A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF

Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cardiac imaging Vol. 37; no. 2; pp. 577 - 586
Main Authors Schneider, Matthias, Bartko, Philipp, Geller, Welf, Dannenberg, Varius, König, Andreas, Binder, Christina, Goliasch, Georg, Hengstenberg, Christian, Binder, Thomas
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1569-5794
1875-8312
0167-9899
1573-0743
1573-0743
1875-8312
DOI10.1007/s10554-020-02046-6

Cover

Abstract Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a “best-LVEF” considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine’s LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the “best-LVEF” algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.
AbstractList Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.
Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.
Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a “best-LVEF” considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine’s LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the “best-LVEF” algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.
Author Dannenberg, Varius
Goliasch, Georg
Schneider, Matthias
Binder, Christina
Bartko, Philipp
Binder, Thomas
König, Andreas
Geller, Welf
Hengstenberg, Christian
Author_xml – sequence: 1
  givenname: Matthias
  orcidid: 0000-0002-6320-3708
  surname: Schneider
  fullname: Schneider, Matthias
  email: matthias.schneider@meduniwien.ac.at
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 2
  givenname: Philipp
  surname: Bartko
  fullname: Bartko, Philipp
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 3
  givenname: Welf
  surname: Geller
  fullname: Geller, Welf
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 4
  givenname: Varius
  surname: Dannenberg
  fullname: Dannenberg, Varius
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 5
  givenname: Andreas
  surname: König
  fullname: König, Andreas
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 6
  givenname: Christina
  surname: Binder
  fullname: Binder, Christina
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 7
  givenname: Georg
  surname: Goliasch
  fullname: Goliasch, Georg
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 8
  givenname: Christian
  surname: Hengstenberg
  fullname: Hengstenberg, Christian
  organization: Department of Internal Medicine II, Medical University of Vienna
– sequence: 9
  givenname: Thomas
  surname: Binder
  fullname: Binder, Thomas
  organization: Department of Internal Medicine II, Medical University of Vienna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33029699$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1uFCEcxYmpsR_6Al4YEm-8GYWB-eDGpGlaNdnEG_WW_BfYGRoWpjCs2bfxDXwIX0y2u7Xai0YSAoHfOTkcTtGRD94g9JKSt5SQ7l2ipGl4RWqym7yt2ifohDYdq0jH2dFu34qq6QQ_RqcpXRNSsJo9Q8eMkVq0QpygH-d4DWq03mBnIHrrBwxuCNHO4xqnPE0hzglnN0dIIXtdefj1c2OwDxurTMLW43k0GNRNtsnONngcVlhbGHxIs1XYqDEoiNqGIcI0brELYUoYvMZTLCa6mIBSOcJssCmSNdy5LL5dXj1HT1fgknlxWM_Q16vLLxcfq8XnD58uzheV4h2fK2i0MKzrNQjRaSJa3pdBFeN6qRQIxpbKQL8SXBSm7UijWkqJIbtzrpbsDLG9b_YTbL-Dc3KKJUvcSkrkrm-571uWEuVt37Itqvd71ZSXa6OV8aWne2UAK_-98XaUQ9jIruG0pCwGbw4GMdzk8ny5tkkZ58CbkJOsORd1w3tGCvr6AXodcvSllEKJmtY16VmhXv2d6E-Uuy8vQL8HVAwpRbOSys63lZeA1j3-2vqB9L8qOhSbCuwHE-9jP6L6Da0l5Qk
CitedBy_id crossref_primary_10_1016_j_bja_2023_02_032
crossref_primary_10_1016_j_hlc_2024_02_021
crossref_primary_10_1259_bjr_20220878
crossref_primary_10_36660_abcimg_20230085i
crossref_primary_10_1016_j_bja_2022_07_037
crossref_primary_10_1186_s13054_022_04269_6
crossref_primary_10_3390_jcm11030690
crossref_primary_10_1016_j_ultrasmedbio_2024_10_016
crossref_primary_10_1063_5_0176850
crossref_primary_10_1002_uog_29178
crossref_primary_10_1016_j_avsg_2023_08_022
crossref_primary_10_1007_s11886_024_02149_9
crossref_primary_10_1016_j_afjem_2024_06_002
crossref_primary_10_1038_s41591_023_02567_2
crossref_primary_10_1038_s41598_024_62467_4
crossref_primary_10_1161_CIRCIMAGING_123_015496
crossref_primary_10_7759_cureus_17636
crossref_primary_10_1016_j_ibmed_2023_100089
crossref_primary_10_1109_TUFFC_2024_3396796
crossref_primary_10_1155_2022_2604216
crossref_primary_10_1186_s13613_025_01448_w
crossref_primary_10_1093_ehjimp_qyad012
crossref_primary_10_1093_ehjdh_ztae017
crossref_primary_10_1152_ajpheart_00416_2020
crossref_primary_10_3390_diagnostics11071177
crossref_primary_10_1016_j_echo_2023_03_001
crossref_primary_10_1016_j_jrras_2023_100704
crossref_primary_10_1186_s12947_021_00261_2
crossref_primary_10_1186_s13054_024_05239_w
crossref_primary_10_2139_ssrn_4185034
crossref_primary_10_3390_diagnostics14161719
crossref_primary_10_1080_0142159X_2024_2314198
crossref_primary_10_1111_echo_15417
crossref_primary_10_32596_ejcm_galenos_2022_2022_01_04
crossref_primary_10_1093_ehjimp_qyad040
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_14366_usg_21031
crossref_primary_10_31083_j_rcm2308256
crossref_primary_10_3389_fcvm_2023_1056055
crossref_primary_10_1016_j_ultrasmedbio_2022_09_006
crossref_primary_10_1177_11297298241307055
crossref_primary_10_1002_ajum_12368
crossref_primary_10_1111_1742_6723_13847
crossref_primary_10_1186_s13089_024_00382_5
crossref_primary_10_3389_fdgth_2022_872675
Cites_doi 10.1016/j.echo.2019.04.001
10.1002/clc.4960141108
10.1007/s10554-015-0659-1
10.1007/s15006-019-0357-3
10.1161/CIRCULATIONAHA.118.034338
10.1186/s12909-019-1634-7
10.1038/s41586-020-2145-8
10.1016/j.jacc.2015.07.052
10.1093/eurheartj/ehx391
10.1093/ehjci/jeu192
10.1038/s41746-019-0216-8
10.1067/S0894-7317(03)00400-0
10.1161/CIRCIMAGING.119.009303
10.1161/CIRCIMAGING.117.007138
10.1186/s12947-015-0015-6
10.1007/s10554-019-01653-2
10.4103/HEARTVIEWS.HEARTVIEWS_104_19
10.1111/j.1540-8175.1998.tb00670.x
10.1186/cc10368
10.1093/eurheartj/eht150
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
K9.
M0S
M1P
M7Z
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10554-020-02046-6
DatabaseName Springer Nature Link Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Technology Research Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central (New)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-0743
1875-8312
EndPage 586
ExternalDocumentID 10.1007/s10554-020-02046-6
PMC7541096
33029699
10_1007_s10554_020_02046_6
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: Medical University of Vienna
– fundername: ;
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KM
2LR
2P1
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AAWTL
AAYIU
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFRAH
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AOCGG
ARMRJ
ASPBG
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOR
QOS
R89
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SSXJD
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FD
8FK
FR3
K9.
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
0U7
123
1SB
28-
29Q
2KG
2~H
5QI
AATVU
AAUYE
AAWCG
AAYTO
ABBBX
ABBXA
ABHQN
ABIPD
ABQBU
ABWNU
ACHXU
ACOMO
ADHHG
ADJJI
ADKNI
ADQRH
ADTOC
AEBTG
AEFIE
AEGAL
AFQWF
AGAYW
AHBYD
AMYLF
AMYQR
ATHPR
AVWKF
BBWZM
BSONS
EN4
H13
HF~
IJ-
IMOTQ
KOW
KPH
LAK
OAM
QOK
R4E
RHV
SDE
SPISZ
STPWE
UNPAY
~EX
ID FETCH-LOGICAL-c474t-a5d9e378da997d096488881c34dbcca933bcea8f9498da6705c6110e03bce4cb3
IEDL.DBID BENPR
ISSN 1569-5794
1875-8312
0167-9899
1573-0743
IngestDate Sun Oct 26 04:17:17 EDT 2025
Tue Sep 30 17:17:10 EDT 2025
Fri Sep 05 11:55:04 EDT 2025
Tue Oct 07 05:41:02 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Wed Oct 01 04:22:39 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Fri Feb 21 02:49:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords LVEF
Echocardiography
Artificial intelligence
Machine learning
Left ventricular function
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a5d9e378da997d096488881c34dbcca933bcea8f9498da6705c6110e03bce4cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-6320-3708
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10554-020-02046-6.pdf
PMID 33029699
PQID 2492122083
PQPubID 43205
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s10554_020_02046_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541096
proquest_miscellaneous_2449254830
proquest_journals_2492122083
pubmed_primary_33029699
crossref_citationtrail_10_1007_s10554_020_02046_6
crossref_primary_10_1007_s10554_020_02046_6
springer_journals_10_1007_s10554_020_02046_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: United States
PublicationSubtitle X-Ray Imaging, Intravascular Imaging, Echocardiography, Nuclear Cardiology, Computed Tomography and Magnetic Resonance Imaging
PublicationTitle International journal of cardiac imaging
PublicationTitleAbbrev Int J Cardiovasc Imaging
PublicationTitleAlternate Int J Cardiovasc Imaging
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References (CR7) 2016; 38
Hope, de la Pena, Yang, Liang, McConnell, Rosenthal (CR14) 2003; 16
Sanchez-Martinez, Duchateau, Erdei, Kunszt, Aakhus, Degiovanni (CR20) 2018; 11
Bergenzaun, Gudmundsson, Öhlin, Düring, Ersson, Ihrman (CR4) 2011; 15
Ouyang, He, Ghorbani, Yuan, Ebinger, Langlotz (CR16) 2020; 580
Plana, Galderisi, Barac, Ewer, Ky, Scherrer-Crosbie (CR2) 2014; 15
Schneider, Kastl, Binder (CR8) 2019; 161
Zhang, Gajjala, Agrawal, Tison, Hallock, Beussink-Nelson (CR19) 2018; 138
Genovese, Rashedi, Weinert, Narang, Addetia, Patel (CR17) 2019; 32
Wilson, North, Wilson (CR21) 1998; 15
Asch, Poilvert, Abraham, Jankowski, Cleve, Adams (CR6) 2019; 12
Mueller, Stauffer, Jaussi, Goy, Kappenberger (CR11) 1991; 14
Spahillari, McCormick, Yang, Quinn, Manning (CR5) 2019; 19
Brignole, Auricchio, Baron-Esquivias, Bordachar, Boriani, Breithardt (CR3) 2013; 34
Cole, Dhutia, Shun-Shin, Willson, Harrison, Raphael (CR12) 2015; 31
De Geer, Oscarsson, Engvall (CR13) 2015; 13
Knackstedt, Bekkers, Schummers, Schreckenberg, Muraru, Badano (CR9) 2015; 66
Anilkumar, Adhiraja, Albizreh, Singh, Elkum, Salustri (CR15) 2019; 20
Baumgartner, Falk, Bax, De Bonis, Hamm, Holm (CR1) 2017; 38
Schneider, Ran, Aschauer, Binder, Mascherbauer, Lang (CR10) 2019; 35
Ghorbani, Ouyang, Abid, He, Chen, Harrington (CR18) 2020; 3
D Ouyang (2046_CR16) 2020; 580
L De Geer (2046_CR13) 2015; 13
FM Asch (2046_CR6) 2019; 12
S Sanchez-Martinez (2046_CR20) 2018; 11
JC Plana (2046_CR2) 2014; 15
GD Cole (2046_CR12) 2015; 31
X Mueller (2046_CR11) 1991; 14
D Genovese (2046_CR17) 2019; 32
MD Hope (2046_CR14) 2003; 16
M Brignole (2046_CR3) 2013; 34
C Knackstedt (2046_CR9) 2015; 66
American College of Emergency Physicians (2046_CR7) 2016; 38
DJ Wilson (2046_CR21) 1998; 15
L Bergenzaun (2046_CR4) 2011; 15
A Spahillari (2046_CR5) 2019; 19
S Anilkumar (2046_CR15) 2019; 20
J Zhang (2046_CR19) 2018; 138
H Baumgartner (2046_CR1) 2017; 38
M Schneider (2046_CR8) 2019; 161
M Schneider (2046_CR10) 2019; 35
A Ghorbani (2046_CR18) 2020; 3
References_xml – volume: 32
  start-page: 969
  issue: 8
  year: 2019
  end-page: 977
  ident: CR17
  article-title: Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2019.04.001
– volume: 38
  start-page: 470
  year: 2016
  ident: CR7
  article-title: Emergency ultrasound standard reporting guidelines
  publication-title: Ann Emerg Med
– volume: 14
  start-page: 898
  issue: 11
  year: 1991
  end-page: 902
  ident: CR11
  article-title: Subjective visual echocardiographic estimate of left ventricular ejection fraction as an alternative to conventional echocardiographic methods: comparison with contrast angiography
  publication-title: Clin Cardiol
  doi: 10.1002/clc.4960141108
– volume: 31
  start-page: 1303
  issue: 7
  year: 2015
  end-page: 1314
  ident: CR12
  article-title: Defining the real-world reproducibility of visual grading of left ventricular function and visual estimation of left ventricular ejection fraction: impact of image quality, experience and accreditation
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-015-0659-1
– volume: 161
  start-page: 39
  issue: 6
  year: 2019
  end-page: 42
  ident: CR8
  article-title: Auscultation of the heart in the 21st century
  publication-title: MMW Fortschr Med
  doi: 10.1007/s15006-019-0357-3
– volume: 138
  start-page: 1623
  issue: 16
  year: 2018
  end-page: 1635
  ident: CR19
  article-title: Fully automated echocardiogram interpretation in clinical practice
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 19
  start-page: 213
  issue: 1
  year: 2019
  ident: CR5
  article-title: On-call transthoracic echocardiographic interpretation by first year cardiology fellows: comparison with attending cardiologists
  publication-title: BMC Med Educ
  doi: 10.1186/s12909-019-1634-7
– volume: 580
  start-page: 252
  issue: 7802
  year: 2020
  end-page: 256
  ident: CR16
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
– volume: 66
  start-page: 1456
  issue: 13
  year: 2015
  end-page: 1466
  ident: CR9
  article-title: Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs Multicenter Study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.07.052
– volume: 38
  start-page: 2739
  issue: 36
  year: 2017
  end-page: 2791
  ident: CR1
  article-title: 2017 ESC/EACTS Guidelines for the management of valvular heart disease
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehx391
– volume: 15
  start-page: 1063
  issue: 10
  year: 2014
  end-page: 1093
  ident: CR2
  article-title: Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jeu192
– volume: 3
  start-page: 10
  year: 2020
  ident: CR18
  article-title: Deep learning interpretation of echocardiograms
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0216-8
– volume: 16
  start-page: 824
  issue: 8
  year: 2003
  end-page: 831
  ident: CR14
  article-title: A visual approach for the accurate determination of echocardiographic left ventricular ejection fraction by medical students
  publication-title: J Am Soc Echocardiogr
  doi: 10.1067/S0894-7317(03)00400-0
– volume: 12
  start-page: e009303
  issue: 9
  year: 2019
  ident: CR6
  article-title: Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.119.009303
– volume: 11
  start-page: e007138
  issue: 4
  year: 2018
  ident: CR20
  article-title: Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.117.007138
– volume: 13
  start-page: 19
  year: 2015
  ident: CR13
  article-title: Variability in echocardiographic measurements of left ventricular function in septic shock patients
  publication-title: Cardiovasc Ultrasound
  doi: 10.1186/s12947-015-0015-6
– volume: 35
  start-page: 2001
  year: 2019
  end-page: 2008
  ident: CR10
  article-title: Visual assessment of right ventricular function by echocardiography: how good are we?
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-019-01653-2
– volume: 20
  start-page: 133
  issue: 4
  year: 2019
  end-page: 138
  ident: CR15
  article-title: A teaching intervention increases the performance of handheld ultrasound devices for assessment of left ventricular ejection fraction
  publication-title: Heart Views
  doi: 10.4103/HEARTVIEWS.HEARTVIEWS_104_19
– volume: 15
  start-page: 709
  issue: 8 Pt 1
  year: 1998
  end-page: 712
  ident: CR21
  article-title: Comparison of left ventricular ejection fraction calculation methods
  publication-title: Echocardiography
  doi: 10.1111/j.1540-8175.1998.tb00670.x
– volume: 15
  start-page: R200
  issue: 4
  year: 2011
  ident: CR4
  article-title: Assessing left ventricular systolic function in shock: evaluation of echocardiographic parameters in intensive care
  publication-title: Crit Care
  doi: 10.1186/cc10368
– volume: 34
  start-page: 2281
  issue: 29
  year: 2013
  end-page: 2329
  ident: CR3
  article-title: 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht150
– volume: 38
  start-page: 2739
  issue: 36
  year: 2017
  ident: 2046_CR1
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehx391
– volume: 34
  start-page: 2281
  issue: 29
  year: 2013
  ident: 2046_CR3
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht150
– volume: 19
  start-page: 213
  issue: 1
  year: 2019
  ident: 2046_CR5
  publication-title: BMC Med Educ
  doi: 10.1186/s12909-019-1634-7
– volume: 35
  start-page: 2001
  year: 2019
  ident: 2046_CR10
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-019-01653-2
– volume: 580
  start-page: 252
  issue: 7802
  year: 2020
  ident: 2046_CR16
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
– volume: 3
  start-page: 10
  year: 2020
  ident: 2046_CR18
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0216-8
– volume: 32
  start-page: 969
  issue: 8
  year: 2019
  ident: 2046_CR17
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2019.04.001
– volume: 16
  start-page: 824
  issue: 8
  year: 2003
  ident: 2046_CR14
  publication-title: J Am Soc Echocardiogr
  doi: 10.1067/S0894-7317(03)00400-0
– volume: 11
  start-page: e007138
  issue: 4
  year: 2018
  ident: 2046_CR20
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.117.007138
– volume: 15
  start-page: 709
  issue: 8 Pt 1
  year: 1998
  ident: 2046_CR21
  publication-title: Echocardiography
  doi: 10.1111/j.1540-8175.1998.tb00670.x
– volume: 15
  start-page: R200
  issue: 4
  year: 2011
  ident: 2046_CR4
  publication-title: Crit Care
  doi: 10.1186/cc10368
– volume: 66
  start-page: 1456
  issue: 13
  year: 2015
  ident: 2046_CR9
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.07.052
– volume: 14
  start-page: 898
  issue: 11
  year: 1991
  ident: 2046_CR11
  publication-title: Clin Cardiol
  doi: 10.1002/clc.4960141108
– volume: 20
  start-page: 133
  issue: 4
  year: 2019
  ident: 2046_CR15
  publication-title: Heart Views
  doi: 10.4103/HEARTVIEWS.HEARTVIEWS_104_19
– volume: 12
  start-page: e009303
  issue: 9
  year: 2019
  ident: 2046_CR6
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.119.009303
– volume: 38
  start-page: 470
  year: 2016
  ident: 2046_CR7
  publication-title: Ann Emerg Med
– volume: 31
  start-page: 1303
  issue: 7
  year: 2015
  ident: 2046_CR12
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-015-0659-1
– volume: 138
  start-page: 1623
  issue: 16
  year: 2018
  ident: 2046_CR19
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 15
  start-page: 1063
  issue: 10
  year: 2014
  ident: 2046_CR2
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jeu192
– volume: 161
  start-page: 39
  issue: 6
  year: 2019
  ident: 2046_CR8
  publication-title: MMW Fortschr Med
  doi: 10.1007/s15006-019-0357-3
– volume: 13
  start-page: 19
  year: 2015
  ident: 2046_CR13
  publication-title: Cardiovasc Ultrasound
  doi: 10.1186/s12947-015-0015-6
SSID ssj0002023
ssj0017399
Score 2.5142262
Snippet Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 577
SubjectTerms Adult
Aged
Algorithms
Artificial intelligence
Cardiac Imaging
Cardiology
Chambers
Clinical Competence
Colleges & universities
Diagnostic systems
Echocardiography
Female
Heart
Heart Diseases - diagnostic imaging
Heart Diseases - physiopathology
Humans
Image acquisition
Image Interpretation, Computer-Assisted
Image quality
Imaging
Learning algorithms
Machine Learning
Male
Mathematical analysis
Medical imaging
Medical students
Medicine
Medicine & Public Health
Middle Aged
Original Paper
Physicians
Pilot Projects
Predictive Value of Tests
Radiology
Reproducibility of Results
Stroke Volume
Students
Students, Medical
Ultrasonic imaging
Ultrasound
Ventricle
Ventricular Function, Left
SummonAdditionalLinks – databaseName: Springer Nature Link Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSPwcEH-FQEFG4kYtJWvHP8eq6qpClBNFvUWO421XSp2luwHxNrwBD8GLMeN4U5aiCo5JxnacGXvGmZlvCHlTa2HETHiG6XkMAe-YtqVjzayshZTQqMBs5KMP8vBYvDspTxJMDubC_OG_xxQ3UHgMDzmYximZvElugZKS0TEr98dddygDntwHisfCkXA2MawEiUvZMn_vcFMjXTEzr0ZLji7Te-ROHxb221fbtr9ppekDcj-Zk3Rv4P9DcsOHR-T2UXKYPybf9-h5DJf0NNWHOKW2Pe0u5quzc7rsF9FjQPsWxlxihSUW7M8fXzwNXdxC6DxQMBGpdZ_7-RDeRbsZbYYAPRiUetg_XQxqHbCvadt1iyW1oaEpyw8unOsRkoIipMeQK4m9vP90MH1CjqcHH_cPWSrKwJxQYsVs2RjPlW6sMaqBAxDsAFoXjoumBmkwnNfOWz0zwgCNVHnpJJgYPsf7wtV8m2yFLvhnhBqnweAwXuVWCqecblwB1hHozIJLYVRGijVjKpcQy7FwRltdYi0jMytgZBWZWcmMvB3bLAa8jmupd9b8rtLaXVaIoVhMJmCbZuT1-BhWHbpSbPBdjzQI6ig0zzPydBCPcTjO84mRxmREbQjOSICI3ptPwvwsInurUhTwSTOyuxaxy9e6bha7oxj-w6Sf_1_vL8jdCcbxxN9OO2RrddH7l2CIrepXcQX-AiDdKVw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VrcTPgd9CAwUZiRv1Ntk4TnxcQVcVohUHFpVT5DhOuyJ10m4CgqfhDXgIXoxx_tqlqAJxTDxxMtbY80Uz8w3AiyRigmVMU1ueRy3hHY1koGiaBQnjHB_ybDXy_gHfm7M3h8HhGrzua2GabPc-JNnWNFiWJlPtlGm2c6HwDd0gtb8-triTUz7G4WuwzgNE5CNYnx-8m37sab1F1LSR9ILQp9ZjdrUzf55o1T9dAp2XcyeHAOotuFGbUn79IvP8go-a3QHda9empnwa11UyVt9-I378X_Xvwu0OxJJpa3X3YE2b-3B9vwvTP4DvU3LSJGlq0nWlOCIyPyrOFtXxCVnWZROnIHWOui1tXydq5M8fnzUxRXNwkYUhCEyJVKf1ok0qI0VG0jYtEF9KNJ7aqkmlbRm3SV4U5ZJIk5KuthAvlKotEQaxRCJthaad5e2H3dkGzGe771_t0a4VBFUsZBWVQSq0H0apFCJM8bcLz50o8pTP0gRtUPh-orSMMsEEyvDQDRRHYKNde5-pxH8II1MYvQlEqAhhjtChKzlToYpS5SEmQ0_t-ZyJ0AGvN4BYdTzptl1HHp8zPNvlj3Hp42b5Y-7Ay-GZsmUJuVJ6q7eruDsxlrFlbvQmE0TEDjwfhnGv2wCONLqorYylkmSR7zrwqDXD4XW-704EF8KBcMVABwHLI746YhbHDZ94GDAPl9SB7d7yzj_rKi22B3P_C6Uf_5v4E7g5sdlDTX78Foyqs1o_RfhXJc-63f0LmpJTJw
  priority: 102
  providerName: Unpaywall
Title A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF
URI https://link.springer.com/article/10.1007/s10554-020-02046-6
https://www.ncbi.nlm.nih.gov/pubmed/33029699
https://www.proquest.com/docview/2492122083
https://www.proquest.com/docview/2449254830
https://pubmed.ncbi.nlm.nih.gov/PMC7541096
https://link.springer.com/content/pdf/10.1007/s10554-020-02046-6.pdf
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017399
  issn: 1569-5794
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1573-0743
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017399
  issn: 1569-5794
  databaseCode: 7X7
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0743
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017399
  issn: 1569-5794
  databaseCode: BENPR
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017399
  issn: 1569-5794
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0743
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017399
  issn: 1569-5794
  databaseCode: U2A
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELe2VgL2gPhPYFRG4o1ZNIljxw8IlaplAlZNiKLuKXIcd6uUJd3agPg2fAM-BF-Mu_wr1aSKl0jxnzjOnc_n3N3vCHkVh1zxObcMw_MYAt6xUAeGJfMg5kJAJxejkU8m4njKP86C2R6ZNLEw6FbZyMRSUCe5wX_kbxDZzvU80BjeLa8YZo1C62qTQkPXqRWStyXE2D7peoiM1SHd96PJ6ZfWriD9MqMkHFoUC4AV6zCaOpgOtlaGxykMGBVMbG9VN_TPm26UrS31gNwusqX--UOn6T_b1fgeuVvrmXRQMcZ9smezB-TWSW1Jf0h-Dehl6UdpaZ044pzq9BxmvL64pKtiWZoSaJHCmCtMvcQy_ef3d0uzvJQtdJFR0B2pNlfFovL7ovmcJpXnHgxKLQhWU3q7VqDYNM3z5YrqLKF1-B_cGFMgVgVFrI8qiBKf8vnbaPyITMejr8NjVmdrYIZLvmY6SJT1ZZhopWQCJyMQDWHoGp8nMbCJ8v3YWB3OFVfQRsh-YAToHraP5dzE_mPSyfLMPiVUmRA0EWVlXwtupAkT44LaBJup6wuupEPchjCRqaHMMaNGGm1AmJGYERAyKokZCYe8bvssKyCPna0PG3pH9aJeRRsWdMjLthqWI9pYdGbzAtsg2iMP_b5DnlTs0Q7n-31PCaUcIrcYp22AUN_bNdniooT8lgF34ZM65Khhsc1r7ZrFUcuG_zHpZ7sn_Zzc8dChp3RZPySd9XVhX4BGto57ZF_OZI90Bx_OPo169aKD0qEYwnXqDaBsOjkdnP0FbdA6Wg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVqJwQPxjKLBIcKIrYnu99h4qVCBRSpMIoRb15q7XmzaSa6ckpurb8Aa8ARdejFl77RBVirj0aHvt9Xpm58cz8w3A6yRigo2ZpqY8jxrAOxrJQNF0HCSMc7zJNdXIwxHvH7LPR8HRGvxuamFMWmUjEytBnRbK_CN_Z5DtXM9Di-H99JyarlEmutq00JC2tUK6U0GM2cKOfX15gS7cbGfvE9L7jef1ugcf-9R2GaCKhWxOZZAK7YdRKoUIU7TokaWjyFU-SxNcHjr8idIyGgsmcAwPO4HiqDN1x5xnKvHxuTdgg_lMoPO38aE7-vK1jWOEftXBEp0kQQNkfVu2Y4v3UJVT476ZAlVO-bJqvGLvXk3bbGO3t2GzzKfy8kJm2T_qsXcX7li7luzWjHgP1nR-H24ObeT-AfzcJWdV3qYmtlHFCZHZCX7h-ekZmZXTKnRBygznnJlWTzSXf3790CQvKllGJjlBW5VIdV5O6jwzUoxJWmcK4qREoyBXVXZtDcJNsqKYzojMU2LLDfFAqdJgYxCDLVIXbZqnDL51ew_h8Fro9gjW8yLXT4AIFaHlI3TYkZypUEWpctFMQ-Xt-hzJ6oDbECZWFjrddPDI4gXosyFmjISMK2LG3IG37T3TGjhk5eitht6xFSKzeMHyDrxqL-P2NzEdmeuiNGMMuiSL_I4Dj2v2aKfz_Y4nuBAOhEuM0w4w0OLLV_LJaQUxHgbMxU_qwHbDYovXWrWK7ZYN_2PRT1cv-iVs9g-Gg3iwN9p_Brc8k0xUpctvwfr8e6mfozU4T17YLUfg-Lp3-V__X3IX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IN4YCiwSnOiqfqy93gNCFW3U0oc4UJSbWa83bSTXTklM1X_DP-DOlT_GjF8hqhRx6THx2pv1zM7OZL75BuBNGgslRsJyKs_jRHjHYx0ano3CVEQR3uRRNfLhUbR7LD4Nw-EK_O5qYQhW2dnE2lBnpaH_yDeJ2c7zffQYNkctLOLz9uDD5JxTBynKtHbtNBoV2beXFxi-Td_vbaOs3_r-YOfLx13edhjgRkgx4zrMlA1knGmlZIbePKpzHHsmEFmKS8NgPzVWxyMlFI6JpBuaCM9L69L3wqQBPvcG3JRBoAhOKId9sOfJoO5dieGR4iEqfVuw05bt4SHOKXCj0tSIR4uH4hVP9ypgs8_a3oFbVTHRlxc6z_85GAf34G7r0bKtRgXvw4otHsDaYZuzfwg_t9hZjdi0rG1RccJ0foLvc3Z6xqbVpE5asCrHOafU5IkX-s-vH5YVZW3F2Lhg6KUybc6rcYMwY-WIZQ1GECdlFk24qXG1Df02y8tyMmW6yFhbaIgfjKmIFYMRq0hTrklPOfi6M3gEx9citcewWpSFfQpMmRh9HmWlqyNhpIkz46GDhse2F0RCSQe8TjCJaUnTqXdHnszpnkmYCQoyqYWZRA686--ZNJQhS0evd_JOWvMxTebK7sDr_jJufMrm6MKWFY0hXkkRB64DTxr16KcLAtdXkVIOyAXF6QcQqfjilWJ8WpOLy1B4-Eod2OhUbP6zlq1io1fD_1j0s-WLfgVruLeTg72j_edw2ycUUY2TX4fV2ffKvkA3cJa-rPcbg2_XvcH_At2Rb7E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VrcTPgd9CAwUZiRv1Ntk4TnxcQVcVohUHFpVT5DhOuyJ10m4CgqfhDXgIXoxx_tqlqAJxTDxxMtbY80Uz8w3AiyRigmVMU1ueRy3hHY1koGiaBQnjHB_ybDXy_gHfm7M3h8HhGrzua2GabPc-JNnWNFiWJlPtlGm2c6HwDd0gtb8-triTUz7G4WuwzgNE5CNYnx-8m37sab1F1LSR9ILQp9ZjdrUzf55o1T9dAp2XcyeHAOotuFGbUn79IvP8go-a3QHda9empnwa11UyVt9-I378X_Xvwu0OxJJpa3X3YE2b-3B9vwvTP4DvU3LSJGlq0nWlOCIyPyrOFtXxCVnWZROnIHWOui1tXydq5M8fnzUxRXNwkYUhCEyJVKf1ok0qI0VG0jYtEF9KNJ7aqkmlbRm3SV4U5ZJIk5KuthAvlKotEQaxRCJthaad5e2H3dkGzGe771_t0a4VBFUsZBWVQSq0H0apFCJM8bcLz50o8pTP0gRtUPh-orSMMsEEyvDQDRRHYKNde5-pxH8II1MYvQlEqAhhjtChKzlToYpS5SEmQ0_t-ZyJ0AGvN4BYdTzptl1HHp8zPNvlj3Hp42b5Y-7Ay-GZsmUJuVJ6q7eruDsxlrFlbvQmE0TEDjwfhnGv2wCONLqorYylkmSR7zrwqDXD4XW-704EF8KBcMVABwHLI746YhbHDZ94GDAPl9SB7d7yzj_rKi22B3P_C6Uf_5v4E7g5sdlDTX78Foyqs1o_RfhXJc-63f0LmpJTJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+algorithm+supports+ultrasound-na%C3%AFve+novices+in+the+acquisition+of+diagnostic+echocardiography+loops+and+provides+accurate+estimation+of+LVEF&rft.jtitle=The+international+journal+of+cardiovascular+imaging&rft.au=Schneider%2C+Matthias&rft.au=Bartko%2C+Philipp&rft.au=Geller%2C+Welf&rft.au=Dannenberg%2C+Varius&rft.date=2021-02-01&rft.issn=1875-8312&rft.eissn=1875-8312&rft.volume=37&rft.issue=2&rft.spage=577&rft_id=info:doi/10.1007%2Fs10554-020-02046-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-5794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-5794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-5794&client=summon