A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing

Hyperspectral data processing typically demands enormous computational resources in terms of storage, computation, and input/output throughputs, particularly when real-time processing is desired. In this paper, a proof-of-concept study is conducted on compressive sensing (CS) and unmixing for hypers...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 21; no. 3; pp. 1200 - 1210
Main Authors Chengbo Li, Ting Sun, Kelly, K. F., Yin Zhang
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2011.2167626

Cover

More Information
Summary:Hyperspectral data processing typically demands enormous computational resources in terms of storage, computation, and input/output throughputs, particularly when real-time processing is desired. In this paper, a proof-of-concept study is conducted on compressive sensing (CS) and unmixing for hyperspectral imaging. Specifically, we investigate a low-complexity scheme for hyperspectral data compression and reconstruction. In this scheme, compressed hyperspectral data are acquired directly by a device similar to the single-pixel camera based on the principle of CS. To decode the compressed data, we propose a numerical procedure to compute directly the unmixed abundance fractions of given end members, completely bypassing high-complexity tasks involving the hyperspectral data cube itself. The reconstruction model is to minimize the total variation of the abundance fractions subject to a preprocessed fidelity equation with a significantly reduced size and other side constraints. An augmented Lagrangian-type algorithm is developed to solve this model. We conduct extensive numerical experiments to demonstrate the feasibility and efficiency of the proposed approach, using both synthetic data and hardware-measured data. Experimental and computational evidences obtained from this paper indicate that the proposed scheme has a high potential in real-world applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2011.2167626