Deep learning-based liver segmentation for fusion-guided intervention

Purpose Tumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 15; no. 6; pp. 963 - 972
Main Authors Fang, Xi, Xu, Sheng, Wood, Bradford J., Yan, Pingkun
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-020-02147-6

Cover

Abstract Purpose Tumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT image needs to be registered to an imaging modality, in which the tumor is visible. However, multi-modality image registration is a very challenging problem. In this work, we develop a deep learning-based liver segmentation algorithm and use the segmented surfaces to assist image fusion with the applications in guided needle placement procedures for diagnosing and treating liver tumors. Methods The developed segmentation method integrates multi-scale input and multi-scale output features in one single network for context information abstraction. The automatic segmentation results are used to register an interventional CT with a diagnostic image. The registration helps visualize the target and guide the interventional operation. Results The segmentation results demonstrated that the developed segmentation method is highly accurate with Dice of 96.1% on 70 CT scans provided by LiTS challenge. The segmentation algorithm is then applied to a set of images acquired for liver tumor intervention for surface-based image fusion. The effectiveness of the proposed methods is demonstrated through a number of clinical cases. Conclusion Our study shows that deep learning-based image segmentation can obtain useful results to help image fusion for interventional guidance. Such a technique may lead to a number of other potential applications.
AbstractList PurposeTumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT image needs to be registered to an imaging modality, in which the tumor is visible. However, multi-modality image registration is a very challenging problem. In this work, we develop a deep learning-based liver segmentation algorithm and use the segmented surfaces to assist image fusion with the applications in guided needle placement procedures for diagnosing and treating liver tumors.MethodsThe developed segmentation method integrates multi-scale input and multi-scale output features in one single network for context information abstraction. The automatic segmentation results are used to register an interventional CT with a diagnostic image. The registration helps visualize the target and guide the interventional operation.ResultsThe segmentation results demonstrated that the developed segmentation method is highly accurate with Dice of 96.1% on 70 CT scans provided by LiTS challenge. The segmentation algorithm is then applied to a set of images acquired for liver tumor intervention for surface-based image fusion. The effectiveness of the proposed methods is demonstrated through a number of clinical cases.ConclusionOur study shows that deep learning-based image segmentation can obtain useful results to help image fusion for interventional guidance. Such a technique may lead to a number of other potential applications.
Tumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT image needs to be registered to an imaging modality, in which the tumor is visible. However, multi-modality image registration is a very challenging problem. In this work, we develop a deep learning-based liver segmentation algorithm and use the segmented surfaces to assist image fusion with the applications in guided needle placement procedures for diagnosing and treating liver tumors.PURPOSETumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT image needs to be registered to an imaging modality, in which the tumor is visible. However, multi-modality image registration is a very challenging problem. In this work, we develop a deep learning-based liver segmentation algorithm and use the segmented surfaces to assist image fusion with the applications in guided needle placement procedures for diagnosing and treating liver tumors.The developed segmentation method integrates multi-scale input and multi-scale output features in one single network for context information abstraction. The automatic segmentation results are used to register an interventional CT with a diagnostic image. The registration helps visualize the target and guide the interventional operation.METHODSThe developed segmentation method integrates multi-scale input and multi-scale output features in one single network for context information abstraction. The automatic segmentation results are used to register an interventional CT with a diagnostic image. The registration helps visualize the target and guide the interventional operation.The segmentation results demonstrated that the developed segmentation method is highly accurate with Dice of 96.1% on 70 CT scans provided by LiTS challenge. The segmentation algorithm is then applied to a set of images acquired for liver tumor intervention for surface-based image fusion. The effectiveness of the proposed methods is demonstrated through a number of clinical cases.RESULTSThe segmentation results demonstrated that the developed segmentation method is highly accurate with Dice of 96.1% on 70 CT scans provided by LiTS challenge. The segmentation algorithm is then applied to a set of images acquired for liver tumor intervention for surface-based image fusion. The effectiveness of the proposed methods is demonstrated through a number of clinical cases.Our study shows that deep learning-based image segmentation can obtain useful results to help image fusion for interventional guidance. Such a technique may lead to a number of other potential applications.CONCLUSIONOur study shows that deep learning-based image segmentation can obtain useful results to help image fusion for interventional guidance. Such a technique may lead to a number of other potential applications.
Tumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT image needs to be registered to an imaging modality, in which the tumor is visible. However, multi-modality image registration is a very challenging problem. In this work, we develop a deep learning-based liver segmentation algorithm and use the segmented surfaces to assist image fusion with the applications in guided needle placement procedures for diagnosing and treating liver tumors. The developed segmentation method integrates multi-scale input and multi-scale output features in one single network for context information abstraction. The automatic segmentation results are used to register an interventional CT with a diagnostic image. The registration helps visualize the target and guide the interventional operation. The segmentation results demonstrated that the developed segmentation method is highly accurate with Dice of 96.1% on 70 CT scans provided by LiTS challenge. The segmentation algorithm is then applied to a set of images acquired for liver tumor intervention for surface-based image fusion. The effectiveness of the proposed methods is demonstrated through a number of clinical cases. Our study shows that deep learning-based image segmentation can obtain useful results to help image fusion for interventional guidance. Such a technique may lead to a number of other potential applications.
Purpose Tumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT image needs to be registered to an imaging modality, in which the tumor is visible. However, multi-modality image registration is a very challenging problem. In this work, we develop a deep learning-based liver segmentation algorithm and use the segmented surfaces to assist image fusion with the applications in guided needle placement procedures for diagnosing and treating liver tumors. Methods The developed segmentation method integrates multi-scale input and multi-scale output features in one single network for context information abstraction. The automatic segmentation results are used to register an interventional CT with a diagnostic image. The registration helps visualize the target and guide the interventional operation. Results The segmentation results demonstrated that the developed segmentation method is highly accurate with Dice of 96.1% on 70 CT scans provided by LiTS challenge. The segmentation algorithm is then applied to a set of images acquired for liver tumor intervention for surface-based image fusion. The effectiveness of the proposed methods is demonstrated through a number of clinical cases. Conclusion Our study shows that deep learning-based image segmentation can obtain useful results to help image fusion for interventional guidance. Such a technique may lead to a number of other potential applications.
Author Fang, Xi
Wood, Bradford J.
Xu, Sheng
Yan, Pingkun
Author_xml – sequence: 1
  givenname: Xi
  surname: Fang
  fullname: Fang, Xi
  organization: Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
– sequence: 2
  givenname: Sheng
  surname: Xu
  fullname: Xu, Sheng
  organization: Center for Interventional Oncology, Radiology and Imaging Sciences, National Institutes of Health
– sequence: 3
  givenname: Bradford J.
  surname: Wood
  fullname: Wood, Bradford J.
  organization: Center for Interventional Oncology, Radiology and Imaging Sciences, National Institutes of Health
– sequence: 4
  givenname: Pingkun
  surname: Yan
  fullname: Yan, Pingkun
  email: yanp2@rpi.edu
  organization: Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32314228$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha2Kivcf6AJFYsMm9PoRO9lUqoBCJaRuYG15nJvUKGMPdjIV_76mGaCwQCwsW_Y5R8ff3SNbPngk5AuFUwqgviZKK1GXwCAvKlQpP5FdWktaSsGareczhR2yl9IdgKgUr7bJDmecCsbqXXJxjrgqBjTRO9-XC5OwLQa3xlgk7JfoRzO64IsuxKKbUj6W_eTaLHJ-xLjOgnx3QD53Zkh4uNn3ye2Pi5uzq_L61-XPs-_XpRVKjGVjmeRV3dIWWtFWtFNgzGIhG25RYW2laGvAWlgAo5SgjFYKKs5RIu-oNHyf8Dl38ivz8McMg15FtzTxQVPQj1D0DEVnKPofFC2z69vsWk2LJbY2d47mxRmM069fvPut-7DWikPVKJoDTjYBMdxPmEa9dMniMBiPYUqa8YZDxqxElh6_kd6FKfoMRTOR6yjg8Bh49H-j5ypPc8mCehbYGFKK2Gnr5knkgm54_7fsjfVDiDZgUxb7HuNL7XdcfwFlWcD4
CitedBy_id crossref_primary_10_35712_aig_v3_i2_28
crossref_primary_10_1016_j_engappai_2022_105532
crossref_primary_10_1007_s11633_021_1313_0
crossref_primary_10_1016_j_prime_2024_100632
crossref_primary_10_1007_s12072_021_10229_z
crossref_primary_10_12677_ACM_2023_1371620
crossref_primary_10_1007_s11042_024_18388_5
crossref_primary_10_1016_j_artmed_2023_102557
crossref_primary_10_1016_j_jvir_2022_06_003
crossref_primary_10_1016_j_compbiomed_2024_109459
crossref_primary_10_1007_s42979_024_03047_1
crossref_primary_10_1109_JBHI_2023_3278079
crossref_primary_10_1007_s00530_023_01056_3
crossref_primary_10_1002_acm2_13482
crossref_primary_10_1007_s11604_024_01668_3
crossref_primary_10_1111_1754_9485_13609
crossref_primary_10_1371_journal_pone_0275033
crossref_primary_10_1186_s43066_023_00293_5
crossref_primary_10_1007_s10751_024_01927_9
crossref_primary_10_3390_cancers13092162
crossref_primary_10_1007_s11912_021_01054_6
crossref_primary_10_3934_mbe_2022655
crossref_primary_10_3390_diagnostics11101806
Cites_doi 10.1109/TPAMI.2015.2389824
10.1109/TMI.2018.2845918
10.1109/42.736029
10.1007/s00270-012-0446-5
10.1007/s10406-005-0130-9
10.1109/34.121791
10.1016/S1361-8415(01)80026-8
10.1371/journal.pone.0117688
10.1016/j.jvir.2017.10.021
10.1109/CVPR.2017.243
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-00934-2_94
10.1109/CVPR.2016.90
10.1109/ISBI.2019.8759555
10.1109/ISBI.2018.8363817
10.1007/978-1-4614-7657-3_19
ContentType Journal Article
Copyright CARS 2020
CARS 2020.
Copyright_xml – notice: CARS 2020
– notice: CARS 2020.
DBID AAYXX
CITATION
NPM
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11548-020-02147-6
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 972
ExternalDocumentID oai:pubmedcentral.nih.gov:7305971
PMC7305971
32314228
10_1007_s11548_020_02147_6
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: R21EB028001; R01EB027898
  funderid: http://dx.doi.org/10.13039/100000070
– fundername: NIBIB NIH HHS
  grantid: R21EB028001
– fundername: NIBIB NIH HHS
  grantid: R01EB027898
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
K9.
7X8
5PM
ADTOC
BGLVJ
CCPQU
HMCUK
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
UKHRP
UNPAY
ID FETCH-LOGICAL-c474t-9c26358d1d0d4d51f70aabb693ce7e8c64d80e84c00a774121570533e6e3f16a3
IEDL.DBID UNPAY
ISSN 1861-6410
1861-6429
IngestDate Sun Oct 26 03:23:21 EDT 2025
Thu Aug 21 14:10:32 EDT 2025
Thu Oct 02 11:21:44 EDT 2025
Tue Oct 07 06:44:06 EDT 2025
Wed Feb 19 02:30:06 EST 2025
Thu Apr 24 23:10:43 EDT 2025
Wed Oct 01 00:20:34 EDT 2025
Fri Feb 21 02:42:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep learning
Image segmentation
Image-guided interventions
Image fusion
Language English
License Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-9c26358d1d0d4d51f70aabb693ce7e8c64d80e84c00a774121570533e6e3f16a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7305971
PMID 32314228
PQID 2414770301
PQPubID 2043910
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s11548_020_02147_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7305971
proquest_miscellaneous_2393041074
proquest_journals_2414770301
pubmed_primary_32314228
crossref_citationtrail_10_1007_s11548_020_02147_6
crossref_primary_10_1007_s11548_020_02147_6
springer_journals_10_1007_s11548_020_02147_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References He, Zhang, Ren, Sun (CR10) 2015; 37
Haaga (CR7) 2005; 15
CR3
Maintz, Viergever (CR19) 1998; 2
CR6
CR5
Abi-Jaoudeh, Kruecker, Kadoury, Kobeiter, Venkatesan, Levy, Wood (CR1) 2012; 35
CR8
CR18
CR9
CR16
CR15
Li, Chen, Qi, Dou, Fu, Heng (CR17) 2018; 37
CR13
CR24
CR23
CR11
CR22
CR21
CR20
Besl, McKay (CR2) 1992; 14
Herring, Dawant, Maurer, Muratore, Galloway, Fitzpatrick (CR12) 1998; 17
Billings, Boctor, Taylor (CR4) 2015; 10
Jones, Dixon, Collins, Walser, Nikolic (CR14) 2018; 29
2147_CR15
X Li (2147_CR17) 2018; 37
2147_CR16
J Maintz (2147_CR19) 1998; 2
2147_CR18
PJ Besl (2147_CR2) 1992; 14
JL Herring (2147_CR12) 1998; 17
2147_CR6
JR Haaga (2147_CR7) 2005; 15
2147_CR5
2147_CR9
AK Jones (2147_CR14) 2018; 29
2147_CR8
SD Billings (2147_CR4) 2015; 10
2147_CR20
N Abi-Jaoudeh (2147_CR1) 2012; 35
2147_CR21
2147_CR3
2147_CR11
2147_CR22
K He (2147_CR10) 2015; 37
2147_CR23
2147_CR13
2147_CR24
References_xml – volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  ident: CR10
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2389824
– ident: CR21
– ident: CR22
– volume: 37
  start-page: 2663
  issue: 12
  year: 2018
  end-page: 2674
  ident: CR17
  article-title: H-denseunet: hybrid densely connected unet for liver and tumor segmentation from CT volumes
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2845918
– ident: CR18
– volume: 17
  start-page: 743
  issue: 5
  year: 1998
  end-page: 752
  ident: CR12
  article-title: Surface-based registration of ct images to physical space for image-guided surgery of the spine: a sensitivity study
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.736029
– volume: 35
  start-page: 986
  issue: 5
  year: 2012
  end-page: 998
  ident: CR1
  article-title: Multimodality image fusion-guided procedures: technique, accuracy, and applications
  publication-title: Cardio Vasc Interv Radiol
  doi: 10.1007/s00270-012-0446-5
– volume: 15
  start-page: d116
  issue: 4
  year: 2005
  end-page: d120
  ident: CR7
  article-title: Interventional ct: 30 years’ experience
  publication-title: Eur Radiol Suppl
  doi: 10.1007/s10406-005-0130-9
– ident: CR3
– ident: CR15
– ident: CR16
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR6
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  end-page: 256
  ident: CR2
  article-title: A method for registration of 3-d shapes
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.121791
– ident: CR5
– ident: CR8
– volume: 2
  start-page: 1
  issue: 1
  year: 1998
  end-page: 36
  ident: CR19
  article-title: A survey of medical image registration
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(01)80026-8
– ident: CR24
– ident: CR23
– ident: CR20
– volume: 10
  start-page: e0117688
  issue: 3
  year: 2015
  ident: CR4
  article-title: Iterative most-likely point registration (IMLP): a robust algorithm for computing optimal shape alignment
  publication-title: PloS One
  doi: 10.1371/journal.pone.0117688
– volume: 29
  start-page: 518
  issue: 4
  year: 2018
  ident: CR14
  article-title: Best practice guidelines for ct-guided interventional procedures
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/j.jvir.2017.10.021
– volume: 37
  start-page: 2663
  issue: 12
  year: 2018
  ident: 2147_CR17
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2845918
– ident: 2147_CR13
  doi: 10.1109/CVPR.2017.243
– ident: 2147_CR16
– ident: 2147_CR21
  doi: 10.1007/978-3-319-24574-4_28
– volume: 29
  start-page: 518
  issue: 4
  year: 2018
  ident: 2147_CR14
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/j.jvir.2017.10.021
– ident: 2147_CR18
  doi: 10.1007/978-3-030-00934-2_94
– volume: 15
  start-page: d116
  issue: 4
  year: 2005
  ident: 2147_CR7
  publication-title: Eur Radiol Suppl
  doi: 10.1007/s10406-005-0130-9
– ident: 2147_CR11
  doi: 10.1109/CVPR.2016.90
– volume: 2
  start-page: 1
  issue: 1
  year: 1998
  ident: 2147_CR19
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(01)80026-8
– ident: 2147_CR5
  doi: 10.1109/ISBI.2019.8759555
– ident: 2147_CR8
– ident: 2147_CR3
– ident: 2147_CR9
– ident: 2147_CR6
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 2147_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.121791
– volume: 17
  start-page: 743
  issue: 5
  year: 1998
  ident: 2147_CR12
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.736029
– volume: 10
  start-page: e0117688
  issue: 3
  year: 2015
  ident: 2147_CR4
  publication-title: PloS One
  doi: 10.1371/journal.pone.0117688
– ident: 2147_CR24
– ident: 2147_CR22
  doi: 10.1109/ISBI.2018.8363817
– volume: 35
  start-page: 986
  issue: 5
  year: 2012
  ident: 2147_CR1
  publication-title: Cardio Vasc Interv Radiol
  doi: 10.1007/s00270-012-0446-5
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 2147_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2389824
– ident: 2147_CR20
– ident: 2147_CR23
– ident: 2147_CR15
  doi: 10.1007/978-1-4614-7657-3_19
SSID ssj0045735
Score 2.3155634
Snippet Purpose Tumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement...
Tumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement...
PurposeTumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 963
SubjectTerms Algorithms
Computed tomography
Computer Imaging
Computer Science
Computer vision
Deep learning
Diagnostic systems
Health Informatics
Image acquisition
Image contrast
Image processing
Image registration
Image segmentation
Imaging
Liver
Machine learning
Magnetic resonance imaging
Medical imaging
Medicine
Medicine & Public Health
Multiscale analysis
Original Article
Pattern Recognition and Graphics
Placement
Positron emission
Radiology
Surgery
Tomography
Tumors
Vision
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BKw14oDAGBAoK0t5WV_lw7OSxgo5q03iiUvcUObbTVZS0oo0Q_PX4UidtKarYsy92zj6fz7673wGcaxnQWPkByUWemQsKjYnQcUgyESUaK8B5VS7MzRc2GtOrSTSxSWGrOtq9dklWmnqb7IbWNcHrDuJ8ccIeQrvC22pBe_D59npYa2Aa8aqwph8znzDqezZZ5t-97B9IB1bmYbBk4zF9Ao_KYil-_RTz-c6hdNmBcc3OJhblW79cZ335-y-kx_vy-wyeWivVHWzE6jk80MUpdOoKEK5VCKdwcmNd8y9g-EnrpWuLUEwJno7KnWPUh7vS0-82xalwjZHs5iW-0ZFpOVOGaLYTdnkG48vh148jYms0EEk5XZNEIpqNWW3lKaoiP-eeEFnGklBqrmPJqIo9HVPpecJYmohlwTH9VzMd5j4T4UtoFYtCvwY3ChWVinMjJYLKSGRcBHkUKNNHoINEOeDXC5VKC2COdTTm6RZ6GacsNVOWVlOWMgcumm-WG_iOo9Tdev1Tu5VXqTFxKEe96DvwoWk2mxA9K6LQi9LQhEnoUYxtdeDVRlya4UJjQSPOmgN8T5AaAgT43m8pZncV0LfRvua-Z8bt1RKy_a1jXPQasfwPpt_cr_e38DioZBIforrQWv8o9Ttjl62z93Yb_gHfTisl
  priority: 102
  providerName: Springer Nature
Title Deep learning-based liver segmentation for fusion-guided intervention
URI https://link.springer.com/article/10.1007/s11548-020-02147-6
https://www.ncbi.nlm.nih.gov/pubmed/32314228
https://www.proquest.com/docview/2414770301
https://www.proquest.com/docview/2393041074
https://pubmed.ncbi.nlm.nih.gov/PMC7305971
https://www.ncbi.nlm.nih.gov/pmc/articles/7305971
UnpaywallVersion submittedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6429
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6429
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045735
  issn: 1861-6429
  databaseCode: U2A
  dateStart: 20060625
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NVgL2ML4hMKog8cbcJY5jJ4_V6JhAmxCi0vYUObZTKtKsYo0m-OvxJU62Mmlib5F8-TjdXfyzffc7gPdGUZbokJJCFrldoLCESJNEJJdxarADXNDUwhyf8KMZ-3wan25B2NXCNEn7Kl-Mq3I5rhY_mtzK1VLtd3li-9YlLQi2C54hjy38HsBwdvJ1coYLq4SHhLOWgaC9pqkrlGnL5RCfE1wwIVOYIHxzMrqBMG8mSvanpdvwoK5W8velLMtrE9LhI_jWqdLmofwc1-t8rP78w_J4J10fw46Dp_6kHXoCW6Z6CveP3QH8M5h-NGblu1YTc4JzoPZLzO3wL8x86QqZKt9CYb-ocSeOzOuFtkKLa8mVz2F2OP1-cERcJwaimGBrkirkrLE21YFmOg4LEUiZ5zyNlBEmUZzpJDAJU0EgLZ5ExgqBRb6Gm6gIuYxewKA6r8wr8ONIM6WFsL4gmYplLiQtYqrtM6ihqfYg7EySKUdTjt0yyuyKYBnNmFkzZo0ZM-7Bh_6eVUvScav0bmfpzAXsRWaBDBP49ws9eNcP21DD8xNZmfPaykRpFDDMYPXgZesY_esii5ORTc0DseEyvQDSeG-OWIs3dN7OyB7sdc519Vm3abHXO-B_KP36buJv4CFt4gS3m3ZhsP5Vm7cWfa3zEQwnn86-TEdwb0YnIxd9fwHHsyqP
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xkFb2MKADlq0bmbS31VJ-OHbyiDaqsrV9ohJvkWM7pVIJFW2E-O_nS52UqgjBsy92ks93Ptt33wH81DKgsfIDkos8MxsUGhOh45BkIko0VoDzqlyY4Yj1x_TvdXRtk8IWdbR7fSVZWep1sht61wS3O8jzxQl7B3tIYIWM-ePgvLa_NOJVWU0_Zj5h1PdsqszzfWwuR1s-5naoZHNf-gFaZTEXjw9iNnuyJPUO4aP1Jd3zFfhHsKOLNhzUdRpcq7ZteD-0F-if4OKP1nPXloqYEFzDlDvD2Ax3oSe3NhGpcI0r6-YlnqSRSTlVRmj6JDjyGMa9i6vffWIrKRBJOV2SRCLnjMFEeYqqyM-5J0SWsSSUmutYMqpiT8dUep4w_iAyTnBM0tVMh7nPRHgCu8VdoT-DG4WKSsW5wVJQGYmMiyCPAmX6CHSQKAf8-oem0tKMY7WLWbomSEYQUgNCWoGQMgd-Nc_MVyQbL0p3apxSq3CL1DgilKP18h340TQbVcH7D1Hou9LIhEnoUYxAdeB0BWszXGj8XJxMDvANwBsBpOHebCmmNxUdt7GRZldmxu3WU2P9Wi99RbeZPq_46C9v6_0MWv2r4SAdXI7-fYX9oJrxeHTUgd3lfam_GU9qmX2vFOc_vpoREw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NTuLjgW0MtgDbgsTbsMiHYyePCKjYB2gPq8Rb5NhOV6kL1dpo4r_nLnXSViC0Pftix747--y7-x3AsdURT00YsVKVBV5QeMqUTWNWqCSzVAEuaHJhrm_E1YB_vU1ul7L4m2j31iU5z2kglKZqdjox5eki8Y0sbUZXH8L8kkyswUtOQAko0YPorN2LeSKbEpthKkImeBi4tJmn-1g9mh7Zm4_DJjvf6RZs1NVE3f9V4_HS8dR_DdvOrvTP5oLwBl7YagdetTUbfKfCO7B-7Zzpb-HywtqJ78pGDBmdZ8YfU5yGP7XD3y4pqfLRrPXLml7V2LAeGSQaLQVK7sKgf_nz_Iq5qgpMc8lnLNOEP4P8MYHhJglLGShVFCKLtZU21YKbNLAp10Gg0DakRZWUsGuFjctQqHgPetVdZd-Dn8SGayMl8lVxnahCqqhMIoN9RDbKjAdhu6C5dpDjVPlinC_AkokJOTIhb5iQCw8-d99M5oAbz1IftnzKnfJNczRKuKSdLPTgqGtGtSFfiKrsXY00cRYHnKJRPXg3Z2s3XIw2LyGjeSBXGN4RECT3aks1-tVAc-N-iTc0HPekFY3Fbz03i5NOfP5h0vv_1_snWP9x0c-_f7n5dgCbUSPw9Ip0CL3Zn9p-QKNqVnxs9OYBV-wVTw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_khNo-tLbWNq2WFPqme-Zjs5s8SqtIQSmlB_oUNrub8zAXj3qhtH99Z5JN9CpIfQvs5GOYmexvd2d-A_DJ6oinJoxYqcoCFyg8ZcqmMStUklnqABe0tTCnZ-Jkwr-eJ-drEPa1MG3Svi5m47qaj-vZZZtbuZjrgz5P7ABdEkEwLnjWRYLwewTrk7Nvhxe0sEpFyATvGAi66yhzhTJduRzhc0YLJmIKk0ysTkb3EOb9RMnhtPQZbDT1Qv3-parqzoR0_AK-96p0eShX42ZZjPWff1geH6XrJjx38NQ_7IZewpqtX8GTU3cAvwVHX6xd-K7VxJTRHGj8inI7_Bs7nbtCptpHKOyXDe3EsWkzMyg0u5Nc-Romx0c_Pp8w14mBaS75kmWaOGvQpiYw3CRhKQOlikJksbbSplpwkwY25ToIFOJJYqyQVORrhY3LUKh4G0b1dW3fgp_EhmsjJfqC4jpRhVRRmUQGnxHZKDMehL1Jcu1oyqlbRpXfEiyTGXM0Y96aMRce7A33LDqSjgeld3pL5y5gb3IEMlzS3y_04OMwjKFG5yeqttcNysRZHHDKYPXgTecYw-tixMnEpuaBXHGZQYBovFdH0OItnbczsgf7vXPdftZDWuwPDvgfSr97nPh7eBq1cULbTTswWv5s7C6ir2XxwcXbX4kgKBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+liver+segmentation+for+fusion-guided+intervention&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Fang+Xi&rft.au=Xu%2C+Sheng&rft.au=Wood%2C+Bradford+J&rft.au=Pingkun%2C+Yan&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=15&rft.issue=6&rft.spage=963&rft.epage=972&rft_id=info:doi/10.1007%2Fs11548-020-02147-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon