Assessing the learning curve associated with a novel flexible robot in the pre-clinical and clinical setting
Background Transoral robotic surgery has been successfully used by head and neck surgeons for a variety of procedures but is limited by rigid instrumentation and line-of-sight visualization. Non-linear systems specifically designed for the aerodigestive tract are needed. Ease of use of these new sys...
Saved in:
| Published in | Surgical endoscopy Vol. 36; no. 2; pp. 1563 - 1572 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0930-2794 1432-2218 1866-6817 1432-2218 |
| DOI | 10.1007/s00464-021-08445-7 |
Cover
| Summary: | Background
Transoral robotic surgery has been successfully used by head and neck surgeons for a variety of procedures but is limited by rigid instrumentation and line-of-sight visualization. Non-linear systems specifically designed for the aerodigestive tract are needed. Ease of use of these new systems in both training and clinical environments is critical in its widespread adoption.
Methods
Residents, fellows, and junior faculty performed four tasks on an anatomical airway mannequin using the Medrobotics FLEX™ Robotic System: expose and incise the tonsil, grasp the epiglottis, palpate the vocal processes, and grasp the interarytenoid space. These tasks were performed once a day for four days; after a 4-month time gap, subjects were asked to perform these same tasks for three more days. Time to task completion and total distance driven were tracked. In addition, a retrospective analysis was performed analyzing one attending physician’s experience with clinical usage of the robot.
Results
13 subjects completed the initial round of the mannequin simulation and 8 subjects completed the additional testing 4 months later. Subjects rapidly improved their speed and efficiency at task completion. Junior residents were slower in most tasks initially compared to senior trainees but quickly reached similar levels of efficiency. Following the break there was minimal degradation in skills and continued improvement in efficiency was observed with additional trials. There was significant heterogeneity in the analyzed clinical cases, but when analyzing cases of similar complexity and pathology, clear decreases in overall operative times were demonstrable.
Conclusion
Novice users quickly gained proficiency with the FLEX™ Robotic System in a training environment, and these skills are retained after several months. This learning could translate to the clinical setting if a proper training regimen is developed. The Medrobotics FLEX™ Robotic System shows promise as a surgical tool in head and neck surgery in this study. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0930-2794 1432-2218 1866-6817 1432-2218 |
| DOI: | 10.1007/s00464-021-08445-7 |