Diagnosing brain tumours by routine blood tests using machine learning

Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the mo...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; pp. 14481 - 7
Main Authors Podnar, Simon, Kukar, Matjaž, Gunčar, Gregor, Notar, Mateja, Gošnjak, Nina, Notar, Marko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.10.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-019-51147-3

Cover

Abstract Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests.
AbstractList Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests.
Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests.Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests.
ArticleNumber 14481
Author Kukar, Matjaž
Podnar, Simon
Gunčar, Gregor
Notar, Mateja
Gošnjak, Nina
Notar, Marko
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0003-2541-0172
  surname: Podnar
  fullname: Podnar, Simon
  email: simon.podnar@kclj.si
  organization: Division of Neurology, University Medical Centre Ljubljana
– sequence: 2
  givenname: Matjaž
  surname: Kukar
  fullname: Kukar, Matjaž
  organization: Faculty of Computer and Information Science, University of Ljubljana, Smart Blood Analytics Swiss SA
– sequence: 3
  givenname: Gregor
  surname: Gunčar
  fullname: Gunčar, Gregor
  organization: Smart Blood Analytics Swiss SA
– sequence: 4
  givenname: Mateja
  surname: Notar
  fullname: Notar, Mateja
  organization: Smart Blood Analytics Swiss SA
– sequence: 5
  givenname: Nina
  surname: Gošnjak
  fullname: Gošnjak, Nina
  organization: Division of Neurology, University Medical Centre Ljubljana
– sequence: 6
  givenname: Marko
  surname: Notar
  fullname: Notar, Marko
  organization: Smart Blood Analytics Swiss SA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31597942$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3SAQRlGUqnk0fyCLylI33TgBBmzYVKrSvKRI2SRrhO25N0Q23IKd6v77ch_NaxGVDYg532g4HJBdHzwScszoCaOgTpNgUquSMl1KxkRdwg7Z51TIkgPnu6_Oe-QopUeal-RaMP2Z7EHO1lrwfXLxy9m5D8n5edFE63wxTkOYYiqaZRHDNDqPRdOH0BUjpjEV0xodbPuwqvRoo88XX8inme0THm33Q3J_cX53dlXe3F5en_28KVtRi7G0EjrazDQVHQcFDXYwgwYYola2qrsatbSgGNVSIK86KhrQFqFmqqOVpXBIYNN38gu7_GP73iyiG2xcGkbNSozZiDFZjFmLMZBTPzapxdQM2LXox2hfksE687bi3YOZhydT1UpKuWrwfdsght9T9mAGl1rse-sxTMlwoFCLTKqMfnuHPmadPktZU6yqpK4y9fX1RM-j_PuYDKgN0MaQUsSZad1oRxdWA7r-49fyd9H_UrQVmzLs5xhfxv4g9RdUGsKD
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2966879
crossref_primary_10_1093_brain_awac450
crossref_primary_10_1515_cclm_2023_1013
crossref_primary_10_7717_peerj_15096
crossref_primary_10_5812_pmco_133563
crossref_primary_10_1007_s13167_023_00319_3
crossref_primary_10_3390_cancers13195010
crossref_primary_10_1016_j_critrevonc_2025_104682
crossref_primary_10_1088_1742_6596_2010_1_012175
crossref_primary_10_1007_s12639_020_01262_0
crossref_primary_10_1016_j_cmpb_2023_107482
crossref_primary_10_1038_s41598_021_90265_9
crossref_primary_10_3390_app122312180
crossref_primary_10_3390_info11090419
crossref_primary_10_1016_j_heliyon_2024_e29372
crossref_primary_10_1016_j_heliyon_2024_e35586
crossref_primary_10_1016_j_neucom_2024_129220
crossref_primary_10_1038_s41598_022_18028_8
crossref_primary_10_1038_s41598_022_26160_8
crossref_primary_10_3390_biomedinformatics2040043
crossref_primary_10_1186_s12859_022_04926_1
Cites_doi 10.1037/0033-2909.111.2.361
10.1373/49.1.1
10.1159/000226773
10.1016/0736-4679(93)90042-6
10.1214/aos/1013203451
10.1542/peds.108.2.255
10.3174/ajnr.A5368
10.1016/S0167-9473(01)00065-2
10.1056/NEJMra072149
10.1093/neuonc/nox158
10.1200/JCO.2017.72.8089
10.1097/MD.0000000000011256
10.1016/j.canlet.2015.07.039
10.1371/journal.pone.0178265
10.1016/j.diii.2014.08.004
10.1007/s40708-017-0065-7
10.1038/s41598-017-18564-8
10.1145/2939672.2939785
10.1214/ss/1009213286
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41598-019-51147-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7
ExternalDocumentID 10.1038/s41598-019-51147-3
PMC6785553
31597942
10_1038_s41598_019_51147_3
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Smart Blood Analytics SA
– fundername: The Republic of Slovenia Research Agency P3-0338
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c474t-a53d0bf904d2383bed3f3b31ee98a67d7e95a3810954e26d04b39ae3718d06a03
IEDL.DBID M48
ISSN 2045-2322
IngestDate Sun Oct 26 01:43:38 EDT 2025
Tue Sep 30 16:53:14 EDT 2025
Thu Sep 04 17:47:56 EDT 2025
Tue Oct 07 07:54:17 EDT 2025
Mon Jul 21 05:49:55 EDT 2025
Wed Oct 01 01:42:18 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Fri Feb 21 02:41:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a53d0bf904d2383bed3f3b31ee98a67d7e95a3810954e26d04b39ae3718d06a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-2541-0172
OpenAccessLink https://doi.org/10.1038%2Fs41598-019-51147-3
PMID 31597942
PQID 2303166596
PQPubID 2041939
PageCount 7
ParticipantIDs unpaywall_primary_10_1038_s41598_019_51147_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6785553
proquest_miscellaneous_2303745538
proquest_journals_2303166596
pubmed_primary_31597942
crossref_citationtrail_10_1038_s41598_019_51147_3
crossref_primary_10_1038_s41598_019_51147_3
springer_journals_10_1038_s41598_019_51147_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-09
PublicationDateYYYYMMDD 2019-10-09
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-09
  day: 09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sunwoo, Kim, Choi (CR6) 2017; 12
Brenner, Hall (CR5) 2007; 357
CR18
CR17
CR14
CR13
Sampson, Maus, June (CR8) 2017; 35
CR12
Snyder, Robinson, Shah, Brennan, Handrigan (CR1) 1993; 11
Brown, Cai, DasGupta (CR22) 2001; 16
Guncar (CR11) 2018; 8
Scholz, Stephens (CR19) 1987; 82
McGraw, Wong (CR20) 1992; 11
Medina, Kuntz, Pomeroy (CR3) 2001; 108
Kim, Bae (CR10) 2016; 2016
Ostrom (CR2) 2017; 19
Friedman (CR16) 2002; 38
Kerr, Ray, Wu, Stott, Langhorne (CR26) 2009; 28
CR23
Torlay, Perrone-Bertolotti, Thomas, Baciu (CR7) 2017; 4
Leclercq (CR25) 2014; 95
Friedman (CR15) 2001; 29
Verburg, Hoefnagels (CR4) 2017; 38
Hui, Chen (CR9) 2015; 368
Luo, Li, Luo, Diao (CR24) 2018; 97
Bossuyt (CR21) 2003; 49
G Kerr (51147_CR26) 2009; 28
JH Friedman (51147_CR16) 2002; 38
Q Luo (51147_CR24) 2018; 97
H Snyder (51147_CR1) 1993; 11
D Leclercq (51147_CR25) 2014; 95
L Torlay (51147_CR7) 2017; 4
QT Ostrom (51147_CR2) 2017; 19
51147_CR23
KO McGraw (51147_CR20) 1992; 11
DJ Brenner (51147_CR5) 2007; 357
FW Scholz (51147_CR19) 1987; 82
G Guncar (51147_CR11) 2018; 8
PM Bossuyt (51147_CR21) 2003; 49
JH Sampson (51147_CR8) 2017; 35
L Hui (51147_CR9) 2015; 368
J Kim (51147_CR10) 2016; 2016
51147_CR12
51147_CR13
JH Friedman (51147_CR15) 2001; 29
L Sunwoo (51147_CR6) 2017; 12
51147_CR14
LS Medina (51147_CR3) 2001; 108
N Verburg (51147_CR4) 2017; 38
L Brown (51147_CR22) 2001; 16
51147_CR17
51147_CR18
References_xml – ident: CR18
– volume: 11
  start-page: 361
  year: 1992
  end-page: 5
  ident: CR20
  article-title: A common language effect size statistic
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.111.2.361
– volume: 49
  start-page: 1
  issue: 1
  year: 2003
  end-page: 6
  ident: CR21
  article-title: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy
  publication-title: Clin Chem
  doi: 10.1373/49.1.1
– volume: 28
  start-page: 220
  issue: 3
  year: 2009
  end-page: 6
  ident: CR26
  article-title: Elevated troponin after stroke: a systematic review
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000226773
– ident: CR14
– ident: CR12
– volume: 82
  start-page: 918
  year: 1987
  end-page: 24
  ident: CR19
  article-title: K-Sample Anderson–Darling Tests
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 253
  issue: 3
  year: 1993
  end-page: 8
  ident: CR1
  article-title: Signs and symptoms of patients with brain tumors presenting to the emergency department
  publication-title: J Emerg Med
  doi: 10.1016/0736-4679(93)90042-6
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  end-page: 232
  ident: CR15
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– volume: 108
  start-page: 255
  issue: 2
  year: 2001
  end-page: 63
  ident: CR3
  article-title: Children with headache suspected of having a brain tumor: a cost-effectiveness analysis of diagnostic strategies
  publication-title: Pediatrics
  doi: 10.1542/peds.108.2.255
– volume: 38
  start-page: 1884
  issue: 10
  year: 2017
  end-page: 91
  ident: CR4
  article-title: Diagnostic Accuracy of Neuroimaging to Delineate Diffuse Gliomas within the Brain: A Meta-Analysis
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5368
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  end-page: 78
  ident: CR16
  article-title: Stochastic gradient boosting
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 357
  start-page: 2277
  issue: 22
  year: 2007
  end-page: 84
  ident: CR5
  article-title: Computed tomography-an increasing source of radiation exposure
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra072149
– volume: 2016
  start-page: 6058147
  year: 2016
  ident: CR10
  article-title: Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment
  publication-title: Mediators Inflamm
– volume: 19
  start-page: v1
  issue: suppl_5
  year: 2017
  end-page: v88
  ident: CR2
  article-title: CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nox158
– volume: 35
  start-page: 2450
  issue: 21
  year: 2017
  end-page: 6
  ident: CR8
  article-title: Immunotherapy for Brain Tumors
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2017.72.8089
– ident: CR23
– volume: 97
  start-page: e11256
  issue: 31
  year: 2018
  ident: CR24
  article-title: Comparisons of the accuracy of radiation diagnostic modalities in brain tumor: A nonrandomized, nonexperimental, cross-sectional trial
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000011256
– volume: 368
  start-page: 7
  issue: 1
  year: 2015
  end-page: 13
  ident: CR9
  article-title: Tumor microenvironment: Sanctuary of the devil
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2015.07.039
– volume: 12
  start-page: e0178265
  issue: 6
  year: 2017
  ident: CR6
  article-title: Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178265
– ident: CR17
– ident: CR13
– volume: 16
  start-page: 101
  issue: 2
  year: 2001
  end-page: 17
  ident: CR22
  article-title: Interval Estimation for a Binomial Proportion
  publication-title: Statistical Science
– volume: 95
  start-page: 906
  issue: 10
  year: 2014
  end-page: 16
  ident: CR25
  article-title: Cerebral tumor or pseudotumor?
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2014.08.004
– volume: 4
  start-page: 159
  issue: 3
  year: 2017
  end-page: 69
  ident: CR7
  article-title: Machine learning-XGBoost analysis of language networks to classify patients with epilepsy
  publication-title: Brain Inform
  doi: 10.1007/s40708-017-0065-7
– volume: 8
  issue: 1
  year: 2018
  ident: CR11
  article-title: An application of machine learning to haematological diagnosis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18564-8
– volume: 11
  start-page: 253
  issue: 3
  year: 1993
  ident: 51147_CR1
  publication-title: J Emerg Med
  doi: 10.1016/0736-4679(93)90042-6
– volume: 38
  start-page: 1884
  issue: 10
  year: 2017
  ident: 51147_CR4
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5368
– volume: 82
  start-page: 918
  year: 1987
  ident: 51147_CR19
  publication-title: Journal of the American Statistical Association
– volume: 4
  start-page: 159
  issue: 3
  year: 2017
  ident: 51147_CR7
  publication-title: Brain Inform
  doi: 10.1007/s40708-017-0065-7
– volume: 19
  start-page: v1
  issue: suppl_5
  year: 2017
  ident: 51147_CR2
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nox158
– volume: 11
  start-page: 361
  year: 1992
  ident: 51147_CR20
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.111.2.361
– volume: 28
  start-page: 220
  issue: 3
  year: 2009
  ident: 51147_CR26
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000226773
– volume: 108
  start-page: 255
  issue: 2
  year: 2001
  ident: 51147_CR3
  publication-title: Pediatrics
  doi: 10.1542/peds.108.2.255
– ident: 51147_CR12
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 51147_CR15
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– ident: 51147_CR18
– volume: 357
  start-page: 2277
  issue: 22
  year: 2007
  ident: 51147_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra072149
– ident: 51147_CR14
  doi: 10.1145/2939672.2939785
– volume: 12
  start-page: e0178265
  issue: 6
  year: 2017
  ident: 51147_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178265
– volume: 8
  issue: 1
  year: 2018
  ident: 51147_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18564-8
– volume: 49
  start-page: 1
  issue: 1
  year: 2003
  ident: 51147_CR21
  publication-title: Clin Chem
  doi: 10.1373/49.1.1
– volume: 95
  start-page: 906
  issue: 10
  year: 2014
  ident: 51147_CR25
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2014.08.004
– ident: 51147_CR23
– volume: 368
  start-page: 7
  issue: 1
  year: 2015
  ident: 51147_CR9
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2015.07.039
– volume: 2016
  start-page: 6058147
  year: 2016
  ident: 51147_CR10
  publication-title: Mediators Inflamm
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 51147_CR16
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 16
  start-page: 101
  issue: 2
  year: 2001
  ident: 51147_CR22
  publication-title: Statistical Science
  doi: 10.1214/ss/1009213286
– ident: 51147_CR13
– volume: 35
  start-page: 2450
  issue: 21
  year: 2017
  ident: 51147_CR8
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2017.72.8089
– volume: 97
  start-page: e11256
  issue: 31
  year: 2018
  ident: 51147_CR24
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000011256
– ident: 51147_CR17
SSID ssj0000529419
Score 2.4516206
Snippet Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14481
SubjectTerms 692/53/2421
692/617/375/1922
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Artificial intelligence
Blood
Blood tests
Brain cancer
Brain Neoplasms - blood
Brain Neoplasms - diagnosis
Brain tumors
Case-Control Studies
Diagnosis
Diagnosis, Computer-Assisted
Female
Hematologic Tests - statistics & numerical data
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Male
Middle Aged
multidisciplinary
Neuroimaging
Neurological diseases
Prediction models
Retrospective Studies
Science
Science (multidisciplinary)
Sensitivity and Specificity
Tumors
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPcTzQfy2ekoE37xybSdNmwcRP245fFhEPLi3kmymKqzdvd0W2f_eSb_O5WDxudOkmcxXM5PfALyhPFXaqTxEp-Yhe-gstIZ06ObaoVVG59RWW8zU-YX8cpleHsBsuAvjyyoHm9gaarec-zPyUw6VMVYq1er96ir0XaN8dnVooWH61gruXQsxdgsOE4-MNYHDj2ezr9_GUxef15Kx7m_PRJifbtiD-VtmsQ459pCscbse6kbYebN6ckyh3oU7TbUy2z9msfjHS03vw70-vBQfOnl4AAdUPYTbXcPJ7SOYfu4q63gcYX1zCFE3_O-_3gi7FeslC2FFoq1lFxyC1hvRtKS_24pLEn2LiR-P4WJ69v3Tedh3UgjnMpN1aFJ0kS11JB27aLTksESLMZHOjcpcRjo1HutLp5IS5SJpURtCdlwuUibCJzCplhU9A0FoHMaJQvRQfnFpU1KljCjWZEuZxwHEA_eKeQ8z7rtdLIo23Y150XG8YI4XLccLDODt-M6qA9nYS308bErRK9ymuBaPAF6Pj1lVfP7DVLRsOppMpmziA3ja7eE4HfIsbJqSALKd3R0JPAz37pPq188WjpvdfcqDBnAyyMH1Z-1bxckoK_-x6Of7F_0CjhIvwr6yQR_DpF439JKjpdq-6lXgLxMbELQ
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8DQ6IeAB8U1gQ0bijUYkPduJHyu2auoDLzBpb5FdXwCppFObaOq_3zlJA1WliT37fI7vw3fOne8APlGutPE6j9HrRcwWOoudJRP7hfHotDU5tdkW3_TFpZxfqasjGO_ewuzF79vS3Rs2MeEZWGpidg4kq8QDOM5ZMPMRHE-n8-_z4Z9KiFrJ1PRvY3j6l8PJ-_bnwKk8zI0cAqRP4FFTXdvtjV0u_7FBs2fwtHcexbTj9nM4ouoFPOzaSW5fwuysy5tjPMKF1g-ibvhmv94ItxXrFYtYRaLNVBfsYNYb0bSgf9p8ShJ9A4mfr-Bydv7j60Xc90mIFzKTdWwV-sSVJpGeDTA68liiw5TI5FZnPiOjbKjkZZSkifaJdGgsIZsln2ib4GsYVauK3oIgtB7TiUYMhfrS0inSpUwoNeRKmacRpDvqFYu-iHjoZbEs2mA25kVH8YIpXrQULzCCz8Oc666Exp3QJzumFL06bQq-J2GqtTI6go_DMCtCiG7YilZNB5NJxQd4BG86Hg7LIa_CB88kgmyPuwNAKLK9P1L9_tUW22ZjrhhpBOOdHPz9rLt2MR5k5T82_e5-2N_D40kQ6ZDHYE5gVK8bOmXfqHYfepW4BVkKBO8
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4F0IFGQkbjRLEjtOfKyAVcWh4sCKcorseFJQt9lVNxFafj1j5wFLUUXPHscee8bzRf48A_Aa81QqK_OQW1mGFKGz0GhUoS2V5UZqlaNnWxzLo7n4eJKe7IAc3sJ40r5PaemP6YEd9nZNgcY9BotVSBBBkGNMV7a6AbsyJQw-gd358afDr66SHGGUkGBC0r-QiXj-j87bUegStLzMkByvSe_ArbZe6c0PvVj8EYlm9-DLoENHQDmbto2Zlj__Su94fSXvw90enLLDTvIB7GD9EG525So3j2D2vuPl0QyZcaUlWNOeU581Mxt2sSQTrpF5JjwjANusWetFzz1fE1lfoOL0McxnHz6_Owr7OgxhKTLRhDrlNjKVioSlAM8NWl5xw2NElWuZ2QxVql2mMJUKTKSNhOFKI6ewZyOpI74Hk3pZ41NgyLXlcSI5d4kA48qkKCsRYazQVCKPA4iHfSnKPkm5q5WxKPxlOc-Lbo0KWqPCr1HBA3gz9ll1KTqulN4ftrvo3XVd0H8Yj6UzpQBejc3kaO72RNe4bDuZTKQUIAJ40lnHOBynUehgSwLItuxmFHBJvLdb6u_ffDJvAgspfTSAg8HCfk_rKi0ORiv8D6WfXU_8OdxOnBE6noTah0lz0eILwl6Nedk72i98jieA
  priority: 102
  providerName: Unpaywall
Title Diagnosing brain tumours by routine blood tests using machine learning
URI https://link.springer.com/article/10.1038/s41598-019-51147-3
https://www.ncbi.nlm.nih.gov/pubmed/31597942
https://www.proquest.com/docview/2303166596
https://www.proquest.com/docview/2303745538
https://pubmed.ncbi.nlm.nih.gov/PMC6785553
https://www.nature.com/articles/s41598-019-51147-3.pdf
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ4jxgPgcGaMyEm8sLIkdJ35AqJRVUyWqCahUniK7dtikLh1tItb_nrPzAdWmCZ4ixWc7Pt_5zvH5fgBvTBpzoXnqU81nPlroxFfSCF_PhKaKS5EaF20x5qcTNprG0y1o4Y4aBq5u3dpZPKnJcv7u-uf6Ayr8-_rKeHq8QiNkL4qFwkf3gaHSbMMuWiphoRw-N-5-nes7Esxhfdgk7D46E1Fzj-b2ZjZt1Q0H9GYcZXeY-gDuV8WVXP-S8_lf9mr4CB42jibp15LxGLZM8QTu1dCT66cw_FTH2GE7RFmYCFJWl1hnRdSaLBcojoUhLqqdoDNarkjlSC9d7KUhDdjEj2cwGZ58G5z6DaaCP2MJK30ZUx2oXARMo7GmymiaU0VDY0QqeaITI2Jps36JmJmI64ApKqShaMJ0wGVAn8NOsSjMCyCGSk3DiFNqk_qFuYoNz1lgQmFUztLQg7DlXjZrEo5b3It55g6-aZrVHM-Q45njeEY9eNvVuarTbdxJfdhOStZKToZ7KhpyHgvuweuuGJXGnoTIwiyqmiZhMS72HuzXc9h1R7EXXKQiD5KN2e0IbELuzZLi4twl5kbDH2OjHhy1cvDns-4axVEnK_8w6IP_YtFL2IusRNuQB3EIO-WyMq_QjSpVD7aTadKD3X5_9HWEz48n47Mv-HbABz33a6LntAdLJuOz_vffIuoalA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFRaocIB8SZQwEhwolGT2HHiQ4WAdrWlZYVQK_WW2vEEkLbZpZtVtT_HtzHOq6wqrbj0nLEdz8Mz9rwA3mIaS2Vl6nMrc580dOIbjcq3ubLcSK1SrKMtRnJ4Ir6cxqdr8KfLhXFhld2ZWB_UdpK7N_IdMpV5KGWs5Ifpb991jXLe1a6Fhm5bK9jdusRYm9hxiItLusLNdg_2iN7vomiwf_x56LddBvxcJKLydcxtYAoVCEvqixu0vOCGh4gq1TKxCapYuzpYKhYYSRsIw5VGToe6DaQOOM17CzYEF4oufxuf9kffvvevPM6PJkLVZusEPN2ZkcZ0WW2h8snWESThyxrxmpl7PVqzd9nehc15OdWLSz0e_6MVB_fhXmvOso8N_z2ANSwfwu2mweXiEQz2mkg-mocZ14yCVfNzGjNjZsEuJsT0JbI6dp6RyVvN2LwGPa8jPJG1LS1-PIaTG8HpE1gvJyU-A4ZcWx5GknNXOjAsTIyyEAGGCk0h0tCDsMNelrdlzV13jXFWu9d5mjUYzwjjWY3xjHvwvh8zbYp6rITe6oiStQI-y67Y0YM3_WcSTedv0SVO5g1MImJSKR48bWjYL8dpFToKIw-SJer2AK7s9_KX8tfPuvw3mRcxTerBdscHV7-1ahfbPa_8x6afr970a9gcHn89yo4ORocv4E7k2NlFVagtWK8u5viSLLXKvGrFgcHZTUvgX4ctTQ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIigcEI8WAgWMBCcabZJxnPiAEGJZtRRVHKi0t2DHDiBts0uTVbV_jV_HOK-yqrTi0rNf8Tw8E8_nGYDXNo2FNCL10YjcJwud-FpZ6ZtcGtRCydQ2aIsTcXjKP0_j6Rb86d_COFhlfyY2B7WZ5-6OfESuMoZCxFKMig4W8XU8eb_47bsKUi7S2pfTaEXk2K4u6Petenc0Jl6_iaLJp28fD_2uwoCf84TXvorRBLqQATdkulBbgwVqDK2VqRKJSayMlcuBJWNuI2ECrlEqi3Sgm0CoAGneG3AzQZQOTphMk-F-x0XQeCi7dzoBpqOKbKV7zxZKn7wcTrq9bguvOLhXcZpDsPYu7CzLhVpdqNnsH3s4uQ_3OkeWfWgl7wFs2fIh3GpLW64ewWTcYvhoHqZdGQpWL89oTMX0ip3PSdxLyxrUPCNnt67Ysul61mA7LeuKWfzYhdNroegebJfz0j4BZlEZDCOB6JIGhoWOrSh4YENpdcHT0IOwp16WdwnNXV2NWdYE1jHNWopnRPGsoXiGHrwdxizadB4be-_3TMk61a6yS0H04NXQTErpIi2qtPNl2yfhMRkTDx63PByWQ1qFDsHIg2SNu0MHl_B7vaX89bNJ_E2ORUyTenDQy8HlZ23axcEgK_-x6aebN_0SbpPeZV-OTo6fwZ3ISbODU8h92K7Pl_Y5uWi1ftHoAoPv1618fwFYXUqo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4F0IFGQkbjRLEjtOfKyAVcWh4sCKcorseFJQt9lVNxFafj1j5wFLUUXPHscee8bzRf48A_Aa81QqK_OQW1mGFKGz0GhUoS2V5UZqlaNnWxzLo7n4eJKe7IAc3sJ40r5PaemP6YEd9nZNgcY9BotVSBBBkGNMV7a6AbsyJQw-gd358afDr66SHGGUkGBC0r-QiXj-j87bUegStLzMkByvSe_ArbZe6c0PvVj8EYlm9-DLoENHQDmbto2Zlj__Su94fSXvw90enLLDTvIB7GD9EG525So3j2D2vuPl0QyZcaUlWNOeU581Mxt2sSQTrpF5JjwjANusWetFzz1fE1lfoOL0McxnHz6_Owr7OgxhKTLRhDrlNjKVioSlAM8NWl5xw2NElWuZ2QxVql2mMJUKTKSNhOFKI6ewZyOpI74Hk3pZ41NgyLXlcSI5d4kA48qkKCsRYazQVCKPA4iHfSnKPkm5q5WxKPxlOc-Lbo0KWqPCr1HBA3gz9ll1KTqulN4ftrvo3XVd0H8Yj6UzpQBejc3kaO72RNe4bDuZTKQUIAJ40lnHOBynUehgSwLItuxmFHBJvLdb6u_ffDJvAgspfTSAg8HCfk_rKi0ORiv8D6WfXU_8OdxOnBE6noTah0lz0eILwl6Nedk72i98jieA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosing+brain+tumours+by+routine+blood+tests+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Podnar%2C+Simon&rft.au=Kukar%2C+Matja%C5%BE&rft.au=Gun%C4%8Dar%2C+Gregor&rft.au=Notar%2C+Mateja&rft.date=2019-10-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-51147-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_019_51147_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon