2018_5183
crossref_primary_10_1109_ACCESS_2019_2954576
crossref_primary_10_1109_JSEN_2021_3139135
crossref_primary_10_3233_JIFS_230721
crossref_primary_10_1007_s00034_020_01510_x
crossref_primary_10_1016_j_eswa_2022_118178
crossref_primary_10_1109_ACCESS_2019_2933851
crossref_primary_10_7717_peerj_cs_324
crossref_primary_10_3390_s20102920
crossref_primary_10_1109_ACCESS_2020_3000580
crossref_primary_10_3389_fbioe_2021_780389
crossref_primary_10_1109_ACCESS_2018_2809611
crossref_primary_10_1109_TETCI_2021_3131374
crossref_primary_10_1109_TNNLS_2021_3084827
crossref_primary_10_1007_s11042_023_15407_9
crossref_primary_10_1007_s11042_024_19307_4
crossref_primary_10_1109_ACCESS_2018_2849870
crossref_primary_10_1631_FITEE_1700413
crossref_primary_10_1038_s41598_023_42841_4
crossref_primary_10_3389_fdgth_2024_1463713
crossref_primary_10_3390_s25061864
crossref_primary_10_1007_s11042_020_09608_9
crossref_primary_10_1109_TAI_2022_3159505
crossref_primary_10_1016_j_neucom_2020_05_099
crossref_primary_10_1016_j_jfca_2020_103566
crossref_primary_10_1615_JFlowVisImageProc_2024051591
crossref_primary_10_1109_ACCESS_2019_2953455
crossref_primary_10_3390_s23115275
crossref_primary_10_1109_ACCESS_2020_3004464
crossref_primary_10_2139_ssrn_4118100
crossref_primary_10_1109_OJCS_2021_3055365
crossref_primary_10_1016_j_inffus_2021_11_006
crossref_primary_10_1109_JBHI_2022_3145999
crossref_primary_10_1016_j_compbiomed_2018_06_002
crossref_primary_10_1145_3410158
crossref_primary_10_3390_electronics8060667
crossref_primary_10_1109_ACCESS_2023_3312685
crossref_primary_10_1007_s41870_023_01216_8
crossref_primary_10_1007_s11760_022_02165_8
crossref_primary_10_3390_app13053070
crossref_primary_10_3390_s20154078
crossref_primary_10_1587_transele_2018CDI0001
crossref_primary_10_3390_s21051887
crossref_primary_10_3390_app10134612
crossref_primary_10_3390_a14080242
crossref_primary_10_1016_j_ins_2021_01_001
crossref_primary_10_1049_iet_bmt_2017_0185
crossref_primary_10_1016_j_neuroimage_2019_05_049
crossref_primary_10_3390_app13169454
crossref_primary_10_1016_j_bspc_2022_103692
crossref_primary_10_1109_ACCESS_2020_3008953
crossref_primary_10_1109_ACCESS_2021_3119630
crossref_primary_10_1016_j_ijmedinf_2025_105803
crossref_primary_10_1109_JIOT_2019_2963326
crossref_primary_10_3390_bios11060188
crossref_primary_10_1016_j_neucom_2022_07_059
crossref_primary_10_1109_ACCESS_2024_3444791
crossref_primary_10_1016_j_artmed_2020_101963
crossref_primary_10_1109_TPWRD_2019_2901594
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_3390_s23031230
crossref_primary_10_25046_aj070630
crossref_primary_10_1109_ACCESS_2019_2927079
crossref_primary_10_1109_ACCESS_2019_2946932
crossref_primary_10_3390_s22030796
Cites_doi 10.1109/TSMCC.2012.2215852
10.1016/j.patcog.2014.01.016
10.1109/BioCAS.2015.7348384
10.1161/01.CIR.101.23.e215
10.1152/ajpregu.1996.271.4.R1078
10.1049/iet-bmt.2012.0055
10.1109/TASSP.1977.1162950
10.1109/TAFFC.2016.2515094
10.1109/TIFS.2012.2215324
10.1109/TIM.2007.909996
10.1016/S0735-1097(00)01054-8
10.1109/PERCOMW.2015.7134074
10.1155/2011/720971
10.1109/BIOMS.2011.6052382
10.1109/ICASSP.2013.6638952
10.1186/s12938-017-0317-z
10.1109/BTAS.2010.5634478
10.1109/RBME.2010.2084078
10.1016/j.inffus.2016.09.005
10.1109/51.932724
10.1016/j.compbiomed.2004.05.001
10.1088/0967-3334/37/11/1945
10.14257/ijmue.2014.9.2.37
10.1109/ISCAS.2015.7168656
10.1109/TBME.2016.2640309
10.1038/nature14539
10.1109/CVPR.2014.222
10.1109/ICCCN.2012.6289252
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2017.2707460
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 11816
ExternalDocumentID oai_doaj_org_article_ad29cdca46ce4a0ca9d4dd69798f3fc5
10.1109/access.2017.2707460
10_1109_ACCESS_2017_2707460
7933065
Genre orig-research
GrantInformation_xml – fundername: Recruitment Program of Global Experts (the Thousand Talents Plan)
– fundername: National Natural Science Foundation of China
  grantid: 61574044; 61376040; 61574046
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-af29d12c2347872449ca6851a1fdd203ea3912e02f80d15b9e923b6bd04fa1063
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:55 EDT 2025
Sun Sep 07 10:49:43 EDT 2025
Sun Sep 07 03:12:45 EDT 2025
Wed Oct 01 04:49:17 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Tue Aug 26 16:39:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-af29d12c2347872449ca6851a1fdd203ea3912e02f80d15b9e923b6bd04fa1063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7125-7928
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2017.2707460
PQID 2455945548
PQPubID 4845423
PageCount 12
ParticipantIDs unpaywall_primary_10_1109_access_2017_2707460
crossref_primary_10_1109_ACCESS_2017_2707460
proquest_journals_2455945548
ieee_primary_7933065
doaj_primary_oai_doaj_org_article_ad29cdca46ce4a0ca9d4dd69798f3fc5
crossref_citationtrail_10_1109_ACCESS_2017_2707460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170000
2017-00-00
20170101
2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 20170000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
garcía-gonzález (ref20) 2014
albrecht (ref24) 1983
sra (ref38) 2012
yao (ref13) 2008
ref14
ref31
ref30
ref32
ref10
(ref37) 0
bojarski (ref33) 2016
ref2
ref1
ref39
ref16
ref18
(ref41) 2016
mukhopadhyay (ref19) 2012; 2
garcía-gonzález (ref21) 2013
(ref36) 2016
ref45
eriksson (ref44) 2016
ref25
ref42
goldberger (ref23) 2000; 101
ref43
(ref35) 2016
lourenço (ref15) 2011; 2011
ref28
canento (ref8) 2013
ref29
ref7
ref9
moody (ref26) 1983; 10
ref4
ref3
ref6
ref5
iyengar (ref22) 1996; 271
tantawi (ref11) 2013
ref40
ting (ref17) 0
greenwald (ref27) 1986
References_xml – ident: ref1
  doi: 10.1109/TSMCC.2012.2215852
– year: 1986
  ident: ref27
  article-title: The development and analysis of a ventricular fibrillation detector
– ident: ref4
  doi: 10.1016/j.patcog.2014.01.016
– ident: ref10
  doi: 10.1109/BioCAS.2015.7348384
– volume: 2
  start-page: 2361
  year: 2012
  ident: ref19
  article-title: Wavelet based QRS complex detection of ECG signal
  publication-title: Int J Eng Res Appl
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref23
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 271
  start-page: 1078r
  year: 1996
  ident: ref22
  article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
  publication-title: Regulatory Integrative Comparative Physiol Amer J Physiol
  doi: 10.1152/ajpregu.1996.271.4.R1078
– ident: ref39
  doi: 10.1049/iet-bmt.2012.0055
– start-page: 962
  year: 2014
  ident: ref20
  article-title: Differences in QRS locations due to ECG lead: Relationship with breathing
  publication-title: Proc 13th Medit Conf Med Biol Eng Comput
– ident: ref29
  doi: 10.1109/TASSP.1977.1162950
– ident: ref45
  doi: 10.1109/TAFFC.2016.2515094
– start-page: 1
  year: 2016
  ident: ref44
  article-title: International workshop on the impact of human mobility in pervasive systems and applications (PerMoby 2016)-Welcome and committees: Welcome to PerMoby 2016
  publication-title: Proc IEEE Int Conf Perv Comput Commun Workshops (PerCom Workshops)
– ident: ref5
  doi: 10.1109/TIFS.2012.2215324
– volume: 10
  start-page: 227
  year: 1983
  ident: ref26
  article-title: A new method for detecting atrial fibrillation using RR intervals
  publication-title: Comput Cardiol
– ident: ref40
  doi: 10.1109/TIM.2007.909996
– ident: ref28
  doi: 10.1016/S0735-1097(00)01054-8
– year: 2012
  ident: ref38
  publication-title: Optimization for Machine Learning
– year: 1983
  ident: ref24
  publication-title: S-T segment characterization for long-term automated ECG analysis
– ident: ref43
  doi: 10.1109/PERCOMW.2015.7134074
– year: 2013
  ident: ref8
  article-title: Review and comparison of real time electrocardiogram segmentation algorithms for biometric applications
  publication-title: Proc Intl Conf on Health Informatics (HEALTHINF)
– volume: 2011
  year: 2011
  ident: ref15
  article-title: Unveiling the biometric potential of finger-based ECG signals
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2011/720971
– ident: ref7
  doi: 10.1109/BIOMS.2011.6052382
– year: 2016
  ident: ref33
  publication-title: End to End Learning for Self-Driving Cars
– ident: ref32
  doi: 10.1109/ICASSP.2013.6638952
– ident: ref42
  doi: 10.1186/s12938-017-0317-z
– ident: ref16
  doi: 10.1109/BTAS.2010.5634478
– start-page: 461
  year: 2013
  ident: ref21
  article-title: A comparison of heartbeat detectors for the seismocardiogram
  publication-title: Proc Comput Cardiol Conf (CinC)
– ident: ref6
  doi: 10.1109/RBME.2010.2084078
– ident: ref2
  doi: 10.1016/j.inffus.2016.09.005
– ident: ref25
  doi: 10.1109/51.932724
– ident: ref30
  doi: 10.1016/j.compbiomed.2004.05.001
– start-page: 774
  year: 0
  ident: ref17
  article-title: ECG based personal identification using extended Kalman filter
– ident: ref18
  doi: 10.1088/0967-3334/37/11/1945
– year: 0
  ident: ref37
  publication-title: CUDA Parallel Computing Platform
– year: 2016
  ident: ref41
  publication-title: Biometric Special Databases and Software
– year: 2016
  ident: ref35
  publication-title: Keras Deep learning library for theano and tensorflow
– ident: ref14
  doi: 10.14257/ijmue.2014.9.2.37
– ident: ref34
  doi: 10.1109/ISCAS.2015.7168656
– start-page: 297
  year: 2008
  ident: ref13
  article-title: A wavelet method for biometric identification using wearable ECG sensors
  publication-title: Proc 5th Int Summer School Symp Med Devices Biosens (ISSS-MDBS)
– year: 2016
  ident: ref36
  publication-title: GeForce GTX 960M GPU
– ident: ref9
  doi: 10.1109/TBME.2016.2640309
– ident: ref31
  doi: 10.1038/nature14539
– start-page: 100
  year: 2013
  ident: ref11
  article-title: ECG based biometric recognition using wavelets and RBF neural network
  publication-title: Proc 7th Eur Comput Conf (ECC)
– ident: ref12
  doi: 10.1109/CVPR.2014.222
– ident: ref3
  doi: 10.1109/ICCCN.2012.6289252
SSID ssj0000816957
Score 2.530635
Snippet Body area networks, including smart sensors, are widely reshaping health applications in the new era of smart cities. To meet increasing security and privacy...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11805
SubjectTerms Algorithms
Artificial neural networks
Biometrics
blind signal processing
Body area networks
Convolution
convolutional neural network
data representation
Datasets
deep learning
Domains
ECG
Electrocardiography
Engineering
Feature extraction
feature learning
Heart diseases
Heart rate variability
Identification
Machine learning
Neural networks
Physiology
Representations
Segmentation
Segments
Signal processing
Signal resolution
Smart sensors
Wavelet domain
wavelet transformation
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA_iZfUgu47i7Krk4NFqmmbSxttM_RgF97IK3kI-QRirrKPi0f_clzQzdBD04qG0hDRN8l6S30vzfg-hPW5Aj3iVZz5ENWG0VJnSvsic5YYJX-iSBEfhy798fM0ubgY3nVBf4UxYSw_cdtyhslQYaxTjxjFFjBKWWctFKSpfeBPZS0klOsZUnIOrnItBmWiGciIOh3UNLQpnucoDWoYoG2RhKYqM_SnEygLa_PHUPKjXFzWZdBae059oLSFGPGxr-gstuWYdrXZ4BHvobQz6Oj0_PsJDHD1qwYZOKoXr--Y5PUMpgYsj3uLhbwyIFZ_UZ9kI1jKLR8EVPzD247i1j1snXp929fBtg__dwXdw67qEh51_3xvo-vTkqh5nKbZCZljJppnyVNicGloEdh5Y44VRHNCXyr21lBROFSKnjlBfEZsPtHCABDXXljCvwIwsNtFyc9-4LYS11w5QjQNbF8SrRVUwCsCFwswAeEZVfURn3SxNIh4P8S8mMhogRMhWNjLIRibZ9NH-_KWHlnfj8-yjIL951kCaHRNAlWRSJfmVKvVRL0h_XkgZNns4JG_PtEGmAf4oKQNTDC4GzcvmGvKhqipGvVyo6u_vqOoftBLKbPeCttHy9P-T2wF0NNW7cSC8AxQtCvE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADr4JYKMgHjs3WcRw75rYbWhakcoFKvVl-SoglW0G2Fdz454wdb7QLCHGIYkWOH5qx_Y3t-Qahl9yCHvGmLEKMasKo0IU2oSq845bJUBlBoqPw-Xu-uGDvLuvLPXQ8-sJ479PlMz-NyXSW71Z2HbfKTkS0vnm9j_ZFwwdfrXE_JQaQkLXIxEIlkSeztoU-xNtbYkpFjKtBdhafxNGfg6rs4Mtb6-5Kf7_Ry-XWUnN2D51vGjncMPk8Xfdman_8xt_4v724j-5mzIlng5I8QHu-e4jubDERHqKfC9D4_u3rV3iGk08uWOFZKXG76q5zGkqJbB7pla6PY8C8-LR9U8xhNXR4Hp35I-c_TocDeHADDnlfEH_q8IcvUA8enJ_wbOv0_BG6ODv92C6KHJ2hsEywvtCBSldSS6vI7wMoQVrNAb_pMjhHSeV1JUvqCQ0NcWVtpAcsabhxhAUNhmj1GB10q84_QdgE4wEXebCWQUGMbCpGAfpQmFsAEelmguhGbMpm6vIYQWOpkglDpBpkraKsVZb1BB2PP10NzB3_zj6P-jBmjbTb6QPITuVRrLSj0jqrGbeeaWK1dMw5LoVsQhVsPUGHUd5jIVnUE3S00S6Vp4hvijIw5uBh0L1i1Lg_mqpT3Mydpj79ey3P0O2Ya9gfOkIH_de1fw6IqTcv0lD5BfGtElw
  priority: 102
  providerName: IEEE
Title HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications
URI https://ieeexplore.ieee.org/document/7933065
https://www.proquest.com/docview/2455945548
https://doi.org/10.1109/access.2017.2707460
https://doaj.org/article/ad29cdca46ce4a0ca9d4dd69798f3fc5
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGLZQd0Ac-BqIwlb5wBGXxHadmFuabRQkJiSoNE6WP6WJkk0sBcGNf85rx6takCY4RIksJ_HHk_h5bb_Pi9BzYQFHoi5JiFFNOK000SYw4p2wXAZmqiI6Cr87FYslf3s2O8s629EXZnv9vizkS53CBsYtWNWUVjE4Btjne2IGxHuE9pan75tPMXxcKSRhaSHy2Q137ow9SaI_x1TZoZe3192l_vFdr1ZbI83JvcGF-yoJFMYNJp-n695M7c8_5Bv_sRL30d3MOHEzQOQBuuW7h-jOlg7hPvq1ALz3b45e4QYnj1ywwTMkcXvRfcvX8JSo5ZFOafM4BsaLj9vXZA5jocPz6MofFf9xWhrAgxNwyLOC-LzDH77Ae_Dg-oSbrbXzR2h5cvyxXZAcm4FYXvGe6EClK6mlLKr7AEeQVgtgb7oMztGCec1kSX1BQ124cmakByZphHEFDxrMUPYYjbqLzj9B2ATjgRV5sJUBHkbWjFMgPhT-LMCHdD1G9LrXlM3C5TF-xkolA6aQqmlbQKuK7aty-47Ri81Nl4Nux83Z5xEOm6xRdDslQDeq_A0r7ai0zmourOe6sFo67pyQlawDC3Y2RvsRTJuHVHGySEDywTW4VP5BXCnKwZSDg0P1yAZwfxV1QM5OUZ_-Z_4DNOq_rv0hcKfeTNKcwyS5OU7y9_MbPc0VHg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBXEQgEfODbbxHEe5rYbWrbQ7YVW6s3yU0Is2QqyILjxzxk73mgXEOIQJYr81Iztb2zPNwAvS416VNZZ4nxUE0YrmUjl8sSaUjPuclWl3lF4fl7OLtnbq-JqBw4HXxhrbbh8Zsf-M5zlm6Ve-a2yo8pb32VxA24WjLGi99YadlR8CAleVJFaKEv50aRpsBf-_lY1ppWPrJFuLT-BpT-GVdlCmHur9lp-_yYXi43F5uQuzNfN7O-YfByvOjXWP35jcPzfftyDOxF1kkmvJvdhx7YP4PYGF-E-_Jyhznenr1-RCQleuWiHR7UkzbL9Gr-xFM_nEV7hAjlB1EuOmzfJFNdDQ6bend-z_pNwPEB6R2AXdwbJh5a8_4T1kN79iUw2zs8fwuXJ8UUzS2J8hkSzinWJdJSbjGqae4YfxAlcyxIRnMycMTTNrcx5Rm1KXZ2arFDcIppUpTIpcxJN0fwR7LbL1j4GopyyiIws2suoIorXOaMIfijOLoiJZD0Cuhab0JG83MfQWIhgxKRc9LIWXtYiynoEh0Om656749_Jp14fhqSeeDv8QNmJOI6FNJRroyUrtWUy1ZIbZkzJK1673OliBPte3kMhUdQjOFhrl4iTxBdBGZpz-DDsXjJo3B9NlSFy5lZTn_y9lhewN7uYn4mz0_N3T-GWz9HvFh3Abvd5ZZ8hfurU8zBsfgFpgBWp
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd0AcYDAQZQP5wBGXxHadmFsaNgoSExJUGifLPyVEl01bOgS3_ec8O17VgjTBIUoUOY5_fLG_F_t9D6GXwgKORF2SEKOacFppok1gxDthuQzMVEV0FP54LOYL_uFkepJ1tqMvzOb6fVnI1zqFDYxbsKoJrWJwDLDPd8QUiPcI7SyOPzVfY_i4UkjC0kLk_i1Pbs09SaI_x1TZopd3V925_vlDL5cbM83Rg8GF-zIJFMYNJt8nq95M7K8_5Bv_sRK76H5mnLgZIPIQ3fHdI3RvQ4dwD13PAe_9-7dvcIOTRy7Y4BmSuD3rrvI15BK1PNIpbR7HwHjxYfuOzGAudHgWXfmj4j9OSwN4cAIO-a8g_tbhz6fwHjy4PuFmY-38MVocHX5p5yTHZiCWV7wnOlDpSmopi-o-wBGk1QLYmy6Dc7RgXjNZUl_QUBeunBrpgUkaYVzBgwYzlD1Bo-6s808RNsF4YEUebGWAh5E14xSID4WRBfiQrseI3vSaslm4PMbPWKpkwBRSNW0LaFWxfVVu3zF6tX7ofNDtuD35LMJhnTSKbqcb0I0qf8NKOyqts5oL67kurJaOOydkJevAgp2O0V4E0zqTKv4sEnD74AZcKg8Ql4pyMOXg4FA9sgbcX0UdkLNV1Gf_mf4AjfqLlX8O3Kk3L_I38xtRuBMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HeartID%3A+A+Multiresolution+Convolutional+Neural+Network+for+ECG-Based+Biometric+Human+Identification+in+Smart+Health+Applications&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Qingxue&rft.au=Zhou%2C+Dian&rft.au=Zeng%2C+Xuan&rft.date=2017&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=5&rft.spage=11805&rft.epage=11816&rft_id=info:doi/10.1109%2FACCESS.2017.2707460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2017_2707460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon