COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm

As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 27; no. 1; pp. 547 - 562
Main Authors Albataineh, Zaid, Aldrweesh, Fatima, Alzubaidi, Mohammad A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
1573-7543
DOI10.1007/s10586-023-03972-5

Cover

Abstract As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage.
AbstractList As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage.
As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage.As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage.
Author Albataineh, Zaid
Aldrweesh, Fatima
Alzubaidi, Mohammad A.
Author_xml – sequence: 1
  givenname: Zaid
  surname: Albataineh
  fullname: Albataineh, Zaid
  email: zaid.bataineh@yu.edu.jo
  organization: Department of Electronic Engineering, Yarmouk University
– sequence: 2
  givenname: Fatima
  surname: Aldrweesh
  fullname: Aldrweesh, Fatima
  organization: Department of Computer Engineering, Yarmouk University
– sequence: 3
  givenname: Mohammad A.
  surname: Alzubaidi
  fullname: Alzubaidi, Mohammad A.
  organization: Department of Computer Engineering, Yarmouk University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36712413$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wB1igSGzYpPgRx_YGCQ0FKlXqpu3Wchwn4yqxB9-kaP49TmegpYuqK1u-37k65_gYHYQYHELvCT4lGIvPQDCXdYkpKzFTgpb8FToiXLBS8Iod5DvLYyG5OETHALcY40ypN-iQ1YLQirAjdL26vDn_VhJVrK5KP5reQdF604cIHgoT2gLcnUt-2hYGwAGMLkzFDD70xWjs2gdXDM6ksDyYoY8ZXY9v0evODODe7c8TdP397Gr1s7y4_HG--npR2kpUU6kYJ8KQxinMRNU1om5b2eCGNooYVbGmYpLShlaGcmKtpKwTMidvrOqye8pOENvtncPGbH-bYdCblFOkrSZYLyXpXUk6l6TvS9I8q77sVJu5GV1rc6JkHpTReP3_JPi17uOdVlKQii4LPu0XpPhrdjDp0YN1w2CCizNoKgTBklOyoB-foLdxTiGXoqlihEhV13WmPjx29M_K33_KgNwBNkWA5Dpt_WQmHxeDfng-LX0ifVFF-2Ihw6F36cH2M6o_12TFrA
CitedBy_id crossref_primary_10_55905_rcssv14n3_001
crossref_primary_10_1016_j_compbiomed_2025_109659
crossref_primary_10_3390_diagnostics13172772
crossref_primary_10_3390_bdcc8120192
crossref_primary_10_1007_s13198_025_02735_2
crossref_primary_10_1038_s41598_024_68946_y
crossref_primary_10_4108_eetinis_v12i1_6240
crossref_primary_10_1007_s12597_024_00836_3
crossref_primary_10_1016_j_bspc_2024_107103
crossref_primary_10_1007_s00354_023_00222_5
crossref_primary_10_1016_j_ejro_2024_100603
crossref_primary_10_1007_s40031_024_01155_3
crossref_primary_10_1590_1678_4324_2024240297
crossref_primary_10_1007_s40998_023_00611_y
crossref_primary_10_1038_s41598_023_40506_w
crossref_primary_10_1038_s41598_025_91322_3
Cites_doi 10.1016/j.neucom.2019.10.118
10.1016/j.artmed.2021.102018
10.1148/radiol.2020200370
10.1016/S1473-3099(20)30086-4
10.1016/j.ejrad.2020.109009
10.1016/j.eap.2021.02.012
10.1016/j.ijedudev.2021.102485
10.7717/peerj-cs.553
10.3390/diagnostics11050893
10.3389/fbioe.2020.00898
10.1049/ipr2.12153
10.1063/1.5039089
10.1007/s00330-020-06879-6
10.1111/exsy.12759
10.1016/S0140-6736(22)00008-3
10.1016/j.jiph.2021.07.015
10.1007/s00521-012-1025-z
10.1016/S0003-2670(01)95359-0
10.1148/radiol.2020201343
10.1002/ima.22679
10.1016/j.crad.2020.03.004
10.1186/s12938-020-00807-x
10.3390/diagnostics12081853
10.1021/acs.analchem.0c02060
10.1371/journal.pone.0236621
10.1002/ca.23655
10.1109/COMITCon.2019.8862451
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10586-023-03972-5
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 562
ExternalDocumentID 10.1007/s10586-023-03972-5
PMC9871425
36712413
10_1007_s10586_023_03972_5
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-93517a1be90374fb76dd8b0b2b91a943b43822b24a251cc823f78007bc9f41323
IEDL.DBID U2A
ISSN 1386-7857
1573-7543
IngestDate Sun Oct 26 04:09:29 EDT 2025
Tue Sep 30 17:16:18 EDT 2025
Fri Sep 05 11:38:56 EDT 2025
Fri Jul 25 22:19:22 EDT 2025
Mon Jul 21 06:07:54 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Wed Oct 01 04:12:08 EDT 2025
Fri Feb 21 02:40:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
Naïve Bayes
The severity of infection
Segmentation
KNN
Moderate stage
SVM
Severe stage
Decision tree
Mild stage
CT scans
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-93517a1be90374fb76dd8b0b2b91a943b43822b24a251cc823f78007bc9f41323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10586-023-03972-5.pdf
PMID 36712413
PQID 2931189666
PQPubID 2043865
PageCount 16
ParticipantIDs unpaywall_primary_10_1007_s10586_023_03972_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9871425
proquest_miscellaneous_2771085215
proquest_journals_2931189666
pubmed_primary_36712413
crossref_citationtrail_10_1007_s10586_023_03972_5
crossref_primary_10_1007_s10586_023_03972_5
springer_journals_10_1007_s10586_023_03972_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationTitleAlternate Cluster Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kim, Hong, Yoon (CR15) 2020
Cervantes (CR7) 2020; 408
Al-Azawi (CR5) 2021; 7
Reuge (CR24) 2021; 87
Alyasseri (CR1) 2022; 39
Calvo (CR6) 2020; 92
Ding (CR9) 2020; 127
Iwanaga (CR14) 2021; 34
Shi (CR26) 2020; 20
Pan (CR20) 2020; 295
CR35
CR33
Mohanty (CR17) 2013; 23
Wang (CR29) 2020; 75
CR30
Qiblawey (CR22) 2021; 2021
Yu (CR34) 2020; 19
Zhu (CR37) 2020; 15
Padhan, Prabheesh (CR19) 2021; 70
Yang (CR32) 2018; 1967
Amini, Shalbaf (CR3) 2022; 32
CR28
Feng (CR10) 2020; 92
CR25
CR23
Zhou (CR36) 2020; 30
CR21
Coomans, Massart (CR8) 1982; 136
Flor (CR11) 2022
Murphy (CR18) 2006; 18
Irmak (CR13) 2021; 15
Mahesh (CR16) 2020; 9
Xiao (CR31) 2020; 8
Srivastava (CR27) 1999
Alzubaidi (CR2) 2021; 112
Aswathy, Hareendran, Vinod Chandra (CR4) 2021; 14
Gomes (CR12) 2022; 12
D Coomans (3972_CR8) 1982; 136
R Padhan (3972_CR19) 2021; 70
3972_CR21
X Ding (3972_CR9) 2020; 127
3972_CR23
W Feng (3972_CR10) 2020; 92
ZAA Alyasseri (3972_CR1) 2022; 39
KP Murphy (3972_CR18) 2006; 18
RJ Al-Azawi (3972_CR5) 2021; 7
H Kim (3972_CR15) 2020
C Calvo (3972_CR6) 2020; 92
N Reuge (3972_CR24) 2021; 87
3972_CR25
N Amini (3972_CR3) 2022; 32
3972_CR28
L Xiao (3972_CR31) 2020; 8
AL Aswathy (3972_CR4) 2021; 14
AK Mohanty (3972_CR17) 2013; 23
F Pan (3972_CR20) 2020; 295
3972_CR30
MA Alzubaidi (3972_CR2) 2021; 112
B Mahesh (3972_CR16) 2020; 9
3972_CR33
E Irmak (3972_CR13) 2021; 15
H Shi (3972_CR26) 2020; 20
3972_CR35
S Zhou (3972_CR36) 2020; 30
J Zhu (3972_CR37) 2020; 15
Z Yu (3972_CR34) 2020; 19
LS Flor (3972_CR11) 2022
R Gomes (3972_CR12) 2022; 12
J Iwanaga (3972_CR14) 2021; 34
H Yang (3972_CR32) 2018; 1967
Y Qiblawey (3972_CR22) 2021; 2021
K Wang (3972_CR29) 2020; 75
J Cervantes (3972_CR7) 2020; 408
A Srivastava (3972_CR27) 1999
References_xml – volume: 408
  start-page: 189
  year: 2020
  end-page: 215
  ident: CR7
  article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– volume: 112
  year: 2021
  ident: CR2
  article-title: A novel computational method for assigning weights of importance to symptoms of COVID-19 patients
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102018
– volume: 295
  start-page: 715
  issue: 3
  year: 2020
  end-page: 721
  ident: CR20
  article-title: Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19)
  publication-title: Radiology
  doi: 10.1148/radiol.2020200370
– volume: 20
  start-page: 425
  issue: 4
  year: 2020
  end-page: 434
  ident: CR26
  article-title: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet. Infect. Dis
  doi: 10.1016/S1473-3099(20)30086-4
– ident: CR30
– volume: 127
  year: 2020
  ident: CR9
  article-title: Chest CT findings of COVID-19 pneumonia by duration of symptoms
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109009
– volume: 70
  start-page: 220
  year: 2021
  end-page: 237
  ident: CR19
  article-title: The economics of COVID-19 pandemic: a survey
  publication-title: Econ. Anal. Policy
  doi: 10.1016/j.eap.2021.02.012
– volume: 87
  year: 2021
  ident: CR24
  article-title: Education response to COVID 19 pandemic, a special issue proposed by UNICEF: editorial review
  publication-title: Int. J. Educ. Dev.
  doi: 10.1016/j.ijedudev.2021.102485
– volume: 7
  year: 2021
  ident: CR5
  article-title: Efficient classification of COVID-19 CT scans by using q-transform model for feature extraction
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.553
– volume: 2021
  start-page: 893
  issue: 11
  year: 2021
  ident: CR22
  article-title: Detection and severity classification of COVID-19 in CT images using deep learning
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11050893
– ident: CR33
– volume: 8
  start-page: 898
  year: 2020
  ident: CR31
  article-title: Development and validation of a deep learning-based model using computed tomography imaging for predicting disease severity of coronavirus disease 2019
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00898
– ident: CR35
– volume: 15
  start-page: 1814
  issue: 8
  year: 2021
  end-page: 1824
  ident: CR13
  article-title: COVID-19 disease severity assessment using CNN model
  publication-title: IET Image Proc.
  doi: 10.1049/ipr2.12153
– volume: 1967
  issue: 1
  year: 2018
  ident: CR32
  article-title: Application of machine learning methods in bioinformatics
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5039089
– volume: 30
  start-page: 5446
  issue: 10
  year: 2020
  end-page: 5454
  ident: CR36
  article-title: Imaging features and evolution on CT in 100 COVID-19 pneumonia patients in Wuhan, China
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06879-6
– volume: 39
  issue: 3
  year: 2022
  ident: CR1
  article-title: Review on COVID-19 diagnosis models based on machine learning and deep learning approaches
  publication-title: Expert. Syst.
  doi: 10.1111/exsy.12759
– ident: CR25
– volume: 18
  start-page: 1
  issue: 60
  year: 2006
  end-page: 8
  ident: CR18
  article-title: Naive bayes classifiers
  publication-title: Univ. Br. Columbia
– ident: CR23
– ident: CR21
– year: 2022
  ident: CR11
  article-title: Quantifying the effects of the COVID-19 pandemic on gender equality on health, social, and economic indicators: a comprehensive review of data from March, 2020, to September, 2021
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)00008-3
– volume: 14
  start-page: 1435
  issue: 10
  year: 2021
  end-page: 1445
  ident: CR4
  article-title: COVID-19 diagnosis and severity detection from CT-images using transfer learning and back propagation neural network
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2021.07.015
– volume: 92
  start-page: 241
  issue: 4
  year: 2020
  end-page: e1
  ident: CR6
  article-title: Recommendations on the clinical management of the COVID-19 infection by the new coronavirus SARS-CoV2. Spanish Paediatric Association working group
  publication-title: Anales de Pediatríéa (English Edition)
– volume: 23
  start-page: 1011
  issue: 3
  year: 2013
  end-page: 1017
  ident: CR17
  article-title: Texture-based features for classification of mammograms using decision tree
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1025-z
– volume: 136
  start-page: 15
  year: 1982
  end-page: 27
  ident: CR8
  article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: part 1. k-Nearest neighbour classification by using alternative voting rules
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)95359-0
– year: 2020
  ident: CR15
  article-title: Diagnostic performance of CT and reverse transcriptase-polymerase chain reaction for coronavirus disease 2019: a meta-analysis
  publication-title: Radiology
  doi: 10.1148/radiol.2020201343
– volume: 32
  start-page: 102
  issue: 1
  year: 2022
  end-page: 110
  ident: CR3
  article-title: Automatic classification of severity of COVID-19 patients using texture feature and random forest based on computed tomography images
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22679
– start-page: 237
  year: 1999
  end-page: 261
  ident: CR27
  article-title: Parallel formulations of decision-tree classification algorithms
  publication-title: High Performance Data Mining
– volume: 75
  start-page: 341
  issue: 5
  year: 2020
  end-page: 347
  ident: CR29
  article-title: Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2020.03.004
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  ident: CR34
  article-title: Rapid identification of COVID-19 severity in CT scans through classification of deep features
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-020-00807-x
– volume: 12
  start-page: 1853
  issue: 8
  year: 2022
  ident: CR12
  article-title: A comprehensive review of machine learning used to combat COVID- 19
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12081853
– volume: 92
  start-page: 10196
  issue: 15
  year: 2020
  end-page: 10209
  ident: CR10
  article-title: Molecular diagnosis of COVID-19: challenges and research needs
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02060
– volume: 15
  issue: 7
  year: 2020
  ident: CR37
  article-title: Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0236621
– volume: 9
  start-page: 381
  year: 2020
  end-page: 386
  ident: CR16
  article-title: Machine learning algorithms—a review
  publication-title: Int. J. Sci. Res.
– ident: CR28
– volume: 34
  start-page: 108
  issue: 1
  year: 2021
  end-page: 114
  ident: CR14
  article-title: A review of anatomy education during and after the COVID-19 pandemic: revisiting traditional and modern methods to achieve future innovation
  publication-title: Clin. Anat.
  doi: 10.1002/ca.23655
– volume: 20
  start-page: 425
  issue: 4
  year: 2020
  ident: 3972_CR26
  publication-title: Lancet. Infect. Dis
  doi: 10.1016/S1473-3099(20)30086-4
– volume: 75
  start-page: 341
  issue: 5
  year: 2020
  ident: 3972_CR29
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2020.03.004
– volume: 70
  start-page: 220
  year: 2021
  ident: 3972_CR19
  publication-title: Econ. Anal. Policy
  doi: 10.1016/j.eap.2021.02.012
– volume: 295
  start-page: 715
  issue: 3
  year: 2020
  ident: 3972_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.2020200370
– ident: 3972_CR21
– volume: 7
  year: 2021
  ident: 3972_CR5
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.553
– volume: 15
  issue: 7
  year: 2020
  ident: 3972_CR37
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0236621
– year: 2020
  ident: 3972_CR15
  publication-title: Radiology
  doi: 10.1148/radiol.2020201343
– volume: 9
  start-page: 381
  year: 2020
  ident: 3972_CR16
  publication-title: Int. J. Sci. Res.
– volume: 1967
  issue: 1
  year: 2018
  ident: 3972_CR32
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5039089
– volume: 112
  year: 2021
  ident: 3972_CR2
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102018
– ident: 3972_CR25
– ident: 3972_CR23
  doi: 10.1109/COMITCon.2019.8862451
– ident: 3972_CR33
– volume: 32
  start-page: 102
  issue: 1
  year: 2022
  ident: 3972_CR3
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22679
– volume: 15
  start-page: 1814
  issue: 8
  year: 2021
  ident: 3972_CR13
  publication-title: IET Image Proc.
  doi: 10.1049/ipr2.12153
– ident: 3972_CR35
– volume: 2021
  start-page: 893
  issue: 11
  year: 2021
  ident: 3972_CR22
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11050893
– volume: 8
  start-page: 898
  year: 2020
  ident: 3972_CR31
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00898
– volume: 14
  start-page: 1435
  issue: 10
  year: 2021
  ident: 3972_CR4
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2021.07.015
– volume: 87
  year: 2021
  ident: 3972_CR24
  publication-title: Int. J. Educ. Dev.
  doi: 10.1016/j.ijedudev.2021.102485
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 3972_CR34
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-020-00807-x
– volume: 34
  start-page: 108
  issue: 1
  year: 2021
  ident: 3972_CR14
  publication-title: Clin. Anat.
  doi: 10.1002/ca.23655
– volume: 23
  start-page: 1011
  issue: 3
  year: 2013
  ident: 3972_CR17
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1025-z
– start-page: 237
  volume-title: High Performance Data Mining
  year: 1999
  ident: 3972_CR27
– ident: 3972_CR28
– volume: 92
  start-page: 241
  issue: 4
  year: 2020
  ident: 3972_CR6
  publication-title: Anales de Pediatríéa (English Edition)
– volume: 127
  year: 2020
  ident: 3972_CR9
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109009
– volume: 408
  start-page: 189
  year: 2020
  ident: 3972_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– volume: 92
  start-page: 10196
  issue: 15
  year: 2020
  ident: 3972_CR10
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02060
– ident: 3972_CR30
– volume: 18
  start-page: 1
  issue: 60
  year: 2006
  ident: 3972_CR18
  publication-title: Univ. Br. Columbia
– volume: 136
  start-page: 15
  year: 1982
  ident: 3972_CR8
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)95359-0
– year: 2022
  ident: 3972_CR11
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)00008-3
– volume: 30
  start-page: 5446
  issue: 10
  year: 2020
  ident: 3972_CR36
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06879-6
– volume: 12
  start-page: 1853
  issue: 8
  year: 2022
  ident: 3972_CR12
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12081853
– volume: 39
  issue: 3
  year: 2022
  ident: 3972_CR1
  publication-title: Expert. Syst.
  doi: 10.1111/exsy.12759
SSID ssj0009729
Score 2.4055774
Snippet As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 547
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Classification
Computed tomography
Computer Communication Networks
Computer Science
Coronaviruses
COVID-19
Decision trees
Deep learning
Feature extraction
Infections
Kurtosis
Lungs
Machine learning
Medical imaging
Operating Systems
Pandemics
Performance evaluation
Polymerase chain reaction
Processor Architectures
Respiratory diseases
Severe acute respiratory syndrome
Support vector machines
Texture
Viral diseases
Viruses
X-rays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4t3QNw4L0QWJCRuLEWeTs-IARlVwsSBaEt2lvkV7qV2rTQVoh_z0zipFQrVZztKHbG9nzOzHwfwCuVaWJ90rxwRvI0dpZLk-VcFFWkKewXFVSc_GWUn4_Tz5fZ5QGMuloYSqvszsTmoLYLQ__I36BbQiyM4Dx_t_zJSTWKoqudhIby0gr2bUMxdgMOY2LGGsDhh9PRt-9bGl7R6JZFSUHDyYQvo_HFdFlBCbkJD9FJ4xVt11Vdw5_X0yj7WOptuLmpl-rPbzWb_eOuzu7BHY8z2ft2YdyHA1c_gLudhgPzW_ohjIdff3z6yCPJhhd8OsfTZcVsm343XTFVW4au05HCHVM9iSejbPkJmzeJmI555YkJU7MJfrL11fwRjM9OL4bn3EstcJOKdM1lkkVCRdpJ4qOptMitLXSoYy0jJdNEU7ww1nGqEA8ZU8RJJRBqCm1khW4wTo5gUC9q9wRYGKoktNhmjUpdnhdFhSDMCGNzKXTlAoi6r1oaz0NOchizcsugTJYo0RJlY4kyC-B1_8yyZeHY2_u4M1bpd-Sq3K6fAF72zbiXKECiarfYYB8hqBgDUVAAj1vb9q9LchFRDDIAsWP1vgPxdO-21NOrhq9b4qUUj8YATrr1sR3Wvlmc9GvoPyb9dP-kn8GtGOFYm29-DIP1r417jnBqrV_4PfIXfQMZDw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHwNAgMZiTfmLo7jOH6cOqaBxOBhReMpsh2nq2jTiqZC8NdzztdWhiYQz77EsXP2_U539zuA11oYz_pkaOqsonHkcqqsSKhMC2Z82I-lvjj5w2lyMo7fn4vzLTjqamHqbPcuJNnUNHiWprI6WObFwZXCN5H65FlOQzSo6E4NcfgWbCcCEfkAtsennw6_1L5W6uetCT-ZkJxKEfO2dubPL9q0T9dA5_XcyT6Aehdur8ul_vFdz2ZXbNTxDrhudU1qytfhujJD-_M34sf_Xf59uNeCWHLYaN0D2HLlQ9jpGkSQ9r54BOPRx8_vjihTZHRGp3O8ulYkb3L7piuiy5ygXXa-fR7RPUMo8an4EzKvszwdadtaTIieTRYoejF_DOPjt2ejE9r2caA2lnFFFRdMamac8mQ3hZFJnqcmNJFRTKuYGx-MjEwUawRb1qYRLyTiWGmsKtDGRnwXBuWidE-BhKHmYY5judWxS5I0LRDhWWnzRElTuABY9_cy25Kc-14bs-ySntnvXYZ7l9V7l4kA3vTPLBuKjxul9zqlyNrjvsoQM6Gjhp5jEsCrfhgPqo--6NIt1igjpa_0QIgVwJNGh_rpeCKZD3AGIDe0qxfwJOCbI-X0oiYDV-jx4r0bwH6nNpefddMq9ntd_YtFP_s38edwJ0Ls1yS378Gg-rZ2LxC7VeZlezR_AX_HN90
  priority: 102
  providerName: Unpaywall
Title COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm
URI https://link.springer.com/article/10.1007/s10586-023-03972-5
https://www.ncbi.nlm.nih.gov/pubmed/36712413
https://www.proquest.com/docview/2931189666
https://www.proquest.com/docview/2771085215
https://pubmed.ncbi.nlm.nih.gov/PMC9871425
https://link.springer.com/content/pdf/10.1007/s10586-023-03972-5.pdf
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7543
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7QH2wPheYFRG4o1ZivNl-7F07QaIMqEFbU-R7ThdpTadaCvEf885X101NMFTFNlx4pzt-53u7ncA71WsHeuTpsIaSaPA5lSaOKFcFEw7tx8TLjn56zg5S6PPl_FlkxS2bKPdW5dkdVLfSnaLhQuYDamPShRNqB3Yix2dF67iNOhvqHZ5VZuMhcK9MuZNqszfx9hWR3cw5t1Qyc5fug8P1-WN-v1LzWa3VNLoCTxusCTp18J_Cg9s-QwO2joNpNm2zyEdfPvx6YQySQYXdDrHE2RJ8jrEbrokqswJqkfrqtgR1RF1EhcRPyHzKtjSkqa6xISo2WSBXa_nLyAdDS8GZ7Qpp0BNxKMVlWHMuGLaSsc5U2ie5LnQvg60ZEpGoXY-wUAHkULMY4wIwoIjnOTayAJVXRC-hN1yUdpDIL6vQj_HttyoyCaJEAUCLcNNnkiuC-sBa_9qZhqucVfyYpZtWJKdJDKURFZJIos9-NA9c1Mzbdzb-6gVVtbsumWG0AXtJTTgEg_edc24X5wTRJV2scY-nLuEC0Q6HryqZdu9Lkw4c35GD_iW1LsOjot7u6WcXlec3BINTzz-PDhu18fms-6bxXG3hv5h0q__b_Q38ChACFbHmB_B7urn2r5FCLXSPdgRo9Me7PVPr74M8fpxOD7_3qv2Ed6l4_P-1R9v5xUx
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7aFw4P0wFFgkONFV4-d6DxWCtFVC24BQgnoz-3IaKXECSVT1z_HbmLXXDlGliEvPu1aynt2Zbz0z3wfwTsTSsj5JmhrFaRQYTbmKE8rS3Jc27eentjn5vJd0BtGXi_hiC_7UvTC2rLL2iaWj1lNlv5EfYFhCLIzgPPk4-0WtapTNrtYSGsJJK-jDkmLMNXacmusrvMLND7tHaO_3QXBy3G93qFMZoCpi0YLyMPaZ8KXhloollyzROpUtGUjuCx6F0qbKAhlEAqGAUmkQ5gxRFpOK5xgBLPEBhoCdKIw4Xv52Ph_3vn1f0f6yUifND1O7_Ji5th3XvBentgA4pC0EBXglXA-NN_DuzbLNJnd7F3aXxUxcX4nx-J_wePIA7jlcSz5VG_EhbJniEdyvNSOIcyGPYdD--qN7RH1O2n06mqA3mxNdlfuN5kQUmmCoNlZRj4iGNJTY6vwhmZSFn4Y4pYshEeMhmmhxOXkCg1t56U9hu5gW5jmQVkuELY1jWonIJEma5gj6FFM64UzmxgO_fquZcrznVn5jnK0Ym60lMrREVloiiz340Dwzq1g_Ns7eq42VOQ8wz1b71YO3zTCeXZuQEYWZLnEOY7b5A1GXB88q2zY_FybMtzlPD9ia1ZsJlhd8faQYXZb84BwvweiKPdiv98fqb21axX6zh_5j0S82L_oN7Hb652fZWbd3-hLuBAgFq1r3Pdhe_F6aVwjlFvK1Oy8Eft72Ef0LCMVUMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa6Ftjj0L03d92mAbutQi2_JB2LdEG7dt0OzdCboZfTAIkTLAmG_ftRfiVBh6I9i5ZskxRJkPwI8Fml2qM-aSqckTSJnKXSpBnlomDap_2Y8M3J3y-yk0Hy7Sq9Wuvir6rd25Rk3dPgUZrKxeHMFodrjW-p8MWzMQ3RoGI49QB2Eg-UgBI9iI5WsLu8mlPGYuGPT3nTNvP_PTZN0w1_82bZZJc7fQKPluVM_f2jxuM189R_BruNX0mOakF4DluufAFP25kNpFHhlzDo_fh1ekyZJL1LOprgbTInti63G82JKi1BU-n8RDuiOtBO4qvjh2RSFV460kyaGBI1Hk6R9HryCgb9r5e9E9qMVqAm4cmCyjhlXDHtpMefKTTPrBU61JGWTMkk1j4_GOkoUej_GCOiuODoWnJtZIFmL4pfw3Y5Ld1bIGGo4tDimjUqcVkmRIFOl-HGZpLrwgXA2r-amwZ33I-_GOcrxGTPiRw5kVecyNMAvnTPzGrUjVup91tm5Y0GznN0YzB2wmAuC-BTt4y64xMiqnTTJdJw7psvUGwCeFPztjsuzjjzOccA-AbXOwKPy725Uo6uK3xuiUEoXoUBHLTysXqt277ioJOhO3z03v12_wgPfx738_PTi7N38DhCz6wuPd-H7cXvpXuPntVCf6iU5x_dchaV
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHwNAgMZiTfmLo7jOH6cOqaBxOBhReMpsh2nq2jTiqZC8NdzztdWhiYQz77EsXP2_U539zuA11oYz_pkaOqsonHkcqqsSKhMC2Z82I-lvjj5w2lyMo7fn4vzLTjqamHqbPcuJNnUNHiWprI6WObFwZXCN5H65FlOQzSo6E4NcfgWbCcCEfkAtsennw6_1L5W6uetCT-ZkJxKEfO2dubPL9q0T9dA5_XcyT6Aehdur8ul_vFdz2ZXbNTxDrhudU1qytfhujJD-_M34sf_Xf59uNeCWHLYaN0D2HLlQ9jpGkSQ9r54BOPRx8_vjihTZHRGp3O8ulYkb3L7piuiy5ygXXa-fR7RPUMo8an4EzKvszwdadtaTIieTRYoejF_DOPjt2ejE9r2caA2lnFFFRdMamac8mQ3hZFJnqcmNJFRTKuYGx-MjEwUawRb1qYRLyTiWGmsKtDGRnwXBuWidE-BhKHmYY5judWxS5I0LRDhWWnzRElTuABY9_cy25Kc-14bs-ySntnvXYZ7l9V7l4kA3vTPLBuKjxul9zqlyNrjvsoQM6Gjhp5jEsCrfhgPqo--6NIt1igjpa_0QIgVwJNGh_rpeCKZD3AGIDe0qxfwJOCbI-X0oiYDV-jx4r0bwH6nNpefddMq9ntd_YtFP_s38edwJ0Ls1yS378Gg-rZ2LxC7VeZlezR_AX_HN90
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+CT-images+diagnosis+and+severity+assessment+using+machine+learning+algorithm&rft.jtitle=Cluster+computing&rft.au=Albataineh%2C+Zaid&rft.au=Aldrweesh%2C+Fatima&rft.au=Alzubaidi%2C+Mohammad+A.&rft.date=2024-02-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=1&rft.spage=547&rft.epage=562&rft_id=info:doi/10.1007%2Fs10586-023-03972-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_023_03972_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon