Weak Galerkin methods for second order elliptic interface problems

Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak G...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 250; pp. 106 - 125
Main Authors Mu, Lin, Wang, Junping, Wei, Guowei, Ye, Xiu, Zhao, Shan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2013
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2013.04.042

Cover

Abstract Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried out to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution.
AbstractList Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried out to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution.
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order [Formula: see text] to [Formula: see text] for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order [Formula: see text] to [Formula: see text] in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution.Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order [Formula: see text] to [Formula: see text] for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order [Formula: see text] to [Formula: see text] in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution.
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried out to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2L2 and LaLa norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h)O(h) to O(h1.5)O(h1.5) for the solution itself in LaLa norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75)O(h1.75) to O(h2)O(h2) in the LaLa norm for C1C1 or Lipschitz continuous interfaces associated with a C1C1 or H2H2 continuous solution.
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution.
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried out to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L(2) and L( infinity ) norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h(1.5)) for the solution itself in L( infinity ) norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h(1.75)) to O(h(2)) in the L( infinity ) norm for C(1) or Lipschitz continuous interfaces associated with a C(1) or H(2) continuous solution.
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both and norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order [Formula: see text] to [Formula: see text] for the solution itself in norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order [Formula: see text] to [Formula: see text] in the norm for or Lipschitz continuous interfaces associated with a or continuous solution.
Author Wang, Junping
Ye, Xiu
Wei, Guowei
Zhao, Shan
Mu, Lin
AuthorAffiliation Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204 ( lxmu@ualr.edu )
Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487 ( szhao@bama.ua.edu )
Department of Mathematics, Michigan State University, East Lansing, MI 48824 ( wei@math.msu.edu )
Division of Mathematical Sciences, National Science Foundation, Arlington, VA 22230 ( jwang@nsf.gov )
Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204 ( xxye@ualr.edu )
AuthorAffiliation_xml – name: Division of Mathematical Sciences, National Science Foundation, Arlington, VA 22230 ( jwang@nsf.gov )
– name: Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487 ( szhao@bama.ua.edu )
– name: Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204 ( xxye@ualr.edu )
– name: Department of Mathematics, Michigan State University, East Lansing, MI 48824 ( wei@math.msu.edu )
– name: Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204 ( lxmu@ualr.edu )
Author_xml – sequence: 1
  givenname: Lin
  surname: Mu
  fullname: Mu, Lin
  email: linmu@mail.math.msu.edu
  organization: Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States
– sequence: 2
  givenname: Junping
  surname: Wang
  fullname: Wang, Junping
  email: jwang@nsf.gov
  organization: Division of Mathematical Sciences, National Science Foundation, Arlington, VA 22230, United States
– sequence: 3
  givenname: Guowei
  surname: Wei
  fullname: Wei, Guowei
  email: wei@math.msu.edu
  organization: Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States
– sequence: 4
  givenname: Xiu
  surname: Ye
  fullname: Ye, Xiu
  email: xxye@ualr.edu
  organization: Department of Mathematics and Statistics, University of Arkansas at Little Rock,Little Rock, AR 72204, United States
– sequence: 5
  givenname: Shan
  surname: Zhao
  fullname: Zhao, Shan
  email: szhao@bama.ua.edu
  organization: Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24072935$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1rFTEUxYNU7Gv1D3Ajs3QzrzdfkwyCYEu_oOBGcRkyyR2b15nJmMwr-N-bx2tFu6jChbu45xzu4XdEDqY4ISFvKawp0OZks964ec2A8jWIMuwFWVFooWaKNgdkBcBo3bYtPSRHOW8AQEuhX5FDJkCxlssVOf2G9q66tAOmuzBVIy630eeqj6nK6OLkq5g8pgqHIcxLcFWYFky9dVjNKXYDjvk1ednbIeObh31Mvl6cfzm7qm8-X16ffbqpnVBiqa3vuKCubzvQvZVOKY1Ocip72zZWe7BaMOZ9IyRogdw2otfAfCc0esEpPyYf97nzthvRO5yWZAczpzDa9NNEG8zflyncmu_x3nClQXBZAt4_BKT4Y4t5MWPIrjSzE8ZtNlSzRipBm-bfUkm5aIr2P1KFkpIx1Yoiffdng9-vP-IoArUXuBRzTtgbFxa7hLgrFAZDwezAm40p4M0OvAFRhhUnfeJ8DH_O82HvwULtPmAy2QWcHPqQ0C3Gx_CM-xdFR8Vr
CitedBy_id crossref_primary_10_1016_j_jcp_2018_02_013
crossref_primary_10_3934_dcdsb_2020196
crossref_primary_10_1016_j_cnsns_2024_108408
crossref_primary_10_1007_s12190_014_0778_1
crossref_primary_10_1515_ijnsns_2016_0101
crossref_primary_10_1016_j_cam_2022_114883
crossref_primary_10_1016_j_jcp_2020_109677
crossref_primary_10_1016_j_amc_2015_11_046
crossref_primary_10_1016_j_amc_2021_126436
crossref_primary_10_1002_num_22146
crossref_primary_10_1016_j_cam_2019_05_004
crossref_primary_10_1051_m2an_2015067
crossref_primary_10_1007_s40819_019_0621_3
crossref_primary_10_1016_j_apnum_2019_10_013
crossref_primary_10_1002_num_22147
crossref_primary_10_1007_s10444_022_10007_x
crossref_primary_10_3934_dcdsb_2020184
crossref_primary_10_1016_j_cam_2022_114358
crossref_primary_10_1016_j_cam_2014_05_014
crossref_primary_10_1016_j_jcp_2016_08_024
crossref_primary_10_1007_s11464_014_0358_6
crossref_primary_10_1016_j_cma_2017_06_020
crossref_primary_10_1016_j_jcp_2020_109301
crossref_primary_10_1016_j_cam_2017_09_018
crossref_primary_10_1016_j_cma_2017_09_002
crossref_primary_10_1155_2017_7912845
crossref_primary_10_1155_2020_8796345
crossref_primary_10_1016_j_cam_2022_114743
crossref_primary_10_1615_IntJMultCompEng_2023046768
crossref_primary_10_1007_s10444_016_9460_5
crossref_primary_10_1016_j_camwa_2014_10_001
crossref_primary_10_1007_s10915_016_0296_4
crossref_primary_10_1016_j_cam_2021_114029
crossref_primary_10_1016_j_cam_2024_115995
crossref_primary_10_1016_j_camwa_2015_04_012
crossref_primary_10_1016_j_cam_2017_11_011
crossref_primary_10_1016_j_cam_2017_11_010
crossref_primary_10_1007_s10915_013_9771_3
crossref_primary_10_1016_j_apnum_2021_01_016
crossref_primary_10_1016_j_aml_2022_108475
crossref_primary_10_1016_j_jcp_2017_09_026
crossref_primary_10_1016_j_jcp_2017_11_031
crossref_primary_10_1002_num_22440
crossref_primary_10_1007_s11075_021_01209_3
crossref_primary_10_1016_j_cam_2016_01_005
crossref_primary_10_1016_j_cam_2016_03_017
crossref_primary_10_1016_j_amc_2019_124731
crossref_primary_10_1016_j_jcp_2020_110070
crossref_primary_10_3390_math12243901
crossref_primary_10_1002_num_22053
crossref_primary_10_3934_math_2020274
crossref_primary_10_1088_1742_6596_1530_1_012065
crossref_primary_10_1007_s10915_023_02333_z
crossref_primary_10_1007_s10915_016_0261_2
crossref_primary_10_1016_j_camwa_2014_07_022
crossref_primary_10_1007_s40314_022_01963_7
crossref_primary_10_1007_s10444_016_9471_2
crossref_primary_10_1016_j_ast_2019_02_019
crossref_primary_10_1016_j_aml_2017_11_017
crossref_primary_10_1016_j_cam_2022_114567
crossref_primary_10_1016_j_amc_2021_126487
crossref_primary_10_1137_20M1322170
crossref_primary_10_1016_j_apnum_2017_08_009
crossref_primary_10_3934_dcdsb_2023149
crossref_primary_10_1007_s10915_018_0678_x
crossref_primary_10_1016_j_camwa_2017_07_013
crossref_primary_10_1016_j_camwa_2021_11_014
crossref_primary_10_1016_j_apnum_2014_08_002
crossref_primary_10_1016_j_jcp_2025_113847
crossref_primary_10_1002_num_23155
crossref_primary_10_1007_s10915_018_0673_2
crossref_primary_10_1016_j_cam_2017_01_021
crossref_primary_10_1016_j_amc_2023_128496
crossref_primary_10_1016_j_amc_2018_12_047
crossref_primary_10_1016_j_apnum_2018_01_021
crossref_primary_10_1137_22M1517081
crossref_primary_10_1016_j_cam_2016_11_047
crossref_primary_10_1016_j_apnum_2024_02_002
crossref_primary_10_1016_j_jcp_2022_111538
crossref_primary_10_1016_j_jcp_2020_109500
crossref_primary_10_1016_j_apnum_2020_12_015
crossref_primary_10_1016_j_cam_2015_03_043
crossref_primary_10_1002_jnm_2167
crossref_primary_10_1515_jnma_2023_0112
crossref_primary_10_1016_j_apnum_2018_03_017
crossref_primary_10_1016_j_apnum_2022_12_012
crossref_primary_10_1016_j_apnum_2017_01_004
crossref_primary_10_1007_s10915_018_0712_z
crossref_primary_10_1016_j_cam_2022_114304
crossref_primary_10_1016_j_apnum_2020_11_018
crossref_primary_10_1007_s10915_018_0651_8
crossref_primary_10_1007_s10915_020_01387_7
crossref_primary_10_1016_j_cma_2019_07_029
crossref_primary_10_1016_j_cam_2018_10_018
crossref_primary_10_1016_j_cam_2019_112586
crossref_primary_10_1016_j_amc_2015_11_064
crossref_primary_10_1016_j_cam_2019_112584
crossref_primary_10_1016_j_camwa_2016_11_014
crossref_primary_10_1002_num_22529
crossref_primary_10_1016_j_cma_2014_05_016
crossref_primary_10_3934_math_2021030
crossref_primary_10_1016_j_amc_2022_127589
crossref_primary_10_1016_j_camwa_2019_05_029
crossref_primary_10_1007_s11425_015_5030_4
crossref_primary_10_1002_nme_6892
crossref_primary_10_1016_j_camwa_2023_09_023
crossref_primary_10_1007_s00366_020_01013_y
crossref_primary_10_1016_j_cam_2017_02_020
crossref_primary_10_1016_j_cma_2018_05_029
crossref_primary_10_1186_s13660_017_1461_5
crossref_primary_10_1016_j_camwa_2021_03_008
crossref_primary_10_1016_j_apnum_2016_08_017
crossref_primary_10_1007_s10092_022_00459_4
crossref_primary_10_1016_j_cam_2018_08_023
crossref_primary_10_1016_j_camwa_2024_02_029
crossref_primary_10_1007_s10915_014_9837_x
Cites_doi 10.1016/S0378-4754(99)00061-0
10.1016/j.compfluid.2008.02.003
10.1007/BF02248021
10.1002/nme.2278
10.1016/j.jcp.2006.10.030
10.1016/0045-7825(94)90135-X
10.1007/s11424-010-0141-z
10.1016/0021-9991(89)90213-1
10.1016/j.cam.2012.10.003
10.1016/j.jcp.2006.04.010
10.1137/0731054
10.1007/BF02127700
10.1016/S0045-7825(02)00524-8
10.1137/0721021
10.1016/j.jcp.2008.04.027
10.1016/j.jcp.2006.03.027
10.1364/OL.31.003417
10.1063/1.2743020
10.1063/1.2768064
10.1016/j.jcp.2005.07.022
10.1016/j.jco.2007.02.003
10.1109/JLT.2002.800361
10.1016/0021-9991(77)90100-0
10.1002/jcc.21646
10.1016/j.jcp.2010.06.005
10.1016/j.jcp.2010.05.002
10.1006/jcph.1999.6236
10.1016/j.jcp.2009.12.034
10.1016/j.jcp.2008.12.012
10.1016/S1076-5670(03)80097-6
10.1515/jnum.2010.010
10.1016/j.jcp.2007.08.003
10.1016/j.jcp.2004.03.008
10.1093/imanum/drn081
10.2140/camcos.2006.1.91
10.1137/100805133
10.1006/jcph.1997.5689
10.4208/cicp.210709.121109a
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2013 Elsevier Inc. All rights reserved 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2013 Elsevier Inc. All rights reserved 2013
DBID AAYXX
CITATION
NPM
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1016/j.jcp.2013.04.042
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 125
ExternalDocumentID PMC3780435
24072935
10_1016_j_jcp_2013_04_042
S0021999113003367
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-0936830; DMS-1160352
– fundername: NIH
  grantid: R01GM-090208
– fundername: NSF IR/D program
– fundername: National Science Foundation
  grantid: DMS-1016579
– fundername: National Science Foundation
  grantid: DMS-1115097
– fundername: NIGMS NIH HHS
  grantid: R01 GM090208
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM090208 || GM
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
AFXIZ
AGCQF
AGRNS
NPM
SSH
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c474t-adb341cf9b08fa5c778ec5315fa96a8d0a8422dd645084e3a64f802db48ed4313
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Tue Sep 30 16:40:25 EDT 2025
Sun Sep 28 10:29:47 EDT 2025
Wed Oct 01 13:55:32 EDT 2025
Sat Sep 27 21:51:37 EDT 2025
Mon Jul 21 05:45:59 EDT 2025
Wed Oct 01 05:12:34 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Fri Feb 23 02:18:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Low solution regularity
Nonsmooth interface
Finite element methods
Second order elliptic interface problems
Weak Galerkin method
nonsmooth interface
weak Galerkin method
low solution regularity
second order elliptic interface problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-adb341cf9b08fa5c778ec5315fa96a8d0a8422dd645084e3a64f802db48ed4313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 24072935
PQID 1475522794
PQPubID 23500
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3780435
proquest_miscellaneous_1826574166
proquest_miscellaneous_1513467415
proquest_miscellaneous_1475522794
pubmed_primary_24072935
crossref_citationtrail_10_1016_j_jcp_2013_04_042
crossref_primary_10_1016_j_jcp_2013_04_042
elsevier_sciencedirect_doi_10_1016_j_jcp_2013_04_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational physics
PublicationTitleAlternate J Comput Phys
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Peskin, McQueen (b0145) 1989; 81
Wang, Zhang, Kam (b0175) 2009; 228
Ewing, Li, Lin, Lin (b0050) 1999; 50
Wang, Li, Yan (b0165) 2010; 8
Bedrossian, von Brecht, Zhu, Sifakis, Teran (b0015) 2010; 229
Xia, Zhan, Wei (b0180) 2011; 230
Oevermann, Klein (b0140) 2006; 219
Geng, Yu, Wei (b0060) 2007; 127
Babuška (b0005) 1970; 5
Hou, Li, Osher, Zhao (b0110) 1997; 134
Ramiere (b0155) 2008; 75
Raviart, Thomas (b0160) 1977; vol. 606
Burman, Hansbo (b0025) 2010; 30
Zhou, Wei (b0210) 2006; 219
Wang, Ye (b0170) 2013; 241
Dryjaa, Galvisb, Sarkisb (b0045) 2007; 23
Chen, Strain (b0040) 2008; 16
Hadley (b0070) 2002; 20
Mayo (b0125) 1984; 21
Cai, Ye, Zhang (b0030) 2011; 49
Yu, Zhou, Wei (b0190) 2007; 224
Zhao, Wei (b0205) 2004; 200
L. Mu, J. Wang, X. Ye, and S. Zhao. A numerical study on the weak Galerkin method for the Helmholtz equation with large wave numbers, 2012. Available at
Hansbo, Hansbo (b0075) 2002; 191
Layton (b0115) 2009; 38
Glowinski, Pan, Periaux (b0065) 1994; 111
Horikis, Kath (b0100) 2006; 31
Harari, Dolbow (b0080) 2010; 46
Fedkiw, Aslam, Merriman, Osher (b0055) 1999; 152
Zhou, Zhao, Feig, Wei (b0215) 2006; 213
J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, 2012. Available at: <arXiv:1202.3655>.
Chen, Chen, Chen, Geng, Wei (b0035) 2011; 32
.
He, Lin, Lin (b0085) 2010; 23
Beale, Layton (b0010) 2006; 1
Hiptmair, Li, Zou (b0095) 2010; 18
Hou, Wang, Wang (b0105) 2010; 229
LeVeque, Li (b0120) 1994; 31
Mu, Wang, Wang, Ye (b0130) 2012
Peskin (b0150) 1977; 25
Zhao (b0200) 2010; 229
L. Mu, J. Wang, and X. Ye, A Weak Galerkin Finite Element Method with Polynomial Reduction, 2013. Available at: <arxiv:1304:6481>.
Bramble, King (b0020) 1996; 6
Yu, Geng, Wei (b0195) 2007; 126
Yu, Wei (b0185) 2007; 227
Hesthaven (b0090) 2003; 127
Hiptmair (10.1016/j.jcp.2013.04.042_b0095) 2010; 18
Ramiere (10.1016/j.jcp.2013.04.042_b0155) 2008; 75
10.1016/j.jcp.2013.04.042_b0135
Chen (10.1016/j.jcp.2013.04.042_b0035) 2011; 32
Glowinski (10.1016/j.jcp.2013.04.042_b0065) 1994; 111
Mayo (10.1016/j.jcp.2013.04.042_b0125) 1984; 21
Horikis (10.1016/j.jcp.2013.04.042_b0100) 2006; 31
Raviart (10.1016/j.jcp.2013.04.042_b0160) 1977; vol. 606
Beale (10.1016/j.jcp.2013.04.042_b0010) 2006; 1
Burman (10.1016/j.jcp.2013.04.042_b0025) 2010; 30
Xia (10.1016/j.jcp.2013.04.042_b0180) 2011; 230
Babuška (10.1016/j.jcp.2013.04.042_b0005) 1970; 5
Yu (10.1016/j.jcp.2013.04.042_b0190) 2007; 224
Wang (10.1016/j.jcp.2013.04.042_b0175) 2009; 228
Ewing (10.1016/j.jcp.2013.04.042_b0050) 1999; 50
Geng (10.1016/j.jcp.2013.04.042_b0060) 2007; 127
Layton (10.1016/j.jcp.2013.04.042_b0115) 2009; 38
Zhou (10.1016/j.jcp.2013.04.042_b0215) 2006; 213
Hesthaven (10.1016/j.jcp.2013.04.042_b0090) 2003; 127
Zhou (10.1016/j.jcp.2013.04.042_b0210) 2006; 219
Bedrossian (10.1016/j.jcp.2013.04.042_b0015) 2010; 229
Dryjaa (10.1016/j.jcp.2013.04.042_b0045) 2007; 23
Hadley (10.1016/j.jcp.2013.04.042_b0070) 2002; 20
Peskin (10.1016/j.jcp.2013.04.042_b0150) 1977; 25
Yu (10.1016/j.jcp.2013.04.042_b0195) 2007; 126
Yu (10.1016/j.jcp.2013.04.042_b0185) 2007; 227
Zhao (10.1016/j.jcp.2013.04.042_b0200) 2010; 229
Chen (10.1016/j.jcp.2013.04.042_b0040) 2008; 16
Oevermann (10.1016/j.jcp.2013.04.042_b0140) 2006; 219
Wang (10.1016/j.jcp.2013.04.042_b0170) 2013; 241
10.1016/j.jcp.2013.04.042_b0225
Fedkiw (10.1016/j.jcp.2013.04.042_b0055) 1999; 152
Cai (10.1016/j.jcp.2013.04.042_b0030) 2011; 49
Zhao (10.1016/j.jcp.2013.04.042_b0205) 2004; 200
He (10.1016/j.jcp.2013.04.042_b0085) 2010; 23
Harari (10.1016/j.jcp.2013.04.042_b0080) 2010; 46
Hansbo (10.1016/j.jcp.2013.04.042_b0075) 2002; 191
LeVeque (10.1016/j.jcp.2013.04.042_b0120) 1994; 31
Peskin (10.1016/j.jcp.2013.04.042_b0145) 1989; 81
Hou (10.1016/j.jcp.2013.04.042_b0105) 2010; 229
Bramble (10.1016/j.jcp.2013.04.042_b0020) 1996; 6
Wang (10.1016/j.jcp.2013.04.042_b0165) 2010; 8
10.1016/j.jcp.2013.04.042_b0230
Mu (10.1016/j.jcp.2013.04.042_b0130) 2012
Hou (10.1016/j.jcp.2013.04.042_b0110) 1997; 134
References_xml – volume: 126
  start-page: 244108
  year: 2007
  ident: b0195
  article-title: Treatment of geometric singularities in implicit solvent models
  publication-title: J. Chem. Phys.
– volume: 229
  start-page: 6405
  year: 2010
  end-page: 6426
  ident: b0015
  article-title: A finite element method for interface problems in domains with smooth boundaries and interfaces
  publication-title: J. Comput. Phys.
– volume: 20
  start-page: 1210
  year: 2002
  end-page: 1218
  ident: b0070
  article-title: High-accuracy finite-difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces
  publication-title: J. Lightwave Technol.
– volume: 224
  start-page: 729
  year: 2007
  end-page: 756
  ident: b0190
  article-title: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces
  publication-title: J. Comput. Phys.
– volume: 5
  start-page: 207
  year: 1970
  end-page: 213
  ident: b0005
  article-title: The finite element method for elliptic equations with discontinuous coefficients
  publication-title: Computing
– volume: 16
  start-page: 7503
  year: 2008
  end-page: 7542
  ident: b0040
  article-title: Piecewise-polynomial discretization and Krylov-accelerated multigrid for elliptic interface problems
  publication-title: J. Comput. Phys.
– volume: 241
  start-page: 103
  year: 2013
  end-page: 115
  ident: b0170
  article-title: A weak Galerkin finite element method for second-order elliptic problems
  publication-title: J. Comput. Appl. Mech.
– reference: L. Mu, J. Wang, X. Ye, and S. Zhao. A numerical study on the weak Galerkin method for the Helmholtz equation with large wave numbers, 2012. Available at:
– volume: 49
  start-page: 1761
  year: 2011
  end-page: 1787
  ident: b0030
  article-title: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations
  publication-title: SIAM J. Numer. Anal.
– volume: 127
  start-page: 114106
  year: 2007
  ident: b0060
  article-title: Treatment of charge singularities in implicit solvent models
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 870
  year: 2010
  end-page: 885
  ident: b0025
  article-title: Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems
  publication-title: SIAM J. Numer. Anal.
– volume: 191
  start-page: 5537
  year: 2002
  end-page: 5552
  ident: b0075
  article-title: An unfitted finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2012
  ident: b0130
  article-title: A computational study of the weak Galerkin method for the second-order elliptic equations
  publication-title: Numer. Algorithm
– volume: 1
  start-page: 91
  year: 2006
  end-page: 119
  ident: b0010
  article-title: On the accuracy of finite difference methods for elliptic problems with interfaces
  publication-title: Commun. Appl. Math. Comput. Sci.
– volume: 227
  start-page: 602
  year: 2007
  end-page: 632
  ident: b0185
  article-title: Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities
  publication-title: J. Comput. Phys.
– volume: 127
  start-page: 59
  year: 2003
  end-page: 123
  ident: b0090
  article-title: High-order accurate methods in time-domain computational electromagnetics. a review
  publication-title: Adv. Imag. Electron Phys.
– volume: 75
  start-page: 1007
  year: 2008
  end-page: 1052
  ident: b0155
  article-title: Convergence analysis of the
  publication-title: Int. J. Numer. Methods Eng.
– volume: 32
  start-page: 657
  year: 2011
  end-page: 670
  ident: b0035
  article-title: MIBPB: a software package for electrostatic analysis
  publication-title: J. Comput. Chem.
– volume: 23
  start-page: 715
  year: 2007
  end-page: 739
  ident: b0045
  article-title: BDDC methods for discontinuous Galerkin discretization of elliptic problems
  publication-title: J. Complexity
– volume: 46
  start-page: 205
  year: 2010
  end-page: 211
  ident: b0080
  article-title: Analysis of an efficient finite element method for embedded interface problems
  publication-title: Comput. Math.
– volume: 230
  start-page: 8231
  year: 2011
  end-page: 8258
  ident: b0180
  article-title: The matched interface and boundary (MIB) method for multi-domain elliptic interface problems
  publication-title: J. Comput. Phys.
– volume: 31
  start-page: 1019
  year: 1994
  end-page: 1044
  ident: b0120
  article-title: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources
  publication-title: SIAM J. Numer. Anal.
– volume: 219
  start-page: 228
  year: 2006
  end-page: 246
  ident: b0210
  article-title: On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 109
  year: 1996
  end-page: 138
  ident: b0020
  article-title: A finite element method for interface problems in domains with smooth boundaries and interfaces
  publication-title: Adv. Comput. Math.
– volume: 8
  start-page: 511
  year: 2010
  end-page: 540
  ident: b0165
  article-title: An edge-based anisotropic mesh refinement algorithm and its application to interface problems
  publication-title: Commun. Comput. Phys.
– volume: 134
  start-page: 236
  year: 1997
  end-page: 252
  ident: b0110
  article-title: A hybrid method for moving interface problems with application to the Heleshaw flow
  publication-title: J. Comput. Phys.
– volume: 219
  start-page: 749
  year: 2006
  end-page: 769
  ident: b0140
  article-title: A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces
  publication-title: J. Comput. Phys.
– volume: 111
  start-page: 283
  year: 1994
  end-page: 303
  ident: b0065
  article-title: A fictitious domain method for Dirichlet problem and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 31
  start-page: 3417
  year: 2006
  end-page: 3419
  ident: b0100
  article-title: Modal analysis of circular Bragg fibers with arbitrary index profiles
  publication-title: Opt. Lett.
– volume: 152
  start-page: 457
  year: 1999
  end-page: 492
  ident: b0055
  article-title: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)
  publication-title: J. Comput. Phys.
– reference: .
– volume: 23
  start-page: 467
  year: 2010
  end-page: 483
  ident: b0085
  article-title: Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient
  publication-title: J. Syst. Sci. Complexity
– volume: 38
  start-page: 266
  year: 2009
  end-page: 272
  ident: b0115
  article-title: Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces
  publication-title: Comput. Fluids
– volume: 18
  start-page: 187
  year: 2010
  end-page: 218
  ident: b0095
  article-title: Convergence analysis of finite element methods for H(div;Omega)-elliptic interface problems
  publication-title: J. Numer. Math.
– volume: 213
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0215
  article-title: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources
  publication-title: J. Comput. Phys.
– reference: J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, 2012. Available at: <arXiv:1202.3655>.
– volume: vol. 606
  start-page: 92
  year: 1977
  end-page: 315
  ident: b0160
  article-title: A mixed finite element method for 2-nd order elliptic problems
  publication-title: Mathematical Aspects of Finite Element Methods
– volume: 50
  start-page: 63
  year: 1999
  end-page: 76
  ident: b0050
  article-title: The immersed finite volume element methods for the elliptic interface problems
  publication-title: Math. Comput. Simul.
– volume: 229
  start-page: 7162
  year: 2010
  end-page: 7179
  ident: b0105
  article-title: Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces
  publication-title: J. Comput. Phys.
– volume: 200
  start-page: 60
  year: 2004
  end-page: 103
  ident: b0205
  article-title: High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces
  publication-title: J. Comput. Phys.
– volume: 81
  start-page: 372
  year: 1989
  end-page: 405
  ident: b0145
  article-title: A 3-dimensional computational method for blood-flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 285
  year: 1984
  end-page: 299
  ident: b0125
  article-title: The fast solution of Poisson’s and the biharmonic equations on irregular regions
  publication-title: SIAM J. Numer. Anal.
– volume: 228
  start-page: 2535
  year: 2009
  end-page: 2551
  ident: b0175
  article-title: On computational issues of immersed finite element methods
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 3155
  year: 2010
  end-page: 3170
  ident: b0200
  article-title: High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 220
  year: 1977
  end-page: 252
  ident: b0150
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J. Comput. Phys.
– reference: L. Mu, J. Wang, and X. Ye, A Weak Galerkin Finite Element Method with Polynomial Reduction, 2013. Available at: <arxiv:1304:6481>.
– volume: 50
  start-page: 63
  year: 1999
  ident: 10.1016/j.jcp.2013.04.042_b0050
  article-title: The immersed finite volume element methods for the elliptic interface problems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/S0378-4754(99)00061-0
– volume: 38
  start-page: 266
  year: 2009
  ident: 10.1016/j.jcp.2013.04.042_b0115
  article-title: Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.02.003
– volume: 5
  start-page: 207
  year: 1970
  ident: 10.1016/j.jcp.2013.04.042_b0005
  article-title: The finite element method for elliptic equations with discontinuous coefficients
  publication-title: Computing
  doi: 10.1007/BF02248021
– volume: 75
  start-page: 1007
  year: 2008
  ident: 10.1016/j.jcp.2013.04.042_b0155
  article-title: Convergence analysis of the q1-finite element method for elliptic problems with non-boundary-fitted meshes
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2278
– year: 2012
  ident: 10.1016/j.jcp.2013.04.042_b0130
  article-title: A computational study of the weak Galerkin method for the second-order elliptic equations
  publication-title: Numer. Algorithm
– volume: 224
  start-page: 729
  issue: 2
  year: 2007
  ident: 10.1016/j.jcp.2013.04.042_b0190
  article-title: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.10.030
– volume: 111
  start-page: 283
  year: 1994
  ident: 10.1016/j.jcp.2013.04.042_b0065
  article-title: A fictitious domain method for Dirichlet problem and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)90135-X
– volume: 23
  start-page: 467
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0085
  article-title: Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient
  publication-title: J. Syst. Sci. Complexity
  doi: 10.1007/s11424-010-0141-z
– volume: 81
  start-page: 372
  year: 1989
  ident: 10.1016/j.jcp.2013.04.042_b0145
  article-title: A 3-dimensional computational method for blood-flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90213-1
– ident: 10.1016/j.jcp.2013.04.042_b0230
  doi: 10.1016/j.cam.2012.10.003
– volume: 219
  start-page: 749
  year: 2006
  ident: 10.1016/j.jcp.2013.04.042_b0140
  article-title: A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.04.010
– volume: 31
  start-page: 1019
  year: 1994
  ident: 10.1016/j.jcp.2013.04.042_b0120
  article-title: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0731054
– ident: 10.1016/j.jcp.2013.04.042_b0135
– volume: 6
  start-page: 109
  year: 1996
  ident: 10.1016/j.jcp.2013.04.042_b0020
  article-title: A finite element method for interface problems in domains with smooth boundaries and interfaces
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02127700
– volume: 191
  start-page: 5537
  year: 2002
  ident: 10.1016/j.jcp.2013.04.042_b0075
  article-title: An unfitted finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00524-8
– volume: 46
  start-page: 205
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0080
  article-title: Analysis of an efficient finite element method for embedded interface problems
  publication-title: Comput. Math.
– volume: 21
  start-page: 285
  year: 1984
  ident: 10.1016/j.jcp.2013.04.042_b0125
  article-title: The fast solution of Poisson’s and the biharmonic equations on irregular regions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0721021
– volume: 16
  start-page: 7503
  year: 2008
  ident: 10.1016/j.jcp.2013.04.042_b0040
  article-title: Piecewise-polynomial discretization and Krylov-accelerated multigrid for elliptic interface problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.04.027
– volume: 219
  start-page: 228
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2013.04.042_b0210
  article-title: On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.027
– volume: vol. 606
  start-page: 92
  year: 1977
  ident: 10.1016/j.jcp.2013.04.042_b0160
  article-title: A mixed finite element method for 2-nd order elliptic problems
– volume: 31
  start-page: 3417
  year: 2006
  ident: 10.1016/j.jcp.2013.04.042_b0100
  article-title: Modal analysis of circular Bragg fibers with arbitrary index profiles
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.003417
– volume: 126
  start-page: 244108
  year: 2007
  ident: 10.1016/j.jcp.2013.04.042_b0195
  article-title: Treatment of geometric singularities in implicit solvent models
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2743020
– ident: 10.1016/j.jcp.2013.04.042_b0225
– volume: 127
  start-page: 114106
  year: 2007
  ident: 10.1016/j.jcp.2013.04.042_b0060
  article-title: Treatment of charge singularities in implicit solvent models
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2768064
– volume: 213
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2013.04.042_b0215
  article-title: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.07.022
– volume: 23
  start-page: 715
  year: 2007
  ident: 10.1016/j.jcp.2013.04.042_b0045
  article-title: BDDC methods for discontinuous Galerkin discretization of elliptic problems
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2007.02.003
– volume: 20
  start-page: 1210
  year: 2002
  ident: 10.1016/j.jcp.2013.04.042_b0070
  article-title: High-accuracy finite-difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2002.800361
– volume: 25
  start-page: 220
  issue: 3
  year: 1977
  ident: 10.1016/j.jcp.2013.04.042_b0150
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90100-0
– volume: 241
  start-page: 103
  year: 2013
  ident: 10.1016/j.jcp.2013.04.042_b0170
  article-title: A weak Galerkin finite element method for second-order elliptic problems
  publication-title: J. Comput. Appl. Mech.
  doi: 10.1016/j.cam.2012.10.003
– volume: 32
  start-page: 657
  year: 2011
  ident: 10.1016/j.jcp.2013.04.042_b0035
  article-title: MIBPB: a software package for electrostatic analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21646
– volume: 229
  start-page: 7162
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0105
  article-title: Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.06.005
– volume: 229
  start-page: 6405
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0015
  article-title: A finite element method for interface problems in domains with smooth boundaries and interfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.05.002
– volume: 152
  start-page: 457
  year: 1999
  ident: 10.1016/j.jcp.2013.04.042_b0055
  article-title: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6236
– volume: 229
  start-page: 3155
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0200
  article-title: High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.034
– volume: 228
  start-page: 2535
  year: 2009
  ident: 10.1016/j.jcp.2013.04.042_b0175
  article-title: On computational issues of immersed finite element methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.012
– volume: 127
  start-page: 59
  year: 2003
  ident: 10.1016/j.jcp.2013.04.042_b0090
  article-title: High-order accurate methods in time-domain computational electromagnetics. a review
  publication-title: Adv. Imag. Electron Phys.
  doi: 10.1016/S1076-5670(03)80097-6
– volume: 18
  start-page: 187
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0095
  article-title: Convergence analysis of finite element methods for H(div;Omega)-elliptic interface problems
  publication-title: J. Numer. Math.
  doi: 10.1515/jnum.2010.010
– volume: 227
  start-page: 602
  year: 2007
  ident: 10.1016/j.jcp.2013.04.042_b0185
  article-title: Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.08.003
– volume: 200
  start-page: 60
  issue: 1
  year: 2004
  ident: 10.1016/j.jcp.2013.04.042_b0205
  article-title: High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.03.008
– volume: 30
  start-page: 870
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0025
  article-title: Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1093/imanum/drn081
– volume: 1
  start-page: 91
  year: 2006
  ident: 10.1016/j.jcp.2013.04.042_b0010
  article-title: On the accuracy of finite difference methods for elliptic problems with interfaces
  publication-title: Commun. Appl. Math. Comput. Sci.
  doi: 10.2140/camcos.2006.1.91
– volume: 49
  start-page: 1761
  year: 2011
  ident: 10.1016/j.jcp.2013.04.042_b0030
  article-title: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100805133
– volume: 230
  start-page: 8231
  year: 2011
  ident: 10.1016/j.jcp.2013.04.042_b0180
  article-title: The matched interface and boundary (MIB) method for multi-domain elliptic interface problems
  publication-title: J. Comput. Phys.
– volume: 134
  start-page: 236
  issue: 2
  year: 1997
  ident: 10.1016/j.jcp.2013.04.042_b0110
  article-title: A hybrid method for moving interface problems with application to the Heleshaw flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5689
– volume: 8
  start-page: 511
  year: 2010
  ident: 10.1016/j.jcp.2013.04.042_b0165
  article-title: An edge-based anisotropic mesh refinement algorithm and its application to interface problems
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.210709.121109a
SSID ssj0008548
Score 2.521507
Snippet Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106
SubjectTerms Approximation
Boundaries
Finite element method
Finite element methods
Galerkin methods
Low solution regularity
Mathematical analysis
Mathematical models
Nonsmooth interface
Norms
Partial differential equations
Second order elliptic interface problems
Weak Galerkin method
Title Weak Galerkin methods for second order elliptic interface problems
URI https://dx.doi.org/10.1016/j.jcp.2013.04.042
https://www.ncbi.nlm.nih.gov/pubmed/24072935
https://www.proquest.com/docview/1475522794
https://www.proquest.com/docview/1513467415
https://www.proquest.com/docview/1826574166
https://pubmed.ncbi.nlm.nih.gov/PMC3780435
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXLi00NJ2ecmVeqoUSOJx4hwBAdtW4lQEt8hPdQEFRJYrv52ZxFlYUPeAlEuSsRSPPa945hvGfgSdVcZidFJAKRJQLiTG64ALkpsq6BDAdFm-Z8X4HH5fyssldjTUwlBaZdT9vU7vtHV8sh-5uX83mVCNb0419BkdyAhRUEU5QEldDPYen9M8lIReG1MqAlIPJ5tdjteVJcjKTHRop5D_zza99T1fp1C-sEkna-xDdCb5Qf-962zJN5_Yx-hY8ii27Wd2eOH1NT9FW0B_xnnfNbrl6K_ylgJixzsETk7gnKhCLCcQifugreex4Uy7wc5Pjv8ejZPYPCGxUMI00c6ggbKhMqkKWtqyVN6iwMmgq0Irl2oFee5cAeiigRe6gKDS3BlQ3qFXIb6w5ea28d8YRzpUi96Y4DJwViiAKvdoyCQVpFd6xNKBbbWNyOLU4OKmHlLIrmrkdE2crlPAKx-xn7Mhdz2sxiJiGNaintsbNar9RcO-D-tWo8zQQYhu_O1Di-FOKSVBJ8ICGpkJ6sSSyQU0GJtJcmmLEfva74fZbDrkuUrg6HJup8wICNd7_k0z-dfhewsChRJy833T3mKrdNcnHG6z5en9g99Bx2lqdjvJ2GUrB7_-jM-eAIX3GDk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcClvOnyNBInpNDEHifOESrKAqWnVvRm-Sm2oLRqtld-OzOJs7Ag9oCUUzyW4rHnFc98w9jLZKvWeYxOamhkATqkwkWbcEOEa5NNCdyQ5XtUz0_g46k63WL7Uy0MpVVm3T_q9EFb5zd7mZt7F4sF1fgKqqGv6EJGyrq5xq6DEg1FYK9__Mrz0ApGdUy5CEg-XW0OSV5nnjArKznAnYL4l3H62_n8M4fyN6N0cJvtZG-Svxk_-A7bit1ddit7ljzLbX-Pvf0S7Tf-Ho0B_RrnY9vonqPDynuKiAMfIDg5oXOiDvGcUCQuk_WR544z_X12cvDueH9e5O4JhYcGloUNDi2UT60rdbLKN42OHiVOJdvWVofSahAihBrQR4MobQ1JlyI40DGgWyEfsO3uvIu7jCMd6sXoXAoVBC81QCsiWjJFFemtnbFyYpvxGVqcOlx8N1MO2ZlBThvitCkBHzFjr1ZTLkZcjU3EMO2FWTscBvX-pmkvpn0zKDR0E2K7eH7VY7zTKEXYibCBRlWSWrFUagMNBmeKfNp6xh6O52G1mgF6rpU4u1k7KSsCAvZeH-kWXweAb0moUFI9-r9lP2c35sefD83hh6NPj9lNGhmzD5-w7eXlVXyKXtTSPRuk5CfWaxnO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+Galerkin+methods+for+second+order+elliptic+interface+problems&rft.jtitle=Journal+of+computational+physics&rft.au=Mu%2C+Lin&rft.au=Wang%2C+Junping&rft.au=Wei%2C+Guowei&rft.au=Ye%2C+Xiu&rft.date=2013-10-01&rft.issn=0021-9991&rft.volume=250&rft.spage=106&rft.epage=125&rft_id=info:doi/10.1016%2Fj.jcp.2013.04.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2013_04_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon