Adversarial concept drift detection under poisoning attacks for robust data stream mining
Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of e...
        Saved in:
      
    
          | Published in | Machine learning Vol. 112; no. 10; pp. 4013 - 4048 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.10.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0885-6125 1573-0565 1573-0565  | 
| DOI | 10.1007/s10994-022-06177-w | 
Cover
| Abstract | Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness—a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios. | 
    
|---|---|
| AbstractList | Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness-a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios.Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness-a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios. Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness—a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios.  | 
    
| Author | Krawczyk, Bartosz Korycki, Łukasz  | 
    
| Author_xml | – sequence: 1 givenname: Łukasz surname: Korycki fullname: Korycki, Łukasz organization: Department of Computer Science, Virginia Commonwealth University – sequence: 2 givenname: Bartosz orcidid: 0000-0002-9774-0106 surname: Krawczyk fullname: Krawczyk, Bartosz email: bkrawczyk@vcu.edu organization: Department of Computer Science, Virginia Commonwealth University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35668720$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1u1DAURi1URKeFF2CBIrFhE2o7iX82SFVVWqRK3dAFK8t2bgaXxA6201HfHg8zpdBFxcZe-HxXn889Qgc-eEDoLcEfCcb8JBEsZVtjSmvMCOf15gVakY43Ne5Yd4BWWIiuZoR2h-gopVuMMWWCvUKHTceY4BSv0LfT_g5i0tHpsbLBW5hz1Uc3lBMy2OyCrxbfQ6zm4FLwzq8rnbO2P1I1hFjFYJZUYJ11lXIEPVWT21Kv0ctBjwne7O9jdPP5_OvZZX11ffHl7PSqti1vc60NbnA7GEMwSOhFo8nAhMHCGOCSWcot16IBMbTGaABJuLRgZV8CfU-H5hg1u7mLn_X9Ro-jmqObdLxXBKutKLUTpYoo9VuU2pTUp11qXswEvQWfo35MBu3Uvy_efVfrcKckYZRQUgZ82A-I4ecCKavJJQvjqD2EJSnKeItxQztZ0PdP0NuwRF-kKCoYkbKTnBfq3d-N_lR52FUBxA6wMaQUYVDWZb1dUCnoxud_S59E_0vRXmwqsF9DfKz9TOoXpRnMJQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_knosys_2024_111489 crossref_primary_10_3390_app13116515 crossref_primary_10_1142_S2196888824500180 crossref_primary_10_1016_j_eswa_2024_125365 crossref_primary_10_1007_s11042_024_18349_y crossref_primary_10_1109_COMST_2023_3344808  | 
    
| Cites_doi | 10.1016/j.knosys.2019.105227 10.1016/j.neucom.2014.09.076 10.1007/978-3-319-59162-9_50 10.18653/v1/D19-1221 10.1109/BigData.2018.8622038 10.1007/s10994-013-5433-9 10.1016/j.neucom.2014.11.086 10.1609/aaai.v33i01.33014536 10.1007/s10618-019-00656-w 10.1109/CVPR42600.2020.01446 10.1016/j.ins.2018.02.054 10.1007/s11760-019-01627-w 10.1016/j.neucom.2018.11.098 10.1109/TPAMI.2018.2794470 10.1214/aos/1031833659 10.1109/TSMC.2017.2700889 10.1111/exsy.12059 10.1109/TNNLS.2013.2292894 10.1109/TIFS.2020.3003571 10.1109/TCYB.2015.2415032 10.1007/978-3-030-87986-0_30 10.1109/ICDM.2014.50 10.1016/j.patcog.2018.07.023 10.3233/IDA-194515 10.1109/MCI.2015.2471196 10.1111/coin.12208 10.1016/j.jss.2016.07.005 10.1016/j.asoc.2017.12.008 10.1016/j.ins.2017.06.038 10.24963/ijcai.2018/543 10.1109/CVPR42600.2020.00458 10.1109/TEVC.2019.2890858 10.1016/j.compeleceng.2016.09.006 10.1109/CVPR42600.2020.00040 10.1016/j.inffus.2013.04.006 10.1145/2939672.2939836 10.1109/TNNLS.2013.2251352 10.1109/TETCI.2017.2771298 10.1007/s10994-017-5642-8 10.3390/s20113089 10.1109/DSAA.2019.00047 10.1109/IJCNN.2019.8851748 10.1109/JPROC.2020.2970615 10.1109/CVPR42600.2020.00572 10.1016/j.eswa.2017.12.022 10.1137/1.9781611972771.42 10.1007/s10994-018-5719-z 10.1007/978-3-319-60438-1_48 10.1007/978-3-030-01771-2_16 10.1109/TCYB.2020.2983962 10.1007/s10115-018-1257-z 10.1007/978-3-540-87481-2_29 10.1007/11811305_4 10.1109/IJCNN48605.2020.9207266 10.1007/978-3-319-46227-1_7 10.1016/j.ins.2018.04.014 10.1007/978-3-642-15880-3_15 10.1007/s10115-011-0447-8 10.1016/j.eswa.2017.08.023 10.1145/3363573 10.1016/j.neucom.2014.05.084 10.1007/s10115-020-01438-3 10.1109/TKDE.2014.2345382 10.1109/BigData47090.2019.9006453 10.1016/j.patrec.2011.08.019 10.1016/j.neucom.2017.10.051 10.1007/s10994-019-05840-z 10.1007/978-3-642-03915-7_22 10.1109/ICTAI.2015.151 10.1109/CVPR42600.2020.00843 10.1016/j.inffus.2017.02.004 10.1109/IJCNN.2019.8852097  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Copyright Springer Nature B.V. Oct 2023 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. – notice: Copyright Springer Nature B.V. Oct 2023 – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022  | 
    
| DBID | AAYXX CITATION NPM 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s10994-022-06177-w | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Computer Science Database PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-0565 | 
    
| EndPage | 4048 | 
    
| ExternalDocumentID | 10.1007/s10994-022-06177-w PMC9162121 35668720 10_1007_s10994_022_06177_w  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PHGZT PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z8Z ZMTXR AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP AMVHM ATHPR CITATION PHGZM PQGLB PUEGO NPM 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c474t-ab0304fbb10e9ed83a1f68b08bbe796c27c7a83e8f4bbaee9179cec9db10dd2f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0885-6125 1573-0565  | 
    
| IngestDate | Sun Oct 26 04:01:15 EDT 2025 Tue Sep 30 16:45:16 EDT 2025 Fri Sep 05 09:21:56 EDT 2025 Fri Jul 25 20:46:20 EDT 2025 Mon Jul 21 05:44:15 EDT 2025 Thu Apr 24 23:13:32 EDT 2025 Wed Oct 01 06:34:54 EDT 2025 Thu Apr 10 07:09:58 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Boltzmann machine Adversarial learning Data stream mining Concept drift Robust machine learning Poisoning attacks  | 
    
| Language | English | 
    
| License | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c474t-ab0304fbb10e9ed83a1f68b08bbe796c27c7a83e8f4bbaee9179cec9db10dd2f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Editors: Daniel Fremont, Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-Ong.  | 
    
| ORCID | 0000-0002-9774-0106 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-022-06177-w.pdf | 
    
| PMID | 35668720 | 
    
| PQID | 2861995977 | 
    
| PQPubID | 54194 | 
    
| PageCount | 36 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10994_022_06177_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_9162121 proquest_miscellaneous_2674003259 proquest_journals_2861995977 pubmed_primary_35668720 crossref_citationtrail_10_1007_s10994_022_06177_w crossref_primary_10_1007_s10994_022_06177_w springer_journals_10_1007_s10994_022_06177_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-01 | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht  | 
    
| PublicationTitle | Machine learning | 
    
| PublicationTitleAbbrev | Mach Learn | 
    
| PublicationTitleAlternate | Mach Learn | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | 6177_CR13 6177_CR15 6177_CR59 6177_CR52 RSM de Barros (6177_CR6) 2018; 275 6177_CR10 6177_CR11 6177_CR55 B Frénay (6177_CR24) 2014; 25 DJ Miller (6177_CR58) 2020; 108 S Ramírez-Gallego (6177_CR66) 2017; 47 DR de Lima Cabral (6177_CR46) 2018; 442–443 K Choi (6177_CR19) 2018; 2 M Wozniak (6177_CR83) 2014; 16 G Ditzler (6177_CR21) 2015; 10 JA Sáez (6177_CR70) 2016; 176 6177_CR51 A Bifet (6177_CR9) 2010; 11 6177_CR2 GF Elsayed (6177_CR23) 2018 6177_CR41 6177_CR85 6177_CR42 R Pears (6177_CR62) 2014; 97 D Brzezinski (6177_CR16) 2014; 25 B Krawczyk (6177_CR44) 2017; 37 A Pesaranghader (6177_CR64) 2018; 107 A Shaker (6177_CR74) 2015; 150 A Liu (6177_CR47) 2021; 51 J Su (6177_CR76) 2019; 23 OA Mahdi (6177_CR53) 2020; 191 6177_CR81 6177_CR82 FA Pinage (6177_CR65) 2020; 34 6177_CR40 6177_CR84 HM Gomes (6177_CR30) 2017; 106 GJ Ross (6177_CR69) 2012; 33 6177_CR80 6177_CR34 6177_CR78 RSM de Barros (6177_CR4) 2018; 451–452 6177_CR35 6177_CR79 6177_CR36 6177_CR37 TS Sethi (6177_CR73) 2018; 97 6177_CR31 6177_CR75 VI Koltchinskii (6177_CR38) 1997; 25 6177_CR33 6177_CR77 E Lughofer (6177_CR50) 2017; 415 RSM de Barros (6177_CR5) 2017; 90 6177_CR39 H Yu (6177_CR86) 2019; 343 J Lu (6177_CR49) 2019; 31 6177_CR71 6177_CR7 6177_CR72 6177_CR8 MM Masud (6177_CR57) 2011; 33 B Biggio (6177_CR12) 2018; 84 6177_CR67 A Cano (6177_CR17) 2020; 109 6177_CR68 6177_CR25 6177_CR26 B Krawczyk (6177_CR43) 2018; 68 JIG Hidalgo (6177_CR32) 2019; 35 6177_CR63 6177_CR20 A Chatterjee (6177_CR18) 2020; 20 6177_CR22 I Goldenberg (6177_CR29) 2020; 62 AR Masegosa (6177_CR56) 2020; 24 6177_CR27 S Liu (6177_CR48) 2017; 58 F Zhang (6177_CR87) 2016; 46 I Zliobaite (6177_CR88) 2015; 150 D Li (6177_CR45) 2020; 15 JP Barddal (6177_CR3) 2017; 127 6177_CR60 C Mahjoub (6177_CR54) 2020; 14 6177_CR61 E Adeli (6177_CR1) 2019; 41 I Goldenberg (6177_CR28) 2019; 60 IIF Blanco (6177_CR14) 2015; 27  | 
    
| References_xml | – volume: 191 start-page: 105227 year: 2020 ident: 6177_CR53 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105227 – volume: 150 start-page: 250 year: 2015 ident: 6177_CR74 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.076 – ident: 6177_CR39 doi: 10.1007/978-3-319-59162-9_50 – ident: 6177_CR2 – ident: 6177_CR81 doi: 10.18653/v1/D19-1221 – ident: 6177_CR40 doi: 10.1109/BigData.2018.8622038 – volume: 97 start-page: 259 issue: 3 year: 2014 ident: 6177_CR62 publication-title: Mach Learn doi: 10.1007/s10994-013-5433-9 – volume: 176 start-page: 26 year: 2016 ident: 6177_CR70 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.086 – ident: 6177_CR55 doi: 10.1609/aaai.v33i01.33014536 – volume: 34 start-page: 50 issue: 1 year: 2020 ident: 6177_CR65 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-019-00656-w – ident: 6177_CR20 doi: 10.1109/CVPR42600.2020.01446 – volume: 442–443 start-page: 220 year: 2018 ident: 6177_CR46 publication-title: Inf Sci doi: 10.1016/j.ins.2018.02.054 – volume: 14 start-page: 955 issue: 5 year: 2020 ident: 6177_CR54 publication-title: Signal Image Video Process doi: 10.1007/s11760-019-01627-w – volume: 343 start-page: 141 year: 2019 ident: 6177_CR86 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.098 – volume: 41 start-page: 515 issue: 2 year: 2019 ident: 6177_CR1 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2794470 – ident: 6177_CR15 – volume: 25 start-page: 435 issue: 2 year: 1997 ident: 6177_CR38 publication-title: The Annals of Statistics doi: 10.1214/aos/1031833659 – volume: 47 start-page: 2727 issue: 10 year: 2017 ident: 6177_CR66 publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2700889 – ident: 6177_CR75 doi: 10.1111/exsy.12059 – volume: 25 start-page: 845 issue: 5 year: 2014 ident: 6177_CR24 publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2013.2292894 – volume: 15 start-page: 3886 year: 2020 ident: 6177_CR45 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2020.3003571 – volume: 46 start-page: 766 issue: 3 year: 2016 ident: 6177_CR87 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2415032 – ident: 6177_CR35 doi: 10.1007/978-3-030-87986-0_30 – ident: 6177_CR34 doi: 10.1109/ICDM.2014.50 – ident: 6177_CR78 – ident: 6177_CR11 – volume: 84 start-page: 317 year: 2018 ident: 6177_CR12 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.07.023 – volume: 24 start-page: 665 issue: 3 year: 2020 ident: 6177_CR56 publication-title: Intell Data Anal doi: 10.3233/IDA-194515 – volume: 10 start-page: 12 issue: 4 year: 2015 ident: 6177_CR21 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2015.2471196 – volume: 35 start-page: 670 issue: 4 year: 2019 ident: 6177_CR32 publication-title: Comput Intell doi: 10.1111/coin.12208 – volume: 127 start-page: 278 year: 2017 ident: 6177_CR3 publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2016.07.005 – start-page: 3914 volume-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018 year: 2018 ident: 6177_CR23 – volume: 68 start-page: 677 year: 2018 ident: 6177_CR43 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.12.008 – volume: 415 start-page: 356 year: 2017 ident: 6177_CR50 publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.038 – ident: 6177_CR84 doi: 10.24963/ijcai.2018/543 – ident: 6177_CR82 doi: 10.1109/CVPR42600.2020.00458 – volume: 31 start-page: 2346 issue: 12 year: 2019 ident: 6177_CR49 publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 23 start-page: 828 issue: 5 year: 2019 ident: 6177_CR76 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2890858 – volume: 58 start-page: 327 year: 2017 ident: 6177_CR48 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2016.09.006 – ident: 6177_CR22 doi: 10.1109/CVPR42600.2020.00040 – volume: 16 start-page: 3 year: 2014 ident: 6177_CR83 publication-title: Information Fusion doi: 10.1016/j.inffus.2013.04.006 – ident: 6177_CR67 doi: 10.1145/2939672.2939836 – ident: 6177_CR52 – volume: 25 start-page: 81 issue: 1 year: 2014 ident: 6177_CR16 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2251352 – volume: 2 start-page: 139 issue: 2 year: 2018 ident: 6177_CR19 publication-title: IEEE Trans Emerg Top Comput Intell doi: 10.1109/TETCI.2017.2771298 – volume: 106 start-page: 1469 issue: 9–10 year: 2017 ident: 6177_CR30 publication-title: Machine Learning doi: 10.1007/s10994-017-5642-8 – ident: 6177_CR33 – volume: 20 start-page: 3089 issue: 11 year: 2020 ident: 6177_CR18 publication-title: Sensors doi: 10.3390/s20113089 – ident: 6177_CR41 doi: 10.1109/DSAA.2019.00047 – ident: 6177_CR79 doi: 10.1109/IJCNN.2019.8851748 – ident: 6177_CR85 – volume: 108 start-page: 402 issue: 3 year: 2020 ident: 6177_CR58 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2020.2970615 – ident: 6177_CR27 doi: 10.1109/CVPR42600.2020.00572 – volume: 97 start-page: 18 year: 2018 ident: 6177_CR73 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.12.022 – ident: 6177_CR7 doi: 10.1137/1.9781611972771.42 – ident: 6177_CR36 – volume: 107 start-page: 1711 issue: 11 year: 2018 ident: 6177_CR64 publication-title: Mach Learn doi: 10.1007/s10994-018-5719-z – ident: 6177_CR72 doi: 10.1007/978-3-319-60438-1_48 – ident: 6177_CR80 doi: 10.1007/978-3-030-01771-2_16 – ident: 6177_CR59 – volume: 51 start-page: 3198 issue: 6 year: 2021 ident: 6177_CR47 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2983962 – volume: 60 start-page: 591 issue: 2 year: 2019 ident: 6177_CR28 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-018-1257-z – ident: 6177_CR77 doi: 10.1007/978-3-540-87481-2_29 – ident: 6177_CR25 doi: 10.1007/11811305_4 – ident: 6177_CR31 doi: 10.1109/IJCNN48605.2020.9207266 – ident: 6177_CR63 doi: 10.1007/978-3-319-46227-1_7 – volume: 451–452 start-page: 348 year: 2018 ident: 6177_CR4 publication-title: Information Sciences doi: 10.1016/j.ins.2018.04.014 – ident: 6177_CR10 doi: 10.1007/978-3-642-15880-3_15 – volume: 33 start-page: 213 issue: 1 year: 2011 ident: 6177_CR57 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0447-8 – volume: 90 start-page: 344 year: 2017 ident: 6177_CR5 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.023 – ident: 6177_CR68 doi: 10.1145/3363573 – volume: 150 start-page: 240 year: 2015 ident: 6177_CR88 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.084 – ident: 6177_CR13 – volume: 62 start-page: 2835 issue: 7 year: 2020 ident: 6177_CR29 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-020-01438-3 – ident: 6177_CR26 – volume: 27 start-page: 810 issue: 3 year: 2015 ident: 6177_CR14 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2345382 – ident: 6177_CR61 – ident: 6177_CR42 doi: 10.1109/BigData47090.2019.9006453 – volume: 33 start-page: 191 issue: 2 year: 2012 ident: 6177_CR69 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2011.08.019 – volume: 275 start-page: 1954 year: 2018 ident: 6177_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.051 – volume: 109 start-page: 175 issue: 1 year: 2020 ident: 6177_CR17 publication-title: Machine Learning doi: 10.1007/s10994-019-05840-z – ident: 6177_CR8 doi: 10.1007/978-3-642-03915-7_22 – ident: 6177_CR51 doi: 10.1109/ICTAI.2015.151 – volume: 11 start-page: 1601 year: 2010 ident: 6177_CR9 publication-title: Journal of Machine Learning Research – ident: 6177_CR37 doi: 10.1109/CVPR42600.2020.00843 – ident: 6177_CR71 – volume: 37 start-page: 132 year: 2017 ident: 6177_CR44 publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.02.004 – ident: 6177_CR60 doi: 10.1109/IJCNN.2019.8852097  | 
    
| SSID | ssj0002686 | 
    
| Score | 2.4895213 | 
    
| Snippet | Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 4013 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Control Data transmission Detectors Drift Machine Learning Mechatronics Natural Language Processing (NLP) Poisoning Robotics Robustness (mathematics) Simulation and Modeling Special Issue on Robust Machine Learning Taxonomy  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48IYGCjISN2qxednOASFArSoOK4SoVE6RXxGVtsl2N6sV_54Z57GsKq245OKxEmdm7BnP4wN4p0zutI0VF5kQPEt9wZW3GS98Ggvhw-UHZVvMxPlF9u0yvzyA2VALQ2mVw54YNmrXWLoj_5AoQdXEaK58WtxwQo2i6OoAoaF7aAX3MbQYuwOHCXXGmsDhl9PZ9x_j3pyIgP2IqpVzOtv7Mpq-mC60yUXnjI51yTe7R9Ut-_N2GuUYS70Pd9f1Qv_Z6Pn8n-Pq7BE86O1M9rkTjMdw4Osn8HDAcGC9Sj-FXwGReaVJDpntahiZW15V-PRtyNOqGRWaLdmiocwjfDPTbUul-QwNXrZszHqFxLrVjApP9DW7DqATz-Di7PTn13Pewy1wm8ms5dpQmLQyJp76wjuV6rgSykyVMV4WwibSSq1Sr6rMGO09OnqF9bZwOMG5pEqfw6Ruan8ETBZ6WkknEm1sZmJtdO7QUfVKCZ-pXEYQD3-2tH0vcoLEmJfbLsrEjRK5UQZulJsI3o9zFl0njr3UxwPDyl4rV-VWhiJ4Ow6jPlGQRNe-WSONkLitpegVRvCi4-_4uhRtXyWTaQRyh_MjAfXq3h2pr36Hnt1ohZNERnAyyMj2s_at4mSUo_9Y9Mv9i34F9xI00bpUxGOYtMu1f40mVWve9HryF3TMHyw priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCH8iwNFGQkbtTSJnFs51ghqooDJ1Yqp2jsTESlbXa1m9WKf8_YebSrogouuXhsxxmP55t4HgCfrCtq9KmVWmktVU6ltOSVLClPtab48yN4W3zXF3P17bK4HILCNqO3-3glGU_qW8FuMY0tG09B7Rq5ewiPipDOi3fxPDubzt9Mx_qOLD6FDPp7CJX5-xj76ugOxrzrKjndlz6Fx9t2hb93uFjcUknnz-FwwJLirGf-C3hA7Ut4NtZpEIPYvoKfseryBsNeE76PUxT1-qrhJ3XRF6sVIZhsLVbL4F3EMwvsuhB-LxjUivXSbTdMjB2KEFyC1-I6FpZ4DfPzrz--XMihpIL0yqhOogtXoY1z6YxKqm2OaaOtm1nnyJTaZ8YbtDnZRjmHRGzMlZ58WXOHus6a_AgO2mVLxyBMibPG1DpD55VL0WFRszFK1mpStjAJpOOXrfyQbzyUvVhUN5mSAzcq5kYVuVHtEvg89Vn12TbupT4ZGVYNkrepMqtD1DnD2gQ-Ts0sM-EiBFtabplGGz66crb8EnjT83eaLmd8a002S8DscX4iCPm491vaq18xLzcjbQYCaQKn4x65ea37VnE67aN_WPTb_xv9HTzJGJb17ocncNCtt_SeYVTnPkSp-QMt7RX6 priority: 102 providerName: Springer Nature  | 
    
| Title | Adversarial concept drift detection under poisoning attacks for robust data stream mining | 
    
| URI | https://link.springer.com/article/10.1007/s10994-022-06177-w https://www.ncbi.nlm.nih.gov/pubmed/35668720 https://www.proquest.com/docview/2861995977 https://www.proquest.com/docview/2674003259 https://pubmed.ncbi.nlm.nih.gov/PMC9162121 https://link.springer.com/content/pdf/10.1007/s10994-022-06177-w.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 112 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1573-0565 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AMVHM dateStart: 20080107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0565 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7a2gNwYPwmMCojcWPpmsSxnWOBdhVo1YQoWk-R7ThiokurNlEFfz3P-bWVoQnEJTn4JbGd5_hz_L7vAbwRKkyk9oTLKGMuDUzkCqOpG5nAY8yUPz9stMWUTWb043l4vgcfGi5MGe3ebElWnAar0pTlx6skPb5GfCslbXEhZadg7m77WLwPXRYiIu9AdzY9G84rABm6dhIvZVO5DVVjYc2d-fONduenG6DzZuxku4F6D-4U2Ur-2MrF4tocNT4A07SuCk353i9y1dc_fxN-_N_mP4D7NYglw8rrHsKeyR7BQZMggtTfi8cwL9M9b6R1cqIrgiRJ1hcpHk1eBoFlxLLY1mS1tGFNWCEi89zy_gmiabJeqmKDxjKXxLJa5CW5LDNaPIHZePTl_cStczm4mnKau1LZPdhUKW9gIpOIQHopE2oglDI8YtrnmksRGJFSpaQxuIqMtNFRghckiZ8GT6GTLTPzHAiP5CDlCfOl0lR5UskwwVWwEYIZKkLugNe8wVjXQuc238YivpJotv0XY__FZf_FWwfettesKpmPW60PG8eI6yG_iX3BLN0d8bQDr9tiHKx2B0ZmZlmgDeP4zQxwyenAs8qP2scFCKwF9wcO8B0Paw2sEPhuSXbxrRQER4iPCMRz4Khxnatq3daKo9Zf_6LRL_7N_CXc9REPVnGPh9DJ14V5hfgtVz3YF-OTHnSHJ_NPI3s-_To5xfO70fTsM5bO_GGvHsK_AAmDRUk | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48H4EChgJTtRikzi2c6gQj1ZbWlYItVI5Bb8iKm2TZTerVf8cv41xXsuq0opLL7nYTuLMePxNPDMfwGupE6tMKClnnFMWu5RKZxhNXRxy7uqfHz7aYsSHp-zLWXK2AX-6XBgfVtnZxNpQ29L4f-TvIsl9NjHClfeT39SzRvnT1Y5CQ7XUCnavLjHWJnYcucsFunCzvcPPKO83UXSwf_JpSFuWAWqYYBVV2p8O5lqHA5c6K2MV5lzqgdTaiZSbSBihZOxkzrRWzqF_kxpnUosDrI3yGO97A7ZYzFJ0_rY-7o--fe_3gojXXJO4lBPqsUSbttMm79VledEZ9DBC0MXq1ngF714N2-zPbm_B9ryYqMuFGo__2R4P7sLtFteSD40i3oMNV9yHOx1nBGlNyAP4UTNAz5TXe2KanElip-c5Xl1Vx4UVxCe2Tcmk9JFO-GSiqsqXAiAIsMm01PMZdlaVIj7RRV2Qi5rk4iGcXsuHfwSbRVm4J0BEqga5sDxS2jAdKq0Si46xk5I7JhMRQNh92cy0tc89Bcc4W1Zt9tLIUBpZLY1sEcDbfsykqfyxtvdOJ7CstQKzbKmzAbzqm3H9-kMZVbhyjn24QDMaoxcawONGvv3jYsTaUkSDAMSK5PsOvjb4aktx_quuEY6oH0FJGMBupyPL11o3i91ej_5j0k_XT_olbA9Pvh5nx4ejo2dwM0J42IRB7sBmNZ275wjnKv2iXTMEfl73Mv0L9Ple7A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48KYEChgJTtTq5mU7B4QQZWkpqjhQqZxS23FEpW12u5vVqn-NX8eM81hWlVZcesnFdhJ7ZuxvPC-At8qkhbah4iIRgiexy7hyNuGZi0MhnL_8IG-LI7F_nHw7SU824E8XC0Nuld2e6DfqYmzpjnw3UoKiiRGu7JatW8SPveHHyQWnClJkae3KaTQscuguF6i-zT4c7CGt30XR8MvPz_u8rTDAbSKTmmtDlsHSmHDgMleoWIelUGagjHEyEzaSVmoVO1UmxmjnULfJrLNZgQOKIipjfO8NuCkpiztFqQ-_9qdAJHyVSRTilBOKaAN22rA9n5AX1UACEJIvVg_FK0j3qsNmb7W9C7fn1URfLvRo9M_BOHwA91pEyz41LPgQNlz1CO531SJYu3k8hl--9vNME8cz20RLsmJ6VuLT1d4jrGIU0jZlkzH5OOGXma5rSgLAEFqz6djMZ9hZ15pRiIs-Z-e-vMUTOL6WZX8Km9W4cs-AyUwPSlmISBubmFAbnRaoEjulhEtUKgMIu5XNbZv1nIpvjPJlvmaiRo7UyD018kUA7_sxkybnx9re2x3B8lb-Z_mSWwN40zej5JI5RlduPMc-QuIGGqP-GcBWQ9_-czGibCWjQQByhfJ9B8oKvtpSnf322cER7yMcCQPY6Xhk-VvrZrHT89F_TPr5-km_hlsonPn3g6PDF3AnQlzY-D9uw2Y9nbuXiONq88oLDIPT65bQv2hiXIY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7QE4UL4JLchI3Gi2m8SxnWPVUlUcKg6s1J4i25mIim12tetoBb-ecb7apVUF4pKLx0nsjO3neN4bgI_KpIW2kQoFFyLkCWahQsvDDJNICGx-fvhoizNxOuVfztPzLTjuuTBNtHt_JNlyGrxKU-UOFkV5cIP41kja0kbKL8EyXI-p-AFsi5QQ-Qi2p2dfDy9aAJmGfhFvZFOlD1UTaceduftGm-vTLdB5O3ZyOEB9DA_raqF_rvVsdmONOtkB7FvXhqb8GNfOjO2vP4Qf_7f5T-FJB2LZYet1z2ALq-ew0yeIYN188QIumnTPK-2dnNmWIMmK5WVJV3RNEFjFPIttyRZzH9ZEL8S0c573zwhNs-Xc1Csy1k4zz2rRV-yqyWjxEqYnn78dnYZdLofQcsldqI0_gy2NiSaYYaESHZVCmYkyBmUmbCyt1CpBVXJjNCLtIjOLNiuoQlHEZfIKRtW8wjfAZKYnpSxErI3lJtJGpwXtglEpgVylMoCo_4K57YTOfb6NWX4t0ez7L6f-y5v-y9cBfBrqLFqZj3ut93rHyLshv8pjJTzdnfB0AB-GYhqs_gRGVzivyUZImjMT2nIG8Lr1o-FxCQFrJeNJAHLDwwYDLwS-WVJdfm8EwQniEwKJAtjvXef6te5rxf7gr3_R6Lf_Zr4Lj2LCg23c4x6M3LLGd4TfnHnfDc_fzbM-sA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+concept+drift+detection+under+poisoning+attacks+for+robust+data+stream+mining&rft.jtitle=Machine+learning&rft.au=Korycki%2C+%C5%81ukasz&rft.au=Krawczyk%2C+Bartosz&rft.date=2023-10-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.spage=1&rft.epage=36&rft_id=info:doi/10.1007%2Fs10994-022-06177-w&rft_id=info%3Apmid%2F35668720&rft.externalDocID=PMC9162121 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |