Adversarial concept drift detection under poisoning attacks for robust data stream mining

Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of e...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 112; no. 10; pp. 4013 - 4048
Main Authors Korycki, Łukasz, Krawczyk, Bartosz
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-022-06177-w

Cover

Abstract Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness—a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios.
AbstractList Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness-a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios.Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness-a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios.
Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not only be able to handle massive volume of rapidly arriving data, but also adapt themselves to potential emerging changes. The phenomenon of evolving nature of data streams is known as concept drift. While there is a plethora of methods designed for detecting its occurrence, all of them assume that the drift is connected with underlying changes in the source of data. However, one must consider the possibility of a malicious injection of false data that simulates a concept drift. This adversarial setting assumes a poisoning attack that may be conducted in order to damage the underlying classification system by forcing an adaptation to false data. Existing drift detectors are not capable of differentiating between real and adversarial concept drift. In this paper, we propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks. We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector. It is based on the augmented restricted Boltzmann machine with improved gradient computation and energy function. We also introduce Relative Loss of Robustness—a novel measure for evaluating the performance of concept drift detectors under poisoning attacks. Extensive computational experiments, conducted on both fully and sparsely labeled data streams, prove the high robustness and efficacy of the proposed drift detection framework in adversarial scenarios.
Author Krawczyk, Bartosz
Korycki, Łukasz
Author_xml – sequence: 1
  givenname: Łukasz
  surname: Korycki
  fullname: Korycki, Łukasz
  organization: Department of Computer Science, Virginia Commonwealth University
– sequence: 2
  givenname: Bartosz
  orcidid: 0000-0002-9774-0106
  surname: Krawczyk
  fullname: Krawczyk, Bartosz
  email: bkrawczyk@vcu.edu
  organization: Department of Computer Science, Virginia Commonwealth University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35668720$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi1URKeFF2CBIrFhE2o7iX82SFVVWqRK3dAFK8t2bgaXxA6201HfHg8zpdBFxcZe-HxXn889Qgc-eEDoLcEfCcb8JBEsZVtjSmvMCOf15gVakY43Ne5Yd4BWWIiuZoR2h-gopVuMMWWCvUKHTceY4BSv0LfT_g5i0tHpsbLBW5hz1Uc3lBMy2OyCrxbfQ6zm4FLwzq8rnbO2P1I1hFjFYJZUYJ11lXIEPVWT21Kv0ctBjwne7O9jdPP5_OvZZX11ffHl7PSqti1vc60NbnA7GEMwSOhFo8nAhMHCGOCSWcot16IBMbTGaABJuLRgZV8CfU-H5hg1u7mLn_X9Ro-jmqObdLxXBKutKLUTpYoo9VuU2pTUp11qXswEvQWfo35MBu3Uvy_efVfrcKckYZRQUgZ82A-I4ecCKavJJQvjqD2EJSnKeItxQztZ0PdP0NuwRF-kKCoYkbKTnBfq3d-N_lR52FUBxA6wMaQUYVDWZb1dUCnoxud_S59E_0vRXmwqsF9DfKz9TOoXpRnMJQ
CitedBy_id crossref_primary_10_1016_j_knosys_2024_111489
crossref_primary_10_3390_app13116515
crossref_primary_10_1142_S2196888824500180
crossref_primary_10_1016_j_eswa_2024_125365
crossref_primary_10_1007_s11042_024_18349_y
crossref_primary_10_1109_COMST_2023_3344808
Cites_doi 10.1016/j.knosys.2019.105227
10.1016/j.neucom.2014.09.076
10.1007/978-3-319-59162-9_50
10.18653/v1/D19-1221
10.1109/BigData.2018.8622038
10.1007/s10994-013-5433-9
10.1016/j.neucom.2014.11.086
10.1609/aaai.v33i01.33014536
10.1007/s10618-019-00656-w
10.1109/CVPR42600.2020.01446
10.1016/j.ins.2018.02.054
10.1007/s11760-019-01627-w
10.1016/j.neucom.2018.11.098
10.1109/TPAMI.2018.2794470
10.1214/aos/1031833659
10.1109/TSMC.2017.2700889
10.1111/exsy.12059
10.1109/TNNLS.2013.2292894
10.1109/TIFS.2020.3003571
10.1109/TCYB.2015.2415032
10.1007/978-3-030-87986-0_30
10.1109/ICDM.2014.50
10.1016/j.patcog.2018.07.023
10.3233/IDA-194515
10.1109/MCI.2015.2471196
10.1111/coin.12208
10.1016/j.jss.2016.07.005
10.1016/j.asoc.2017.12.008
10.1016/j.ins.2017.06.038
10.24963/ijcai.2018/543
10.1109/CVPR42600.2020.00458
10.1109/TEVC.2019.2890858
10.1016/j.compeleceng.2016.09.006
10.1109/CVPR42600.2020.00040
10.1016/j.inffus.2013.04.006
10.1145/2939672.2939836
10.1109/TNNLS.2013.2251352
10.1109/TETCI.2017.2771298
10.1007/s10994-017-5642-8
10.3390/s20113089
10.1109/DSAA.2019.00047
10.1109/IJCNN.2019.8851748
10.1109/JPROC.2020.2970615
10.1109/CVPR42600.2020.00572
10.1016/j.eswa.2017.12.022
10.1137/1.9781611972771.42
10.1007/s10994-018-5719-z
10.1007/978-3-319-60438-1_48
10.1007/978-3-030-01771-2_16
10.1109/TCYB.2020.2983962
10.1007/s10115-018-1257-z
10.1007/978-3-540-87481-2_29
10.1007/11811305_4
10.1109/IJCNN48605.2020.9207266
10.1007/978-3-319-46227-1_7
10.1016/j.ins.2018.04.014
10.1007/978-3-642-15880-3_15
10.1007/s10115-011-0447-8
10.1016/j.eswa.2017.08.023
10.1145/3363573
10.1016/j.neucom.2014.05.084
10.1007/s10115-020-01438-3
10.1109/TKDE.2014.2345382
10.1109/BigData47090.2019.9006453
10.1016/j.patrec.2011.08.019
10.1016/j.neucom.2017.10.051
10.1007/s10994-019-05840-z
10.1007/978-3-642-03915-7_22
10.1109/ICTAI.2015.151
10.1109/CVPR42600.2020.00843
10.1016/j.inffus.2017.02.004
10.1109/IJCNN.2019.8852097
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022.
Copyright Springer Nature B.V. Oct 2023
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022.
– notice: Copyright Springer Nature B.V. Oct 2023
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022
DBID AAYXX
CITATION
NPM
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10994-022-06177-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Computer Science Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 4048
ExternalDocumentID 10.1007/s10994-022-06177-w
PMC9162121
35668720
10_1007_s10994_022_06177_w
Genre Journal Article
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PHGZT
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z8Z
ZMTXR
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PQGLB
PUEGO
NPM
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-ab0304fbb10e9ed83a1f68b08bbe796c27c7a83e8f4bbaee9179cec9db10dd2f3
IEDL.DBID UNPAY
ISSN 0885-6125
1573-0565
IngestDate Sun Oct 26 04:01:15 EDT 2025
Tue Sep 30 16:45:16 EDT 2025
Fri Sep 05 09:21:56 EDT 2025
Fri Jul 25 20:46:20 EDT 2025
Mon Jul 21 05:44:15 EDT 2025
Thu Apr 24 23:13:32 EDT 2025
Wed Oct 01 06:34:54 EDT 2025
Thu Apr 10 07:09:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Boltzmann machine
Adversarial learning
Data stream mining
Concept drift
Robust machine learning
Poisoning attacks
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ab0304fbb10e9ed83a1f68b08bbe796c27c7a83e8f4bbaee9179cec9db10dd2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Editors: Daniel Fremont, Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-Ong.
ORCID 0000-0002-9774-0106
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-022-06177-w.pdf
PMID 35668720
PQID 2861995977
PQPubID 54194
PageCount 36
ParticipantIDs unpaywall_primary_10_1007_s10994_022_06177_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9162121
proquest_miscellaneous_2674003259
proquest_journals_2861995977
pubmed_primary_35668720
crossref_citationtrail_10_1007_s10994_022_06177_w
crossref_primary_10_1007_s10994_022_06177_w
springer_journals_10_1007_s10994_022_06177_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationTitleAlternate Mach Learn
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 6177_CR13
6177_CR15
6177_CR59
6177_CR52
RSM de Barros (6177_CR6) 2018; 275
6177_CR10
6177_CR11
6177_CR55
B Frénay (6177_CR24) 2014; 25
DJ Miller (6177_CR58) 2020; 108
S Ramírez-Gallego (6177_CR66) 2017; 47
DR de Lima Cabral (6177_CR46) 2018; 442–443
K Choi (6177_CR19) 2018; 2
M Wozniak (6177_CR83) 2014; 16
G Ditzler (6177_CR21) 2015; 10
JA Sáez (6177_CR70) 2016; 176
6177_CR51
A Bifet (6177_CR9) 2010; 11
6177_CR2
GF Elsayed (6177_CR23) 2018
6177_CR41
6177_CR85
6177_CR42
R Pears (6177_CR62) 2014; 97
D Brzezinski (6177_CR16) 2014; 25
B Krawczyk (6177_CR44) 2017; 37
A Pesaranghader (6177_CR64) 2018; 107
A Shaker (6177_CR74) 2015; 150
A Liu (6177_CR47) 2021; 51
J Su (6177_CR76) 2019; 23
OA Mahdi (6177_CR53) 2020; 191
6177_CR81
6177_CR82
FA Pinage (6177_CR65) 2020; 34
6177_CR40
6177_CR84
HM Gomes (6177_CR30) 2017; 106
GJ Ross (6177_CR69) 2012; 33
6177_CR80
6177_CR34
6177_CR78
RSM de Barros (6177_CR4) 2018; 451–452
6177_CR35
6177_CR79
6177_CR36
6177_CR37
TS Sethi (6177_CR73) 2018; 97
6177_CR31
6177_CR75
VI Koltchinskii (6177_CR38) 1997; 25
6177_CR33
6177_CR77
E Lughofer (6177_CR50) 2017; 415
RSM de Barros (6177_CR5) 2017; 90
6177_CR39
H Yu (6177_CR86) 2019; 343
J Lu (6177_CR49) 2019; 31
6177_CR71
6177_CR7
6177_CR72
6177_CR8
MM Masud (6177_CR57) 2011; 33
B Biggio (6177_CR12) 2018; 84
6177_CR67
A Cano (6177_CR17) 2020; 109
6177_CR68
6177_CR25
6177_CR26
B Krawczyk (6177_CR43) 2018; 68
JIG Hidalgo (6177_CR32) 2019; 35
6177_CR63
6177_CR20
A Chatterjee (6177_CR18) 2020; 20
6177_CR22
I Goldenberg (6177_CR29) 2020; 62
AR Masegosa (6177_CR56) 2020; 24
6177_CR27
S Liu (6177_CR48) 2017; 58
F Zhang (6177_CR87) 2016; 46
I Zliobaite (6177_CR88) 2015; 150
D Li (6177_CR45) 2020; 15
JP Barddal (6177_CR3) 2017; 127
6177_CR60
C Mahjoub (6177_CR54) 2020; 14
6177_CR61
E Adeli (6177_CR1) 2019; 41
I Goldenberg (6177_CR28) 2019; 60
IIF Blanco (6177_CR14) 2015; 27
References_xml – volume: 191
  start-page: 105227
  year: 2020
  ident: 6177_CR53
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105227
– volume: 150
  start-page: 250
  year: 2015
  ident: 6177_CR74
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.076
– ident: 6177_CR39
  doi: 10.1007/978-3-319-59162-9_50
– ident: 6177_CR2
– ident: 6177_CR81
  doi: 10.18653/v1/D19-1221
– ident: 6177_CR40
  doi: 10.1109/BigData.2018.8622038
– volume: 97
  start-page: 259
  issue: 3
  year: 2014
  ident: 6177_CR62
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5433-9
– volume: 176
  start-page: 26
  year: 2016
  ident: 6177_CR70
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.086
– ident: 6177_CR55
  doi: 10.1609/aaai.v33i01.33014536
– volume: 34
  start-page: 50
  issue: 1
  year: 2020
  ident: 6177_CR65
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00656-w
– ident: 6177_CR20
  doi: 10.1109/CVPR42600.2020.01446
– volume: 442–443
  start-page: 220
  year: 2018
  ident: 6177_CR46
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.02.054
– volume: 14
  start-page: 955
  issue: 5
  year: 2020
  ident: 6177_CR54
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-019-01627-w
– volume: 343
  start-page: 141
  year: 2019
  ident: 6177_CR86
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.098
– volume: 41
  start-page: 515
  issue: 2
  year: 2019
  ident: 6177_CR1
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2794470
– ident: 6177_CR15
– volume: 25
  start-page: 435
  issue: 2
  year: 1997
  ident: 6177_CR38
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1031833659
– volume: 47
  start-page: 2727
  issue: 10
  year: 2017
  ident: 6177_CR66
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2700889
– ident: 6177_CR75
  doi: 10.1111/exsy.12059
– volume: 25
  start-page: 845
  issue: 5
  year: 2014
  ident: 6177_CR24
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2013.2292894
– volume: 15
  start-page: 3886
  year: 2020
  ident: 6177_CR45
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2020.3003571
– volume: 46
  start-page: 766
  issue: 3
  year: 2016
  ident: 6177_CR87
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2415032
– ident: 6177_CR35
  doi: 10.1007/978-3-030-87986-0_30
– ident: 6177_CR34
  doi: 10.1109/ICDM.2014.50
– ident: 6177_CR78
– ident: 6177_CR11
– volume: 84
  start-page: 317
  year: 2018
  ident: 6177_CR12
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.07.023
– volume: 24
  start-page: 665
  issue: 3
  year: 2020
  ident: 6177_CR56
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-194515
– volume: 10
  start-page: 12
  issue: 4
  year: 2015
  ident: 6177_CR21
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2015.2471196
– volume: 35
  start-page: 670
  issue: 4
  year: 2019
  ident: 6177_CR32
  publication-title: Comput Intell
  doi: 10.1111/coin.12208
– volume: 127
  start-page: 278
  year: 2017
  ident: 6177_CR3
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2016.07.005
– start-page: 3914
  volume-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018
  year: 2018
  ident: 6177_CR23
– volume: 68
  start-page: 677
  year: 2018
  ident: 6177_CR43
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.12.008
– volume: 415
  start-page: 356
  year: 2017
  ident: 6177_CR50
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.06.038
– ident: 6177_CR84
  doi: 10.24963/ijcai.2018/543
– ident: 6177_CR82
  doi: 10.1109/CVPR42600.2020.00458
– volume: 31
  start-page: 2346
  issue: 12
  year: 2019
  ident: 6177_CR49
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 23
  start-page: 828
  issue: 5
  year: 2019
  ident: 6177_CR76
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2890858
– volume: 58
  start-page: 327
  year: 2017
  ident: 6177_CR48
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2016.09.006
– ident: 6177_CR22
  doi: 10.1109/CVPR42600.2020.00040
– volume: 16
  start-page: 3
  year: 2014
  ident: 6177_CR83
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2013.04.006
– ident: 6177_CR67
  doi: 10.1145/2939672.2939836
– ident: 6177_CR52
– volume: 25
  start-page: 81
  issue: 1
  year: 2014
  ident: 6177_CR16
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2251352
– volume: 2
  start-page: 139
  issue: 2
  year: 2018
  ident: 6177_CR19
  publication-title: IEEE Trans Emerg Top Comput Intell
  doi: 10.1109/TETCI.2017.2771298
– volume: 106
  start-page: 1469
  issue: 9–10
  year: 2017
  ident: 6177_CR30
  publication-title: Machine Learning
  doi: 10.1007/s10994-017-5642-8
– ident: 6177_CR33
– volume: 20
  start-page: 3089
  issue: 11
  year: 2020
  ident: 6177_CR18
  publication-title: Sensors
  doi: 10.3390/s20113089
– ident: 6177_CR41
  doi: 10.1109/DSAA.2019.00047
– ident: 6177_CR79
  doi: 10.1109/IJCNN.2019.8851748
– ident: 6177_CR85
– volume: 108
  start-page: 402
  issue: 3
  year: 2020
  ident: 6177_CR58
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2020.2970615
– ident: 6177_CR27
  doi: 10.1109/CVPR42600.2020.00572
– volume: 97
  start-page: 18
  year: 2018
  ident: 6177_CR73
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.12.022
– ident: 6177_CR7
  doi: 10.1137/1.9781611972771.42
– ident: 6177_CR36
– volume: 107
  start-page: 1711
  issue: 11
  year: 2018
  ident: 6177_CR64
  publication-title: Mach Learn
  doi: 10.1007/s10994-018-5719-z
– ident: 6177_CR72
  doi: 10.1007/978-3-319-60438-1_48
– ident: 6177_CR80
  doi: 10.1007/978-3-030-01771-2_16
– ident: 6177_CR59
– volume: 51
  start-page: 3198
  issue: 6
  year: 2021
  ident: 6177_CR47
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.2983962
– volume: 60
  start-page: 591
  issue: 2
  year: 2019
  ident: 6177_CR28
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-018-1257-z
– ident: 6177_CR77
  doi: 10.1007/978-3-540-87481-2_29
– ident: 6177_CR25
  doi: 10.1007/11811305_4
– ident: 6177_CR31
  doi: 10.1109/IJCNN48605.2020.9207266
– ident: 6177_CR63
  doi: 10.1007/978-3-319-46227-1_7
– volume: 451–452
  start-page: 348
  year: 2018
  ident: 6177_CR4
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.04.014
– ident: 6177_CR10
  doi: 10.1007/978-3-642-15880-3_15
– volume: 33
  start-page: 213
  issue: 1
  year: 2011
  ident: 6177_CR57
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0447-8
– volume: 90
  start-page: 344
  year: 2017
  ident: 6177_CR5
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.023
– ident: 6177_CR68
  doi: 10.1145/3363573
– volume: 150
  start-page: 240
  year: 2015
  ident: 6177_CR88
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.084
– ident: 6177_CR13
– volume: 62
  start-page: 2835
  issue: 7
  year: 2020
  ident: 6177_CR29
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-020-01438-3
– ident: 6177_CR26
– volume: 27
  start-page: 810
  issue: 3
  year: 2015
  ident: 6177_CR14
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2345382
– ident: 6177_CR61
– ident: 6177_CR42
  doi: 10.1109/BigData47090.2019.9006453
– volume: 33
  start-page: 191
  issue: 2
  year: 2012
  ident: 6177_CR69
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2011.08.019
– volume: 275
  start-page: 1954
  year: 2018
  ident: 6177_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.051
– volume: 109
  start-page: 175
  issue: 1
  year: 2020
  ident: 6177_CR17
  publication-title: Machine Learning
  doi: 10.1007/s10994-019-05840-z
– ident: 6177_CR8
  doi: 10.1007/978-3-642-03915-7_22
– ident: 6177_CR51
  doi: 10.1109/ICTAI.2015.151
– volume: 11
  start-page: 1601
  year: 2010
  ident: 6177_CR9
  publication-title: Journal of Machine Learning Research
– ident: 6177_CR37
  doi: 10.1109/CVPR42600.2020.00843
– ident: 6177_CR71
– volume: 37
  start-page: 132
  year: 2017
  ident: 6177_CR44
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.02.004
– ident: 6177_CR60
  doi: 10.1109/IJCNN.2019.8852097
SSID ssj0002686
Score 2.4895213
Snippet Continuous learning from streaming data is among the most challenging topics in the contemporary machine learning. In this domain, learning algorithms must not...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4013
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Control
Data transmission
Detectors
Drift
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Poisoning
Robotics
Robustness (mathematics)
Simulation and Modeling
Special Issue on Robust Machine Learning
Taxonomy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48IYGCjISN2qxednOASFArSoOK4SoVE6RXxGVtsl2N6sV_54Z57GsKq245OKxEmdm7BnP4wN4p0zutI0VF5kQPEt9wZW3GS98Ggvhw-UHZVvMxPlF9u0yvzyA2VALQ2mVw54YNmrXWLoj_5AoQdXEaK58WtxwQo2i6OoAoaF7aAX3MbQYuwOHCXXGmsDhl9PZ9x_j3pyIgP2IqpVzOtv7Mpq-mC60yUXnjI51yTe7R9Ut-_N2GuUYS70Pd9f1Qv_Z6Pn8n-Pq7BE86O1M9rkTjMdw4Osn8HDAcGC9Sj-FXwGReaVJDpntahiZW15V-PRtyNOqGRWaLdmiocwjfDPTbUul-QwNXrZszHqFxLrVjApP9DW7DqATz-Di7PTn13Pewy1wm8ms5dpQmLQyJp76wjuV6rgSykyVMV4WwibSSq1Sr6rMGO09OnqF9bZwOMG5pEqfw6Ruan8ETBZ6WkknEm1sZmJtdO7QUfVKCZ-pXEYQD3-2tH0vcoLEmJfbLsrEjRK5UQZulJsI3o9zFl0njr3UxwPDyl4rV-VWhiJ4Ow6jPlGQRNe-WSONkLitpegVRvCi4-_4uhRtXyWTaQRyh_MjAfXq3h2pr36Hnt1ohZNERnAyyMj2s_at4mSUo_9Y9Mv9i34F9xI00bpUxGOYtMu1f40mVWve9HryF3TMHyw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCH8iwNFGQkbtTSJnFs51ghqooDJ1Yqp2jsTESlbXa1m9WKf8_YebSrogouuXhsxxmP55t4HgCfrCtq9KmVWmktVU6ltOSVLClPtab48yN4W3zXF3P17bK4HILCNqO3-3glGU_qW8FuMY0tG09B7Rq5ewiPipDOi3fxPDubzt9Mx_qOLD6FDPp7CJX5-xj76ugOxrzrKjndlz6Fx9t2hb93uFjcUknnz-FwwJLirGf-C3hA7Ut4NtZpEIPYvoKfseryBsNeE76PUxT1-qrhJ3XRF6sVIZhsLVbL4F3EMwvsuhB-LxjUivXSbTdMjB2KEFyC1-I6FpZ4DfPzrz--XMihpIL0yqhOogtXoY1z6YxKqm2OaaOtm1nnyJTaZ8YbtDnZRjmHRGzMlZ58WXOHus6a_AgO2mVLxyBMibPG1DpD55VL0WFRszFK1mpStjAJpOOXrfyQbzyUvVhUN5mSAzcq5kYVuVHtEvg89Vn12TbupT4ZGVYNkrepMqtD1DnD2gQ-Ts0sM-EiBFtabplGGz66crb8EnjT83eaLmd8a002S8DscX4iCPm491vaq18xLzcjbQYCaQKn4x65ea37VnE67aN_WPTb_xv9HTzJGJb17ocncNCtt_SeYVTnPkSp-QMt7RX6
  priority: 102
  providerName: Springer Nature
Title Adversarial concept drift detection under poisoning attacks for robust data stream mining
URI https://link.springer.com/article/10.1007/s10994-022-06177-w
https://www.ncbi.nlm.nih.gov/pubmed/35668720
https://www.proquest.com/docview/2861995977
https://www.proquest.com/docview/2674003259
https://pubmed.ncbi.nlm.nih.gov/PMC9162121
https://link.springer.com/content/pdf/10.1007/s10994-022-06177-w.pdf
UnpaywallVersion publishedVersion
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AMVHM
  dateStart: 20080107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7a2gNwYPwmMCojcWPpmsSxnWOBdhVo1YQoWk-R7ThiokurNlEFfz3P-bWVoQnEJTn4JbGd5_hz_L7vAbwRKkyk9oTLKGMuDUzkCqOpG5nAY8yUPz9stMWUTWb043l4vgcfGi5MGe3ebElWnAar0pTlx6skPb5GfCslbXEhZadg7m77WLwPXRYiIu9AdzY9G84rABm6dhIvZVO5DVVjYc2d-fONduenG6DzZuxku4F6D-4U2Ur-2MrF4tocNT4A07SuCk353i9y1dc_fxN-_N_mP4D7NYglw8rrHsKeyR7BQZMggtTfi8cwL9M9b6R1cqIrgiRJ1hcpHk1eBoFlxLLY1mS1tGFNWCEi89zy_gmiabJeqmKDxjKXxLJa5CW5LDNaPIHZePTl_cStczm4mnKau1LZPdhUKW9gIpOIQHopE2oglDI8YtrnmksRGJFSpaQxuIqMtNFRghckiZ8GT6GTLTPzHAiP5CDlCfOl0lR5UskwwVWwEYIZKkLugNe8wVjXQuc238YivpJotv0XY__FZf_FWwfettesKpmPW60PG8eI6yG_iX3BLN0d8bQDr9tiHKx2B0ZmZlmgDeP4zQxwyenAs8qP2scFCKwF9wcO8B0Paw2sEPhuSXbxrRQER4iPCMRz4Khxnatq3daKo9Zf_6LRL_7N_CXc9REPVnGPh9DJ14V5hfgtVz3YF-OTHnSHJ_NPI3s-_To5xfO70fTsM5bO_GGvHsK_AAmDRUk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48H4EChgJTtRikzi2c6gQj1ZbWlYItVI5Bb8iKm2TZTerVf8cv41xXsuq0opLL7nYTuLMePxNPDMfwGupE6tMKClnnFMWu5RKZxhNXRxy7uqfHz7aYsSHp-zLWXK2AX-6XBgfVtnZxNpQ29L4f-TvIsl9NjHClfeT39SzRvnT1Y5CQ7XUCnavLjHWJnYcucsFunCzvcPPKO83UXSwf_JpSFuWAWqYYBVV2p8O5lqHA5c6K2MV5lzqgdTaiZSbSBihZOxkzrRWzqF_kxpnUosDrI3yGO97A7ZYzFJ0_rY-7o--fe_3gojXXJO4lBPqsUSbttMm79VledEZ9DBC0MXq1ngF714N2-zPbm_B9ryYqMuFGo__2R4P7sLtFteSD40i3oMNV9yHOx1nBGlNyAP4UTNAz5TXe2KanElip-c5Xl1Vx4UVxCe2Tcmk9JFO-GSiqsqXAiAIsMm01PMZdlaVIj7RRV2Qi5rk4iGcXsuHfwSbRVm4J0BEqga5sDxS2jAdKq0Si46xk5I7JhMRQNh92cy0tc89Bcc4W1Zt9tLIUBpZLY1sEcDbfsykqfyxtvdOJ7CstQKzbKmzAbzqm3H9-kMZVbhyjn24QDMaoxcawONGvv3jYsTaUkSDAMSK5PsOvjb4aktx_quuEY6oH0FJGMBupyPL11o3i91ej_5j0k_XT_olbA9Pvh5nx4ejo2dwM0J42IRB7sBmNZ275wjnKv2iXTMEfl73Mv0L9Ple7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48KYEChgJTtTq5mU7B4QQZWkpqjhQqZxS23FEpW12u5vVqn-NX8eM81hWlVZcesnFdhJ7ZuxvPC-At8qkhbah4iIRgiexy7hyNuGZi0MhnL_8IG-LI7F_nHw7SU824E8XC0Nuld2e6DfqYmzpjnw3UoKiiRGu7JatW8SPveHHyQWnClJkae3KaTQscuguF6i-zT4c7CGt30XR8MvPz_u8rTDAbSKTmmtDlsHSmHDgMleoWIelUGagjHEyEzaSVmoVO1UmxmjnULfJrLNZgQOKIipjfO8NuCkpiztFqQ-_9qdAJHyVSRTilBOKaAN22rA9n5AX1UACEJIvVg_FK0j3qsNmb7W9C7fn1URfLvRo9M_BOHwA91pEyz41LPgQNlz1CO531SJYu3k8hl--9vNME8cz20RLsmJ6VuLT1d4jrGIU0jZlkzH5OOGXma5rSgLAEFqz6djMZ9hZ15pRiIs-Z-e-vMUTOL6WZX8Km9W4cs-AyUwPSlmISBubmFAbnRaoEjulhEtUKgMIu5XNbZv1nIpvjPJlvmaiRo7UyD018kUA7_sxkybnx9re2x3B8lb-Z_mSWwN40zej5JI5RlduPMc-QuIGGqP-GcBWQ9_-czGibCWjQQByhfJ9B8oKvtpSnf322cER7yMcCQPY6Xhk-VvrZrHT89F_TPr5-km_hlsonPn3g6PDF3AnQlzY-D9uw2Y9nbuXiONq88oLDIPT65bQv2hiXIY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7QE4UL4JLchI3Gi2m8SxnWPVUlUcKg6s1J4i25mIim12tetoBb-ecb7apVUF4pKLx0nsjO3neN4bgI_KpIW2kQoFFyLkCWahQsvDDJNICGx-fvhoizNxOuVfztPzLTjuuTBNtHt_JNlyGrxKU-UOFkV5cIP41kja0kbKL8EyXI-p-AFsi5QQ-Qi2p2dfDy9aAJmGfhFvZFOlD1UTaceduftGm-vTLdB5O3ZyOEB9DA_raqF_rvVsdmONOtkB7FvXhqb8GNfOjO2vP4Qf_7f5T-FJB2LZYet1z2ALq-ew0yeIYN188QIumnTPK-2dnNmWIMmK5WVJV3RNEFjFPIttyRZzH9ZEL8S0c573zwhNs-Xc1Csy1k4zz2rRV-yqyWjxEqYnn78dnYZdLofQcsldqI0_gy2NiSaYYaESHZVCmYkyBmUmbCyt1CpBVXJjNCLtIjOLNiuoQlHEZfIKRtW8wjfAZKYnpSxErI3lJtJGpwXtglEpgVylMoCo_4K57YTOfb6NWX4t0ez7L6f-y5v-y9cBfBrqLFqZj3ut93rHyLshv8pjJTzdnfB0AB-GYhqs_gRGVzivyUZImjMT2nIG8Lr1o-FxCQFrJeNJAHLDwwYDLwS-WVJdfm8EwQniEwKJAtjvXef6te5rxf7gr3_R6Lf_Zr4Lj2LCg23c4x6M3LLGd4TfnHnfDc_fzbM-sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+concept+drift+detection+under+poisoning+attacks+for+robust+data+stream+mining&rft.jtitle=Machine+learning&rft.au=Korycki%2C+%C5%81ukasz&rft.au=Krawczyk%2C+Bartosz&rft.date=2023-10-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.spage=1&rft.epage=36&rft_id=info:doi/10.1007%2Fs10994-022-06177-w&rft_id=info%3Apmid%2F35668720&rft.externalDocID=PMC9162121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon