COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm
As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not...
Saved in:
| Published in | Cluster computing Vol. 27; no. 1; pp. 547 - 562 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-7857 1573-7543 1573-7543 |
| DOI | 10.1007/s10586-023-03972-5 |
Cover
| Abstract | As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage. |
|---|---|
| AbstractList | As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage. As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage.As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage. |
| Author | Albataineh, Zaid Aldrweesh, Fatima Alzubaidi, Mohammad A. |
| Author_xml | – sequence: 1 givenname: Zaid surname: Albataineh fullname: Albataineh, Zaid email: zaid.bataineh@yu.edu.jo organization: Department of Electronic Engineering, Yarmouk University – sequence: 2 givenname: Fatima surname: Aldrweesh fullname: Aldrweesh, Fatima organization: Department of Computer Engineering, Yarmouk University – sequence: 3 givenname: Mohammad A. surname: Alzubaidi fullname: Alzubaidi, Mohammad A. organization: Department of Computer Engineering, Yarmouk University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36712413$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URB_wB1igSGzYpPgRx_YGCQ0FKlXqpu3Wchwn4yqxB9-kaP49TmegpYuqK1u-37k65_gYHYQYHELvCT4lGIvPQDCXdYkpKzFTgpb8FToiXLBS8Iod5DvLYyG5OETHALcY40ypN-iQ1YLQirAjdL26vDn_VhJVrK5KP5reQdF604cIHgoT2gLcnUt-2hYGwAGMLkzFDD70xWjs2gdXDM6ksDyYoY8ZXY9v0evODODe7c8TdP397Gr1s7y4_HG--npR2kpUU6kYJ8KQxinMRNU1om5b2eCGNooYVbGmYpLShlaGcmKtpKwTMidvrOqye8pOENvtncPGbH-bYdCblFOkrSZYLyXpXUk6l6TvS9I8q77sVJu5GV1rc6JkHpTReP3_JPi17uOdVlKQii4LPu0XpPhrdjDp0YN1w2CCizNoKgTBklOyoB-foLdxTiGXoqlihEhV13WmPjx29M_K33_KgNwBNkWA5Dpt_WQmHxeDfng-LX0ifVFF-2Ihw6F36cH2M6o_12TFrA |
| CitedBy_id | crossref_primary_10_55905_rcssv14n3_001 crossref_primary_10_1016_j_compbiomed_2025_109659 crossref_primary_10_3390_diagnostics13172772 crossref_primary_10_3390_bdcc8120192 crossref_primary_10_1007_s13198_025_02735_2 crossref_primary_10_1038_s41598_024_68946_y crossref_primary_10_4108_eetinis_v12i1_6240 crossref_primary_10_1007_s12597_024_00836_3 crossref_primary_10_1016_j_bspc_2024_107103 crossref_primary_10_1007_s00354_023_00222_5 crossref_primary_10_1016_j_ejro_2024_100603 crossref_primary_10_1007_s40031_024_01155_3 crossref_primary_10_1590_1678_4324_2024240297 crossref_primary_10_1007_s40998_023_00611_y crossref_primary_10_1038_s41598_023_40506_w crossref_primary_10_1038_s41598_025_91322_3 |
| Cites_doi | 10.1016/j.neucom.2019.10.118 10.1016/j.artmed.2021.102018 10.1148/radiol.2020200370 10.1016/S1473-3099(20)30086-4 10.1016/j.ejrad.2020.109009 10.1016/j.eap.2021.02.012 10.1016/j.ijedudev.2021.102485 10.7717/peerj-cs.553 10.3390/diagnostics11050893 10.3389/fbioe.2020.00898 10.1049/ipr2.12153 10.1063/1.5039089 10.1007/s00330-020-06879-6 10.1111/exsy.12759 10.1016/S0140-6736(22)00008-3 10.1016/j.jiph.2021.07.015 10.1007/s00521-012-1025-z 10.1016/S0003-2670(01)95359-0 10.1148/radiol.2020201343 10.1002/ima.22679 10.1016/j.crad.2020.03.004 10.1186/s12938-020-00807-x 10.3390/diagnostics12081853 10.1021/acs.analchem.0c02060 10.1371/journal.pone.0236621 10.1002/ca.23655 10.1109/COMITCon.2019.8862451 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s10586-023-03972-5 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 562 |
| ExternalDocumentID | 10.1007/s10586-023-03972-5 PMC9871425 36712413 10_1007_s10586_023_03972_5 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-93517a1be90374fb76dd8b0b2b91a943b43822b24a251cc823f78007bc9f41323 |
| IEDL.DBID | U2A |
| ISSN | 1386-7857 1573-7543 |
| IngestDate | Sun Oct 26 04:09:29 EDT 2025 Tue Sep 30 17:16:18 EDT 2025 Fri Sep 05 11:38:56 EDT 2025 Fri Jul 25 22:19:22 EDT 2025 Mon Jul 21 06:07:54 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Wed Oct 01 04:12:08 EDT 2025 Fri Feb 21 02:40:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | COVID-19 Naïve Bayes The severity of infection Segmentation KNN Moderate stage SVM Severe stage Decision tree Mild stage CT scans |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-93517a1be90374fb76dd8b0b2b91a943b43822b24a251cc823f78007bc9f41323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10586-023-03972-5.pdf |
| PMID | 36712413 |
| PQID | 2931189666 |
| PQPubID | 2043865 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1007_s10586_023_03972_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9871425 proquest_miscellaneous_2771085215 proquest_journals_2931189666 pubmed_primary_36712413 crossref_citationtrail_10_1007_s10586_023_03972_5 crossref_primary_10_1007_s10586_023_03972_5 springer_journals_10_1007_s10586_023_03972_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Netherlands – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationTitleAlternate | Cluster Comput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Kim, Hong, Yoon (CR15) 2020 Cervantes (CR7) 2020; 408 Al-Azawi (CR5) 2021; 7 Reuge (CR24) 2021; 87 Alyasseri (CR1) 2022; 39 Calvo (CR6) 2020; 92 Ding (CR9) 2020; 127 Iwanaga (CR14) 2021; 34 Shi (CR26) 2020; 20 Pan (CR20) 2020; 295 CR35 CR33 Mohanty (CR17) 2013; 23 Wang (CR29) 2020; 75 CR30 Qiblawey (CR22) 2021; 2021 Yu (CR34) 2020; 19 Zhu (CR37) 2020; 15 Padhan, Prabheesh (CR19) 2021; 70 Yang (CR32) 2018; 1967 Amini, Shalbaf (CR3) 2022; 32 CR28 Feng (CR10) 2020; 92 CR25 CR23 Zhou (CR36) 2020; 30 CR21 Coomans, Massart (CR8) 1982; 136 Flor (CR11) 2022 Murphy (CR18) 2006; 18 Irmak (CR13) 2021; 15 Mahesh (CR16) 2020; 9 Xiao (CR31) 2020; 8 Srivastava (CR27) 1999 Alzubaidi (CR2) 2021; 112 Aswathy, Hareendran, Vinod Chandra (CR4) 2021; 14 Gomes (CR12) 2022; 12 D Coomans (3972_CR8) 1982; 136 R Padhan (3972_CR19) 2021; 70 3972_CR21 X Ding (3972_CR9) 2020; 127 3972_CR23 W Feng (3972_CR10) 2020; 92 ZAA Alyasseri (3972_CR1) 2022; 39 KP Murphy (3972_CR18) 2006; 18 RJ Al-Azawi (3972_CR5) 2021; 7 H Kim (3972_CR15) 2020 C Calvo (3972_CR6) 2020; 92 N Reuge (3972_CR24) 2021; 87 3972_CR25 N Amini (3972_CR3) 2022; 32 3972_CR28 L Xiao (3972_CR31) 2020; 8 AL Aswathy (3972_CR4) 2021; 14 AK Mohanty (3972_CR17) 2013; 23 F Pan (3972_CR20) 2020; 295 3972_CR30 MA Alzubaidi (3972_CR2) 2021; 112 B Mahesh (3972_CR16) 2020; 9 3972_CR33 E Irmak (3972_CR13) 2021; 15 H Shi (3972_CR26) 2020; 20 3972_CR35 S Zhou (3972_CR36) 2020; 30 J Zhu (3972_CR37) 2020; 15 Z Yu (3972_CR34) 2020; 19 LS Flor (3972_CR11) 2022 R Gomes (3972_CR12) 2022; 12 J Iwanaga (3972_CR14) 2021; 34 H Yang (3972_CR32) 2018; 1967 Y Qiblawey (3972_CR22) 2021; 2021 K Wang (3972_CR29) 2020; 75 J Cervantes (3972_CR7) 2020; 408 A Srivastava (3972_CR27) 1999 |
| References_xml | – volume: 408 start-page: 189 year: 2020 end-page: 215 ident: CR7 article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – volume: 112 year: 2021 ident: CR2 article-title: A novel computational method for assigning weights of importance to symptoms of COVID-19 patients publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102018 – volume: 295 start-page: 715 issue: 3 year: 2020 end-page: 721 ident: CR20 article-title: Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19) publication-title: Radiology doi: 10.1148/radiol.2020200370 – volume: 20 start-page: 425 issue: 4 year: 2020 end-page: 434 ident: CR26 article-title: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study publication-title: Lancet. Infect. Dis doi: 10.1016/S1473-3099(20)30086-4 – ident: CR30 – volume: 127 year: 2020 ident: CR9 article-title: Chest CT findings of COVID-19 pneumonia by duration of symptoms publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109009 – volume: 70 start-page: 220 year: 2021 end-page: 237 ident: CR19 article-title: The economics of COVID-19 pandemic: a survey publication-title: Econ. Anal. Policy doi: 10.1016/j.eap.2021.02.012 – volume: 87 year: 2021 ident: CR24 article-title: Education response to COVID 19 pandemic, a special issue proposed by UNICEF: editorial review publication-title: Int. J. Educ. Dev. doi: 10.1016/j.ijedudev.2021.102485 – volume: 7 year: 2021 ident: CR5 article-title: Efficient classification of COVID-19 CT scans by using q-transform model for feature extraction publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.553 – volume: 2021 start-page: 893 issue: 11 year: 2021 ident: CR22 article-title: Detection and severity classification of COVID-19 in CT images using deep learning publication-title: Diagnostics doi: 10.3390/diagnostics11050893 – ident: CR33 – volume: 8 start-page: 898 year: 2020 ident: CR31 article-title: Development and validation of a deep learning-based model using computed tomography imaging for predicting disease severity of coronavirus disease 2019 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00898 – ident: CR35 – volume: 15 start-page: 1814 issue: 8 year: 2021 end-page: 1824 ident: CR13 article-title: COVID-19 disease severity assessment using CNN model publication-title: IET Image Proc. doi: 10.1049/ipr2.12153 – volume: 1967 issue: 1 year: 2018 ident: CR32 article-title: Application of machine learning methods in bioinformatics publication-title: AIP Conf. Proc. doi: 10.1063/1.5039089 – volume: 30 start-page: 5446 issue: 10 year: 2020 end-page: 5454 ident: CR36 article-title: Imaging features and evolution on CT in 100 COVID-19 pneumonia patients in Wuhan, China publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06879-6 – volume: 39 issue: 3 year: 2022 ident: CR1 article-title: Review on COVID-19 diagnosis models based on machine learning and deep learning approaches publication-title: Expert. Syst. doi: 10.1111/exsy.12759 – ident: CR25 – volume: 18 start-page: 1 issue: 60 year: 2006 end-page: 8 ident: CR18 article-title: Naive bayes classifiers publication-title: Univ. Br. Columbia – ident: CR23 – ident: CR21 – year: 2022 ident: CR11 article-title: Quantifying the effects of the COVID-19 pandemic on gender equality on health, social, and economic indicators: a comprehensive review of data from March, 2020, to September, 2021 publication-title: Lancet doi: 10.1016/S0140-6736(22)00008-3 – volume: 14 start-page: 1435 issue: 10 year: 2021 end-page: 1445 ident: CR4 article-title: COVID-19 diagnosis and severity detection from CT-images using transfer learning and back propagation neural network publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2021.07.015 – volume: 92 start-page: 241 issue: 4 year: 2020 end-page: e1 ident: CR6 article-title: Recommendations on the clinical management of the COVID-19 infection by the new coronavirus SARS-CoV2. Spanish Paediatric Association working group publication-title: Anales de Pediatríéa (English Edition) – volume: 23 start-page: 1011 issue: 3 year: 2013 end-page: 1017 ident: CR17 article-title: Texture-based features for classification of mammograms using decision tree publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1025-z – volume: 136 start-page: 15 year: 1982 end-page: 27 ident: CR8 article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: part 1. k-Nearest neighbour classification by using alternative voting rules publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)95359-0 – year: 2020 ident: CR15 article-title: Diagnostic performance of CT and reverse transcriptase-polymerase chain reaction for coronavirus disease 2019: a meta-analysis publication-title: Radiology doi: 10.1148/radiol.2020201343 – volume: 32 start-page: 102 issue: 1 year: 2022 end-page: 110 ident: CR3 article-title: Automatic classification of severity of COVID-19 patients using texture feature and random forest based on computed tomography images publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22679 – start-page: 237 year: 1999 end-page: 261 ident: CR27 article-title: Parallel formulations of decision-tree classification algorithms publication-title: High Performance Data Mining – volume: 75 start-page: 341 issue: 5 year: 2020 end-page: 347 ident: CR29 article-title: Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area publication-title: Clin. Radiol. doi: 10.1016/j.crad.2020.03.004 – volume: 19 start-page: 1 issue: 1 year: 2020 end-page: 13 ident: CR34 article-title: Rapid identification of COVID-19 severity in CT scans through classification of deep features publication-title: Biomed. Eng. Online doi: 10.1186/s12938-020-00807-x – volume: 12 start-page: 1853 issue: 8 year: 2022 ident: CR12 article-title: A comprehensive review of machine learning used to combat COVID- 19 publication-title: Diagnostics doi: 10.3390/diagnostics12081853 – volume: 92 start-page: 10196 issue: 15 year: 2020 end-page: 10209 ident: CR10 article-title: Molecular diagnosis of COVID-19: challenges and research needs publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02060 – volume: 15 issue: 7 year: 2020 ident: CR37 article-title: Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs publication-title: PLoS ONE doi: 10.1371/journal.pone.0236621 – volume: 9 start-page: 381 year: 2020 end-page: 386 ident: CR16 article-title: Machine learning algorithms—a review publication-title: Int. J. Sci. Res. – ident: CR28 – volume: 34 start-page: 108 issue: 1 year: 2021 end-page: 114 ident: CR14 article-title: A review of anatomy education during and after the COVID-19 pandemic: revisiting traditional and modern methods to achieve future innovation publication-title: Clin. Anat. doi: 10.1002/ca.23655 – volume: 20 start-page: 425 issue: 4 year: 2020 ident: 3972_CR26 publication-title: Lancet. Infect. Dis doi: 10.1016/S1473-3099(20)30086-4 – volume: 75 start-page: 341 issue: 5 year: 2020 ident: 3972_CR29 publication-title: Clin. Radiol. doi: 10.1016/j.crad.2020.03.004 – volume: 70 start-page: 220 year: 2021 ident: 3972_CR19 publication-title: Econ. Anal. Policy doi: 10.1016/j.eap.2021.02.012 – volume: 295 start-page: 715 issue: 3 year: 2020 ident: 3972_CR20 publication-title: Radiology doi: 10.1148/radiol.2020200370 – ident: 3972_CR21 – volume: 7 year: 2021 ident: 3972_CR5 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.553 – volume: 15 issue: 7 year: 2020 ident: 3972_CR37 publication-title: PLoS ONE doi: 10.1371/journal.pone.0236621 – year: 2020 ident: 3972_CR15 publication-title: Radiology doi: 10.1148/radiol.2020201343 – volume: 9 start-page: 381 year: 2020 ident: 3972_CR16 publication-title: Int. J. Sci. Res. – volume: 1967 issue: 1 year: 2018 ident: 3972_CR32 publication-title: AIP Conf. Proc. doi: 10.1063/1.5039089 – volume: 112 year: 2021 ident: 3972_CR2 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102018 – ident: 3972_CR25 – ident: 3972_CR23 doi: 10.1109/COMITCon.2019.8862451 – ident: 3972_CR33 – volume: 32 start-page: 102 issue: 1 year: 2022 ident: 3972_CR3 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22679 – volume: 15 start-page: 1814 issue: 8 year: 2021 ident: 3972_CR13 publication-title: IET Image Proc. doi: 10.1049/ipr2.12153 – ident: 3972_CR35 – volume: 2021 start-page: 893 issue: 11 year: 2021 ident: 3972_CR22 publication-title: Diagnostics doi: 10.3390/diagnostics11050893 – volume: 8 start-page: 898 year: 2020 ident: 3972_CR31 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00898 – volume: 14 start-page: 1435 issue: 10 year: 2021 ident: 3972_CR4 publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2021.07.015 – volume: 87 year: 2021 ident: 3972_CR24 publication-title: Int. J. Educ. Dev. doi: 10.1016/j.ijedudev.2021.102485 – volume: 19 start-page: 1 issue: 1 year: 2020 ident: 3972_CR34 publication-title: Biomed. Eng. Online doi: 10.1186/s12938-020-00807-x – volume: 34 start-page: 108 issue: 1 year: 2021 ident: 3972_CR14 publication-title: Clin. Anat. doi: 10.1002/ca.23655 – volume: 23 start-page: 1011 issue: 3 year: 2013 ident: 3972_CR17 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1025-z – start-page: 237 volume-title: High Performance Data Mining year: 1999 ident: 3972_CR27 – ident: 3972_CR28 – volume: 92 start-page: 241 issue: 4 year: 2020 ident: 3972_CR6 publication-title: Anales de Pediatríéa (English Edition) – volume: 127 year: 2020 ident: 3972_CR9 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109009 – volume: 408 start-page: 189 year: 2020 ident: 3972_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – volume: 92 start-page: 10196 issue: 15 year: 2020 ident: 3972_CR10 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02060 – ident: 3972_CR30 – volume: 18 start-page: 1 issue: 60 year: 2006 ident: 3972_CR18 publication-title: Univ. Br. Columbia – volume: 136 start-page: 15 year: 1982 ident: 3972_CR8 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)95359-0 – year: 2022 ident: 3972_CR11 publication-title: Lancet doi: 10.1016/S0140-6736(22)00008-3 – volume: 30 start-page: 5446 issue: 10 year: 2020 ident: 3972_CR36 publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06879-6 – volume: 12 start-page: 1853 issue: 8 year: 2022 ident: 3972_CR12 publication-title: Diagnostics doi: 10.3390/diagnostics12081853 – volume: 39 issue: 3 year: 2022 ident: 3972_CR1 publication-title: Expert. Syst. doi: 10.1111/exsy.12759 |
| SSID | ssj0009729 |
| Score | 2.4055774 |
| Snippet | As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 547 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Classification Computed tomography Computer Communication Networks Computer Science Coronaviruses COVID-19 Decision trees Deep learning Feature extraction Infections Kurtosis Lungs Machine learning Medical imaging Operating Systems Pandemics Performance evaluation Polymerase chain reaction Processor Architectures Respiratory diseases Severe acute respiratory syndrome Support vector machines Texture Viral diseases Viruses X-rays |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4t3QNw4L0QWJCRuLEWeTs-IARlVwsSBaEt2lvkV7qV2rTQVoh_z0zipFQrVZztKHbG9nzOzHwfwCuVaWJ90rxwRvI0dpZLk-VcFFWkKewXFVSc_GWUn4_Tz5fZ5QGMuloYSqvszsTmoLYLQ__I36BbQiyM4Dx_t_zJSTWKoqudhIby0gr2bUMxdgMOY2LGGsDhh9PRt-9bGl7R6JZFSUHDyYQvo_HFdFlBCbkJD9FJ4xVt11Vdw5_X0yj7WOptuLmpl-rPbzWb_eOuzu7BHY8z2ft2YdyHA1c_gLudhgPzW_ohjIdff3z6yCPJhhd8OsfTZcVsm343XTFVW4au05HCHVM9iSejbPkJmzeJmI555YkJU7MJfrL11fwRjM9OL4bn3EstcJOKdM1lkkVCRdpJ4qOptMitLXSoYy0jJdNEU7ww1nGqEA8ZU8RJJRBqCm1khW4wTo5gUC9q9wRYGKoktNhmjUpdnhdFhSDMCGNzKXTlAoi6r1oaz0NOchizcsugTJYo0RJlY4kyC-B1_8yyZeHY2_u4M1bpd-Sq3K6fAF72zbiXKECiarfYYB8hqBgDUVAAj1vb9q9LchFRDDIAsWP1vgPxdO-21NOrhq9b4qUUj8YATrr1sR3Wvlmc9GvoPyb9dP-kn8GtGOFYm29-DIP1r417jnBqrV_4PfIXfQMZDw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHwNAgMZiTfmLo7jOH6cOqaBxOBhReMpsh2nq2jTiqZC8NdzztdWhiYQz77EsXP2_U539zuA11oYz_pkaOqsonHkcqqsSKhMC2Z82I-lvjj5w2lyMo7fn4vzLTjqamHqbPcuJNnUNHiWprI6WObFwZXCN5H65FlOQzSo6E4NcfgWbCcCEfkAtsennw6_1L5W6uetCT-ZkJxKEfO2dubPL9q0T9dA5_XcyT6Aehdur8ul_vFdz2ZXbNTxDrhudU1qytfhujJD-_M34sf_Xf59uNeCWHLYaN0D2HLlQ9jpGkSQ9r54BOPRx8_vjihTZHRGp3O8ulYkb3L7piuiy5ygXXa-fR7RPUMo8an4EzKvszwdadtaTIieTRYoejF_DOPjt2ejE9r2caA2lnFFFRdMamac8mQ3hZFJnqcmNJFRTKuYGx-MjEwUawRb1qYRLyTiWGmsKtDGRnwXBuWidE-BhKHmYY5judWxS5I0LRDhWWnzRElTuABY9_cy25Kc-14bs-ySntnvXYZ7l9V7l4kA3vTPLBuKjxul9zqlyNrjvsoQM6Gjhp5jEsCrfhgPqo--6NIt1igjpa_0QIgVwJNGh_rpeCKZD3AGIDe0qxfwJOCbI-X0oiYDV-jx4r0bwH6nNpefddMq9ntd_YtFP_s38edwJ0Ls1yS378Gg-rZ2LxC7VeZlezR_AX_HN90 priority: 102 providerName: Unpaywall |
| Title | COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm |
| URI | https://link.springer.com/article/10.1007/s10586-023-03972-5 https://www.ncbi.nlm.nih.gov/pubmed/36712413 https://www.proquest.com/docview/2931189666 https://www.proquest.com/docview/2771085215 https://pubmed.ncbi.nlm.nih.gov/PMC9871425 https://link.springer.com/content/pdf/10.1007/s10586-023-03972-5.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7543 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7QH2wPheYFRG4o1ZivNl-7F07QaIMqEFbU-R7ThdpTadaCvEf885X101NMFTFNlx4pzt-53u7ncA71WsHeuTpsIaSaPA5lSaOKFcFEw7tx8TLjn56zg5S6PPl_FlkxS2bKPdW5dkdVLfSnaLhQuYDamPShRNqB3Yix2dF67iNOhvqHZ5VZuMhcK9MuZNqszfx9hWR3cw5t1Qyc5fug8P1-WN-v1LzWa3VNLoCTxusCTp18J_Cg9s-QwO2joNpNm2zyEdfPvx6YQySQYXdDrHE2RJ8jrEbrokqswJqkfrqtgR1RF1EhcRPyHzKtjSkqa6xISo2WSBXa_nLyAdDS8GZ7Qpp0BNxKMVlWHMuGLaSsc5U2ie5LnQvg60ZEpGoXY-wUAHkULMY4wIwoIjnOTayAJVXRC-hN1yUdpDIL6vQj_HttyoyCaJEAUCLcNNnkiuC-sBa_9qZhqucVfyYpZtWJKdJDKURFZJIos9-NA9c1Mzbdzb-6gVVtbsumWG0AXtJTTgEg_edc24X5wTRJV2scY-nLuEC0Q6HryqZdu9Lkw4c35GD_iW1LsOjot7u6WcXlec3BINTzz-PDhu18fms-6bxXG3hv5h0q__b_Q38ChACFbHmB_B7urn2r5FCLXSPdgRo9Me7PVPr74M8fpxOD7_3qv2Ed6l4_P-1R9v5xUx |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7aFw4P0wFFgkONFV4-d6DxWCtFVC24BQgnoz-3IaKXECSVT1z_HbmLXXDlGliEvPu1aynt2Zbz0z3wfwTsTSsj5JmhrFaRQYTbmKE8rS3Jc27eentjn5vJd0BtGXi_hiC_7UvTC2rLL2iaWj1lNlv5EfYFhCLIzgPPk4-0WtapTNrtYSGsJJK-jDkmLMNXacmusrvMLND7tHaO_3QXBy3G93qFMZoCpi0YLyMPaZ8KXhloollyzROpUtGUjuCx6F0qbKAhlEAqGAUmkQ5gxRFpOK5xgBLPEBhoCdKIw4Xv52Ph_3vn1f0f6yUifND1O7_Ji5th3XvBentgA4pC0EBXglXA-NN_DuzbLNJnd7F3aXxUxcX4nx-J_wePIA7jlcSz5VG_EhbJniEdyvNSOIcyGPYdD--qN7RH1O2n06mqA3mxNdlfuN5kQUmmCoNlZRj4iGNJTY6vwhmZSFn4Y4pYshEeMhmmhxOXkCg1t56U9hu5gW5jmQVkuELY1jWonIJEma5gj6FFM64UzmxgO_fquZcrznVn5jnK0Ym60lMrREVloiiz340Dwzq1g_Ns7eq42VOQ8wz1b71YO3zTCeXZuQEYWZLnEOY7b5A1GXB88q2zY_FybMtzlPD9ia1ZsJlhd8faQYXZb84BwvweiKPdiv98fqb21axX6zh_5j0S82L_oN7Hb652fZWbd3-hLuBAgFq1r3Pdhe_F6aVwjlFvK1Oy8Eft72Ef0LCMVUMQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCa6Ftjj0L03d92mAbutQi2_JB2LdEG7dt0OzdCboZfTAIkTLAmG_ftRfiVBh6I9i5ZskxRJkPwI8Fml2qM-aSqckTSJnKXSpBnlomDap_2Y8M3J3y-yk0Hy7Sq9Wuvir6rd25Rk3dPgUZrKxeHMFodrjW-p8MWzMQ3RoGI49QB2Eg-UgBI9iI5WsLu8mlPGYuGPT3nTNvP_PTZN0w1_82bZZJc7fQKPluVM_f2jxuM189R_BruNX0mOakF4DluufAFP25kNpFHhlzDo_fh1ekyZJL1LOprgbTInti63G82JKi1BU-n8RDuiOtBO4qvjh2RSFV460kyaGBI1Hk6R9HryCgb9r5e9E9qMVqAm4cmCyjhlXDHtpMefKTTPrBU61JGWTMkk1j4_GOkoUej_GCOiuODoWnJtZIFmL4pfw3Y5Ld1bIGGo4tDimjUqcVkmRIFOl-HGZpLrwgXA2r-amwZ33I-_GOcrxGTPiRw5kVecyNMAvnTPzGrUjVup91tm5Y0GznN0YzB2wmAuC-BTt4y64xMiqnTTJdJw7psvUGwCeFPztjsuzjjzOccA-AbXOwKPy725Uo6uK3xuiUEoXoUBHLTysXqt277ioJOhO3z03v12_wgPfx738_PTi7N38DhCz6wuPd-H7cXvpXuPntVCf6iU5x_dchaV |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4YHwNAgMZiTfmLo7jOH6cOqaBxOBhReMpsh2nq2jTiqZC8NdzztdWhiYQz77EsXP2_U539zuA11oYz_pkaOqsonHkcqqsSKhMC2Z82I-lvjj5w2lyMo7fn4vzLTjqamHqbPcuJNnUNHiWprI6WObFwZXCN5H65FlOQzSo6E4NcfgWbCcCEfkAtsennw6_1L5W6uetCT-ZkJxKEfO2dubPL9q0T9dA5_XcyT6Aehdur8ul_vFdz2ZXbNTxDrhudU1qytfhujJD-_M34sf_Xf59uNeCWHLYaN0D2HLlQ9jpGkSQ9r54BOPRx8_vjihTZHRGp3O8ulYkb3L7piuiy5ygXXa-fR7RPUMo8an4EzKvszwdadtaTIieTRYoejF_DOPjt2ejE9r2caA2lnFFFRdMamac8mQ3hZFJnqcmNJFRTKuYGx-MjEwUawRb1qYRLyTiWGmsKtDGRnwXBuWidE-BhKHmYY5judWxS5I0LRDhWWnzRElTuABY9_cy25Kc-14bs-ySntnvXYZ7l9V7l4kA3vTPLBuKjxul9zqlyNrjvsoQM6Gjhp5jEsCrfhgPqo--6NIt1igjpa_0QIgVwJNGh_rpeCKZD3AGIDe0qxfwJOCbI-X0oiYDV-jx4r0bwH6nNpefddMq9ntd_YtFP_s38edwJ0Ls1yS378Gg-rZ2LxC7VeZlezR_AX_HN90 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+CT-images+diagnosis+and+severity+assessment+using+machine+learning+algorithm&rft.jtitle=Cluster+computing&rft.au=Albataineh%2C+Zaid&rft.au=Aldrweesh%2C+Fatima&rft.au=Alzubaidi%2C+Mohammad+A.&rft.date=2024-02-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=1&rft.spage=547&rft.epage=562&rft_id=info:doi/10.1007%2Fs10586-023-03972-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_023_03972_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |