Diagnosing brain tumours by routine blood tests using machine learning
Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the mo...
Saved in:
| Published in | Scientific reports Vol. 9; no. 1; pp. 14481 - 7 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
09.10.2019
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-019-51147-3 |
Cover
| Abstract | Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests. |
|---|---|
| AbstractList | Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests. Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests.Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients we built a machine learning predictive model for the diagnosis of brain tumours. We validated the model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting to the neurological emergency service. Only patients with head imaging and routine blood test data were included in the validation sample. The sensitivity and specificity of the adapted tumour model in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is comparable and possibly complementary to that of imaging studies. The presented machine learning approach opens a completely new avenue in the diagnosis of these grave neurological diseases and demonstrates the utility of valuable information obtained from routine blood tests. |
| ArticleNumber | 14481 |
| Author | Kukar, Matjaž Podnar, Simon Gunčar, Gregor Notar, Mateja Gošnjak, Nina Notar, Marko |
| Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0003-2541-0172 surname: Podnar fullname: Podnar, Simon email: simon.podnar@kclj.si organization: Division of Neurology, University Medical Centre Ljubljana – sequence: 2 givenname: Matjaž surname: Kukar fullname: Kukar, Matjaž organization: Faculty of Computer and Information Science, University of Ljubljana, Smart Blood Analytics Swiss SA – sequence: 3 givenname: Gregor surname: Gunčar fullname: Gunčar, Gregor organization: Smart Blood Analytics Swiss SA – sequence: 4 givenname: Mateja surname: Notar fullname: Notar, Mateja organization: Smart Blood Analytics Swiss SA – sequence: 5 givenname: Nina surname: Gošnjak fullname: Gošnjak, Nina organization: Division of Neurology, University Medical Centre Ljubljana – sequence: 6 givenname: Marko surname: Notar fullname: Notar, Marko organization: Smart Blood Analytics Swiss SA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31597942$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv3SAQRlGUqnk0fyCLylI33TgBBmzYVKrSvKRI2SRrhO25N0Q23IKd6v77ch_NaxGVDYg532g4HJBdHzwScszoCaOgTpNgUquSMl1KxkRdwg7Z51TIkgPnu6_Oe-QopUeal-RaMP2Z7EHO1lrwfXLxy9m5D8n5edFE63wxTkOYYiqaZRHDNDqPRdOH0BUjpjEV0xodbPuwqvRoo88XX8inme0THm33Q3J_cX53dlXe3F5en_28KVtRi7G0EjrazDQVHQcFDXYwgwYYola2qrsatbSgGNVSIK86KhrQFqFmqqOVpXBIYNN38gu7_GP73iyiG2xcGkbNSozZiDFZjFmLMZBTPzapxdQM2LXox2hfksE687bi3YOZhydT1UpKuWrwfdsght9T9mAGl1rse-sxTMlwoFCLTKqMfnuHPmadPktZU6yqpK4y9fX1RM-j_PuYDKgN0MaQUsSZad1oRxdWA7r-49fyd9H_UrQVmzLs5xhfxv4g9RdUGsKD |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2966879 crossref_primary_10_1093_brain_awac450 crossref_primary_10_1515_cclm_2023_1013 crossref_primary_10_7717_peerj_15096 crossref_primary_10_5812_pmco_133563 crossref_primary_10_1007_s13167_023_00319_3 crossref_primary_10_3390_cancers13195010 crossref_primary_10_1016_j_critrevonc_2025_104682 crossref_primary_10_1088_1742_6596_2010_1_012175 crossref_primary_10_1007_s12639_020_01262_0 crossref_primary_10_1016_j_cmpb_2023_107482 crossref_primary_10_1038_s41598_021_90265_9 crossref_primary_10_3390_app122312180 crossref_primary_10_3390_info11090419 crossref_primary_10_1016_j_heliyon_2024_e29372 crossref_primary_10_1016_j_heliyon_2024_e35586 crossref_primary_10_1016_j_neucom_2024_129220 crossref_primary_10_1038_s41598_022_18028_8 crossref_primary_10_1038_s41598_022_26160_8 crossref_primary_10_3390_biomedinformatics2040043 crossref_primary_10_1186_s12859_022_04926_1 |
| Cites_doi | 10.1037/0033-2909.111.2.361 10.1373/49.1.1 10.1159/000226773 10.1016/0736-4679(93)90042-6 10.1214/aos/1013203451 10.1542/peds.108.2.255 10.3174/ajnr.A5368 10.1016/S0167-9473(01)00065-2 10.1056/NEJMra072149 10.1093/neuonc/nox158 10.1200/JCO.2017.72.8089 10.1097/MD.0000000000011256 10.1016/j.canlet.2015.07.039 10.1371/journal.pone.0178265 10.1016/j.diii.2014.08.004 10.1007/s40708-017-0065-7 10.1038/s41598-017-18564-8 10.1145/2939672.2939785 10.1214/ss/1009213286 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41598-019-51147-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 7 |
| ExternalDocumentID | 10.1038/s41598-019-51147-3 PMC6785553 31597942 10_1038_s41598_019_51147_3 |
| Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Smart Blood Analytics SA – fundername: The Republic of Slovenia Research Agency P3-0338 – fundername: ; |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c474t-a53d0bf904d2383bed3f3b31ee98a67d7e95a3810954e26d04b39ae3718d06a03 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Sun Oct 26 01:43:38 EDT 2025 Tue Sep 30 16:53:14 EDT 2025 Thu Sep 04 17:47:56 EDT 2025 Tue Oct 07 07:54:17 EDT 2025 Mon Jul 21 05:49:55 EDT 2025 Wed Oct 01 01:42:18 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Fri Feb 21 02:41:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-a53d0bf904d2383bed3f3b31ee98a67d7e95a3810954e26d04b39ae3718d06a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0003-2541-0172 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41598-019-51147-3 |
| PMID | 31597942 |
| PQID | 2303166596 |
| PQPubID | 2041939 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1038_s41598_019_51147_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6785553 proquest_miscellaneous_2303745538 proquest_journals_2303166596 pubmed_primary_31597942 crossref_citationtrail_10_1038_s41598_019_51147_3 crossref_primary_10_1038_s41598_019_51147_3 springer_journals_10_1038_s41598_019_51147_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-09 |
| PublicationDateYYYYMMDD | 2019-10-09 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Sunwoo, Kim, Choi (CR6) 2017; 12 Brenner, Hall (CR5) 2007; 357 CR18 CR17 CR14 CR13 Sampson, Maus, June (CR8) 2017; 35 CR12 Snyder, Robinson, Shah, Brennan, Handrigan (CR1) 1993; 11 Brown, Cai, DasGupta (CR22) 2001; 16 Guncar (CR11) 2018; 8 Scholz, Stephens (CR19) 1987; 82 McGraw, Wong (CR20) 1992; 11 Medina, Kuntz, Pomeroy (CR3) 2001; 108 Kim, Bae (CR10) 2016; 2016 Ostrom (CR2) 2017; 19 Friedman (CR16) 2002; 38 Kerr, Ray, Wu, Stott, Langhorne (CR26) 2009; 28 CR23 Torlay, Perrone-Bertolotti, Thomas, Baciu (CR7) 2017; 4 Leclercq (CR25) 2014; 95 Friedman (CR15) 2001; 29 Verburg, Hoefnagels (CR4) 2017; 38 Hui, Chen (CR9) 2015; 368 Luo, Li, Luo, Diao (CR24) 2018; 97 Bossuyt (CR21) 2003; 49 G Kerr (51147_CR26) 2009; 28 JH Friedman (51147_CR16) 2002; 38 Q Luo (51147_CR24) 2018; 97 H Snyder (51147_CR1) 1993; 11 D Leclercq (51147_CR25) 2014; 95 L Torlay (51147_CR7) 2017; 4 QT Ostrom (51147_CR2) 2017; 19 51147_CR23 KO McGraw (51147_CR20) 1992; 11 DJ Brenner (51147_CR5) 2007; 357 FW Scholz (51147_CR19) 1987; 82 G Guncar (51147_CR11) 2018; 8 PM Bossuyt (51147_CR21) 2003; 49 JH Sampson (51147_CR8) 2017; 35 L Hui (51147_CR9) 2015; 368 J Kim (51147_CR10) 2016; 2016 51147_CR12 51147_CR13 JH Friedman (51147_CR15) 2001; 29 L Sunwoo (51147_CR6) 2017; 12 51147_CR14 LS Medina (51147_CR3) 2001; 108 N Verburg (51147_CR4) 2017; 38 L Brown (51147_CR22) 2001; 16 51147_CR17 51147_CR18 |
| References_xml | – ident: CR18 – volume: 11 start-page: 361 year: 1992 end-page: 5 ident: CR20 article-title: A common language effect size statistic publication-title: Psychological Bulletin doi: 10.1037/0033-2909.111.2.361 – volume: 49 start-page: 1 issue: 1 year: 2003 end-page: 6 ident: CR21 article-title: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy publication-title: Clin Chem doi: 10.1373/49.1.1 – volume: 28 start-page: 220 issue: 3 year: 2009 end-page: 6 ident: CR26 article-title: Elevated troponin after stroke: a systematic review publication-title: Cerebrovasc Dis doi: 10.1159/000226773 – ident: CR14 – ident: CR12 – volume: 82 start-page: 918 year: 1987 end-page: 24 ident: CR19 article-title: K-Sample Anderson–Darling Tests publication-title: Journal of the American Statistical Association – volume: 11 start-page: 253 issue: 3 year: 1993 end-page: 8 ident: CR1 article-title: Signs and symptoms of patients with brain tumors presenting to the emergency department publication-title: J Emerg Med doi: 10.1016/0736-4679(93)90042-6 – volume: 29 start-page: 1189 issue: 5 year: 2001 end-page: 232 ident: CR15 article-title: Greedy function approximation: A gradient boosting machine publication-title: The Annals of Statistics doi: 10.1214/aos/1013203451 – volume: 108 start-page: 255 issue: 2 year: 2001 end-page: 63 ident: CR3 article-title: Children with headache suspected of having a brain tumor: a cost-effectiveness analysis of diagnostic strategies publication-title: Pediatrics doi: 10.1542/peds.108.2.255 – volume: 38 start-page: 1884 issue: 10 year: 2017 end-page: 91 ident: CR4 article-title: Diagnostic Accuracy of Neuroimaging to Delineate Diffuse Gliomas within the Brain: A Meta-Analysis publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5368 – volume: 38 start-page: 367 issue: 4 year: 2002 end-page: 78 ident: CR16 article-title: Stochastic gradient boosting publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(01)00065-2 – volume: 357 start-page: 2277 issue: 22 year: 2007 end-page: 84 ident: CR5 article-title: Computed tomography-an increasing source of radiation exposure publication-title: N Engl J Med doi: 10.1056/NEJMra072149 – volume: 2016 start-page: 6058147 year: 2016 ident: CR10 article-title: Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment publication-title: Mediators Inflamm – volume: 19 start-page: v1 issue: suppl_5 year: 2017 end-page: v88 ident: CR2 article-title: CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014 publication-title: Neuro Oncol doi: 10.1093/neuonc/nox158 – volume: 35 start-page: 2450 issue: 21 year: 2017 end-page: 6 ident: CR8 article-title: Immunotherapy for Brain Tumors publication-title: J Clin Oncol doi: 10.1200/JCO.2017.72.8089 – ident: CR23 – volume: 97 start-page: e11256 issue: 31 year: 2018 ident: CR24 article-title: Comparisons of the accuracy of radiation diagnostic modalities in brain tumor: A nonrandomized, nonexperimental, cross-sectional trial publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000011256 – volume: 368 start-page: 7 issue: 1 year: 2015 end-page: 13 ident: CR9 article-title: Tumor microenvironment: Sanctuary of the devil publication-title: Cancer Lett doi: 10.1016/j.canlet.2015.07.039 – volume: 12 start-page: e0178265 issue: 6 year: 2017 ident: CR6 article-title: Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study publication-title: PLoS One doi: 10.1371/journal.pone.0178265 – ident: CR17 – ident: CR13 – volume: 16 start-page: 101 issue: 2 year: 2001 end-page: 17 ident: CR22 article-title: Interval Estimation for a Binomial Proportion publication-title: Statistical Science – volume: 95 start-page: 906 issue: 10 year: 2014 end-page: 16 ident: CR25 article-title: Cerebral tumor or pseudotumor? publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2014.08.004 – volume: 4 start-page: 159 issue: 3 year: 2017 end-page: 69 ident: CR7 article-title: Machine learning-XGBoost analysis of language networks to classify patients with epilepsy publication-title: Brain Inform doi: 10.1007/s40708-017-0065-7 – volume: 8 issue: 1 year: 2018 ident: CR11 article-title: An application of machine learning to haematological diagnosis publication-title: Sci Rep doi: 10.1038/s41598-017-18564-8 – volume: 11 start-page: 253 issue: 3 year: 1993 ident: 51147_CR1 publication-title: J Emerg Med doi: 10.1016/0736-4679(93)90042-6 – volume: 38 start-page: 1884 issue: 10 year: 2017 ident: 51147_CR4 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5368 – volume: 82 start-page: 918 year: 1987 ident: 51147_CR19 publication-title: Journal of the American Statistical Association – volume: 4 start-page: 159 issue: 3 year: 2017 ident: 51147_CR7 publication-title: Brain Inform doi: 10.1007/s40708-017-0065-7 – volume: 19 start-page: v1 issue: suppl_5 year: 2017 ident: 51147_CR2 publication-title: Neuro Oncol doi: 10.1093/neuonc/nox158 – volume: 11 start-page: 361 year: 1992 ident: 51147_CR20 publication-title: Psychological Bulletin doi: 10.1037/0033-2909.111.2.361 – volume: 28 start-page: 220 issue: 3 year: 2009 ident: 51147_CR26 publication-title: Cerebrovasc Dis doi: 10.1159/000226773 – volume: 108 start-page: 255 issue: 2 year: 2001 ident: 51147_CR3 publication-title: Pediatrics doi: 10.1542/peds.108.2.255 – ident: 51147_CR12 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 51147_CR15 publication-title: The Annals of Statistics doi: 10.1214/aos/1013203451 – ident: 51147_CR18 – volume: 357 start-page: 2277 issue: 22 year: 2007 ident: 51147_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMra072149 – ident: 51147_CR14 doi: 10.1145/2939672.2939785 – volume: 12 start-page: e0178265 issue: 6 year: 2017 ident: 51147_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0178265 – volume: 8 issue: 1 year: 2018 ident: 51147_CR11 publication-title: Sci Rep doi: 10.1038/s41598-017-18564-8 – volume: 49 start-page: 1 issue: 1 year: 2003 ident: 51147_CR21 publication-title: Clin Chem doi: 10.1373/49.1.1 – volume: 95 start-page: 906 issue: 10 year: 2014 ident: 51147_CR25 publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2014.08.004 – ident: 51147_CR23 – volume: 368 start-page: 7 issue: 1 year: 2015 ident: 51147_CR9 publication-title: Cancer Lett doi: 10.1016/j.canlet.2015.07.039 – volume: 2016 start-page: 6058147 year: 2016 ident: 51147_CR10 publication-title: Mediators Inflamm – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 51147_CR16 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(01)00065-2 – volume: 16 start-page: 101 issue: 2 year: 2001 ident: 51147_CR22 publication-title: Statistical Science doi: 10.1214/ss/1009213286 – ident: 51147_CR13 – volume: 35 start-page: 2450 issue: 21 year: 2017 ident: 51147_CR8 publication-title: J Clin Oncol doi: 10.1200/JCO.2017.72.8089 – volume: 97 start-page: e11256 issue: 31 year: 2018 ident: 51147_CR24 publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000011256 – ident: 51147_CR17 |
| SSID | ssj0000529419 |
| Score | 2.4516206 |
| Snippet | Routine blood test results are assumed to contain much more information than is usually recognised even by the most experienced clinicians. Using routine blood... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14481 |
| SubjectTerms | 692/53/2421 692/617/375/1922 Adolescent Adult Aged Aged, 80 and over Algorithms Artificial intelligence Blood Blood tests Brain cancer Brain Neoplasms - blood Brain Neoplasms - diagnosis Brain tumors Case-Control Studies Diagnosis Diagnosis, Computer-Assisted Female Hematologic Tests - statistics & numerical data Humanities and Social Sciences Humans Learning algorithms Machine Learning Male Middle Aged multidisciplinary Neuroimaging Neurological diseases Prediction models Retrospective Studies Science Science (multidisciplinary) Sensitivity and Specificity Tumors Young Adult |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPcTzQfy2ekoE37xybSdNmwcRP245fFhEPLi3kmymKqzdvd0W2f_eSb_O5WDxudOkmcxXM5PfALyhPFXaqTxEp-Yhe-gstIZ06ObaoVVG59RWW8zU-YX8cpleHsBsuAvjyyoHm9gaarec-zPyUw6VMVYq1er96ir0XaN8dnVooWH61gruXQsxdgsOE4-MNYHDj2ezr9_GUxef15Kx7m_PRJifbtiD-VtmsQ459pCscbse6kbYebN6ckyh3oU7TbUy2z9msfjHS03vw70-vBQfOnl4AAdUPYTbXcPJ7SOYfu4q63gcYX1zCFE3_O-_3gi7FeslC2FFoq1lFxyC1hvRtKS_24pLEn2LiR-P4WJ69v3Tedh3UgjnMpN1aFJ0kS11JB27aLTksESLMZHOjcpcRjo1HutLp5IS5SJpURtCdlwuUibCJzCplhU9A0FoHMaJQvRQfnFpU1KljCjWZEuZxwHEA_eKeQ8z7rtdLIo23Y150XG8YI4XLccLDODt-M6qA9nYS308bErRK9ymuBaPAF6Pj1lVfP7DVLRsOppMpmziA3ja7eE4HfIsbJqSALKd3R0JPAz37pPq188WjpvdfcqDBnAyyMH1Z-1bxckoK_-x6Of7F_0CjhIvwr6yQR_DpF439JKjpdq-6lXgLxMbELQ priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8DQ6IeAB8U1gQ0bijUYkPduJHyu2auoDLzBpb5FdXwCppFObaOq_3zlJA1WliT37fI7vw3fOne8APlGutPE6j9HrRcwWOoudJRP7hfHotDU5tdkW3_TFpZxfqasjGO_ewuzF79vS3Rs2MeEZWGpidg4kq8QDOM5ZMPMRHE-n8-_z4Z9KiFrJ1PRvY3j6l8PJ-_bnwKk8zI0cAqRP4FFTXdvtjV0u_7FBs2fwtHcexbTj9nM4ouoFPOzaSW5fwuysy5tjPMKF1g-ibvhmv94ItxXrFYtYRaLNVBfsYNYb0bSgf9p8ShJ9A4mfr-Bydv7j60Xc90mIFzKTdWwV-sSVJpGeDTA68liiw5TI5FZnPiOjbKjkZZSkifaJdGgsIZsln2ib4GsYVauK3oIgtB7TiUYMhfrS0inSpUwoNeRKmacRpDvqFYu-iHjoZbEs2mA25kVH8YIpXrQULzCCz8Oc666Exp3QJzumFL06bQq-J2GqtTI6go_DMCtCiG7YilZNB5NJxQd4BG86Hg7LIa_CB88kgmyPuwNAKLK9P1L9_tUW22ZjrhhpBOOdHPz9rLt2MR5k5T82_e5-2N_D40kQ6ZDHYE5gVK8bOmXfqHYfepW4BVkKBO8 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4F0IFGQkbjRLEjtOfKyAVcWh4sCKcorseFJQt9lVNxFafj1j5wFLUUXPHscee8bzRf48A_Aa81QqK_OQW1mGFKGz0GhUoS2V5UZqlaNnWxzLo7n4eJKe7IAc3sJ40r5PaemP6YEd9nZNgcY9BotVSBBBkGNMV7a6AbsyJQw-gd358afDr66SHGGUkGBC0r-QiXj-j87bUegStLzMkByvSe_ArbZe6c0PvVj8EYlm9-DLoENHQDmbto2Zlj__Su94fSXvw90enLLDTvIB7GD9EG525So3j2D2vuPl0QyZcaUlWNOeU581Mxt2sSQTrpF5JjwjANusWetFzz1fE1lfoOL0McxnHz6_Owr7OgxhKTLRhDrlNjKVioSlAM8NWl5xw2NElWuZ2QxVql2mMJUKTKSNhOFKI6ewZyOpI74Hk3pZ41NgyLXlcSI5d4kA48qkKCsRYazQVCKPA4iHfSnKPkm5q5WxKPxlOc-Lbo0KWqPCr1HBA3gz9ll1KTqulN4ftrvo3XVd0H8Yj6UzpQBejc3kaO72RNe4bDuZTKQUIAJ40lnHOBynUehgSwLItuxmFHBJvLdb6u_ffDJvAgspfTSAg8HCfk_rKi0ORiv8D6WfXU_8OdxOnBE6noTah0lz0eILwl6Nedk72i98jieA priority: 102 providerName: Unpaywall |
| Title | Diagnosing brain tumours by routine blood tests using machine learning |
| URI | https://link.springer.com/article/10.1038/s41598-019-51147-3 https://www.ncbi.nlm.nih.gov/pubmed/31597942 https://www.proquest.com/docview/2303166596 https://www.proquest.com/docview/2303745538 https://pubmed.ncbi.nlm.nih.gov/PMC6785553 https://www.nature.com/articles/s41598-019-51147-3.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ4jxgPgcGaMyEm8sLIkdJ35AqJRVUyWqCahUniK7dtikLh1tItb_nrPzAdWmCZ4ixWc7Pt_5zvH5fgBvTBpzoXnqU81nPlroxFfSCF_PhKaKS5EaF20x5qcTNprG0y1o4Y4aBq5u3dpZPKnJcv7u-uf6Ayr8-_rKeHq8QiNkL4qFwkf3gaHSbMMuWiphoRw-N-5-nes7Esxhfdgk7D46E1Fzj-b2ZjZt1Q0H9GYcZXeY-gDuV8WVXP-S8_lf9mr4CB42jibp15LxGLZM8QTu1dCT66cw_FTH2GE7RFmYCFJWl1hnRdSaLBcojoUhLqqdoDNarkjlSC9d7KUhDdjEj2cwGZ58G5z6DaaCP2MJK30ZUx2oXARMo7GmymiaU0VDY0QqeaITI2Jps36JmJmI64ApKqShaMJ0wGVAn8NOsSjMCyCGSk3DiFNqk_qFuYoNz1lgQmFUztLQg7DlXjZrEo5b3It55g6-aZrVHM-Q45njeEY9eNvVuarTbdxJfdhOStZKToZ7KhpyHgvuweuuGJXGnoTIwiyqmiZhMS72HuzXc9h1R7EXXKQiD5KN2e0IbELuzZLi4twl5kbDH2OjHhy1cvDns-4axVEnK_8w6IP_YtFL2IusRNuQB3EIO-WyMq_QjSpVD7aTadKD3X5_9HWEz48n47Mv-HbABz33a6LntAdLJuOz_vffIuoalA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFRaocIB8SZQwEhwolGT2HHiQ4WAdrWlZYVQK_WW2vEEkLbZpZtVtT_HtzHOq6wqrbj0nLEdz8Mz9rwA3mIaS2Vl6nMrc580dOIbjcq3ubLcSK1SrKMtRnJ4Ir6cxqdr8KfLhXFhld2ZWB_UdpK7N_IdMpV5KGWs5Ifpb991jXLe1a6Fhm5bK9jdusRYm9hxiItLusLNdg_2iN7vomiwf_x56LddBvxcJKLydcxtYAoVCEvqixu0vOCGh4gq1TKxCapYuzpYKhYYSRsIw5VGToe6DaQOOM17CzYEF4oufxuf9kffvvevPM6PJkLVZusEPN2ZkcZ0WW2h8snWESThyxrxmpl7PVqzd9nehc15OdWLSz0e_6MVB_fhXmvOso8N_z2ANSwfwu2mweXiEQz2mkg-mocZ14yCVfNzGjNjZsEuJsT0JbI6dp6RyVvN2LwGPa8jPJG1LS1-PIaTG8HpE1gvJyU-A4ZcWx5GknNXOjAsTIyyEAGGCk0h0tCDsMNelrdlzV13jXFWu9d5mjUYzwjjWY3xjHvwvh8zbYp6rITe6oiStQI-y67Y0YM3_WcSTedv0SVO5g1MImJSKR48bWjYL8dpFToKIw-SJer2AK7s9_KX8tfPuvw3mRcxTerBdscHV7-1ahfbPa_8x6afr970a9gcHn89yo4ORocv4E7k2NlFVagtWK8u5viSLLXKvGrFgcHZTUvgX4ctTQ4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIigcEI8WAgWMBCcabZJxnPiAEGJZtRRVHKi0t2DHDiBts0uTVbV_jV_HOK-yqrTi0rNf8Tw8E8_nGYDXNo2FNCL10YjcJwud-FpZ6ZtcGtRCydQ2aIsTcXjKP0_j6Rb86d_COFhlfyY2B7WZ5-6OfESuMoZCxFKMig4W8XU8eb_47bsKUi7S2pfTaEXk2K4u6Petenc0Jl6_iaLJp28fD_2uwoCf84TXvorRBLqQATdkulBbgwVqDK2VqRKJSayMlcuBJWNuI2ECrlEqi3Sgm0CoAGneG3AzQZQOTphMk-F-x0XQeCi7dzoBpqOKbKV7zxZKn7wcTrq9bguvOLhXcZpDsPYu7CzLhVpdqNnsH3s4uQ_3OkeWfWgl7wFs2fIh3GpLW64ewWTcYvhoHqZdGQpWL89oTMX0ip3PSdxLyxrUPCNnt67Ysul61mA7LeuKWfzYhdNroegebJfz0j4BZlEZDCOB6JIGhoWOrSh4YENpdcHT0IOwp16WdwnNXV2NWdYE1jHNWopnRPGsoXiGHrwdxizadB4be-_3TMk61a6yS0H04NXQTErpIi2qtPNl2yfhMRkTDx63PByWQ1qFDsHIg2SNu0MHl_B7vaX89bNJ_E2ORUyTenDQy8HlZ23axcEgK_-x6aebN_0SbpPeZV-OTo6fwZ3ISbODU8h92K7Pl_Y5uWi1ftHoAoPv1618fwFYXUqo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4F0IFGQkbjRLEjtOfKyAVcWh4sCKcorseFJQt9lVNxFafj1j5wFLUUXPHscee8bzRf48A_Aa81QqK_OQW1mGFKGz0GhUoS2V5UZqlaNnWxzLo7n4eJKe7IAc3sJ40r5PaemP6YEd9nZNgcY9BotVSBBBkGNMV7a6AbsyJQw-gd358afDr66SHGGUkGBC0r-QiXj-j87bUegStLzMkByvSe_ArbZe6c0PvVj8EYlm9-DLoENHQDmbto2Zlj__Su94fSXvw90enLLDTvIB7GD9EG525So3j2D2vuPl0QyZcaUlWNOeU581Mxt2sSQTrpF5JjwjANusWetFzz1fE1lfoOL0McxnHz6_Owr7OgxhKTLRhDrlNjKVioSlAM8NWl5xw2NElWuZ2QxVql2mMJUKTKSNhOFKI6ewZyOpI74Hk3pZ41NgyLXlcSI5d4kA48qkKCsRYazQVCKPA4iHfSnKPkm5q5WxKPxlOc-Lbo0KWqPCr1HBA3gz9ll1KTqulN4ftrvo3XVd0H8Yj6UzpQBejc3kaO72RNe4bDuZTKQUIAJ40lnHOBynUehgSwLItuxmFHBJvLdb6u_ffDJvAgspfTSAg8HCfk_rKi0ORiv8D6WfXU_8OdxOnBE6noTah0lz0eILwl6Nedk72i98jieA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosing+brain+tumours+by+routine+blood+tests+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Podnar%2C+Simon&rft.au=Kukar%2C+Matja%C5%BE&rft.au=Gun%C4%8Dar%2C+Gregor&rft.au=Notar%2C+Mateja&rft.date=2019-10-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-51147-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_019_51147_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |