A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF
Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the...
        Saved in:
      
    
          | Published in | International journal of cardiac imaging Vol. 37; no. 2; pp. 577 - 586 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.02.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1569-5794 1875-8312 0167-9899 1573-0743 1573-0743 1875-8312  | 
| DOI | 10.1007/s10554-020-02046-6 | 
Cover
| Abstract | Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a “best-LVEF” considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine’s LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the “best-LVEF” algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert. | 
    
|---|---|
| AbstractList | Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert. Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert. Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a “best-LVEF” considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine’s LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the “best-LVEF” algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.  | 
    
| Author | Dannenberg, Varius Goliasch, Georg Schneider, Matthias Binder, Christina Bartko, Philipp Binder, Thomas König, Andreas Geller, Welf Hengstenberg, Christian  | 
    
| Author_xml | – sequence: 1 givenname: Matthias orcidid: 0000-0002-6320-3708 surname: Schneider fullname: Schneider, Matthias email: matthias.schneider@meduniwien.ac.at organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 2 givenname: Philipp surname: Bartko fullname: Bartko, Philipp organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 3 givenname: Welf surname: Geller fullname: Geller, Welf organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 4 givenname: Varius surname: Dannenberg fullname: Dannenberg, Varius organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 5 givenname: Andreas surname: König fullname: König, Andreas organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 6 givenname: Christina surname: Binder fullname: Binder, Christina organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 7 givenname: Georg surname: Goliasch fullname: Goliasch, Georg organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 8 givenname: Christian surname: Hengstenberg fullname: Hengstenberg, Christian organization: Department of Internal Medicine II, Medical University of Vienna – sequence: 9 givenname: Thomas surname: Binder fullname: Binder, Thomas organization: Department of Internal Medicine II, Medical University of Vienna  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33029699$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkd1uFCEcxYmpsR_6Al4YEm-8GYWB-eDGpGlaNdnEG_WW_BfYGRoWpjCs2bfxDXwIX0y2u7Xai0YSAoHfOTkcTtGRD94g9JKSt5SQ7l2ipGl4RWqym7yt2ifohDYdq0jH2dFu34qq6QQ_RqcpXRNSsJo9Q8eMkVq0QpygH-d4DWq03mBnIHrrBwxuCNHO4xqnPE0hzglnN0dIIXtdefj1c2OwDxurTMLW43k0GNRNtsnONngcVlhbGHxIs1XYqDEoiNqGIcI0brELYUoYvMZTLCa6mIBSOcJssCmSNdy5LL5dXj1HT1fgknlxWM_Q16vLLxcfq8XnD58uzheV4h2fK2i0MKzrNQjRaSJa3pdBFeN6qRQIxpbKQL8SXBSm7UijWkqJIbtzrpbsDLG9b_YTbL-Dc3KKJUvcSkrkrm-571uWEuVt37Itqvd71ZSXa6OV8aWne2UAK_-98XaUQ9jIruG0pCwGbw4GMdzk8ny5tkkZ58CbkJOsORd1w3tGCvr6AXodcvSllEKJmtY16VmhXv2d6E-Uuy8vQL8HVAwpRbOSys63lZeA1j3-2vqB9L8qOhSbCuwHE-9jP6L6Da0l5Qk | 
    
| CitedBy_id | crossref_primary_10_1016_j_bja_2023_02_032 crossref_primary_10_1016_j_hlc_2024_02_021 crossref_primary_10_1259_bjr_20220878 crossref_primary_10_36660_abcimg_20230085i crossref_primary_10_1016_j_bja_2022_07_037 crossref_primary_10_1186_s13054_022_04269_6 crossref_primary_10_3390_jcm11030690 crossref_primary_10_1016_j_ultrasmedbio_2024_10_016 crossref_primary_10_1063_5_0176850 crossref_primary_10_1002_uog_29178 crossref_primary_10_1016_j_avsg_2023_08_022 crossref_primary_10_1007_s11886_024_02149_9 crossref_primary_10_1016_j_afjem_2024_06_002 crossref_primary_10_1038_s41591_023_02567_2 crossref_primary_10_1038_s41598_024_62467_4 crossref_primary_10_1161_CIRCIMAGING_123_015496 crossref_primary_10_7759_cureus_17636 crossref_primary_10_1016_j_ibmed_2023_100089 crossref_primary_10_1109_TUFFC_2024_3396796 crossref_primary_10_1155_2022_2604216 crossref_primary_10_1186_s13613_025_01448_w crossref_primary_10_1093_ehjimp_qyad012 crossref_primary_10_1093_ehjdh_ztae017 crossref_primary_10_1152_ajpheart_00416_2020 crossref_primary_10_3390_diagnostics11071177 crossref_primary_10_1016_j_echo_2023_03_001 crossref_primary_10_1016_j_jrras_2023_100704 crossref_primary_10_1186_s12947_021_00261_2 crossref_primary_10_1186_s13054_024_05239_w crossref_primary_10_2139_ssrn_4185034 crossref_primary_10_3390_diagnostics14161719 crossref_primary_10_1080_0142159X_2024_2314198 crossref_primary_10_1111_echo_15417 crossref_primary_10_32596_ejcm_galenos_2022_2022_01_04 crossref_primary_10_1093_ehjimp_qyad040 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_14366_usg_21031 crossref_primary_10_31083_j_rcm2308256 crossref_primary_10_3389_fcvm_2023_1056055 crossref_primary_10_1016_j_ultrasmedbio_2022_09_006 crossref_primary_10_1177_11297298241307055 crossref_primary_10_1002_ajum_12368 crossref_primary_10_1111_1742_6723_13847 crossref_primary_10_1186_s13089_024_00382_5 crossref_primary_10_3389_fdgth_2022_872675  | 
    
| Cites_doi | 10.1016/j.echo.2019.04.001 10.1002/clc.4960141108 10.1007/s10554-015-0659-1 10.1007/s15006-019-0357-3 10.1161/CIRCULATIONAHA.118.034338 10.1186/s12909-019-1634-7 10.1038/s41586-020-2145-8 10.1016/j.jacc.2015.07.052 10.1093/eurheartj/ehx391 10.1093/ehjci/jeu192 10.1038/s41746-019-0216-8 10.1067/S0894-7317(03)00400-0 10.1161/CIRCIMAGING.119.009303 10.1161/CIRCIMAGING.117.007138 10.1186/s12947-015-0015-6 10.1007/s10554-019-01653-2 10.4103/HEARTVIEWS.HEARTVIEWS_104_19 10.1111/j.1540-8175.1998.tb00670.x 10.1186/cc10368 10.1093/eurheartj/eht150  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FR3 FYUFA GHDGH K9. M0S M1P M7Z P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s10554-020-02046-6 | 
    
| DatabaseName | Springer Nature Link Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central (New) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1573-0743 1875-8312  | 
    
| EndPage | 586 | 
    
| ExternalDocumentID | 10.1007/s10554-020-02046-6 PMC7541096 33029699 10_1007_s10554_020_02046_6  | 
    
| Genre | Journal Article Comparative Study  | 
    
| GrantInformation_xml | – fundername: Medical University of Vienna – fundername: ;  | 
    
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KM 2LR 2P1 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AAWTL AAYIU AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACUDM ACZOJ ADBBV ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFRAH AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AOCGG ARMRJ ASPBG AXYYD AZFZN B-. BA0 BDATZ BENPR BGNMA BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M1P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOR QOS R89 R9I RNI ROL RPX RRX RSV RZC RZE RZK S16 S26 S27 S28 S37 S3B SAP SCLPG SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW SSXJD SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FD 8FK FR3 K9. M7Z P64 PKEHL PQEST PQUKI PRINS 7X8 5PM 0U7 123 1SB 28- 29Q 2KG 2~H 5QI AATVU AAUYE AAWCG AAYTO ABBBX ABBXA ABHQN ABIPD ABQBU ABWNU ACHXU ACOMO ADHHG ADJJI ADKNI ADQRH ADTOC AEBTG AEFIE AEGAL AFQWF AGAYW AHBYD AMYLF AMYQR ATHPR AVWKF BBWZM BSONS EN4 H13 HF~ IJ- IMOTQ KOW KPH LAK OAM QOK R4E RHV SDE SPISZ STPWE UNPAY ~EX  | 
    
| ID | FETCH-LOGICAL-c474t-a5d9e378da997d096488881c34dbcca933bcea8f9498da6705c6110e03bce4cb3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1569-5794 1875-8312 0167-9899 1573-0743  | 
    
| IngestDate | Sun Oct 26 04:17:17 EDT 2025 Tue Sep 30 17:17:10 EDT 2025 Fri Sep 05 11:55:04 EDT 2025 Tue Oct 07 05:41:02 EDT 2025 Mon Jul 21 06:01:45 EDT 2025 Wed Oct 01 04:22:39 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Fri Feb 21 02:49:10 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | LVEF Echocardiography Artificial intelligence Machine learning Left ventricular function  | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c474t-a5d9e378da997d096488881c34dbcca933bcea8f9498da6705c6110e03bce4cb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| ORCID | 0000-0002-6320-3708 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10554-020-02046-6.pdf | 
    
| PMID | 33029699 | 
    
| PQID | 2492122083 | 
    
| PQPubID | 43205 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10554_020_02046_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541096 proquest_miscellaneous_2449254830 proquest_journals_2492122083 pubmed_primary_33029699 crossref_citationtrail_10_1007_s10554_020_02046_6 crossref_primary_10_1007_s10554_020_02046_6 springer_journals_10_1007_s10554_020_02046_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-02-01 | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht – name: United States  | 
    
| PublicationSubtitle | X-Ray Imaging, Intravascular Imaging, Echocardiography, Nuclear Cardiology, Computed Tomography and Magnetic Resonance Imaging | 
    
| PublicationTitle | International journal of cardiac imaging | 
    
| PublicationTitleAbbrev | Int J Cardiovasc Imaging | 
    
| PublicationTitleAlternate | Int J Cardiovasc Imaging | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | (CR7) 2016; 38 Hope, de la Pena, Yang, Liang, McConnell, Rosenthal (CR14) 2003; 16 Sanchez-Martinez, Duchateau, Erdei, Kunszt, Aakhus, Degiovanni (CR20) 2018; 11 Bergenzaun, Gudmundsson, Öhlin, Düring, Ersson, Ihrman (CR4) 2011; 15 Ouyang, He, Ghorbani, Yuan, Ebinger, Langlotz (CR16) 2020; 580 Plana, Galderisi, Barac, Ewer, Ky, Scherrer-Crosbie (CR2) 2014; 15 Schneider, Kastl, Binder (CR8) 2019; 161 Zhang, Gajjala, Agrawal, Tison, Hallock, Beussink-Nelson (CR19) 2018; 138 Genovese, Rashedi, Weinert, Narang, Addetia, Patel (CR17) 2019; 32 Wilson, North, Wilson (CR21) 1998; 15 Asch, Poilvert, Abraham, Jankowski, Cleve, Adams (CR6) 2019; 12 Mueller, Stauffer, Jaussi, Goy, Kappenberger (CR11) 1991; 14 Spahillari, McCormick, Yang, Quinn, Manning (CR5) 2019; 19 Brignole, Auricchio, Baron-Esquivias, Bordachar, Boriani, Breithardt (CR3) 2013; 34 Cole, Dhutia, Shun-Shin, Willson, Harrison, Raphael (CR12) 2015; 31 De Geer, Oscarsson, Engvall (CR13) 2015; 13 Knackstedt, Bekkers, Schummers, Schreckenberg, Muraru, Badano (CR9) 2015; 66 Anilkumar, Adhiraja, Albizreh, Singh, Elkum, Salustri (CR15) 2019; 20 Baumgartner, Falk, Bax, De Bonis, Hamm, Holm (CR1) 2017; 38 Schneider, Ran, Aschauer, Binder, Mascherbauer, Lang (CR10) 2019; 35 Ghorbani, Ouyang, Abid, He, Chen, Harrington (CR18) 2020; 3 D Ouyang (2046_CR16) 2020; 580 L De Geer (2046_CR13) 2015; 13 FM Asch (2046_CR6) 2019; 12 S Sanchez-Martinez (2046_CR20) 2018; 11 JC Plana (2046_CR2) 2014; 15 GD Cole (2046_CR12) 2015; 31 X Mueller (2046_CR11) 1991; 14 D Genovese (2046_CR17) 2019; 32 MD Hope (2046_CR14) 2003; 16 M Brignole (2046_CR3) 2013; 34 C Knackstedt (2046_CR9) 2015; 66 American College of Emergency Physicians (2046_CR7) 2016; 38 DJ Wilson (2046_CR21) 1998; 15 L Bergenzaun (2046_CR4) 2011; 15 A Spahillari (2046_CR5) 2019; 19 S Anilkumar (2046_CR15) 2019; 20 J Zhang (2046_CR19) 2018; 138 H Baumgartner (2046_CR1) 2017; 38 M Schneider (2046_CR8) 2019; 161 M Schneider (2046_CR10) 2019; 35 A Ghorbani (2046_CR18) 2020; 3  | 
    
| References_xml | – volume: 32 start-page: 969 issue: 8 year: 2019 end-page: 977 ident: CR17 article-title: Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2019.04.001 – volume: 38 start-page: 470 year: 2016 ident: CR7 article-title: Emergency ultrasound standard reporting guidelines publication-title: Ann Emerg Med – volume: 14 start-page: 898 issue: 11 year: 1991 end-page: 902 ident: CR11 article-title: Subjective visual echocardiographic estimate of left ventricular ejection fraction as an alternative to conventional echocardiographic methods: comparison with contrast angiography publication-title: Clin Cardiol doi: 10.1002/clc.4960141108 – volume: 31 start-page: 1303 issue: 7 year: 2015 end-page: 1314 ident: CR12 article-title: Defining the real-world reproducibility of visual grading of left ventricular function and visual estimation of left ventricular ejection fraction: impact of image quality, experience and accreditation publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-015-0659-1 – volume: 161 start-page: 39 issue: 6 year: 2019 end-page: 42 ident: CR8 article-title: Auscultation of the heart in the 21st century publication-title: MMW Fortschr Med doi: 10.1007/s15006-019-0357-3 – volume: 138 start-page: 1623 issue: 16 year: 2018 end-page: 1635 ident: CR19 article-title: Fully automated echocardiogram interpretation in clinical practice publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.034338 – volume: 19 start-page: 213 issue: 1 year: 2019 ident: CR5 article-title: On-call transthoracic echocardiographic interpretation by first year cardiology fellows: comparison with attending cardiologists publication-title: BMC Med Educ doi: 10.1186/s12909-019-1634-7 – volume: 580 start-page: 252 issue: 7802 year: 2020 end-page: 256 ident: CR16 article-title: Video-based AI for beat-to-beat assessment of cardiac function publication-title: Nature doi: 10.1038/s41586-020-2145-8 – volume: 66 start-page: 1456 issue: 13 year: 2015 end-page: 1466 ident: CR9 article-title: Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs Multicenter Study publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.07.052 – volume: 38 start-page: 2739 issue: 36 year: 2017 end-page: 2791 ident: CR1 article-title: 2017 ESC/EACTS Guidelines for the management of valvular heart disease publication-title: Eur Heart J doi: 10.1093/eurheartj/ehx391 – volume: 15 start-page: 1063 issue: 10 year: 2014 end-page: 1093 ident: CR2 article-title: Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeu192 – volume: 3 start-page: 10 year: 2020 ident: CR18 article-title: Deep learning interpretation of echocardiograms publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0216-8 – volume: 16 start-page: 824 issue: 8 year: 2003 end-page: 831 ident: CR14 article-title: A visual approach for the accurate determination of echocardiographic left ventricular ejection fraction by medical students publication-title: J Am Soc Echocardiogr doi: 10.1067/S0894-7317(03)00400-0 – volume: 12 start-page: e009303 issue: 9 year: 2019 ident: CR6 article-title: Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.119.009303 – volume: 11 start-page: e007138 issue: 4 year: 2018 ident: CR20 article-title: Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.117.007138 – volume: 13 start-page: 19 year: 2015 ident: CR13 article-title: Variability in echocardiographic measurements of left ventricular function in septic shock patients publication-title: Cardiovasc Ultrasound doi: 10.1186/s12947-015-0015-6 – volume: 35 start-page: 2001 year: 2019 end-page: 2008 ident: CR10 article-title: Visual assessment of right ventricular function by echocardiography: how good are we? publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-019-01653-2 – volume: 20 start-page: 133 issue: 4 year: 2019 end-page: 138 ident: CR15 article-title: A teaching intervention increases the performance of handheld ultrasound devices for assessment of left ventricular ejection fraction publication-title: Heart Views doi: 10.4103/HEARTVIEWS.HEARTVIEWS_104_19 – volume: 15 start-page: 709 issue: 8 Pt 1 year: 1998 end-page: 712 ident: CR21 article-title: Comparison of left ventricular ejection fraction calculation methods publication-title: Echocardiography doi: 10.1111/j.1540-8175.1998.tb00670.x – volume: 15 start-page: R200 issue: 4 year: 2011 ident: CR4 article-title: Assessing left ventricular systolic function in shock: evaluation of echocardiographic parameters in intensive care publication-title: Crit Care doi: 10.1186/cc10368 – volume: 34 start-page: 2281 issue: 29 year: 2013 end-page: 2329 ident: CR3 article-title: 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA) publication-title: Eur Heart J doi: 10.1093/eurheartj/eht150 – volume: 38 start-page: 2739 issue: 36 year: 2017 ident: 2046_CR1 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehx391 – volume: 34 start-page: 2281 issue: 29 year: 2013 ident: 2046_CR3 publication-title: Eur Heart J doi: 10.1093/eurheartj/eht150 – volume: 19 start-page: 213 issue: 1 year: 2019 ident: 2046_CR5 publication-title: BMC Med Educ doi: 10.1186/s12909-019-1634-7 – volume: 35 start-page: 2001 year: 2019 ident: 2046_CR10 publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-019-01653-2 – volume: 580 start-page: 252 issue: 7802 year: 2020 ident: 2046_CR16 publication-title: Nature doi: 10.1038/s41586-020-2145-8 – volume: 3 start-page: 10 year: 2020 ident: 2046_CR18 publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0216-8 – volume: 32 start-page: 969 issue: 8 year: 2019 ident: 2046_CR17 publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2019.04.001 – volume: 16 start-page: 824 issue: 8 year: 2003 ident: 2046_CR14 publication-title: J Am Soc Echocardiogr doi: 10.1067/S0894-7317(03)00400-0 – volume: 11 start-page: e007138 issue: 4 year: 2018 ident: 2046_CR20 publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.117.007138 – volume: 15 start-page: 709 issue: 8 Pt 1 year: 1998 ident: 2046_CR21 publication-title: Echocardiography doi: 10.1111/j.1540-8175.1998.tb00670.x – volume: 15 start-page: R200 issue: 4 year: 2011 ident: 2046_CR4 publication-title: Crit Care doi: 10.1186/cc10368 – volume: 66 start-page: 1456 issue: 13 year: 2015 ident: 2046_CR9 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.07.052 – volume: 14 start-page: 898 issue: 11 year: 1991 ident: 2046_CR11 publication-title: Clin Cardiol doi: 10.1002/clc.4960141108 – volume: 20 start-page: 133 issue: 4 year: 2019 ident: 2046_CR15 publication-title: Heart Views doi: 10.4103/HEARTVIEWS.HEARTVIEWS_104_19 – volume: 12 start-page: e009303 issue: 9 year: 2019 ident: 2046_CR6 publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.119.009303 – volume: 38 start-page: 470 year: 2016 ident: 2046_CR7 publication-title: Ann Emerg Med – volume: 31 start-page: 1303 issue: 7 year: 2015 ident: 2046_CR12 publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-015-0659-1 – volume: 138 start-page: 1623 issue: 16 year: 2018 ident: 2046_CR19 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.034338 – volume: 15 start-page: 1063 issue: 10 year: 2014 ident: 2046_CR2 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeu192 – volume: 161 start-page: 39 issue: 6 year: 2019 ident: 2046_CR8 publication-title: MMW Fortschr Med doi: 10.1007/s15006-019-0357-3 – volume: 13 start-page: 19 year: 2015 ident: 2046_CR13 publication-title: Cardiovasc Ultrasound doi: 10.1186/s12947-015-0015-6  | 
    
| SSID | ssj0002023 ssj0017399  | 
    
| Score | 2.5142262 | 
    
| Snippet | Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 577 | 
    
| SubjectTerms | Adult Aged Algorithms Artificial intelligence Cardiac Imaging Cardiology Chambers Clinical Competence Colleges & universities Diagnostic systems Echocardiography Female Heart Heart Diseases - diagnostic imaging Heart Diseases - physiopathology Humans Image acquisition Image Interpretation, Computer-Assisted Image quality Imaging Learning algorithms Machine Learning Male Mathematical analysis Medical imaging Medical students Medicine Medicine & Public Health Middle Aged Original Paper Physicians Pilot Projects Predictive Value of Tests Radiology Reproducibility of Results Stroke Volume Students Students, Medical Ultrasonic imaging Ultrasound Ventricle Ventricular Function, Left  | 
    
| SummonAdditionalLinks | – databaseName: Springer Nature Link Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSPwcEH-FQEFG4kYtJWvHP8eq6qpClBNFvUWO421XSp2luwHxNrwBD8GLMeN4U5aiCo5JxnacGXvGmZlvCHlTa2HETHiG6XkMAe-YtqVjzayshZTQqMBs5KMP8vBYvDspTxJMDubC_OG_xxQ3UHgMDzmYximZvElugZKS0TEr98dddygDntwHisfCkXA2MawEiUvZMn_vcFMjXTEzr0ZLji7Te-ROHxb221fbtr9ppekDcj-Zk3Rv4P9DcsOHR-T2UXKYPybf9-h5DJf0NNWHOKW2Pe0u5quzc7rsF9FjQPsWxlxihSUW7M8fXzwNXdxC6DxQMBGpdZ_7-RDeRbsZbYYAPRiUetg_XQxqHbCvadt1iyW1oaEpyw8unOsRkoIipMeQK4m9vP90MH1CjqcHH_cPWSrKwJxQYsVs2RjPlW6sMaqBAxDsAFoXjoumBmkwnNfOWz0zwgCNVHnpJJgYPsf7wtV8m2yFLvhnhBqnweAwXuVWCqecblwB1hHozIJLYVRGijVjKpcQy7FwRltdYi0jMytgZBWZWcmMvB3bLAa8jmupd9b8rtLaXVaIoVhMJmCbZuT1-BhWHbpSbPBdjzQI6ig0zzPydBCPcTjO84mRxmREbQjOSICI3ptPwvwsInurUhTwSTOyuxaxy9e6bha7oxj-w6Sf_1_vL8jdCcbxxN9OO2RrddH7l2CIrepXcQX-AiDdKVw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VrcTPgd9CAwUZiRv1Ntk4TnxcQVcVohUHFpVT5DhOuyJ10m4CgqfhDXgIXoxx_tqlqAJxTDxxMtbY80Uz8w3AiyRigmVMU1ueRy3hHY1koGiaBQnjHB_ybDXy_gHfm7M3h8HhGrzua2GabPc-JNnWNFiWJlPtlGm2c6HwDd0gtb8-triTUz7G4WuwzgNE5CNYnx-8m37sab1F1LSR9ILQp9ZjdrUzf55o1T9dAp2XcyeHAOotuFGbUn79IvP8go-a3QHda9empnwa11UyVt9-I378X_Xvwu0OxJJpa3X3YE2b-3B9vwvTP4DvU3LSJGlq0nWlOCIyPyrOFtXxCVnWZROnIHWOui1tXydq5M8fnzUxRXNwkYUhCEyJVKf1ok0qI0VG0jYtEF9KNJ7aqkmlbRm3SV4U5ZJIk5KuthAvlKotEQaxRCJthaad5e2H3dkGzGe771_t0a4VBFUsZBWVQSq0H0apFCJM8bcLz50o8pTP0gRtUPh-orSMMsEEyvDQDRRHYKNde5-pxH8II1MYvQlEqAhhjtChKzlToYpS5SEmQ0_t-ZyJ0AGvN4BYdTzptl1HHp8zPNvlj3Hp42b5Y-7Ay-GZsmUJuVJ6q7eruDsxlrFlbvQmE0TEDjwfhnGv2wCONLqorYylkmSR7zrwqDXD4XW-704EF8KBcMVABwHLI746YhbHDZ94GDAPl9SB7d7yzj_rKi22B3P_C6Uf_5v4E7g5sdlDTX78Foyqs1o_RfhXJc-63f0LmpJTJw priority: 102 providerName: Unpaywall  | 
    
| Title | A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF | 
    
| URI | https://link.springer.com/article/10.1007/s10554-020-02046-6 https://www.ncbi.nlm.nih.gov/pubmed/33029699 https://www.proquest.com/docview/2492122083 https://www.proquest.com/docview/2449254830 https://pubmed.ncbi.nlm.nih.gov/PMC7541096 https://link.springer.com/content/pdf/10.1007/s10554-020-02046-6.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0743 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017399 issn: 1569-5794 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1573-0743 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017399 issn: 1569-5794 databaseCode: 7X7 dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0743 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017399 issn: 1569-5794 databaseCode: BENPR dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0743 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017399 issn: 1569-5794 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0743 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017399 issn: 1569-5794 databaseCode: U2A dateStart: 20010201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELe2VgL2gPhPYFRG4o1ZNIljxw8IlaplAlZNiKLuKXIcd6uUJd3agPg2fAM-BF-Mu_wr1aSKl0jxnzjOnc_n3N3vCHkVh1zxObcMw_MYAt6xUAeGJfMg5kJAJxejkU8m4njKP86C2R6ZNLEw6FbZyMRSUCe5wX_kbxDZzvU80BjeLa8YZo1C62qTQkPXqRWStyXE2D7peoiM1SHd96PJ6ZfWriD9MqMkHFoUC4AV6zCaOpgOtlaGxykMGBVMbG9VN_TPm26UrS31gNwusqX--UOn6T_b1fgeuVvrmXRQMcZ9smezB-TWSW1Jf0h-Dehl6UdpaZ044pzq9BxmvL64pKtiWZoSaJHCmCtMvcQy_ef3d0uzvJQtdJFR0B2pNlfFovL7ovmcJpXnHgxKLQhWU3q7VqDYNM3z5YrqLKF1-B_cGFMgVgVFrI8qiBKf8vnbaPyITMejr8NjVmdrYIZLvmY6SJT1ZZhopWQCJyMQDWHoGp8nMbCJ8v3YWB3OFVfQRsh-YAToHraP5dzE_mPSyfLMPiVUmRA0EWVlXwtupAkT44LaBJup6wuupEPchjCRqaHMMaNGGm1AmJGYERAyKokZCYe8bvssKyCPna0PG3pH9aJeRRsWdMjLthqWI9pYdGbzAtsg2iMP_b5DnlTs0Q7n-31PCaUcIrcYp22AUN_bNdniooT8lgF34ZM65Khhsc1r7ZrFUcuG_zHpZ7sn_Zzc8dChp3RZPySd9XVhX4BGto57ZF_OZI90Bx_OPo169aKD0qEYwnXqDaBsOjkdnP0FbdA6Wg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVqJwQPxjKLBIcKIrYnu99h4qVCBRSpMIoRb15q7XmzaSa6ckpurb8Aa8ARdejFl77RBVirj0aHvt9Xpm58cz8w3A6yRigo2ZpqY8jxrAOxrJQNF0HCSMc7zJNdXIwxHvH7LPR8HRGvxuamFMWmUjEytBnRbK_CN_Z5DtXM9Di-H99JyarlEmutq00JC2tUK6U0GM2cKOfX15gS7cbGfvE9L7jef1ugcf-9R2GaCKhWxOZZAK7YdRKoUIU7TokaWjyFU-SxNcHjr8idIyGgsmcAwPO4HiqDN1x5xnKvHxuTdgg_lMoPO38aE7-vK1jWOEftXBEp0kQQNkfVu2Y4v3UJVT476ZAlVO-bJqvGLvXk3bbGO3t2GzzKfy8kJm2T_qsXcX7li7luzWjHgP1nR-H24ObeT-AfzcJWdV3qYmtlHFCZHZCX7h-ekZmZXTKnRBygznnJlWTzSXf3790CQvKllGJjlBW5VIdV5O6jwzUoxJWmcK4qREoyBXVXZtDcJNsqKYzojMU2LLDfFAqdJgYxCDLVIXbZqnDL51ew_h8Fro9gjW8yLXT4AIFaHlI3TYkZypUEWpctFMQ-Xt-hzJ6oDbECZWFjrddPDI4gXosyFmjISMK2LG3IG37T3TGjhk5eitht6xFSKzeMHyDrxqL-P2NzEdmeuiNGMMuiSL_I4Dj2v2aKfz_Y4nuBAOhEuM0w4w0OLLV_LJaQUxHgbMxU_qwHbDYovXWrWK7ZYN_2PRT1cv-iVs9g-Gg3iwN9p_Brc8k0xUpctvwfr8e6mfozU4T17YLUfg-Lp3-V__X3IX | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IN4YCiwSnOiqfqy93gNCFW3U0oc4UJSbWa83bSTXTklM1X_DP-DOlT_GjF8hqhRx6THx2pv1zM7OZL75BuBNGgslRsJyKs_jRHjHYx0ano3CVEQR3uRRNfLhUbR7LD4Nw-EK_O5qYQhW2dnE2lBnpaH_yDeJ2c7zffQYNkctLOLz9uDD5JxTBynKtHbtNBoV2beXFxi-Td_vbaOs3_r-YOfLx13edhjgRkgx4zrMlA1knGmlZIbePKpzHHsmEFmKS8NgPzVWxyMlFI6JpBuaCM9L69L3wqQBPvcG3JRBoAhOKId9sOfJoO5dieGR4iEqfVuw05bt4SHOKXCj0tSIR4uH4hVP9ypgs8_a3oFbVTHRlxc6z_85GAf34G7r0bKtRgXvw4otHsDaYZuzfwg_t9hZjdi0rG1RccJ0foLvc3Z6xqbVpE5asCrHOafU5IkX-s-vH5YVZW3F2Lhg6KUybc6rcYMwY-WIZQ1GECdlFk24qXG1Df02y8tyMmW6yFhbaIgfjKmIFYMRq0hTrklPOfi6M3gEx9citcewWpSFfQpMmRh9HmWlqyNhpIkz46GDhse2F0RCSQe8TjCJaUnTqXdHnszpnkmYCQoyqYWZRA686--ZNJQhS0evd_JOWvMxTebK7sDr_jJufMrm6MKWFY0hXkkRB64DTxr16KcLAtdXkVIOyAXF6QcQqfjilWJ8WpOLy1B4-Eod2OhUbP6zlq1io1fD_1j0s-WLfgVruLeTg72j_edw2ycUUY2TX4fV2ffKvkA3cJa-rPcbg2_XvcH_At2Rb7E | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VrcTPgd9CAwUZiRv1Ntk4TnxcQVcVohUHFpVT5DhOuyJ10m4CgqfhDXgIXoxx_tqlqAJxTDxxMtbY80Uz8w3AiyRigmVMU1ueRy3hHY1koGiaBQnjHB_ybDXy_gHfm7M3h8HhGrzua2GabPc-JNnWNFiWJlPtlGm2c6HwDd0gtb8-triTUz7G4WuwzgNE5CNYnx-8m37sab1F1LSR9ILQp9ZjdrUzf55o1T9dAp2XcyeHAOotuFGbUn79IvP8go-a3QHda9empnwa11UyVt9-I378X_Xvwu0OxJJpa3X3YE2b-3B9vwvTP4DvU3LSJGlq0nWlOCIyPyrOFtXxCVnWZROnIHWOui1tXydq5M8fnzUxRXNwkYUhCEyJVKf1ok0qI0VG0jYtEF9KNJ7aqkmlbRm3SV4U5ZJIk5KuthAvlKotEQaxRCJthaad5e2H3dkGzGe771_t0a4VBFUsZBWVQSq0H0apFCJM8bcLz50o8pTP0gRtUPh-orSMMsEEyvDQDRRHYKNde5-pxH8II1MYvQlEqAhhjtChKzlToYpS5SEmQ0_t-ZyJ0AGvN4BYdTzptl1HHp8zPNvlj3Hp42b5Y-7Ay-GZsmUJuVJ6q7eruDsxlrFlbvQmE0TEDjwfhnGv2wCONLqorYylkmSR7zrwqDXD4XW-704EF8KBcMVABwHLI746YhbHDZ94GDAPl9SB7d7yzj_rKi22B3P_C6Uf_5v4E7g5sdlDTX78Foyqs1o_RfhXJc-63f0LmpJTJw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+algorithm+supports+ultrasound-na%C3%AFve+novices+in+the+acquisition+of+diagnostic+echocardiography+loops+and+provides+accurate+estimation+of+LVEF&rft.jtitle=The+international+journal+of+cardiovascular+imaging&rft.au=Schneider%2C+Matthias&rft.au=Bartko%2C+Philipp&rft.au=Geller%2C+Welf&rft.au=Dannenberg%2C+Varius&rft.date=2021-02-01&rft.issn=1875-8312&rft.eissn=1875-8312&rft.volume=37&rft.issue=2&rft.spage=577&rft_id=info:doi/10.1007%2Fs10554-020-02046-6&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-5794&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-5794&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-5794&client=summon |