Automated quantification of COVID-19 severity and progression using chest CT images

Objective To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. Methods One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regio...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 31; no. 1; pp. 436 - 446
Main Authors Pu, Jiantao, Leader, Joseph K., Bandos, Andriy, Ke, Shi, Wang, Jing, Shi, Junli, Du, Pang, Guo, Youmin, Wenzel, Sally E., Fuhrman, Carl R., Wilson, David O., Sciurba, Frank C., Jin, Chenwang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-020-07156-2

Cover

Abstract Objective To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. Methods One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression. Results There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76–86%). In detecting large pneumonia regions (> 200 mm 3 ), the algorithm had a sensitivity of 95% (CI 94–97%) and specificity of 84% (CI 81–86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least “acceptable” for representing disease progression. Conclusion The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression. Key Points • Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.
AbstractList To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.OBJECTIVETo develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.METHODSOne hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76-86%). In detecting large pneumonia regions (> 200 mm3), the algorithm had a sensitivity of 95% (CI 94-97%) and specificity of 84% (CI 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least "acceptable" for representing disease progression.RESULTSThere was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76-86%). In detecting large pneumonia regions (> 200 mm3), the algorithm had a sensitivity of 95% (CI 94-97%) and specificity of 84% (CI 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least "acceptable" for representing disease progression.The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.CONCLUSIONThe preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.KEY POINTS• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.
Objective To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. Methods One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression. Results There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76–86%). In detecting large pneumonia regions (> 200 mm 3 ), the algorithm had a sensitivity of 95% (CI 94–97%) and specificity of 84% (CI 81–86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least “acceptable” for representing disease progression. Conclusion The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression. Key Points • Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.
ObjectiveTo develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.MethodsOne hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression.ResultsThere was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76–86%). In detecting large pneumonia regions (> 200 mm3), the algorithm had a sensitivity of 95% (CI 94–97%) and specificity of 84% (CI 81–86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least “acceptable” for representing disease progression.ConclusionThe preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression.Key Points• Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images.• The computer software was tested using both quantitative experiments and subjective assessment.• The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.
To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung regions and vessels. Seventy-two serial scans from 24 COVID-19 subjects were used to develop and test algorithms to detect and quantify the presence and progression of infiltrates associated with COVID-19. The algorithm included (1) automated lung boundary and vessel segmentation, (2) registration of the lung boundary between serial scans, (3) computerized identification of the pneumonitis regions, and (4) assessment of disease progression. Agreement between radiologist manually delineated regions and computer-detected regions was assessed using the Dice coefficient. Serial scans were registered and used to generate a heatmap visualizing the change between scans. Two radiologists, using a five-point Likert scale, subjectively rated heatmap accuracy in representing progression. There was strong agreement between computer detection and the manual delineation of pneumonic regions with a Dice coefficient of 81% (CI 76-86%). In detecting large pneumonia regions (> 200 mm ), the algorithm had a sensitivity of 95% (CI 94-97%) and specificity of 84% (CI 81-86%). Radiologists rated 95% (CI 72 to 99) of heatmaps at least "acceptable" for representing disease progression. The preliminary results suggested the feasibility of using computer software to detect and quantify pneumonic regions associated with COVID-19 and to generate heatmaps that can be used to visualize and assess progression. • Both computer vision and deep learning technology were used to develop computer software to quantify the presence and progression of pneumonia associated with COVID-19 depicted on CT images. • The computer software was tested using both quantitative experiments and subjective assessment. • The computer software has the potential to assist in the detection of the pneumonic regions, monitor disease progression, and assess treatment efficacy related to COVID-19.
Author Wenzel, Sally E.
Leader, Joseph K.
Wilson, David O.
Sciurba, Frank C.
Pu, Jiantao
Du, Pang
Wang, Jing
Ke, Shi
Bandos, Andriy
Fuhrman, Carl R.
Jin, Chenwang
Shi, Junli
Guo, Youmin
Author_xml – sequence: 1
  givenname: Jiantao
  orcidid: 0000-0003-2127-5313
  surname: Pu
  fullname: Pu, Jiantao
  email: jip13@pitt.edu
  organization: Department of Radiology, University of Pittsburgh, Department of Bioengineering, University of Pittsburgh
– sequence: 2
  givenname: Joseph K.
  surname: Leader
  fullname: Leader, Joseph K.
  organization: Department of Radiology, University of Pittsburgh
– sequence: 3
  givenname: Andriy
  surname: Bandos
  fullname: Bandos, Andriy
  organization: Department of Biostatistics, University of Pittsburgh
– sequence: 4
  givenname: Shi
  surname: Ke
  fullname: Ke, Shi
  organization: Department of Radiology, Xi’an Jiaotong University The First Affiliated Hospital
– sequence: 5
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Department of Radiology, University of Pittsburgh
– sequence: 6
  givenname: Junli
  surname: Shi
  fullname: Shi, Junli
  organization: Department of Radiology, University of Pittsburgh
– sequence: 7
  givenname: Pang
  surname: Du
  fullname: Du, Pang
  organization: Department of Radiology, University of Pittsburgh
– sequence: 8
  givenname: Youmin
  surname: Guo
  fullname: Guo, Youmin
  organization: Department of Radiology, Xi’an Jiaotong University The First Affiliated Hospital
– sequence: 9
  givenname: Sally E.
  surname: Wenzel
  fullname: Wenzel, Sally E.
  organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh
– sequence: 10
  givenname: Carl R.
  surname: Fuhrman
  fullname: Fuhrman, Carl R.
  organization: Department of Radiology, University of Pittsburgh
– sequence: 11
  givenname: David O.
  surname: Wilson
  fullname: Wilson, David O.
  organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh
– sequence: 12
  givenname: Frank C.
  surname: Sciurba
  fullname: Sciurba, Frank C.
  organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh
– sequence: 13
  givenname: Chenwang
  surname: Jin
  fullname: Jin, Chenwang
  email: jin1115@mail.xjtu.edu.cn
  organization: Department of Radiology, Xi’an Jiaotong University The First Affiliated Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32789756$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFF2CBLLFhE_Bf4niDVA20VKrUBYWt5dg3qauMPbWTVvP2eDoDhS4qFpYX_s71OeceoYMQAyD0lpKPlBD5KRPCOakIK0fSuqnYC7SggrOKklYcoAVRvK2kUuIQHeV8QwhRVMhX6JAz2SpZNwv0_WSe4spM4PDtbMLke2_N5GPAscfLy5_nXyqqcIY7SH7aYBMcXqc4JMh5C83ZhwHba8gTXl5hvzID5NfoZW_GDG_29zH6cfr1avmturg8O1-eXFRWSDFVpuuN4K2xfSc6VUPT9YwLsMKBpLQR3LmOi55YIXrbtA5cw02tXOeg4RYYP0Z8N3cOa7O5N-Oo16lYSBtNid5WpHcV6VKRfqhIb1Wfd6r13K3AWQhTMo_KaLz-9yX4az3EOy1lXbdclgEf9gNSvJ1Lcr3y2cI4mgBxzpoJLkjdMKYK-v4JehPnFEophZKcq5qzplDv_nb0x8rvLRWA7QCbYs4J-v_L2T4RWT89rLak8uPz0n2xufwTBkiPtp9R_QLUQcb6
CitedBy_id crossref_primary_10_4329_wjr_v14_i1_1
crossref_primary_10_1186_s12879_023_08303_y
crossref_primary_10_1016_j_cmpb_2022_106731
crossref_primary_10_2139_ssrn_3984111
crossref_primary_10_1155_2020_9756518
crossref_primary_10_3390_jpm11050391
crossref_primary_10_1002_ima_22930
crossref_primary_10_17343_sdutfd_902875
crossref_primary_10_2174_1574888X17666220829123908
crossref_primary_10_3389_fphys_2025_1512835
crossref_primary_10_1166_jmihi_2021_3866
crossref_primary_10_3390_diagnostics12081853
crossref_primary_10_1002_int_22504
crossref_primary_10_1016_j_asoc_2022_108765
crossref_primary_10_3390_diagnostics11112125
crossref_primary_10_2217_bmm_2021_0536
crossref_primary_10_3390_ijerph19010480
crossref_primary_10_1148_radiol_2021204522
crossref_primary_10_1016_j_rcl_2021_07_001
crossref_primary_10_1055_a_1395_2123
crossref_primary_10_2174_1573405619666230210143430
crossref_primary_10_5124_jkma_2021_64_10_664
crossref_primary_10_1016_j_array_2024_100357
crossref_primary_10_1016_j_neucom_2021_06_024
crossref_primary_10_1186_s12879_023_08173_4
crossref_primary_10_1007_s10489_020_02149_6
crossref_primary_10_3390_e24081119
crossref_primary_10_1097_RCT_0000000000001303
crossref_primary_10_1186_s12890_023_02827_4
crossref_primary_10_1007_s00330_021_08485_6
crossref_primary_10_1148_radiol_2020204226
crossref_primary_10_1007_s00330_022_09303_3
crossref_primary_10_3390_bioengineering11111062
crossref_primary_10_2214_AJR_21_26717
crossref_primary_10_3389_fmed_2021_663514
crossref_primary_10_3389_fmed_2021_689568
crossref_primary_10_1016_j_isci_2022_104227
crossref_primary_10_4329_wjr_v13_i9_294
crossref_primary_10_1016_j_compbiomed_2021_105123
crossref_primary_10_1002_mp_14907
crossref_primary_10_1007_s00259_021_05435_8
crossref_primary_10_3390_diagnostics12030649
crossref_primary_10_1007_s13246_021_01093_0
crossref_primary_10_1109_TEM_2021_3094544
crossref_primary_10_3390_app12125768
crossref_primary_10_3390_healthcare11172388
crossref_primary_10_1016_j_bbe_2021_10_004
crossref_primary_10_1055_a_1734_4132
crossref_primary_10_3390_diagnostics11050893
crossref_primary_10_1038_s41746_020_00369_1
crossref_primary_10_1007_s00521_022_07709_0
crossref_primary_10_1038_s41598_024_83972_6
crossref_primary_10_1002_mp_16964
crossref_primary_10_1067_j_cpradiol_2022_04_003
crossref_primary_10_1007_s12065_022_00739_6
crossref_primary_10_3390_diagnostics14131456
crossref_primary_10_1016_j_idnow_2025_105058
crossref_primary_10_1007_s00521_023_08407_1
crossref_primary_10_3389_fmicb_2024_1495432
Cites_doi 10.2214/AJR.20.22954:1-7
10.1148/radiol.2020200642:200642
10.1016/j.media.2019.101592
10.1007/978-3-319-66179-7_71
10.2214/AJR.20.22975:1-8
10.1093/jrr/rrz086
10.1148/radiol.2020200269:200269
10.1118/1.2948349
10.1152/japplphysiol.00465.2019
10.1109/TMI.2010.2076300
10.1136/jamia.2000.0070593
10.2214/AJR.20.22976:1-6
10.1007/978-3-319-24574-4_28
10.1148/radiol.2020200432:200432
10.1001/jamanetworkopen.2019.1095
10.1016/j.compmedimag.2014.01.002
10.1007/s10278-020-00320-6
10.1016/S1473-3099(20)30086-4
10.1109/TVCG.2010.56
10.2196/jmir.6887
10.1016/S1076-6332(03)00671-8
10.1016/S1473-3099(20)30134-1
10.1148/radiol.2020200236:200236
10.1201/b11031
10.2214/ajr.175.5.1751329
10.1016/j.clinimag.2020.02.008
ContentType Journal Article
Copyright European Society of Radiology 2020
European Society of Radiology 2020.
Copyright_xml – notice: European Society of Radiology 2020
– notice: European Society of Radiology 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00330-020-07156-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 446
ExternalDocumentID 10.1007/s00330-020-07156-2
PMC7755837
32789756
10_1007_s00330_020_07156_2
Genre Journal Article
GrantInformation_xml – fundername: Foundation for the National Institutes of Health
  grantid: R01CA237277; R01HL096613
  funderid: http://dx.doi.org/10.13039/100000009
– fundername: NHLBI NIH HHS
  grantid: R01 HL096613
– fundername: NCI NIH HHS
  grantid: R01 CA237277
– fundername: Foundation for the National Institutes of Health
  grantid: R01HL096613
– fundername: Foundation for the National Institutes of Health
  grantid: R01CA237277
– fundername: ;
  grantid: R01CA237277; R01HL096613
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-abfa438acfb4b95e6bf234ec4de711643ddb34f0c44fc68ded63a59dbde63ce23
IEDL.DBID BENPR
ISSN 0938-7994
1432-1084
IngestDate Sun Oct 26 04:17:07 EDT 2025
Thu Aug 21 18:32:30 EDT 2025
Thu Sep 04 17:46:38 EDT 2025
Tue Oct 07 06:05:22 EDT 2025
Mon Jul 21 05:22:44 EDT 2025
Wed Oct 01 03:47:33 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Fri Feb 21 02:48:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
Biomarkers
Pneumonia
Neural network
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-abfa438acfb4b95e6bf234ec4de711643ddb34f0c44fc68ded63a59dbde63ce23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2127-5313
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00330-020-07156-2.pdf
PMID 32789756
PQID 2473395326
PQPubID 54162
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s00330_020_07156_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7755837
proquest_miscellaneous_2434056229
proquest_journals_2473395326
pubmed_primary_32789756
crossref_primary_10_1007_s00330_020_07156_2
crossref_citationtrail_10_1007_s00330_020_07156_2
springer_journals_10_1007_s00330_020_07156_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LinCDingYXieBAsymptomatic novel coronavirus pneumonia patient outside Wuhan: the value of CT images in the course of the diseaseClin Imaging2020637910.1016/j.clinimag.2020.02.008
GuSMengXSciurbaFCBidirectional elastic image registration using B-spline affine transformationComput Med Imaging Graph20143830631410.1016/j.compmedimag.2014.01.002
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp. 234–241
Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30086-4
Nemoto T, Futakami N, Yagi M et al (2020) Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. J Radiat Res. https://doi.org/10.1093/jrr/rrz086
Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. https://doi.org/10.1148/radiol.2020200642:200642
Lei J, Li J, Li X, Qi X (2020) CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. https://doi.org/10.1148/radiol.2020200236:200236
FiszmanMChapmanWWAronskyDEvansRSHaugPJAutomatic detection of acute bacterial pneumonia from chest X-ray reportsJ Am Med Inform Assoc200075936041:STN:280:DC%2BD3M%2FmtVeitQ%3D%3D10.1136/jamia.2000.0070593
van der HeydenBvan de WorpWvan HelvoortAAutomated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning networkJ Appl Physiol (1985)2020128424910.1152/japplphysiol.00465.2019
KauczorHUHeitmannKHeusselCPMarwedeDUthmannTThelenMAutomatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density maskAJR Am J Roentgenol2000175132913341:STN:280:DC%2BD3M%2FisVyjug%3D%3D10.2214/ajr.175.5.1751329
Shi H, Han X, Zheng C (2020) Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology. https://doi.org/10.1148/radiol.2020200269:200269
PuJFuhrmanCGoodWFSciurbaFCGurDA differential geometric approach to automated segmentation of human airway treeIEEE Trans Med Imaging20113026627810.1109/TMI.2010.2076300
PuJPaikDSMengXRoosJERubinGDShape “break-and-repair” strategy and its application to automated medical image segmentationIEEE Trans Vis Comput Graph20111711512410.1109/TVCG.2010.56
HarrisonAPXuZGeorgeKLuLSummersRMMolluraDJDescoteauxMMaier-HeinLFranzAJanninPCollinsDLDuchesneSProgressive and multi-path holistically nested neural networks for pathological lung segmentation from CT imagesMedical Image Computing and Computer Assisted Intervention − MICCAI 20172017ChamSpringer International Publishing62162910.1007/978-3-319-66179-7_71
HwangEJParkSJinKNDevelopment and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographsJAMA Netw Open20192e19109510.1001/jamanetworkopen.2019.1095
Zhou S, Wang Y, Zhu T, Xia L (2020) CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22975:1-8
PuJZhengBLeaderJKWangXHGurDAn automated CT based lung nodule detection scheme using geometric analysis of signed distance fieldMed Phys2008353453346110.1118/1.2948349
Lee EYP, Ng MY, Khong PL (2020) COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30134-1
ParveenNRSathikMMDetection of pneumonia in chest X-ray imagesJ Xray Sci Technol20111942342825214377
Halder A, Dey D, Sadhu AK (2020) Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review. J Digit Imaging. https://doi.org/10.1007/s10278-020-00320-6
ZouKHWarfieldSKBharathaAStatistical validation of image segmentation quality based on a spatial overlap indexAcad Radiol20041117818910.1016/S1076-6332(03)00671-8
Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22976:1-6
Zou K, Liu A, Bandos AI, Ohno-Machado L, Rockette HE (2016) Statistical evaluation of diagnostic performance: topics in ROC analysis. Chapman and Hall/CRC
Li Y, Xia L (2020) Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22954:1-7
MeystreSGouripeddiRTiederJSimmonsJSrivastavaRShahSEnhancing comparative effectiveness research with automated pediatric pneumonia detection in a multi-institutional clinical repository: a PHIS+ pilot studyJ Med Internet Res20171910.2196/jmir.6887
Fang Y, Zhang H, Xie J et al (2020) Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. https://doi.org/10.1148/radiol.2020200432:200432
GerardSEHerrmannJKaczkaDWMuschGFernandez-BustamanteAReinhardtJMMulti-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple speciesMed Image Anal20206010159210.1016/j.media.2019.101592
7156_CR25
7156_CR22
EJ Hwang (7156_CR11) 2019; 2
J Pu (7156_CR26) 2008; 35
SE Gerard (7156_CR23) 2020; 60
7156_CR2
7156_CR1
S Gu (7156_CR19) 2014; 38
B van der Heyden (7156_CR17) 2020; 128
7156_CR9
M Fiszman (7156_CR12) 2000; 7
NR Parveen (7156_CR13) 2011; 19
7156_CR8
7156_CR7
7156_CR6
7156_CR10
7156_CR4
7156_CR3
C Lin (7156_CR5) 2020; 63
S Meystre (7156_CR14) 2017; 19
7156_CR18
J Pu (7156_CR20) 2011; 30
7156_CR16
J Pu (7156_CR27) 2011; 17
HU Kauczor (7156_CR15) 2000; 175
AP Harrison (7156_CR24) 2017
KH Zou (7156_CR21) 2004; 11
References_xml – reference: HwangEJParkSJinKNDevelopment and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographsJAMA Netw Open20192e19109510.1001/jamanetworkopen.2019.1095
– reference: Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. https://doi.org/10.1148/radiol.2020200642:200642
– reference: PuJPaikDSMengXRoosJERubinGDShape “break-and-repair” strategy and its application to automated medical image segmentationIEEE Trans Vis Comput Graph20111711512410.1109/TVCG.2010.56
– reference: LinCDingYXieBAsymptomatic novel coronavirus pneumonia patient outside Wuhan: the value of CT images in the course of the diseaseClin Imaging2020637910.1016/j.clinimag.2020.02.008
– reference: HarrisonAPXuZGeorgeKLuLSummersRMMolluraDJDescoteauxMMaier-HeinLFranzAJanninPCollinsDLDuchesneSProgressive and multi-path holistically nested neural networks for pathological lung segmentation from CT imagesMedical Image Computing and Computer Assisted Intervention − MICCAI 20172017ChamSpringer International Publishing62162910.1007/978-3-319-66179-7_71
– reference: Halder A, Dey D, Sadhu AK (2020) Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review. J Digit Imaging. https://doi.org/10.1007/s10278-020-00320-6
– reference: Li Y, Xia L (2020) Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22954:1-7
– reference: FiszmanMChapmanWWAronskyDEvansRSHaugPJAutomatic detection of acute bacterial pneumonia from chest X-ray reportsJ Am Med Inform Assoc200075936041:STN:280:DC%2BD3M%2FmtVeitQ%3D%3D10.1136/jamia.2000.0070593
– reference: GerardSEHerrmannJKaczkaDWMuschGFernandez-BustamanteAReinhardtJMMulti-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple speciesMed Image Anal20206010159210.1016/j.media.2019.101592
– reference: van der HeydenBvan de WorpWvan HelvoortAAutomated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning networkJ Appl Physiol (1985)2020128424910.1152/japplphysiol.00465.2019
– reference: GuSMengXSciurbaFCBidirectional elastic image registration using B-spline affine transformationComput Med Imaging Graph20143830631410.1016/j.compmedimag.2014.01.002
– reference: Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30086-4
– reference: Lei J, Li J, Li X, Qi X (2020) CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. https://doi.org/10.1148/radiol.2020200236:200236
– reference: Fang Y, Zhang H, Xie J et al (2020) Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. https://doi.org/10.1148/radiol.2020200432:200432
– reference: Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22976:1-6
– reference: PuJZhengBLeaderJKWangXHGurDAn automated CT based lung nodule detection scheme using geometric analysis of signed distance fieldMed Phys2008353453346110.1118/1.2948349
– reference: Shi H, Han X, Zheng C (2020) Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology. https://doi.org/10.1148/radiol.2020200269:200269
– reference: Zhou S, Wang Y, Zhu T, Xia L (2020) CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22975:1-8
– reference: Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp. 234–241
– reference: MeystreSGouripeddiRTiederJSimmonsJSrivastavaRShahSEnhancing comparative effectiveness research with automated pediatric pneumonia detection in a multi-institutional clinical repository: a PHIS+ pilot studyJ Med Internet Res20171910.2196/jmir.6887
– reference: ZouKHWarfieldSKBharathaAStatistical validation of image segmentation quality based on a spatial overlap indexAcad Radiol20041117818910.1016/S1076-6332(03)00671-8
– reference: Zou K, Liu A, Bandos AI, Ohno-Machado L, Rockette HE (2016) Statistical evaluation of diagnostic performance: topics in ROC analysis. Chapman and Hall/CRC
– reference: PuJFuhrmanCGoodWFSciurbaFCGurDA differential geometric approach to automated segmentation of human airway treeIEEE Trans Med Imaging20113026627810.1109/TMI.2010.2076300
– reference: KauczorHUHeitmannKHeusselCPMarwedeDUthmannTThelenMAutomatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density maskAJR Am J Roentgenol2000175132913341:STN:280:DC%2BD3M%2FisVyjug%3D%3D10.2214/ajr.175.5.1751329
– reference: Nemoto T, Futakami N, Yagi M et al (2020) Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. J Radiat Res. https://doi.org/10.1093/jrr/rrz086
– reference: Lee EYP, Ng MY, Khong PL (2020) COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30134-1
– reference: ParveenNRSathikMMDetection of pneumonia in chest X-ray imagesJ Xray Sci Technol20111942342825214377
– ident: 7156_CR7
  doi: 10.2214/AJR.20.22954:1-7
– ident: 7156_CR3
  doi: 10.1148/radiol.2020200642:200642
– volume: 60
  start-page: 101592
  year: 2020
  ident: 7156_CR23
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101592
– start-page: 621
  volume-title: Medical Image Computing and Computer Assisted Intervention − MICCAI 2017
  year: 2017
  ident: 7156_CR24
  doi: 10.1007/978-3-319-66179-7_71
– ident: 7156_CR8
  doi: 10.2214/AJR.20.22975:1-8
– ident: 7156_CR18
  doi: 10.1093/jrr/rrz086
– ident: 7156_CR2
  doi: 10.1148/radiol.2020200269:200269
– volume: 35
  start-page: 3453
  year: 2008
  ident: 7156_CR26
  publication-title: Med Phys
  doi: 10.1118/1.2948349
– volume: 128
  start-page: 42
  year: 2020
  ident: 7156_CR17
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.00465.2019
– volume: 30
  start-page: 266
  year: 2011
  ident: 7156_CR20
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2076300
– volume: 7
  start-page: 593
  year: 2000
  ident: 7156_CR12
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2000.0070593
– ident: 7156_CR6
  doi: 10.2214/AJR.20.22976:1-6
– ident: 7156_CR16
  doi: 10.1007/978-3-319-24574-4_28
– ident: 7156_CR9
  doi: 10.1148/radiol.2020200432:200432
– volume: 2
  start-page: e191095
  year: 2019
  ident: 7156_CR11
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.1095
– volume: 38
  start-page: 306
  year: 2014
  ident: 7156_CR19
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2014.01.002
– ident: 7156_CR25
  doi: 10.1007/s10278-020-00320-6
– ident: 7156_CR10
  doi: 10.1016/S1473-3099(20)30086-4
– volume: 17
  start-page: 115
  year: 2011
  ident: 7156_CR27
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2010.56
– volume: 19
  year: 2017
  ident: 7156_CR14
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.6887
– volume: 11
  start-page: 178
  year: 2004
  ident: 7156_CR21
  publication-title: Acad Radiol
  doi: 10.1016/S1076-6332(03)00671-8
– volume: 19
  start-page: 423
  year: 2011
  ident: 7156_CR13
  publication-title: J Xray Sci Technol
– ident: 7156_CR4
  doi: 10.1016/S1473-3099(20)30134-1
– ident: 7156_CR1
  doi: 10.1148/radiol.2020200236:200236
– ident: 7156_CR22
  doi: 10.1201/b11031
– volume: 175
  start-page: 1329
  year: 2000
  ident: 7156_CR15
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.175.5.1751329
– volume: 63
  start-page: 7
  year: 2020
  ident: 7156_CR5
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2020.02.008
SSID ssj0009147
Score 2.5748353
Snippet Objective To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans....
To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. One hundred...
ObjectiveTo develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT...
To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans.OBJECTIVETo...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 436
SubjectTerms Adult
Algorithms
Automation
Chest
Computed tomography
Computer programs
Computer vision
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
Deep Learning
Diagnostic Radiology
Disease Progression
Humans
Image segmentation
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Learning algorithms
Lung - diagnostic imaging
Lungs
Machine learning
Medical imaging
Medical treatment
Medicine
Medicine & Public Health
Middle Aged
Neuroradiology
Pneumonia
Pneumonitis
Radiology
Retrospective Studies
SARS-CoV-2
Software
Subjective assessment
Tomography, X-Ray Computed - methods
Ultrasound
Vessels
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgJ6oDzL0oKMxI26SuJxHB9XS0sBFQ50UTlFftKqS7awiRD8emznUZaiit4i-ZGMPZ4ZZ2a-QegFGKc1aEW4SxQBnRgiVKKJk0oIEwDYItr-4fv8YAZvj9lxlxS27KPde5dklNRDslsoO5aQcN3xapHlxAvetYi3NUJrk9ef3-1dgO2msbCYv6wXhAsBXbLMv2dZVUiXrMzLwZKDx3Qd3Wqqc_nzh5zP_1BK-xto1pPTxqKc7Ta12tW__kJ6vC69d9GdzkrFk5at7qEbtrqPbh52fvgH6OOkqRfe1rUGf2tkG28UtxgvHJ5--PTmFUkF9krXhtp4WFYGx0CwFgQEh2D7LziW6sLTI3z61Qu15UM02987mh6QrjwD0cChJlI5CbSQ2ilQgtlcuYyC1WAsT_0tjBqjKLhEAzidF8aanEomjDI2p9pm9BEaVYvKPkaYK0a5TPNCcoDMyiIH_2S4Kih4ISTGKO33qNQddnkooTEvB9TluFqlX60yrlaZjdHLYcx5i9xxZe_tfuvL7hQvyww4pYJ5C3eMng_N_vwFp4qs7KIJfSgEIzLzH7nZcsrwOhrSjDnzo_kKDw0dArb3akt1ehIxvjlnrKB8jHZ65rj4rKuo2Bk48j-IfnK92bfQ7SxE9MQfUNtoVH9v7FNvktXqWXcCfwMZQCpb
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfGTeLjgc8xDgYKEm8s213jNO3j6cY0kDaQ2KHxVOUTJo7ejbVC8NeTpB9wDE0g3irFaevUjp3a_hngGRqnNWpFhRspinpkaK5Gmjqp8twEALaItn94lB7M8NUJP1mDva4WJma7dyHJpqYhoDSV1e7SuN2-8C20IBvRcPTxJpKn1J8OjbsC6yn3HvkA1mdHbybvI8ye12eRx36I3jNI_K6TYVs78-cbrdqnC07nxdzJPoB6A67V5VJ--yrn819s1P4tsB13TWrKp526Ujv6-2_Aj__L_m242TqxZNJI3R1Ys-VduHrYhunvwdtJXS28K2wNOatlk44UJYAsHJm-fvdyj45z4m2yDa3ziCwNiXliDUYICbn4H0js5EWmx-T0s9_zzjdgtv_ieHpA2-4NVKPAikrlJLJMaqdQ5dymyiUMrUZjxdgf0pgxiqEbaUSn08xYkzLJc6OMTZm2CbsPg3JR2gdAhOJMyHGaSYGYWJml6K-MUBlDv0flQxh336zQLbR56LAxL3pQ5rhihV-xIq5YkQzheT9n2QB7XEq91YlC0Sr5eZGgYCzn3gEewtN-2KtniLnI0i7qQMMw-JiJf8nNRnL6x7FQhSy4ny1WZKonCNDfqyPl6ccIAS4E5xkTQ9juhOXna13GxXYvoX_B9MN_I38E15OQ8BP_T23BoPpS28feY6vUk1YhfwA88TW9
  priority: 102
  providerName: Unpaywall
Title Automated quantification of COVID-19 severity and progression using chest CT images
URI https://link.springer.com/article/10.1007/s00330-020-07156-2
https://www.ncbi.nlm.nih.gov/pubmed/32789756
https://www.proquest.com/docview/2473395326
https://www.proquest.com/docview/2434056229
https://pubmed.ncbi.nlm.nih.gov/PMC7755837
https://link.springer.com/content/pdf/10.1007/s00330-020-07156-2.pdf
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aWonLA-I2KIzKSLwxiyR24uQBobS0G6CVCVbUPUW-BSaVpGONEP8e27mUalLFSy6yo9jn2D7H9vH3AbyiKpeSSoFZ7glMpadwIjyJcy6SRFkANoe2fzqLTub04yJc7MGsPQtjwyrbMdEN1KqUdo38TUAZIUlovI13qytsWaPs7mpLocEbagX11kGM7UM_sMhYPeiPJrOzLxsYXt9RjplpfIxZktDmGI07TGdpzTxsp1PG7IYRDrZN1Q3_82YYZbeXehduV8WK__nNl8t_zNX0Ptxr_EyU1g3jAezp4iHcOm120h_B17Ral8Zb1QpdVbyOGHJKQmWOxp-_fXiP_QQZs6ktux3ihUIulKuG8UA2XP47cmRbaHyOLn-aYen6Mcynk_PxCW4IFrCkjK4xFzmnJOYyF1QkoY5EHhCqJVWa-WYeRZQShOaepDSXUay0iggPEyWUjojUATmAXlEW-ikgJkLCuB_FnFEaaB5H1DwpJmJCzTCSDMBvZZnJBn3ckmAssw432ck_M_LPnPyzYACvu29WNfbGztyHrYqyph9eZ5tWM4CXXbLpQXZbhBe6rGweQq0bGJhCPqk12v2O2IPCLDRfsy1ddxksOvd2SnH5w6F0MxaGZvY_gKO2VWyKtasWR13L-Y9KP9td6edwJ7AxOG7J6BB661-VfmGcqLUYwj5bMHONp8dD6KfT0Whm78cXnybDpteY1HmQmrf57Cy9-Av6xx6f
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWLwgBifhTGMBE_MIokvcfwwodFtatlaEHTT3oK_ApNK2tFG0_45_jZs56NUkype9hbJjmKfz3fn-O73Q-gN6FwpUJKwPJAEVKAJl4EiuZCcawfA5tH2B8OkdwqfzuPzNfSnqYVxaZWNTfSGWk-U-0f-PgJGKY9ttPFhekkca5S7XW0oNERNraD3PMRYXdhxbK6v7BFuttc_sOv9NoqODkfdHqlZBogCBnMiZC6ApkLlEiSPTSLziIJRoA0L7WGCai0p5IECyFWSaqMTKmKupTYJVcYBH1gXsAEUuD38bXw8HH75uoD9DT3FWcCtWWGcQ12244v3HI1aQNzxzbr5OCHRsmu8Ee_eTNts727voc2ymIrrKzEe_-Mejx6g-3Vci_crRdxCa6Z4iO4M6pv7R-jbfjmf2OjYaHxZiipDySsFnuS4-_msf0BCjq2bNo5ND4tCY586VsGGYJee_wN7ci_cHeGLX9YMzh6j01sR9RO0XkwK8wxhJmPKRJikggFERqQJ2CfNZErBmi3eQWEjy0zVaOeOdGOctTjNXv6ZlX_m5Z9FHfSufWdaYX2s7L3dLFFW7_tZttDSDnrdNtsd665hRGEmpetDwYWdkR3k02pF289RV5jMYvs2W1rrtoNDA19uKS5-elRwxuI4payDdhutWAxr1Sx2W835j0k_Xz3pV2izNxqcZCf94fELdDdy-T_-d9U2Wp__Ls1LG8DN5U69SzD6ftsb8y8rBFdD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIhU4IN4EChgJTtTq7np2vT4gVCVEDaUFiRbltvjZVgqblGRV9a_x67C9jxBVirj0tpJtrT2eGY89M98g9Ba0VQqUJMxGkoCKNOEyUsQKybn2AGwBbf_wKNs_gc_jdLyB_rS5MD6sstWJQVHrqfJv5LsJMEp56qyNXduERXwbDD_OLoivIOU9rW05jZpFDszVpbu-zT-MBm6v3yXJ8NNxf580FQaIAgYLIqQVQHOhrATJU5NJm1AwCrRhsbtIUK0lBRspAKuyXBudUZFyLbXJqDIe9MCp_1thZk6W2JgtAX_jUNws4k6hMM6hSdgJaXu-gFpE_MXNHfBpRpLVQ_GapXs9YLPz2t5Ft6tyJq4uxWTyz8E4vI_uNRYt3qtZ8AHaMOVDtHXY-Owfoe971WLq7GKj8UUl6tikwA54anH_64_RgMQcuwPa-Dp6WJQah6CxGjAE-8D8UxzKeuH-MT7_5RTg_DE6uRFCP0Gb5bQ0zxBmMqVMxFkuGEBiRJ6B-9JM5hScwuI9FLe0LFSDc-7LbUyKDqE50L9w9C8C_Yukh953Y2Y1ysfa3tvtFhWNxM-LJX_20Juu2cmqd8CI0kwr34eCNzgTN8mn9Y52v6M-JZmlbjRb2euug8cBX20pz88CHjhjaZpT1kM7LVcsp7VuFTsd5_zHop-vX_RrtOXEsfgyOjp4ge4kPvAnvFNto83F78q8dJbbQr4KIoLRz5uWyb-94FTd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfGTeLjgc8xDgYKEm8s213jNO3j6cY0kDaQ2KHxVOUTJo7ejbVC8NeTpB9wDE0g3irFaevUjp3a_hngGRqnNWpFhRspinpkaK5Gmjqp8twEALaItn94lB7M8NUJP1mDva4WJma7dyHJpqYhoDSV1e7SuN2-8C20IBvRcPTxJpKn1J8OjbsC6yn3HvkA1mdHbybvI8ye12eRx36I3jNI_K6TYVs78-cbrdqnC07nxdzJPoB6A67V5VJ--yrn819s1P4tsB13TWrKp526Ujv6-2_Aj__L_m242TqxZNJI3R1Ys-VduHrYhunvwdtJXS28K2wNOatlk44UJYAsHJm-fvdyj45z4m2yDa3ziCwNiXliDUYICbn4H0js5EWmx-T0s9_zzjdgtv_ieHpA2-4NVKPAikrlJLJMaqdQ5dymyiUMrUZjxdgf0pgxiqEbaUSn08xYkzLJc6OMTZm2CbsPg3JR2gdAhOJMyHGaSYGYWJml6K-MUBlDv0flQxh336zQLbR56LAxL3pQ5rhihV-xIq5YkQzheT9n2QB7XEq91YlC0Sr5eZGgYCzn3gEewtN-2KtniLnI0i7qQMMw-JiJf8nNRnL6x7FQhSy4ny1WZKonCNDfqyPl6ccIAS4E5xkTQ9juhOXna13GxXYvoX_B9MN_I38E15OQ8BP_T23BoPpS28feY6vUk1YhfwA88TW9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+quantification+of+COVID-19+severity+and+progression+using+chest+CT+images&rft.jtitle=European+radiology&rft.au=Pu%2C+Jiantao&rft.au=Leader%2C+Joseph+K&rft.au=Bandos%2C+Andriy&rft.au=Ke%2C+Shi&rft.date=2021-01-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=31&rft.issue=1&rft.spage=436&rft_id=info:doi/10.1007%2Fs00330-020-07156-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon