Automated quantification of COVID-19 severity and progression using chest CT images
Objective To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. Methods One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regio...
Saved in:
| Published in | European radiology Vol. 31; no. 1; pp. 436 - 446 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0938-7994 1432-1084 1432-1084 |
| DOI | 10.1007/s00330-020-07156-2 |
Cover
| Abstract | Objective
To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.
Methods
One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.
Results
There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76–86%). In detecting large pneumonia regions (> 200 mm
3
), the algorithm had a sensitivity of 95% (CI 94–97%) and specificity of 84% (CI 81–86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least “acceptable” for representing disease progression.
Conclusion
The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.
Key Points
• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images.
• The computer software was tested using both quantitative experiments and subjective assessment.
• The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19. |
|---|---|
| AbstractList | To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.OBJECTIVETo develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.METHODSOne hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76-86%). In detecting large pneumonia regions (> 200 mm3), the algorithm had a sensitivity of 95% (CI 94-97%) and specificity of 84% (CI 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least "acceptable" for representing disease progression.RESULTSThere was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76-86%). In detecting large pneumonia regions (> 200 mm3), the algorithm had a sensitivity of 95% (CI 94-97%) and specificity of 84% (CI 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least "acceptable" for representing disease progression.The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.CONCLUSIONThe preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.KEY POINTS• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19. Objective To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. Methods One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression. Results There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76–86%). In detecting large pneumonia regions (> 200 mm 3 ), the algorithm had a sensitivity of 95% (CI 94–97%) and specificity of 84% (CI 81–86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least “acceptable” for representing disease progression. Conclusion The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression. Key Points • Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19. ObjectiveTo develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.MethodsOne hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.ResultsThere was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76–86%). In detecting large pneumonia regions (> 200 mm3), the algorithm had a sensitivity of 95% (CI 94–97%) and specificity of 84% (CI 81–86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least “acceptable” for representing disease progression.ConclusionThe preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.Key Points• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images.• The computer software was tested using both quantitative experiments and subjective assessment.• The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19. To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression. There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76-86%). In detecting large pneumonia regions (> 200 mm ), the algorithm had a sensitivity of 95% (CI 94-97%) and specificity of 84% (CI 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least "acceptable" for representing disease progression. The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression. • Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19. |
| Author | Wenzel, Sally E. Leader, Joseph K. Wilson, David O. Sciurba, Frank C. Pu, Jiantao Du, Pang Wang, Jing Ke, Shi Bandos, Andriy Fuhrman, Carl R. Jin, Chenwang Shi, Junli Guo, Youmin |
| Author_xml | – sequence: 1 givenname: Jiantao orcidid: 0000-0003-2127-5313 surname: Pu fullname: Pu, Jiantao email: jip13@pitt.edu organization: Department of Radiology, University of Pittsburgh, Department of Bioengineering, University of Pittsburgh – sequence: 2 givenname: Joseph K. surname: Leader fullname: Leader, Joseph K. organization: Department of Radiology, University of Pittsburgh – sequence: 3 givenname: Andriy surname: Bandos fullname: Bandos, Andriy organization: Department of Biostatistics, University of Pittsburgh – sequence: 4 givenname: Shi surname: Ke fullname: Ke, Shi organization: Department of Radiology, Xi’an Jiaotong University The First Affiliated Hospital – sequence: 5 givenname: Jing surname: Wang fullname: Wang, Jing organization: Department of Radiology, University of Pittsburgh – sequence: 6 givenname: Junli surname: Shi fullname: Shi, Junli organization: Department of Radiology, University of Pittsburgh – sequence: 7 givenname: Pang surname: Du fullname: Du, Pang organization: Department of Radiology, University of Pittsburgh – sequence: 8 givenname: Youmin surname: Guo fullname: Guo, Youmin organization: Department of Radiology, Xi’an Jiaotong University The First Affiliated Hospital – sequence: 9 givenname: Sally E. surname: Wenzel fullname: Wenzel, Sally E. organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh – sequence: 10 givenname: Carl R. surname: Fuhrman fullname: Fuhrman, Carl R. organization: Department of Radiology, University of Pittsburgh – sequence: 11 givenname: David O. surname: Wilson fullname: Wilson, David O. organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh – sequence: 12 givenname: Frank C. surname: Sciurba fullname: Sciurba, Frank C. organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh – sequence: 13 givenname: Chenwang surname: Jin fullname: Jin, Chenwang email: jin1115@mail.xjtu.edu.cn organization: Department of Radiology, Xi’an Jiaotong University The First Affiliated Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32789756$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1URKeFF2CBLLFhE_Bf4niDVA20VKrUBYWt5dg3qauMPbWTVvP2eDoDhS4qFpYX_s71OeceoYMQAyD0lpKPlBD5KRPCOakIK0fSuqnYC7SggrOKklYcoAVRvK2kUuIQHeV8QwhRVMhX6JAz2SpZNwv0_WSe4spM4PDtbMLke2_N5GPAscfLy5_nXyqqcIY7SH7aYBMcXqc4JMh5C83ZhwHba8gTXl5hvzID5NfoZW_GDG_29zH6cfr1avmturg8O1-eXFRWSDFVpuuN4K2xfSc6VUPT9YwLsMKBpLQR3LmOi55YIXrbtA5cw02tXOeg4RYYP0Z8N3cOa7O5N-Oo16lYSBtNid5WpHcV6VKRfqhIb1Wfd6r13K3AWQhTMo_KaLz-9yX4az3EOy1lXbdclgEf9gNSvJ1Lcr3y2cI4mgBxzpoJLkjdMKYK-v4JehPnFEophZKcq5qzplDv_nb0x8rvLRWA7QCbYs4J-v_L2T4RWT89rLak8uPz0n2xufwTBkiPtp9R_QLUQcb6 |
| CitedBy_id | crossref_primary_10_4329_wjr_v14_i1_1 crossref_primary_10_1186_s12879_023_08303_y crossref_primary_10_1016_j_cmpb_2022_106731 crossref_primary_10_2139_ssrn_3984111 crossref_primary_10_1155_2020_9756518 crossref_primary_10_3390_jpm11050391 crossref_primary_10_1002_ima_22930 crossref_primary_10_17343_sdutfd_902875 crossref_primary_10_2174_1574888X17666220829123908 crossref_primary_10_3389_fphys_2025_1512835 crossref_primary_10_1166_jmihi_2021_3866 crossref_primary_10_3390_diagnostics12081853 crossref_primary_10_1002_int_22504 crossref_primary_10_1016_j_asoc_2022_108765 crossref_primary_10_3390_diagnostics11112125 crossref_primary_10_2217_bmm_2021_0536 crossref_primary_10_3390_ijerph19010480 crossref_primary_10_1148_radiol_2021204522 crossref_primary_10_1016_j_rcl_2021_07_001 crossref_primary_10_1055_a_1395_2123 crossref_primary_10_2174_1573405619666230210143430 crossref_primary_10_5124_jkma_2021_64_10_664 crossref_primary_10_1016_j_array_2024_100357 crossref_primary_10_1016_j_neucom_2021_06_024 crossref_primary_10_1186_s12879_023_08173_4 crossref_primary_10_1007_s10489_020_02149_6 crossref_primary_10_3390_e24081119 crossref_primary_10_1097_RCT_0000000000001303 crossref_primary_10_1186_s12890_023_02827_4 crossref_primary_10_1007_s00330_021_08485_6 crossref_primary_10_1148_radiol_2020204226 crossref_primary_10_1007_s00330_022_09303_3 crossref_primary_10_3390_bioengineering11111062 crossref_primary_10_2214_AJR_21_26717 crossref_primary_10_3389_fmed_2021_663514 crossref_primary_10_3389_fmed_2021_689568 crossref_primary_10_1016_j_isci_2022_104227 crossref_primary_10_4329_wjr_v13_i9_294 crossref_primary_10_1016_j_compbiomed_2021_105123 crossref_primary_10_1002_mp_14907 crossref_primary_10_1007_s00259_021_05435_8 crossref_primary_10_3390_diagnostics12030649 crossref_primary_10_1007_s13246_021_01093_0 crossref_primary_10_1109_TEM_2021_3094544 crossref_primary_10_3390_app12125768 crossref_primary_10_3390_healthcare11172388 crossref_primary_10_1016_j_bbe_2021_10_004 crossref_primary_10_1055_a_1734_4132 crossref_primary_10_3390_diagnostics11050893 crossref_primary_10_1038_s41746_020_00369_1 crossref_primary_10_1007_s00521_022_07709_0 crossref_primary_10_1038_s41598_024_83972_6 crossref_primary_10_1002_mp_16964 crossref_primary_10_1067_j_cpradiol_2022_04_003 crossref_primary_10_1007_s12065_022_00739_6 crossref_primary_10_3390_diagnostics14131456 crossref_primary_10_1016_j_idnow_2025_105058 crossref_primary_10_1007_s00521_023_08407_1 crossref_primary_10_3389_fmicb_2024_1495432 |
| Cites_doi | 10.2214/AJR.20.22954:1-7 10.1148/radiol.2020200642:200642 10.1016/j.media.2019.101592 10.1007/978-3-319-66179-7_71 10.2214/AJR.20.22975:1-8 10.1093/jrr/rrz086 10.1148/radiol.2020200269:200269 10.1118/1.2948349 10.1152/japplphysiol.00465.2019 10.1109/TMI.2010.2076300 10.1136/jamia.2000.0070593 10.2214/AJR.20.22976:1-6 10.1007/978-3-319-24574-4_28 10.1148/radiol.2020200432:200432 10.1001/jamanetworkopen.2019.1095 10.1016/j.compmedimag.2014.01.002 10.1007/s10278-020-00320-6 10.1016/S1473-3099(20)30086-4 10.1109/TVCG.2010.56 10.2196/jmir.6887 10.1016/S1076-6332(03)00671-8 10.1016/S1473-3099(20)30134-1 10.1148/radiol.2020200236:200236 10.1201/b11031 10.2214/ajr.175.5.1751329 10.1016/j.clinimag.2020.02.008 |
| ContentType | Journal Article |
| Copyright | European Society of Radiology 2020 European Society of Radiology 2020. |
| Copyright_xml | – notice: European Society of Radiology 2020 – notice: European Society of Radiology 2020. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s00330-020-07156-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 446 |
| ExternalDocumentID | 10.1007/s00330-020-07156-2 PMC7755837 32789756 10_1007_s00330_020_07156_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Foundation for the National Institutes of Health grantid: R01CA237277; R01HL096613 funderid: http://dx.doi.org/10.13039/100000009 – fundername: NHLBI NIH HHS grantid: R01 HL096613 – fundername: NCI NIH HHS grantid: R01 CA237277 – fundername: Foundation for the National Institutes of Health grantid: R01HL096613 – fundername: Foundation for the National Institutes of Health grantid: R01CA237277 – fundername: ; grantid: R01CA237277; R01HL096613 |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-abfa438acfb4b95e6bf234ec4de711643ddb34f0c44fc68ded63a59dbde63ce23 |
| IEDL.DBID | BENPR |
| ISSN | 0938-7994 1432-1084 |
| IngestDate | Sun Oct 26 04:17:07 EDT 2025 Thu Aug 21 18:32:30 EDT 2025 Thu Sep 04 17:46:38 EDT 2025 Tue Oct 07 06:05:22 EDT 2025 Mon Jul 21 05:22:44 EDT 2025 Wed Oct 01 03:47:33 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Fri Feb 21 02:48:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | COVID-19 Biomarkers Pneumonia Neural network |
| Language | English |
| License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-abfa438acfb4b95e6bf234ec4de711643ddb34f0c44fc68ded63a59dbde63ce23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2127-5313 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00330-020-07156-2.pdf |
| PMID | 32789756 |
| PQID | 2473395326 |
| PQPubID | 54162 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1007_s00330_020_07156_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7755837 proquest_miscellaneous_2434056229 proquest_journals_2473395326 pubmed_primary_32789756 crossref_primary_10_1007_s00330_020_07156_2 crossref_citationtrail_10_1007_s00330_020_07156_2 springer_journals_10_1007_s00330_020_07156_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | LinCDingYXieBAsymptomatic novel coronavirus pneumonia patient outside Wuhan: the value of CT images in the course of the diseaseClin Imaging2020637910.1016/j.clinimag.2020.02.008 GuSMengXSciurbaFCBidirectional elastic image registration using B-spline affine transformationComput Med Imaging Graph20143830631410.1016/j.compmedimag.2014.01.002 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp. 234–241 Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30086-4 Nemoto T, Futakami N, Yagi M et al (2020) Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. J Radiat Res. https://doi.org/10.1093/jrr/rrz086 Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. https://doi.org/10.1148/radiol.2020200642:200642 Lei J, Li J, Li X, Qi X (2020) CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. https://doi.org/10.1148/radiol.2020200236:200236 FiszmanMChapmanWWAronskyDEvansRSHaugPJAutomatic detection of acute bacterial pneumonia from chest X-ray reportsJ Am Med Inform Assoc200075936041:STN:280:DC%2BD3M%2FmtVeitQ%3D%3D10.1136/jamia.2000.0070593 van der HeydenBvan de WorpWvan HelvoortAAutomated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning networkJ Appl Physiol (1985)2020128424910.1152/japplphysiol.00465.2019 KauczorHUHeitmannKHeusselCPMarwedeDUthmannTThelenMAutomatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density maskAJR Am J Roentgenol2000175132913341:STN:280:DC%2BD3M%2FisVyjug%3D%3D10.2214/ajr.175.5.1751329 Shi H, Han X, Zheng C (2020) Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology. https://doi.org/10.1148/radiol.2020200269:200269 PuJFuhrmanCGoodWFSciurbaFCGurDA differential geometric approach to automated segmentation of human airway treeIEEE Trans Med Imaging20113026627810.1109/TMI.2010.2076300 PuJPaikDSMengXRoosJERubinGDShape “break-and-repair” strategy and its application to automated medical image segmentationIEEE Trans Vis Comput Graph20111711512410.1109/TVCG.2010.56 HarrisonAPXuZGeorgeKLuLSummersRMMolluraDJDescoteauxMMaier-HeinLFranzAJanninPCollinsDLDuchesneSProgressive and multi-path holistically nested neural networks for pathological lung segmentation from CT imagesMedical Image Computing and Computer Assisted Intervention − MICCAI 20172017ChamSpringer International Publishing62162910.1007/978-3-319-66179-7_71 HwangEJParkSJinKNDevelopment and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographsJAMA Netw Open20192e19109510.1001/jamanetworkopen.2019.1095 Zhou S, Wang Y, Zhu T, Xia L (2020) CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22975:1-8 PuJZhengBLeaderJKWangXHGurDAn automated CT based lung nodule detection scheme using geometric analysis of signed distance fieldMed Phys2008353453346110.1118/1.2948349 Lee EYP, Ng MY, Khong PL (2020) COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30134-1 ParveenNRSathikMMDetection of pneumonia in chest X-ray imagesJ Xray Sci Technol20111942342825214377 Halder A, Dey D, Sadhu AK (2020) Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review. J Digit Imaging. https://doi.org/10.1007/s10278-020-00320-6 ZouKHWarfieldSKBharathaAStatistical validation of image segmentation quality based on a spatial overlap indexAcad Radiol20041117818910.1016/S1076-6332(03)00671-8 Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22976:1-6 Zou K, Liu A, Bandos AI, Ohno-Machado L, Rockette HE (2016) Statistical evaluation of diagnostic performance: topics in ROC analysis. Chapman and Hall/CRC Li Y, Xia L (2020) Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22954:1-7 MeystreSGouripeddiRTiederJSimmonsJSrivastavaRShahSEnhancing comparative effectiveness research with automated pediatric pneumonia detection in a multi-institutional clinical repository: a PHIS+ pilot studyJ Med Internet Res20171910.2196/jmir.6887 Fang Y, Zhang H, Xie J et al (2020) Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. https://doi.org/10.1148/radiol.2020200432:200432 GerardSEHerrmannJKaczkaDWMuschGFernandez-BustamanteAReinhardtJMMulti-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple speciesMed Image Anal20206010159210.1016/j.media.2019.101592 7156_CR25 7156_CR22 EJ Hwang (7156_CR11) 2019; 2 J Pu (7156_CR26) 2008; 35 SE Gerard (7156_CR23) 2020; 60 7156_CR2 7156_CR1 S Gu (7156_CR19) 2014; 38 B van der Heyden (7156_CR17) 2020; 128 7156_CR9 M Fiszman (7156_CR12) 2000; 7 NR Parveen (7156_CR13) 2011; 19 7156_CR8 7156_CR7 7156_CR6 7156_CR10 7156_CR4 7156_CR3 C Lin (7156_CR5) 2020; 63 S Meystre (7156_CR14) 2017; 19 7156_CR18 J Pu (7156_CR20) 2011; 30 7156_CR16 J Pu (7156_CR27) 2011; 17 HU Kauczor (7156_CR15) 2000; 175 AP Harrison (7156_CR24) 2017 KH Zou (7156_CR21) 2004; 11 |
| References_xml | – reference: HwangEJParkSJinKNDevelopment and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographsJAMA Netw Open20192e19109510.1001/jamanetworkopen.2019.1095 – reference: Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. https://doi.org/10.1148/radiol.2020200642:200642 – reference: PuJPaikDSMengXRoosJERubinGDShape “break-and-repair” strategy and its application to automated medical image segmentationIEEE Trans Vis Comput Graph20111711512410.1109/TVCG.2010.56 – reference: LinCDingYXieBAsymptomatic novel coronavirus pneumonia patient outside Wuhan: the value of CT images in the course of the diseaseClin Imaging2020637910.1016/j.clinimag.2020.02.008 – reference: HarrisonAPXuZGeorgeKLuLSummersRMMolluraDJDescoteauxMMaier-HeinLFranzAJanninPCollinsDLDuchesneSProgressive and multi-path holistically nested neural networks for pathological lung segmentation from CT imagesMedical Image Computing and Computer Assisted Intervention − MICCAI 20172017ChamSpringer International Publishing62162910.1007/978-3-319-66179-7_71 – reference: Halder A, Dey D, Sadhu AK (2020) Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review. J Digit Imaging. https://doi.org/10.1007/s10278-020-00320-6 – reference: Li Y, Xia L (2020) Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22954:1-7 – reference: FiszmanMChapmanWWAronskyDEvansRSHaugPJAutomatic detection of acute bacterial pneumonia from chest X-ray reportsJ Am Med Inform Assoc200075936041:STN:280:DC%2BD3M%2FmtVeitQ%3D%3D10.1136/jamia.2000.0070593 – reference: GerardSEHerrmannJKaczkaDWMuschGFernandez-BustamanteAReinhardtJMMulti-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple speciesMed Image Anal20206010159210.1016/j.media.2019.101592 – reference: van der HeydenBvan de WorpWvan HelvoortAAutomated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning networkJ Appl Physiol (1985)2020128424910.1152/japplphysiol.00465.2019 – reference: GuSMengXSciurbaFCBidirectional elastic image registration using B-spline affine transformationComput Med Imaging Graph20143830631410.1016/j.compmedimag.2014.01.002 – reference: Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30086-4 – reference: Lei J, Li J, Li X, Qi X (2020) CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. https://doi.org/10.1148/radiol.2020200236:200236 – reference: Fang Y, Zhang H, Xie J et al (2020) Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. https://doi.org/10.1148/radiol.2020200432:200432 – reference: Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22976:1-6 – reference: PuJZhengBLeaderJKWangXHGurDAn automated CT based lung nodule detection scheme using geometric analysis of signed distance fieldMed Phys2008353453346110.1118/1.2948349 – reference: Shi H, Han X, Zheng C (2020) Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology. https://doi.org/10.1148/radiol.2020200269:200269 – reference: Zhou S, Wang Y, Zhu T, Xia L (2020) CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22975:1-8 – reference: Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp. 234–241 – reference: MeystreSGouripeddiRTiederJSimmonsJSrivastavaRShahSEnhancing comparative effectiveness research with automated pediatric pneumonia detection in a multi-institutional clinical repository: a PHIS+ pilot studyJ Med Internet Res20171910.2196/jmir.6887 – reference: ZouKHWarfieldSKBharathaAStatistical validation of image segmentation quality based on a spatial overlap indexAcad Radiol20041117818910.1016/S1076-6332(03)00671-8 – reference: Zou K, Liu A, Bandos AI, Ohno-Machado L, Rockette HE (2016) Statistical evaluation of diagnostic performance: topics in ROC analysis. Chapman and Hall/CRC – reference: PuJFuhrmanCGoodWFSciurbaFCGurDA differential geometric approach to automated segmentation of human airway treeIEEE Trans Med Imaging20113026627810.1109/TMI.2010.2076300 – reference: KauczorHUHeitmannKHeusselCPMarwedeDUthmannTThelenMAutomatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density maskAJR Am J Roentgenol2000175132913341:STN:280:DC%2BD3M%2FisVyjug%3D%3D10.2214/ajr.175.5.1751329 – reference: Nemoto T, Futakami N, Yagi M et al (2020) Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. J Radiat Res. https://doi.org/10.1093/jrr/rrz086 – reference: Lee EYP, Ng MY, Khong PL (2020) COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30134-1 – reference: ParveenNRSathikMMDetection of pneumonia in chest X-ray imagesJ Xray Sci Technol20111942342825214377 – ident: 7156_CR7 doi: 10.2214/AJR.20.22954:1-7 – ident: 7156_CR3 doi: 10.1148/radiol.2020200642:200642 – volume: 60 start-page: 101592 year: 2020 ident: 7156_CR23 publication-title: Med Image Anal doi: 10.1016/j.media.2019.101592 – start-page: 621 volume-title: Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 year: 2017 ident: 7156_CR24 doi: 10.1007/978-3-319-66179-7_71 – ident: 7156_CR8 doi: 10.2214/AJR.20.22975:1-8 – ident: 7156_CR18 doi: 10.1093/jrr/rrz086 – ident: 7156_CR2 doi: 10.1148/radiol.2020200269:200269 – volume: 35 start-page: 3453 year: 2008 ident: 7156_CR26 publication-title: Med Phys doi: 10.1118/1.2948349 – volume: 128 start-page: 42 year: 2020 ident: 7156_CR17 publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.00465.2019 – volume: 30 start-page: 266 year: 2011 ident: 7156_CR20 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2076300 – volume: 7 start-page: 593 year: 2000 ident: 7156_CR12 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2000.0070593 – ident: 7156_CR6 doi: 10.2214/AJR.20.22976:1-6 – ident: 7156_CR16 doi: 10.1007/978-3-319-24574-4_28 – ident: 7156_CR9 doi: 10.1148/radiol.2020200432:200432 – volume: 2 start-page: e191095 year: 2019 ident: 7156_CR11 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.1095 – volume: 38 start-page: 306 year: 2014 ident: 7156_CR19 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2014.01.002 – ident: 7156_CR25 doi: 10.1007/s10278-020-00320-6 – ident: 7156_CR10 doi: 10.1016/S1473-3099(20)30086-4 – volume: 17 start-page: 115 year: 2011 ident: 7156_CR27 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2010.56 – volume: 19 year: 2017 ident: 7156_CR14 publication-title: J Med Internet Res doi: 10.2196/jmir.6887 – volume: 11 start-page: 178 year: 2004 ident: 7156_CR21 publication-title: Acad Radiol doi: 10.1016/S1076-6332(03)00671-8 – volume: 19 start-page: 423 year: 2011 ident: 7156_CR13 publication-title: J Xray Sci Technol – ident: 7156_CR4 doi: 10.1016/S1473-3099(20)30134-1 – ident: 7156_CR1 doi: 10.1148/radiol.2020200236:200236 – ident: 7156_CR22 doi: 10.1201/b11031 – volume: 175 start-page: 1329 year: 2000 ident: 7156_CR15 publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.175.5.1751329 – volume: 63 start-page: 7 year: 2020 ident: 7156_CR5 publication-title: Clin Imaging doi: 10.1016/j.clinimag.2020.02.008 |
| SSID | ssj0009147 |
| Score | 2.5748353 |
| Snippet | Objective
To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.... To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. One hundred... ObjectiveTo develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT... To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.OBJECTIVETo... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 436 |
| SubjectTerms | Adult Algorithms Automation Chest Computed tomography Computer programs Computer vision Coronaviruses COVID-19 COVID-19 - diagnostic imaging Deep Learning Diagnostic Radiology Disease Progression Humans Image segmentation Imaging Imaging Informatics and Artificial Intelligence Internal Medicine Interventional Radiology Learning algorithms Lung - diagnostic imaging Lungs Machine learning Medical imaging Medical treatment Medicine Medicine & Public Health Middle Aged Neuroradiology Pneumonia Pneumonitis Radiology Retrospective Studies SARS-CoV-2 Software Subjective assessment Tomography, X-Ray Computed - methods Ultrasound Vessels |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgJ6oDzL0oKMxI26SuJxHB9XS0sBFQ50UTlFftKqS7awiRD8emznUZaiit4i-ZGMPZ4ZZ2a-QegFGKc1aEW4SxQBnRgiVKKJk0oIEwDYItr-4fv8YAZvj9lxlxS27KPde5dklNRDslsoO5aQcN3xapHlxAvetYi3NUJrk9ef3-1dgO2msbCYv6wXhAsBXbLMv2dZVUiXrMzLwZKDx3Qd3Wqqc_nzh5zP_1BK-xto1pPTxqKc7Ta12tW__kJ6vC69d9GdzkrFk5at7qEbtrqPbh52fvgH6OOkqRfe1rUGf2tkG28UtxgvHJ5--PTmFUkF9krXhtp4WFYGx0CwFgQEh2D7LziW6sLTI3z61Qu15UM02987mh6QrjwD0cChJlI5CbSQ2ilQgtlcuYyC1WAsT_0tjBqjKLhEAzidF8aanEomjDI2p9pm9BEaVYvKPkaYK0a5TPNCcoDMyiIH_2S4Kih4ISTGKO33qNQddnkooTEvB9TluFqlX60yrlaZjdHLYcx5i9xxZe_tfuvL7hQvyww4pYJ5C3eMng_N_vwFp4qs7KIJfSgEIzLzH7nZcsrwOhrSjDnzo_kKDw0dArb3akt1ehIxvjlnrKB8jHZ65rj4rKuo2Bk48j-IfnK92bfQ7SxE9MQfUNtoVH9v7FNvktXqWXcCfwMZQCpb priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfGTeLjgc8xDgYKEm8s213jNO3j6cY0kDaQ2KHxVOUTJo7ejbVC8NeTpB9wDE0g3irFaevUjp3a_hngGRqnNWpFhRspinpkaK5Gmjqp8twEALaItn94lB7M8NUJP1mDva4WJma7dyHJpqYhoDSV1e7SuN2-8C20IBvRcPTxJpKn1J8OjbsC6yn3HvkA1mdHbybvI8ye12eRx36I3jNI_K6TYVs78-cbrdqnC07nxdzJPoB6A67V5VJ--yrn819s1P4tsB13TWrKp526Ujv6-2_Aj__L_m242TqxZNJI3R1Ys-VduHrYhunvwdtJXS28K2wNOatlk44UJYAsHJm-fvdyj45z4m2yDa3ziCwNiXliDUYICbn4H0js5EWmx-T0s9_zzjdgtv_ieHpA2-4NVKPAikrlJLJMaqdQ5dymyiUMrUZjxdgf0pgxiqEbaUSn08xYkzLJc6OMTZm2CbsPg3JR2gdAhOJMyHGaSYGYWJml6K-MUBlDv0flQxh336zQLbR56LAxL3pQ5rhihV-xIq5YkQzheT9n2QB7XEq91YlC0Sr5eZGgYCzn3gEewtN-2KtniLnI0i7qQMMw-JiJf8nNRnL6x7FQhSy4ny1WZKonCNDfqyPl6ccIAS4E5xkTQ9juhOXna13GxXYvoX_B9MN_I38E15OQ8BP_T23BoPpS28feY6vUk1YhfwA88TW9 priority: 102 providerName: Unpaywall |
| Title | Automated quantification of COVID-19 severity and progression using chest CT images |
| URI | https://link.springer.com/article/10.1007/s00330-020-07156-2 https://www.ncbi.nlm.nih.gov/pubmed/32789756 https://www.proquest.com/docview/2473395326 https://www.proquest.com/docview/2434056229 https://pubmed.ncbi.nlm.nih.gov/PMC7755837 https://link.springer.com/content/pdf/10.1007/s00330-020-07156-2.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aWonLA-I2KIzKSLwxiyR24uQBobS0G6CVCVbUPUW-BSaVpGONEP8e27mUalLFSy6yo9jn2D7H9vH3AbyiKpeSSoFZ7glMpadwIjyJcy6SRFkANoe2fzqLTub04yJc7MGsPQtjwyrbMdEN1KqUdo38TUAZIUlovI13qytsWaPs7mpLocEbagX11kGM7UM_sMhYPeiPJrOzLxsYXt9RjplpfIxZktDmGI07TGdpzTxsp1PG7IYRDrZN1Q3_82YYZbeXehduV8WK__nNl8t_zNX0Ptxr_EyU1g3jAezp4iHcOm120h_B17Ral8Zb1QpdVbyOGHJKQmWOxp-_fXiP_QQZs6ktux3ihUIulKuG8UA2XP47cmRbaHyOLn-aYen6Mcynk_PxCW4IFrCkjK4xFzmnJOYyF1QkoY5EHhCqJVWa-WYeRZQShOaepDSXUay0iggPEyWUjojUATmAXlEW-ikgJkLCuB_FnFEaaB5H1DwpJmJCzTCSDMBvZZnJBn3ckmAssw432ck_M_LPnPyzYACvu29WNfbGztyHrYqyph9eZ5tWM4CXXbLpQXZbhBe6rGweQq0bGJhCPqk12v2O2IPCLDRfsy1ddxksOvd2SnH5w6F0MxaGZvY_gKO2VWyKtasWR13L-Y9KP9td6edwJ7AxOG7J6BB661-VfmGcqLUYwj5bMHONp8dD6KfT0Whm78cXnybDpteY1HmQmrf57Cy9-Av6xx6f |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWLwgBifhTGMBE_MIokvcfwwodFtatlaEHTT3oK_ApNK2tFG0_45_jZs56NUkype9hbJjmKfz3fn-O73Q-gN6FwpUJKwPJAEVKAJl4EiuZCcawfA5tH2B8OkdwqfzuPzNfSnqYVxaZWNTfSGWk-U-0f-PgJGKY9ttPFhekkca5S7XW0oNERNraD3PMRYXdhxbK6v7BFuttc_sOv9NoqODkfdHqlZBogCBnMiZC6ApkLlEiSPTSLziIJRoA0L7WGCai0p5IECyFWSaqMTKmKupTYJVcYBH1gXsAEUuD38bXw8HH75uoD9DT3FWcCtWWGcQ12244v3HI1aQNzxzbr5OCHRsmu8Ee_eTNts727voc2ymIrrKzEe_-Mejx6g-3Vci_crRdxCa6Z4iO4M6pv7R-jbfjmf2OjYaHxZiipDySsFnuS4-_msf0BCjq2bNo5ND4tCY586VsGGYJee_wN7ci_cHeGLX9YMzh6j01sR9RO0XkwK8wxhJmPKRJikggFERqQJ2CfNZErBmi3eQWEjy0zVaOeOdGOctTjNXv6ZlX_m5Z9FHfSufWdaYX2s7L3dLFFW7_tZttDSDnrdNtsd665hRGEmpetDwYWdkR3k02pF289RV5jMYvs2W1rrtoNDA19uKS5-elRwxuI4payDdhutWAxr1Sx2W835j0k_Xz3pV2izNxqcZCf94fELdDdy-T_-d9U2Wp__Ls1LG8DN5U69SzD6ftsb8y8rBFdD |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIhU4IN4EChgJTtTq7np2vT4gVCVEDaUFiRbltvjZVgqblGRV9a_x67C9jxBVirj0tpJtrT2eGY89M98g9Ba0VQqUJMxGkoCKNOEyUsQKybn2AGwBbf_wKNs_gc_jdLyB_rS5MD6sstWJQVHrqfJv5LsJMEp56qyNXduERXwbDD_OLoivIOU9rW05jZpFDszVpbu-zT-MBm6v3yXJ8NNxf580FQaIAgYLIqQVQHOhrATJU5NJm1AwCrRhsbtIUK0lBRspAKuyXBudUZFyLbXJqDIe9MCp_1thZk6W2JgtAX_jUNws4k6hMM6hSdgJaXu-gFpE_MXNHfBpRpLVQ_GapXs9YLPz2t5Ft6tyJq4uxWTyz8E4vI_uNRYt3qtZ8AHaMOVDtHXY-Owfoe971WLq7GKj8UUl6tikwA54anH_64_RgMQcuwPa-Dp6WJQah6CxGjAE-8D8UxzKeuH-MT7_5RTg_DE6uRFCP0Gb5bQ0zxBmMqVMxFkuGEBiRJ6B-9JM5hScwuI9FLe0LFSDc-7LbUyKDqE50L9w9C8C_Yukh953Y2Y1ysfa3tvtFhWNxM-LJX_20Juu2cmqd8CI0kwr34eCNzgTN8mn9Y52v6M-JZmlbjRb2euug8cBX20pz88CHjhjaZpT1kM7LVcsp7VuFTsd5_zHop-vX_RrtOXEsfgyOjp4ge4kPvAnvFNto83F78q8dJbbQr4KIoLRz5uWyb-94FTd |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfGTeLjgc8xDgYKEm8s213jNO3j6cY0kDaQ2KHxVOUTJo7ejbVC8NeTpB9wDE0g3irFaevUjp3a_hngGRqnNWpFhRspinpkaK5Gmjqp8twEALaItn94lB7M8NUJP1mDva4WJma7dyHJpqYhoDSV1e7SuN2-8C20IBvRcPTxJpKn1J8OjbsC6yn3HvkA1mdHbybvI8ye12eRx36I3jNI_K6TYVs78-cbrdqnC07nxdzJPoB6A67V5VJ--yrn819s1P4tsB13TWrKp526Ujv6-2_Aj__L_m242TqxZNJI3R1Ys-VduHrYhunvwdtJXS28K2wNOatlk44UJYAsHJm-fvdyj45z4m2yDa3ziCwNiXliDUYICbn4H0js5EWmx-T0s9_zzjdgtv_ieHpA2-4NVKPAikrlJLJMaqdQ5dymyiUMrUZjxdgf0pgxiqEbaUSn08xYkzLJc6OMTZm2CbsPg3JR2gdAhOJMyHGaSYGYWJml6K-MUBlDv0flQxh336zQLbR56LAxL3pQ5rhihV-xIq5YkQzheT9n2QB7XEq91YlC0Sr5eZGgYCzn3gEewtN-2KtniLnI0i7qQMMw-JiJf8nNRnL6x7FQhSy4ny1WZKonCNDfqyPl6ccIAS4E5xkTQ9juhOXna13GxXYvoX_B9MN_I38E15OQ8BP_T23BoPpS28feY6vUk1YhfwA88TW9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+quantification+of+COVID-19+severity+and+progression+using+chest+CT+images&rft.jtitle=European+radiology&rft.au=Pu%2C+Jiantao&rft.au=Leader%2C+Joseph+K&rft.au=Bandos%2C+Andriy&rft.au=Ke%2C+Shi&rft.date=2021-01-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=31&rft.issue=1&rft.spage=436&rft_id=info:doi/10.1007%2Fs00330-020-07156-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |