Pyrometamorphic process of ceramic composite materials in pottery production in the Bronze/Iron Age of the Northern Caucasus (Russia)
Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; pp. 10725 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.07.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-019-47228-y |
Cover
Abstract | Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make it difficult to identify production technologies. In this study, SEM-EDS/WDS, XRD and transmittance and reflectance FT-IR techniques were employed step by step, in order to overcome these limitations. The serial combination of each method covers a macro-, meso- and micro-scale and it enabled us to identify the relationship between firing temperature, reducing or oxidizing atmosphere and thermally induced mobility of Ca and Fe. Numerous ceramic pottery sherds from two archaeological sites in the North Caucasus, Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated and compared to the ceramics found at Levinsadovka and Saf’janovo around the Sea of Azov, Russia (Late/Final Bronze Age) for this purpose. Morphological changes by sintering and transformation of indicator minerals such as calcite, hematite, spinel, gehlenite, quartz and
cis/trans-vacant
1M illite provide temperature thresholds at 675, 700, 750, 950, 1050, 1100, 1300 °C. With the laboratory based FT-IR, vibrational changes in shape, wavenumber and intensity corresponding to Si-O stretching bands yield an order and classification of the ceramics with regard to firing conditions between the samples as well as the unraveling of temperature profiles within a single sample in a 100 µm scale. With this approach, the number of archaeological ceramics could be classified according to the pyrometamorphic transformation of heterogeneous ceramic composite materials. Combined with the archaeological contexts of each site, these results will contribute to the reconstruction of local technological styles. |
---|---|
AbstractList | Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make it difficult to identify production technologies. In this study, SEM-EDS/WDS, XRD and transmittance and reflectance FT-IR techniques were employed step by step, in order to overcome these limitations. The serial combination of each method covers a macro-, meso- and micro-scale and it enabled us to identify the relationship between firing temperature, reducing or oxidizing atmosphere and thermally induced mobility of Ca and Fe. Numerous ceramic pottery sherds from two archaeological sites in the North Caucasus, Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated and compared to the ceramics found at Levinsadovka and Saf’janovo around the Sea of Azov, Russia (Late/Final Bronze Age) for this purpose. Morphological changes by sintering and transformation of indicator minerals such as calcite, hematite, spinel, gehlenite, quartz and
cis/trans-vacant
1M illite provide temperature thresholds at 675, 700, 750, 950, 1050, 1100, 1300 °C. With the laboratory based FT-IR, vibrational changes in shape, wavenumber and intensity corresponding to Si-O stretching bands yield an order and classification of the ceramics with regard to firing conditions between the samples as well as the unraveling of temperature profiles within a single sample in a 100 µm scale. With this approach, the number of archaeological ceramics could be classified according to the pyrometamorphic transformation of heterogeneous ceramic composite materials. Combined with the archaeological contexts of each site, these results will contribute to the reconstruction of local technological styles. Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make it difficult to identify production technologies. In this study, SEM-EDS/WDS, XRD and transmittance and reflectance FT-IR techniques were employed step by step, in order to overcome these limitations. The serial combination of each method covers a macro-, meso- and micro-scale and it enabled us to identify the relationship between firing temperature, reducing or oxidizing atmosphere and thermally induced mobility of Ca and Fe. Numerous ceramic pottery sherds from two archaeological sites in the North Caucasus, Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated and compared to the ceramics found at Levinsadovka and Saf’janovo around the Sea of Azov, Russia (Late/Final Bronze Age) for this purpose. Morphological changes by sintering and transformation of indicator minerals such as calcite, hematite, spinel, gehlenite, quartz and cis/trans-vacant 1M illite provide temperature thresholds at 675, 700, 750, 950, 1050, 1100, 1300 °C. With the laboratory based FT-IR, vibrational changes in shape, wavenumber and intensity corresponding to Si-O stretching bands yield an order and classification of the ceramics with regard to firing conditions between the samples as well as the unraveling of temperature profiles within a single sample in a 100 µm scale. With this approach, the number of archaeological ceramics could be classified according to the pyrometamorphic transformation of heterogeneous ceramic composite materials. Combined with the archaeological contexts of each site, these results will contribute to the reconstruction of local technological styles. Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make it difficult to identify production technologies. In this study, SEM-EDS/WDS, XRD and transmittance and reflectance FT-IR techniques were employed step by step, in order to overcome these limitations. The serial combination of each method covers a macro-, meso- and micro-scale and it enabled us to identify the relationship between firing temperature, reducing or oxidizing atmosphere and thermally induced mobility of Ca and Fe. Numerous ceramic pottery sherds from two archaeological sites in the North Caucasus, Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated and compared to the ceramics found at Levinsadovka and Saf'janovo around the Sea of Azov, Russia (Late/Final Bronze Age) for this purpose. Morphological changes by sintering and transformation of indicator minerals such as calcite, hematite, spinel, gehlenite, quartz and cis/trans-vacant 1M illite provide temperature thresholds at 675, 700, 750, 950, 1050, 1100, 1300 °C. With the laboratory based FT-IR, vibrational changes in shape, wavenumber and intensity corresponding to Si-O stretching bands yield an order and classification of the ceramics with regard to firing conditions between the samples as well as the unraveling of temperature profiles within a single sample in a 100 µm scale. With this approach, the number of archaeological ceramics could be classified according to the pyrometamorphic transformation of heterogeneous ceramic composite materials. Combined with the archaeological contexts of each site, these results will contribute to the reconstruction of local technological styles.Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make it difficult to identify production technologies. In this study, SEM-EDS/WDS, XRD and transmittance and reflectance FT-IR techniques were employed step by step, in order to overcome these limitations. The serial combination of each method covers a macro-, meso- and micro-scale and it enabled us to identify the relationship between firing temperature, reducing or oxidizing atmosphere and thermally induced mobility of Ca and Fe. Numerous ceramic pottery sherds from two archaeological sites in the North Caucasus, Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated and compared to the ceramics found at Levinsadovka and Saf'janovo around the Sea of Azov, Russia (Late/Final Bronze Age) for this purpose. Morphological changes by sintering and transformation of indicator minerals such as calcite, hematite, spinel, gehlenite, quartz and cis/trans-vacant 1M illite provide temperature thresholds at 675, 700, 750, 950, 1050, 1100, 1300 °C. With the laboratory based FT-IR, vibrational changes in shape, wavenumber and intensity corresponding to Si-O stretching bands yield an order and classification of the ceramics with regard to firing conditions between the samples as well as the unraveling of temperature profiles within a single sample in a 100 µm scale. With this approach, the number of archaeological ceramics could be classified according to the pyrometamorphic transformation of heterogeneous ceramic composite materials. Combined with the archaeological contexts of each site, these results will contribute to the reconstruction of local technological styles. |
ArticleNumber | 10725 |
Author | Pausewein, Regine-Ricarda Efthimiopoulos, Ilias Reinhold, Sabine Park, Ki Suk Milke, Ralf |
Author_xml | – sequence: 1 givenname: Ki Suk surname: Park fullname: Park, Ki Suk email: ki.suk.park@fu-berlin.de organization: Institut für Geologische Wissenschaften, Freie Universität Berlin – sequence: 2 givenname: Ralf surname: Milke fullname: Milke, Ralf organization: Institut für Geologische Wissenschaften, Freie Universität Berlin – sequence: 3 givenname: Ilias surname: Efthimiopoulos fullname: Efthimiopoulos, Ilias organization: Deutsches GeoForschungsZentrum GFZ – sequence: 4 givenname: Regine-Ricarda surname: Pausewein fullname: Pausewein, Regine-Ricarda organization: RathgenForschungslabor, Staatliche Museen zu Berlin – sequence: 5 givenname: Sabine surname: Reinhold fullname: Reinhold, Sabine organization: Deutsches Archäologisches Institut, Im Dol 2-6 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31341221$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us9vFCEYJabG1tp_wIMh8VIPY-EDZpmLSd34o0mjxvROWBZ2aWZgBKbJevf_lnFbrT2Uywcf7728D95zdBBisAi9pOQtJUyeZU5FJxtCu4YvAGSze4KOgHDRAAM4uLc_RCc5X5O6BHScds_QIaOMUwB6hH5926U42KKHmMatN3hM0diccXTY2KSH2jJxGGP2xeJBF5u87jP2AY-x1NNuZqwnU3wMc7dsLX6fYvhpzy5qwecbO2vN7S8x1ZICXurJ6DxlfPp9ytnrNy_QU1dV7cltPUZXHz9cLT83l18_XSzPLxvDF7w0cqFbo4URRsJaSHCWsNZR02q54NK5ltex5GrFCXEEuHBG6I4C58SJ1gh2jN7tZcdpNdi1saEk3asx-UGnnYraq_9vgt-qTbxRbStaKVkVOL0VSPHHZHNRg8_G9r0ONk5ZAbQcgHHWVujrB9DrOKVQp5tRDKSQHVTUq_uO_lq5-6AKkHuASTHnZJ0yvuj5satB3ytK1BwHtY-DqnFQf-KgdpUKD6h36o-S2J6UKzhsbPpn-xHWb9tlyhI |
CitedBy_id | crossref_primary_10_1515_zkri_2023_0015 crossref_primary_10_1080_10426914_2020_1792641 crossref_primary_10_3390_heritage2030143 crossref_primary_10_1111_arcm_13057 crossref_primary_10_1111_arcm_12718 crossref_primary_10_3390_min12081006 crossref_primary_10_1016_j_jeurceramsoc_2020_01_030 |
Cites_doi | 10.1016/j.clay.2015.02.019 10.1346/CCMN.1996.0440615 10.1146/annurev.an.21.100192.002423 10.1016/S0992-4361(98)80011-8 10.1007/s10973-011-1518-5 10.1016/j.jeurceramsoc.2010.02.003 10.1016/j.chemgeo.2015.07.004 10.1016/j.clay.2008.07.029 10.1346/CCMN.1993.0410316 10.1016/j.jcis.2004.11.044 10.1107/S0021889808004202 10.1016/j.clay.2008.02.008 10.1039/C5NR06509G 10.2138/am-1996-7-808 10.1016/j.jas.2016.03.004 10.1016/B978-012654640-8/50006-7 10.1016/j.solidstatesciences.2013.09.014 10.1016/B978-0-08-100355-8.00005-9 10.1038/srep32136 10.1130/SPE126-p1 10.1016/j.jeurceramsoc.2007.03.031 10.1016/j.jmmm.2003.12.201 10.1088/1757-899X/31/1/012017 10.1016/S0955-2219(01)00335-1 10.1016/j.clay.2010.10.016 10.1127/0935-1221/2001/0013-0621 10.2138/am-1999-5-624 10.1111/j.1551-2916.2005.00390.x 10.1073/pnas.96.7.3440 10.1346/CCMN.1995.0430608 10.1016/S1296-2074(02)01178-0 10.1016/j.minpro.2017.05.005 10.1016/S0009-2541(00)00314-4 10.1016/j.clay.2007.08.002 10.1016/j.sedgeo.2016.07.003 10.1016/j.clay.2017.06.006 10.1111/j.1475-4754.1999.tb00983.x 10.2138/am.2010.3300 10.1016/j.jssc.2011.07.038 10.1016/j.geoderma.2012.12.015 10.1016/j.clay.2017.11.025 10.1180/claymin.1996.031.1.04 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-47228-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | PMC6656883 31341221 10_1038_s41598_019_47228_y |
Genre | Journal Article |
GeographicLocations | Russia |
GeographicLocations_xml | – name: Russia |
GrantInformation_xml | – fundername: Freie Universität Berlin (Free University of Berlin) funderid: https://doi.org/10.13039/501100007537 – fundername: Elsa Neumann Scholarship (NaFög) by DRS-NaFög, Freie Universität Berlin Support program for women's academic activities (Frauenfördermittel) by Freie Universität Berlin – fundername: Free University of Berlin | Dahlem Research School, Freie Universität Berlin (DRS) funderid: https://doi.org/10.13039/501100001644 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c474t-87a6ca5c5c82d582fe036f1c6a8748ff643418bb400f0245fc5a912440f56c53 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 17:14:36 EDT 2025 Fri Sep 05 05:43:24 EDT 2025 Wed Aug 13 11:12:21 EDT 2025 Mon Jul 21 05:52:54 EDT 2025 Tue Jul 01 03:09:07 EDT 2025 Thu Apr 24 23:44:06 EDT 2025 Fri Feb 21 02:38:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-87a6ca5c5c82d582fe036f1c6a8748ff643418bb400f0245fc5a912440f56c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-019-47228-y |
PMID | 31341221 |
PQID | 2263285892 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6656883 proquest_miscellaneous_2264223436 proquest_journals_2263285892 pubmed_primary_31341221 crossref_citationtrail_10_1038_s41598_019_47228_y crossref_primary_10_1038_s41598_019_47228_y springer_journals_10_1038_s41598_019_47228_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-24 |
PublicationDateYYYYMMDD | 2019-07-24 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | GualtieriAFVenturelliPIn situ strudy of the goethite-hematite phase transformation by real time synchrotron powder diffractionAmerican Mineralogist1999848959041999AmMin..84..895G1:CAS:528:DyaK1MXjt12hsL0%3D10.2138/am-1999-5-624 Dietler, M. & Herbich, I. Habitus, techniques, style: An integrated approach to the social understanding of material culture and boundaries. The Archaeology of social boundaries. 232–263 (Smithsonian Institution Press, 1998). FerrerSMezquitaAGomez-TenaMPMachiCMonfortEEstimation of the heat of reaction in traditional ceramic compositionsApplied Clay Science201510828391:CAS:528:DC%2BC2MXjsFCru7c%3D10.1016/j.clay.2015.02.019 Gosselain, O. P. Social and technical identity in a clay crystal ball. The Archaeology of social boundaries, 78–106 (Smithsonian Institution Press, 1998). LaitaEBauluzBMineral and textural transformations in aluminium-rich clays during ceramic firingApplied Clay Science20181522842941:CAS:528:DC%2BC2sXhvFahtb3P10.1016/j.clay.2017.11.025 WangGWangHZhangNIn situ high temperature X-ray diffraction study of illiteApplied Clay Science20171462542631:CAS:528:DC%2BC2sXhtVerurrJ10.1016/j.clay.2017.06.006 JiangTLiGQiuGFanXHuangZThermal activation and alkali dissolution of silicon from illiteApplied Clay Science20084081891:CAS:528:DC%2BD1cXmsF2jsLs%3D10.1016/j.clay.2007.08.002 DEJONGHELRAHAMANM4.1 Sintering of CeramicsHandbook of Advanced Ceramics200318726410.1016/B978-012654640-8/50006-7 RathossiCPontikesYEffect of firing temperature and atmosphere on ceramics made of NW Pelephonnese clay sediments, Part I: Reaction paths, crystalline phases, microstructure and colourJournal of the European Ceramic Society201030185318661:CAS:528:DC%2BC3cXlsVKmsbw%3D10.1016/j.jeurceramsoc.2010.02.003 TrindadeMJDiasMICoroadoJRochaFMineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, PortugalApplied Clay Science2009423453551:CAS:528:DC%2BD1cXhsVelu7jF10.1016/j.clay.2008.02.008 Madejová, J. W., Gates, P. & Petit, S. IR spectra of clay minerals. Infrared and Raman Spectroscopies of Clay Minerals, 107–149 (Elsevier, 2017). EscaleraEAnttiM LOdénMThermal treatment and phase formation in kaolinite and illite based clays from tropical regions of BoliviaIOP Conference Series: Materials Science and Engineering20123101201710.1088/1757-899X/31/1/012017 YeşilbaşMBoilyJ-FParticle size controls on water adsorption and condensation regimes at mineral surfacesScientific Reports201661:CAS:528:DC%2BC28XhsVChtL3M10.1038/srep32136 Lechtman, H. Style in technology: Some early thoughts. Material culture: Style, organization and dynamics of technology, 3–20 (West Publishing Company, 1977). DritsVAWeberFSalynALTsipurskySIX-ray identification of one-layer illite varieties: application of the study of illites around Uranium deposits of CanadaClays and Clay Minerals19934133893981993CCM....41..389D1:CAS:528:DyaK2cXhtFykug%3D%3D10.1346/CCMN.1993.0410316 TscheggCNtaflosTHeinIThermally triggered two-stage reaction of carbonates and clay during ceramic firing — A case study on Bronze Age Cypriot ceramicsApplied Clay Science20094369781:CAS:528:DC%2BD1cXhsFajsbnE10.1016/j.clay.2008.07.029 GrathoffGHMooreDMIllite polytype quantification using wildfire© calculated X-ray diffraction patternsClays and Clay Minerals19964468358421996CCM....44..835G1:CAS:528:DyaK2sXislaktr4%3D10.1346/CCMN.1996.0440615 WooKLeeHJSynthesis and magnetism of hematite and maghemite nanoparticlesJ. Magn. Magn. Mater2004272–276e1155e115610.1016/j.jmmm.2003.12.201 StevensonCMGurnickMStructural Collapse in kaolinite, montmorillonite and illite clay and its role in the ceramic rehydroxylation dating of low-fired earthenwareJournal of Archaeological Science20166954631:CAS:528:DC%2BC28Xlt1GrsLc%3D10.1016/j.jas.2016.03.004 PtáčekPOpravilTŠoukalFHavlicaJHolešinskyRKinetics and mechanism of formation of gehlenite, Al-Si spinel and anorthite from the mixture of kaolinite and calciteSolid State Sciences20132653582013SSSci..26...53P10.1016/j.solidstatesciences.2013.09.014 CultroneGRodriguez-NavarroCSebastianECazallaODe La TorreMJCarbonate and silicate phase reactions during ceramic firingEuropean Journal of Mineralogy2001136216342001EJMin..13..621C1:CAS:528:DC%2BD3MXktFejtrs%3D10.1127/0935-1221/2001/0013-0621 WeirCELippincottERInfrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards APhysics and Chemistry196165A3173183 McConvilleCJLeeWEMicrostructural Development on Firing Illite and Smectite Clays Compared with that in KaoliniteJournal of American Ceramic Society2005888226722761:CAS:528:DC%2BD2MXntVaktL0%3D10.1111/j.1551-2916.2005.00390.x KnippingJLBehrensHWilkeMGöttlicherJStabilePEffect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate meltsChemical Geology20154111431542015ChGeo.411..143K1:CAS:528:DC%2BC2MXhtFCjtbvE10.1016/j.chemgeo.2015.07.004 DritsVABesonGMullerFAn improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicatesClays and Clay Minerals19954367187311995CCM....43..718D1:CAS:528:DyaK28XitleqtLk%3D10.1346/CCMN.1995.0430608 Dally, O. et al. Deutsch-russische Ausgrabungen am Don. Ergebnisse der Kampagnen 2008–2010. AA 2012/1, 139–205 (2012). MysenBOVirgoDNeumannERSeifertFARedox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO-MgO-Al2O3-SiO2-Fe-O: relationships between redox equilibria, melt structure and liquidus phase equilibriaAmerican Mineralogist1985703173311:CAS:528:DyaL2MXhslSjtLg%3D PtáčekPMid-Infrared spectroscopic study of crystallization of cubic spinel phase from metakaolinJournal of Solid State Chemistry2011184266126672011JSSCh.184.2661P10.1016/j.jssc.2011.07.038 ShovalSYadinEPanczerGAnalysis of thermal phases in calcareous Iron Age pottery using FT-IR and Raman spectroscopyJournal of Thermal Analysis and Calorimetry20111045155251:CAS:528:DC%2BC3MXkslelt7w%3D10.1007/s10973-011-1518-5 PonomarVPDudchenkoNOBrickABReduction roasting of hematite to magnetite using carbohydratesInternational Journal of Mineral Processing201716421251:CAS:528:DC%2BC2sXotlWmtb8%3D10.1016/j.minpro.2017.05.005 PfaffenbergerBSocial anthropology of technologyAnnual Review of Anthropology19922149151610.1146/annurev.an.21.100192.002423 NodariLMarcuzEMaritanLMazzoliCRussoUHematite nucleation and growth in the firing of carbonate-rich clay for pottery productionJournal of the European Ceramic Society200727466547731:CAS:528:DC%2BD2sXhtFamurzI10.1016/j.jeurceramsoc.2007.03.031 MaysenBOVirgoDViscosity and structure of iron- and aluminium-bearing calcium silicate melts at 1 atmAmerican Mineralogist198570487498 DritsVAMcCartyDKThe nature of diffraction effects from illite and illite-smectite consisting of interstratified trans-vacant and cis-vacant 2:1 layers: A semi-quantitative technique for determination of layer-type contentAmerican Mineralogist1996818528631996AmMin..81..852D1:CAS:528:DyaK28XkslOltLw%3D10.2138/am-1996-7-808 GualtieriAFStructural characterization of the clay mineral illite-1MJournal of Applied Crystallography2008414024151:CAS:528:DC%2BD1cXjt1GmtLk%3D10.1107/S0021889808004202 Reinhold, S., Korobov, D. S. & Belinskij, A. B. Landschaftsarchäologie im Nordkaukasus. (Habelt, R., 2018). De BenedettoGELavianoRSabbatiniLZambonimPGInfrared spectroscopy in the mineralogical characterization of ancient potteryJournal of Cultural Heritage2002317718610.1016/S1296-2074(02)01178-0 PatraAKKunduSKBhaumikAKimDMorphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activityNanoscale201683653772015Nanos...8..365P1:CAS:528:DC%2BC2MXhvVCitb%2FI10.1039/C5NR06509G PomièsMPMorinGVignaudCXRD study of the goethite-hematite transformation: Application to the identification of heated prehistoric pigmentsEuropean Journal of Solid State and Inorganic Chemistry199835192510.1016/S0992-4361(98)80011-8 MuradEWagnerUThe thermal behavior of an Fe-rich illiteClay minerals19963145521996ClMin..31...45M1:CAS:528:DyaK28XhvFGrur4%3D10.1180/claymin.1996.031.1.04 UsmanMAbdelmoulaMFaurePRubyCHannaKTransformation of various kinds of goethite into magnetite: Effect of chemical and surface propertiesGeoderma2013197-1989162013Geode.197....9U1:CAS:528:DC%2BC3sXksFars7k%3D10.1016/j.geoderma.2012.12.015 DritsVAZviaginaBBMcCartyDKSalynALFactors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadoniteAmerican Mineralogist2010953483612010AmMin..95..348D1:CAS:528:DC%2BC3cXisVKjs7w%3D10.2138/am.2010.3300 HenryDGWatsonJSJohnCMAssessing and calibrating the ATR-FTIR approach as a carbonate rock characterization toolSedimentary Geology201734736522017SedG..347...36H1:CAS:528:DC%2BC28XhsFKrt7zO10.1016/j.sedgeo.2016.07.003 Carroll, D. Clay minerals: A guide to their X-ray Identification. (The Geological Society of America, INC., 1970). OttonelloGMorettiRMariniLZuccoliniMVOxidation state of iron in silicate glasses and melts: a thermochemical modelChemical Geology20011741571792001ChGeo.174..157O1:CAS:528:DC%2BD3MXhsVensLc%3D10.1016/S0009-2541(00)00314-4 PevearD. R.Illite and hydrocarbon explorationProceedings of the National Academy of Sciences1999967344034461999PNAS...96.3440P1:CAS:528:DyaK1MXjslCitro%3D10.1073/pnas.96.7.3440 PomièsMPMenuMRed paleolithic pigments: natural hematite or heated goethite?Archaeometry199941227528510.1111/j.1475-4754.1999.tb00983.x Alvarez-PueblaRAdos SantosDSJr.BlancoCEcheverriaJCGarridoJJParticle and surface characterization of a natural illite and study of its copper retentionJournal of Colloid and Interface Science200528541492005JCIS..285...41A1:CAS:528:DC%2BD2MXis1eku74%3D10.1016/j.jcis.2004.11.044 WangXXiaoPCharacterisation of clay sintering process using impedance spectroscopyJournal of the European Ceramic Society20022244714781:CAS:528:DC%2BD3MXptlaju7Y%3D10.1016/S G Cultrone (47228_CR31) 2001; 13 E Escalera (47228_CR45) 2012; 31 M Yeşilbaş (47228_CR13) 2016; 6 E Murad (47228_CR35) 1996; 31 T Jiang (47228_CR19) 2008; 40 E Laita (47228_CR34) 2018; 152 L Nodari (47228_CR44) 2007; 27 D. R. Pevear (47228_CR6) 1999; 96 MP Pomiès (47228_CR37) 1998; 35 B Fabbri (47228_CR18) 1985; 29A S Ferrer (47228_CR42) 2015; 108 X Wang (47228_CR41) 2002; 22 BO Maysen (47228_CR48) 1985; 70 VA Drits (47228_CR28) 1995; 43 G Ottonello (47228_CR49) 2001; 174 DG Henry (47228_CR27) 2017; 347 B Pfaffenberger (47228_CR3) 1992; 21 M Usman (47228_CR51) 2013; 197-198 47228_CR4 47228_CR1 47228_CR2 47228_CR7 47228_CR8 C Tschegg (47228_CR24) 2009; 43 CJ McConville (47228_CR43) 2005; 88 VP Ponomar (47228_CR9) 2017; 164 CM Stevenson (47228_CR20) 2016; 69 VA Drits (47228_CR5) 1996; 81 L DEJONGHE (47228_CR46) 2003 CE Weir (47228_CR26) 1961; 65A C Rathossi (47228_CR33) 2010; 30 47228_CR10 K Woo (47228_CR39) 2004; 272–276 47228_CR14 GE De Benedetto (47228_CR23) 2002; 3 P Ptáček (47228_CR22) 2013; 26 AK Patra (47228_CR38) 2016; 8 JL Knipping (47228_CR50) 2015; 411 MP Pomiès (47228_CR40) 1999; 41 MJ Trindade (47228_CR32) 2009; 42 G Wang (47228_CR29) 2017; 146 BO Mysen (47228_CR47) 1985; 70 P Ptáček (47228_CR21) 2011; 184 RA Alvarez-Puebla (47228_CR11) 2005; 285 GH Grathoff (47228_CR16) 1996; 44 E Prud’homme (47228_CR12) 2011; 51 VA Drits (47228_CR17) 2010; 95 VA Drits (47228_CR15) 1993; 41 S Shoval (47228_CR25) 2011; 104 AF Gualtieri (47228_CR30) 2008; 41 AF Gualtieri (47228_CR36) 1999; 84 |
References_xml | – reference: RathossiCPontikesYEffect of firing temperature and atmosphere on ceramics made of NW Pelephonnese clay sediments, Part I: Reaction paths, crystalline phases, microstructure and colourJournal of the European Ceramic Society201030185318661:CAS:528:DC%2BC3cXlsVKmsbw%3D10.1016/j.jeurceramsoc.2010.02.003 – reference: McConvilleCJLeeWEMicrostructural Development on Firing Illite and Smectite Clays Compared with that in KaoliniteJournal of American Ceramic Society2005888226722761:CAS:528:DC%2BD2MXntVaktL0%3D10.1111/j.1551-2916.2005.00390.x – reference: MaysenBOVirgoDViscosity and structure of iron- and aluminium-bearing calcium silicate melts at 1 atmAmerican Mineralogist198570487498 – reference: DritsVAWeberFSalynALTsipurskySIX-ray identification of one-layer illite varieties: application of the study of illites around Uranium deposits of CanadaClays and Clay Minerals19934133893981993CCM....41..389D1:CAS:528:DyaK2cXhtFykug%3D%3D10.1346/CCMN.1993.0410316 – reference: PevearD. R.Illite and hydrocarbon explorationProceedings of the National Academy of Sciences1999967344034461999PNAS...96.3440P1:CAS:528:DyaK1MXjslCitro%3D10.1073/pnas.96.7.3440 – reference: YeşilbaşMBoilyJ-FParticle size controls on water adsorption and condensation regimes at mineral surfacesScientific Reports201661:CAS:528:DC%2BC28XhsVChtL3M10.1038/srep32136 – reference: PtáčekPOpravilTŠoukalFHavlicaJHolešinskyRKinetics and mechanism of formation of gehlenite, Al-Si spinel and anorthite from the mixture of kaolinite and calciteSolid State Sciences20132653582013SSSci..26...53P10.1016/j.solidstatesciences.2013.09.014 – reference: WangGWangHZhangNIn situ high temperature X-ray diffraction study of illiteApplied Clay Science20171462542631:CAS:528:DC%2BC2sXhtVerurrJ10.1016/j.clay.2017.06.006 – reference: ShovalSYadinEPanczerGAnalysis of thermal phases in calcareous Iron Age pottery using FT-IR and Raman spectroscopyJournal of Thermal Analysis and Calorimetry20111045155251:CAS:528:DC%2BC3MXkslelt7w%3D10.1007/s10973-011-1518-5 – reference: MysenBOVirgoDNeumannERSeifertFARedox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO-MgO-Al2O3-SiO2-Fe-O: relationships between redox equilibria, melt structure and liquidus phase equilibriaAmerican Mineralogist1985703173311:CAS:528:DyaL2MXhslSjtLg%3D – reference: StevensonCMGurnickMStructural Collapse in kaolinite, montmorillonite and illite clay and its role in the ceramic rehydroxylation dating of low-fired earthenwareJournal of Archaeological Science20166954631:CAS:528:DC%2BC28Xlt1GrsLc%3D10.1016/j.jas.2016.03.004 – reference: GualtieriAFVenturelliPIn situ strudy of the goethite-hematite phase transformation by real time synchrotron powder diffractionAmerican Mineralogist1999848959041999AmMin..84..895G1:CAS:528:DyaK1MXjt12hsL0%3D10.2138/am-1999-5-624 – reference: Reinhold, S., Korobov, D. S. & Belinskij, A. B. Landschaftsarchäologie im Nordkaukasus. (Habelt, R., 2018). – reference: PonomarVPDudchenkoNOBrickABReduction roasting of hematite to magnetite using carbohydratesInternational Journal of Mineral Processing201716421251:CAS:528:DC%2BC2sXotlWmtb8%3D10.1016/j.minpro.2017.05.005 – reference: NodariLMarcuzEMaritanLMazzoliCRussoUHematite nucleation and growth in the firing of carbonate-rich clay for pottery productionJournal of the European Ceramic Society200727466547731:CAS:528:DC%2BD2sXhtFamurzI10.1016/j.jeurceramsoc.2007.03.031 – reference: DritsVAZviaginaBBMcCartyDKSalynALFactors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadoniteAmerican Mineralogist2010953483612010AmMin..95..348D1:CAS:528:DC%2BC3cXisVKjs7w%3D10.2138/am.2010.3300 – reference: EscaleraEAnttiM LOdénMThermal treatment and phase formation in kaolinite and illite based clays from tropical regions of BoliviaIOP Conference Series: Materials Science and Engineering20123101201710.1088/1757-899X/31/1/012017 – reference: Lechtman, H. Style in technology: Some early thoughts. Material culture: Style, organization and dynamics of technology, 3–20 (West Publishing Company, 1977). – reference: TscheggCNtaflosTHeinIThermally triggered two-stage reaction of carbonates and clay during ceramic firing — A case study on Bronze Age Cypriot ceramicsApplied Clay Science20094369781:CAS:528:DC%2BD1cXhsFajsbnE10.1016/j.clay.2008.07.029 – reference: GualtieriAFStructural characterization of the clay mineral illite-1MJournal of Applied Crystallography2008414024151:CAS:528:DC%2BD1cXjt1GmtLk%3D10.1107/S0021889808004202 – reference: WooKLeeHJSynthesis and magnetism of hematite and maghemite nanoparticlesJ. Magn. Magn. Mater2004272–276e1155e115610.1016/j.jmmm.2003.12.201 – reference: UsmanMAbdelmoulaMFaurePRubyCHannaKTransformation of various kinds of goethite into magnetite: Effect of chemical and surface propertiesGeoderma2013197-1989162013Geode.197....9U1:CAS:528:DC%2BC3sXksFars7k%3D10.1016/j.geoderma.2012.12.015 – reference: TrindadeMJDiasMICoroadoJRochaFMineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, PortugalApplied Clay Science2009423453551:CAS:528:DC%2BD1cXhsVelu7jF10.1016/j.clay.2008.02.008 – reference: Dally, O. et al. Deutsch-russische Ausgrabungen am Don. Ergebnisse der Kampagnen 2008–2010. AA 2012/1, 139–205 (2012). – reference: PtáčekPMid-Infrared spectroscopic study of crystallization of cubic spinel phase from metakaolinJournal of Solid State Chemistry2011184266126672011JSSCh.184.2661P10.1016/j.jssc.2011.07.038 – reference: FerrerSMezquitaAGomez-TenaMPMachiCMonfortEEstimation of the heat of reaction in traditional ceramic compositionsApplied Clay Science201510828391:CAS:528:DC%2BC2MXjsFCru7c%3D10.1016/j.clay.2015.02.019 – reference: JiangTLiGQiuGFanXHuangZThermal activation and alkali dissolution of silicon from illiteApplied Clay Science20084081891:CAS:528:DC%2BD1cXmsF2jsLs%3D10.1016/j.clay.2007.08.002 – reference: KnippingJLBehrensHWilkeMGöttlicherJStabilePEffect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate meltsChemical Geology20154111431542015ChGeo.411..143K1:CAS:528:DC%2BC2MXhtFCjtbvE10.1016/j.chemgeo.2015.07.004 – reference: WangXXiaoPCharacterisation of clay sintering process using impedance spectroscopyJournal of the European Ceramic Society20022244714781:CAS:528:DC%2BD3MXptlaju7Y%3D10.1016/S0955-2219(01)00335-1 – reference: CultroneGRodriguez-NavarroCSebastianECazallaODe La TorreMJCarbonate and silicate phase reactions during ceramic firingEuropean Journal of Mineralogy2001136216342001EJMin..13..621C1:CAS:528:DC%2BD3MXktFejtrs%3D10.1127/0935-1221/2001/0013-0621 – reference: MuradEWagnerUThe thermal behavior of an Fe-rich illiteClay minerals19963145521996ClMin..31...45M1:CAS:528:DyaK28XhvFGrur4%3D10.1180/claymin.1996.031.1.04 – reference: WeirCELippincottERInfrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards APhysics and Chemistry196165A3173183 – reference: De BenedettoGELavianoRSabbatiniLZambonimPGInfrared spectroscopy in the mineralogical characterization of ancient potteryJournal of Cultural Heritage2002317718610.1016/S1296-2074(02)01178-0 – reference: PfaffenbergerBSocial anthropology of technologyAnnual Review of Anthropology19922149151610.1146/annurev.an.21.100192.002423 – reference: FabbriBFioriCClays and complementary rawmaterials for stoneware tilesMineralogica Petrographica Acta198529A535545 – reference: Carroll, D. Clay minerals: A guide to their X-ray Identification. (The Geological Society of America, INC., 1970). – reference: GrathoffGHMooreDMIllite polytype quantification using wildfire© calculated X-ray diffraction patternsClays and Clay Minerals19964468358421996CCM....44..835G1:CAS:528:DyaK2sXislaktr4%3D10.1346/CCMN.1996.0440615 – reference: Dietler, M. & Herbich, I. Habitus, techniques, style: An integrated approach to the social understanding of material culture and boundaries. The Archaeology of social boundaries. 232–263 (Smithsonian Institution Press, 1998). – reference: HenryDGWatsonJSJohnCMAssessing and calibrating the ATR-FTIR approach as a carbonate rock characterization toolSedimentary Geology201734736522017SedG..347...36H1:CAS:528:DC%2BC28XhsFKrt7zO10.1016/j.sedgeo.2016.07.003 – reference: DritsVABesonGMullerFAn improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicatesClays and Clay Minerals19954367187311995CCM....43..718D1:CAS:528:DyaK28XitleqtLk%3D10.1346/CCMN.1995.0430608 – reference: Alvarez-PueblaRAdos SantosDSJr.BlancoCEcheverriaJCGarridoJJParticle and surface characterization of a natural illite and study of its copper retentionJournal of Colloid and Interface Science200528541492005JCIS..285...41A1:CAS:528:DC%2BD2MXis1eku74%3D10.1016/j.jcis.2004.11.044 – reference: OttonelloGMorettiRMariniLZuccoliniMVOxidation state of iron in silicate glasses and melts: a thermochemical modelChemical Geology20011741571792001ChGeo.174..157O1:CAS:528:DC%2BD3MXhsVensLc%3D10.1016/S0009-2541(00)00314-4 – reference: DritsVAMcCartyDKThe nature of diffraction effects from illite and illite-smectite consisting of interstratified trans-vacant and cis-vacant 2:1 layers: A semi-quantitative technique for determination of layer-type contentAmerican Mineralogist1996818528631996AmMin..81..852D1:CAS:528:DyaK28XkslOltLw%3D10.2138/am-1996-7-808 – reference: DEJONGHELRAHAMANM4.1 Sintering of CeramicsHandbook of Advanced Ceramics200318726410.1016/B978-012654640-8/50006-7 – reference: PomièsMPMorinGVignaudCXRD study of the goethite-hematite transformation: Application to the identification of heated prehistoric pigmentsEuropean Journal of Solid State and Inorganic Chemistry199835192510.1016/S0992-4361(98)80011-8 – reference: Prud’hommeEIn situ inorganic foams prepared from various clays at low temperatureApplied Clay Science201151152210.1016/j.clay.2010.10.016 – reference: Gosselain, O. P. Social and technical identity in a clay crystal ball. The Archaeology of social boundaries, 78–106 (Smithsonian Institution Press, 1998). – reference: LaitaEBauluzBMineral and textural transformations in aluminium-rich clays during ceramic firingApplied Clay Science20181522842941:CAS:528:DC%2BC2sXhvFahtb3P10.1016/j.clay.2017.11.025 – reference: PatraAKKunduSKBhaumikAKimDMorphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activityNanoscale201683653772015Nanos...8..365P1:CAS:528:DC%2BC2MXhvVCitb%2FI10.1039/C5NR06509G – reference: Madejová, J. W., Gates, P. & Petit, S. IR spectra of clay minerals. Infrared and Raman Spectroscopies of Clay Minerals, 107–149 (Elsevier, 2017). – reference: PomièsMPMenuMRed paleolithic pigments: natural hematite or heated goethite?Archaeometry199941227528510.1111/j.1475-4754.1999.tb00983.x – ident: 47228_CR8 – volume: 108 start-page: 28 year: 2015 ident: 47228_CR42 publication-title: Applied Clay Science doi: 10.1016/j.clay.2015.02.019 – volume: 44 start-page: 835 issue: 6 year: 1996 ident: 47228_CR16 publication-title: Clays and Clay Minerals doi: 10.1346/CCMN.1996.0440615 – volume: 21 start-page: 491 year: 1992 ident: 47228_CR3 publication-title: Annual Review of Anthropology doi: 10.1146/annurev.an.21.100192.002423 – volume: 35 start-page: 9 issue: 1 year: 1998 ident: 47228_CR37 publication-title: European Journal of Solid State and Inorganic Chemistry doi: 10.1016/S0992-4361(98)80011-8 – volume: 104 start-page: 515 year: 2011 ident: 47228_CR25 publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-011-1518-5 – volume: 30 start-page: 1853 year: 2010 ident: 47228_CR33 publication-title: Journal of the European Ceramic Society doi: 10.1016/j.jeurceramsoc.2010.02.003 – volume: 411 start-page: 143 year: 2015 ident: 47228_CR50 publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2015.07.004 – ident: 47228_CR4 – volume: 43 start-page: 69 year: 2009 ident: 47228_CR24 publication-title: Applied Clay Science doi: 10.1016/j.clay.2008.07.029 – volume: 41 start-page: 389 issue: 3 year: 1993 ident: 47228_CR15 publication-title: Clays and Clay Minerals doi: 10.1346/CCMN.1993.0410316 – volume: 285 start-page: 41 year: 2005 ident: 47228_CR11 publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2004.11.044 – volume: 41 start-page: 402 year: 2008 ident: 47228_CR30 publication-title: Journal of Applied Crystallography doi: 10.1107/S0021889808004202 – volume: 42 start-page: 345 year: 2009 ident: 47228_CR32 publication-title: Applied Clay Science doi: 10.1016/j.clay.2008.02.008 – ident: 47228_CR7 – volume: 8 start-page: 365 year: 2016 ident: 47228_CR38 publication-title: Nanoscale doi: 10.1039/C5NR06509G – volume: 81 start-page: 852 year: 1996 ident: 47228_CR5 publication-title: American Mineralogist doi: 10.2138/am-1996-7-808 – volume: 69 start-page: 54 year: 2016 ident: 47228_CR20 publication-title: Journal of Archaeological Science doi: 10.1016/j.jas.2016.03.004 – start-page: 187 volume-title: Handbook of Advanced Ceramics year: 2003 ident: 47228_CR46 doi: 10.1016/B978-012654640-8/50006-7 – volume: 70 start-page: 487 year: 1985 ident: 47228_CR48 publication-title: American Mineralogist – volume: 26 start-page: 53 year: 2013 ident: 47228_CR22 publication-title: Solid State Sciences doi: 10.1016/j.solidstatesciences.2013.09.014 – ident: 47228_CR14 doi: 10.1016/B978-0-08-100355-8.00005-9 – volume: 6 year: 2016 ident: 47228_CR13 publication-title: Scientific Reports doi: 10.1038/srep32136 – ident: 47228_CR10 doi: 10.1130/SPE126-p1 – volume: 27 start-page: 4665 year: 2007 ident: 47228_CR44 publication-title: Journal of the European Ceramic Society doi: 10.1016/j.jeurceramsoc.2007.03.031 – volume: 29A start-page: 535 year: 1985 ident: 47228_CR18 publication-title: Mineralogica Petrographica Acta – volume: 272–276 start-page: e1155 year: 2004 ident: 47228_CR39 publication-title: J. Magn. Magn. Mater doi: 10.1016/j.jmmm.2003.12.201 – volume: 31 start-page: 012017 year: 2012 ident: 47228_CR45 publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/31/1/012017 – ident: 47228_CR2 – volume: 22 start-page: 471 issue: 4 year: 2002 ident: 47228_CR41 publication-title: Journal of the European Ceramic Society doi: 10.1016/S0955-2219(01)00335-1 – volume: 51 start-page: 15 year: 2011 ident: 47228_CR12 publication-title: Applied Clay Science doi: 10.1016/j.clay.2010.10.016 – volume: 13 start-page: 621 year: 2001 ident: 47228_CR31 publication-title: European Journal of Mineralogy doi: 10.1127/0935-1221/2001/0013-0621 – volume: 70 start-page: 317 year: 1985 ident: 47228_CR47 publication-title: American Mineralogist – volume: 84 start-page: 895 year: 1999 ident: 47228_CR36 publication-title: American Mineralogist doi: 10.2138/am-1999-5-624 – volume: 88 start-page: 2267 issue: 8 year: 2005 ident: 47228_CR43 publication-title: Journal of American Ceramic Society doi: 10.1111/j.1551-2916.2005.00390.x – volume: 96 start-page: 3440 issue: 7 year: 1999 ident: 47228_CR6 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.96.7.3440 – volume: 43 start-page: 718 issue: 6 year: 1995 ident: 47228_CR28 publication-title: Clays and Clay Minerals doi: 10.1346/CCMN.1995.0430608 – volume: 3 start-page: 177 year: 2002 ident: 47228_CR23 publication-title: Journal of Cultural Heritage doi: 10.1016/S1296-2074(02)01178-0 – volume: 164 start-page: 21 year: 2017 ident: 47228_CR9 publication-title: International Journal of Mineral Processing doi: 10.1016/j.minpro.2017.05.005 – volume: 174 start-page: 157 year: 2001 ident: 47228_CR49 publication-title: Chemical Geology doi: 10.1016/S0009-2541(00)00314-4 – volume: 40 start-page: 81 year: 2008 ident: 47228_CR19 publication-title: Applied Clay Science doi: 10.1016/j.clay.2007.08.002 – volume: 65A start-page: 173 issue: 3 year: 1961 ident: 47228_CR26 publication-title: Physics and Chemistry – volume: 347 start-page: 36 year: 2017 ident: 47228_CR27 publication-title: Sedimentary Geology doi: 10.1016/j.sedgeo.2016.07.003 – volume: 146 start-page: 254 year: 2017 ident: 47228_CR29 publication-title: Applied Clay Science doi: 10.1016/j.clay.2017.06.006 – ident: 47228_CR1 – volume: 41 start-page: 275 issue: 2 year: 1999 ident: 47228_CR40 publication-title: Archaeometry doi: 10.1111/j.1475-4754.1999.tb00983.x – volume: 95 start-page: 348 year: 2010 ident: 47228_CR17 publication-title: American Mineralogist doi: 10.2138/am.2010.3300 – volume: 184 start-page: 2661 year: 2011 ident: 47228_CR21 publication-title: Journal of Solid State Chemistry doi: 10.1016/j.jssc.2011.07.038 – volume: 197-198 start-page: 9 year: 2013 ident: 47228_CR51 publication-title: Geoderma doi: 10.1016/j.geoderma.2012.12.015 – volume: 152 start-page: 284 year: 2018 ident: 47228_CR34 publication-title: Applied Clay Science doi: 10.1016/j.clay.2017.11.025 – volume: 31 start-page: 45 year: 1996 ident: 47228_CR35 publication-title: Clay minerals doi: 10.1180/claymin.1996.031.1.04 |
SSID | ssj0000529419 |
Score | 2.337377 |
Snippet | Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10725 |
SubjectTerms | 704/2151/330 704/2151/3930 704/844 Archaeological sites Calcite Ceramics Composite materials Genetic transformation Historic buildings & sites Humanities and Social Sciences Illite Iron Age Minerals multidisciplinary Science Science (multidisciplinary) Temperature effects |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEB90RfAifltdJYIHRcNr0qRNT7IsLqugiKzwbiVNk_WBts_3cah3_29n0r4uz8U9FfLRNplM8ksm8xuAl7m2Tel04F5p3KC4NOW2EIHLUOvClcG7mg70P33OT7-pj3M9Hw_c1uO1yt2cGCfqpnN0Rj6TRCxutCnlu-UvTlGjyLo6htC4DjcEIhEK3VDMi-mMhaxYSpSjr0yamdka1yvyKRMlJ5ZEw_v99egSyLx8V_Ifg2lch07uwO0RQLKjQeJ34Zpv78HNIaRkfx_-fOmJgGBjf3bYgwvHloMnAOsCc35F0ecZXSOnu1qeIVwdRiBbtGzZkWdPTzWagVOWUhEgMtyrt7_97AM-2NG5p3dRcrT5-FXLji2FTtuu2auvW9Qx-_oBnJ28Pzs-5WOoBe5UoTY4J9rcWe20M7LRRgaPK1sQLremUCYExC1KmLpGjQ9krA1O25KgQRp07nT2EA7arvWPgdUiyCZ1TVaXXpWmQfyZNrTNSZWwJjcJiF1_V26kIadoGD-qaA7PTDXIqEIZVVFGVZ_Am6nOciDhuLL04U6M1aiQ6-pi-CTwYspGVSL7iG19t41lFKIlleUJPBqkPn0uI-I7KUUCxd54mAoQTfd-Trv4Hum6c4TMxmQJvN2NnIvf-n8rnlzdiqdwS6bR_4xLdQgHm9XWP0N4tKmfRx34C9xfD8o priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WtwhexG-rq0TwoGjZJk3a9PhYXNYHiugKeytpmqwPtH28j0O9-387k37Ic1XwVGiSNs1kkl86M78BeJ4pUxdW-dhJhQcUmySxybmPha9UbgvvbEU_9N-9z84-y8WFujgAMcbCBKf9QGkZlunRO-x4gxsNBYPxIiZ6Qx131-BQ57j8zuBwPl98Wkx_Vsh2JXkxRMgkqf5D4_1d6Aq0vOoh-ZuZNOw-p7fg5gAb2bzv6G04cM0duN4nkuzuwo8PHdEObM23Fsdtadmq9_9nrWfWrSnnPCPncfLQcgxBaj_v2LJhq5bieTpqUfdMsnQXYSHDE3rz3R2_xQubXzp6Ft0Olh63btiJoYRpuw178XGHmmVe3oPz0zfnJ2fxkGAhtjKXW1wJTWaNsspqUSstvMP9zHObGZ1L7T2iFcl1VaGeezLReqtMQYAg8SqzKr0Ps6Zt3ENgFfeiTmydVoWTha4RdSY1HW4SyY3OdAR8HO_SDuTjlAPjaxmM4KkuexmVKKMyyKjsIng1tVn11Bv_rH00irEc1HBTCmKj10oXIoJnUzEqEFlFTOPaXagjESPJNIvgQS_16XUp0d0JwSPI9-bDVIHIufdLmuWXQNKdIVDWOo3g9ThzfnXr71_x6P-qP4YbIglRaLGQRzDbrnfuCYKkbfV00Iqf-K8Pjw priority: 102 providerName: Springer Nature |
Title | Pyrometamorphic process of ceramic composite materials in pottery production in the Bronze/Iron Age of the Northern Caucasus (Russia) |
URI | https://link.springer.com/article/10.1038/s41598-019-47228-y https://www.ncbi.nlm.nih.gov/pubmed/31341221 https://www.proquest.com/docview/2263285892 https://www.proquest.com/docview/2264223436 https://pubmed.ncbi.nlm.nih.gov/PMC6656883 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ISQuiDcpZWUkDiAITRw7cQ4ILatWZSWqqrTS3iLHsWGlNrvsQyLc-d_MONlFSwsSJ0u28_KM4288nm8AXqRSV7mRLrRCooFioijUWexC7kqZmdxZU9KG_qeT9PhCDEdytAWrdEfdAM5vNO0on9TF7PLt92_Ne5zw79qQcXUwx0WIAsXiPCTqQxU227Dr_UV0lK-D-y3XN8-Fz_VBJOwhggnexdHcfJvNteoaAL1-jvIPZ6pfo47uwp0OXLJ-qw33YMvW9-FWm26yeQA_TxsiJ1joqwmO7tiwaRslwCaOGTujzPSMjpjTOS7LEMq22snGNZtOKOqnoSuqlm-WahE8MrTj6x_24CMWrP_F0r2o2vuD7KxmA01p1ZZz9vJsifNPv3oI50eH54PjsEvDEBqRiQX-L3VqtDTSKF5JxZ3FVc_FJtUqE8o5xDQiVmWJfwNHjlxnpM4JNkROpkYmj2CnntT2CbAydryKTJWUuRW5qhCbRhWZQJGItUpVAPFqvAvTUZRTpozLwrvKE1W0MipQRoWXUdEE8Hp9zbQl6Phn7_2VGIuVrhWcOOuVVDkP4Pm6GacZ-U50bSdL30cgkhJJGsDjVurrxyVEisd5HEC2oQ_rDkThvdlSj796Ku8U4bRSSQBvVprz-7X-_hV7__XNT-E2j3yoWsjFPuwsZkv7DJHUouzBdjbKerDb7w8_D7H8cHhyeoa1g3TQ87sTPT-BfgHx-B8O |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEO8GChgJJBBEmzh21jlUqC2tdmm7qqpF6s1yHBtWosmyD6Fw52fx35jJq1oqeuspkmMnceZpj-cbQl7HQmeJEc63XMACxQSBrweh85lLxcAkzpoUN_RPxvHwC_98Ls43yJ82FwaPVbY6sVLUWWFwj7zPEFhcCpmwj7MfPlaNwuhqW0JDN6UVsp0KYqxJ7Diy5U9Ywi12Rp-A3m8YOzyY7A_9psqAb_iAL0Ed6NhoYYSRLBOSOQtK3YUm1nLApXNgsnko0xSY3WGc0hmhE7SKgROxwaIRYAE2Oe6f9Mjm3sH49Kzb5MEwGg-TJlkniGR_AQYTk9rCxEeYRumX6wbxipd79bDmPxHbyhAe3iN3Gw-W7tYsd59s2PwBuVXXtCwfkt-nJSIgLPVFASScGjqrUxFo4aixc30BTXiOHQ-LWQr-ci0CdJrTWYGpRSWOyGpQW2wFD5XuzYv8l-2P4EJ3v1p8FjZXQSc7z-m-xtptqwV9e7YCIdfvHpHJTVDhMenlRW63CE1Dx7LAZFGaWJ7IDBzgIMN1VsBDLWPpkbD938o0OOhYjuO7quLxkVQ1jRTQSFU0UqVH3ndjZjUKyLW9t1syqkYjLNQl_3rkVXcbZBkDNDq3xarqw8Fd41HskSc11bvXRYi8x1jokcEaP3QdECd8_U4-_Vbhhcfgs0sZeeRDyzmXn_X_WTy9fhYvye3h5ORYHY_GR8_IHRZUyXA-49ukt5yv7HPw1Zbpi0YiKFE3LIN_AVeMUYo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqViBeEDeBAkYCCQTRJo6dOA8V6rXqUlitqiL1zXIcG1aiybKHUHjnx_GvmMlVLRV961MkxznntGfmG0JexULnqRHOt1zAAsUEga-T0PnMZSIxqbMmww39z-P46Av_eCbONsifrhYG0yo7nVgr6rw0uEc-YAgsLoVM2cC1aRGTg-GH2Q8fO0hhpLVrp6HbNgv5Tg031hZ5HNvqJyznFjujA6D9a8aGh6f7R37bccA3POFLUA06NloYYSTLhWTOgoJ3oYm1TLh0Dsw3D2WWAeM7jFk6I3SKFjJwIjbYQAKswVYCRh_WgVt7h-PJSb_hgyE1HqZt4U4QycECjCcWuIWpj5CN0q_WjeMlj_dy4uY_0dvaKA7vkNutN0t3G_a7SzZscY_caPpbVvfJ70mFaAhLfV4COaeGzpqyBFo6auxcn8MQ5rRj4pil4Ds34kCnBZ2VWGZU4RV5A3CLo-Ct0r15WfyygxEc6O5Xi_fC4ToAZecF3dfYx221oG9OViDw-u0DcnodVHhINouysI8JzULH8sDkUZZansocnOEgxzVXwEMtY-mRsPvfyrSY6Nia47uqY_ORVA2NFNBI1TRSlUfe9dfMGkSQK2dvd2RUrXZYqAte9sjL_jTINQZrdGHLVT2Hg-vGo9gjjxqq94-LEIWPsdAjyRo_9BMQM3z9TDH9VmOHx-C_Sxl55H3HORev9f-veHL1V7wgN0EW1afR-PgpucWCui7OZ3ybbC7nK_sM3LZl9rwVCErUNYvgX0L5Vc4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrometamorphic+process+of+ceramic+composite+materials+in+pottery+production+in+the+Bronze%2FIron+Age+of+the+Northern+Caucasus+%28Russia%29&rft.jtitle=Scientific+reports&rft.au=Park%2C+Ki+Suk&rft.au=Milke%2C+Ralf&rft.au=Efthimiopoulos%2C+Ilias&rft.au=Pausewein%2C+Regine-Ricarda&rft.date=2019-07-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-47228-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_019_47228_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |