An Intelligent, Two-Stage, In-Vehicle Diagnostic-Based Secured Framework

Recent research interests have been directed to study the security of vehicles due to the advancement of their technologies. Due to the rapid growth and accelerated development of electronic control units (ECUs), they are countered to be exploited by external attacks. As a result, recent research ef...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 88907 - 88919
Main Authors Awaad, Tasneem A., El-Kharashi, M. Watheq, Taher, Mohamed, Ammar, Khalid Ali
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3200375

Cover

Abstract Recent research interests have been directed to study the security of vehicles due to the advancement of their technologies. Due to the rapid growth and accelerated development of electronic control units (ECUs), they are countered to be exploited by external attacks. As a result, recent research efforts have been focused on investigating alternative countermeasures that might be implemented by introducing different intrusion detection systems (IDSs). The problem with some of IDSs is the location of their deployment because of the ECU limitations and constraints. Other introduced IDSs require severe changes in the in-vehicle network, which is not preferred by vehicle manufacturers. In this research, we introduce a novel design of a framework to check the state of the vehicle and capture possible attacks by detecting any malicious data in the diagnostic parameters of the vehicle. The framework is divided into two phases: the specific-based detection phase and the anomaly-based detection phase. The proposed system employs the extreme gradient boosting (XGBoost) algorithm to detect anomalies in diagnostic data and it is optimized by a non-dominated sorting genetic algorithm II (NSGA-II). The model is verified against two datasets collected from real vehicles. To generate anomalies in datasets, an attack generation algorithm is introduced. The model is trained on a dataset that contains different attack types and verified blindly against various attacks that have not been seen before. The framework's experimental results show that it can detect abnormalities with accuracy 97.00% for the Seat Leon 2018 dataset and 97.49% for the KIA SOUL dataset.
AbstractList Recent research interests have been directed to study the security of vehicles due to the advancement of their technologies. Due to the rapid growth and accelerated development of electronic control units (ECUs), they are countered to be exploited by external attacks. As a result, recent research efforts have been focused on investigating alternative countermeasures that might be implemented by introducing different intrusion detection systems (IDSs). The problem with some of IDSs is the location of their deployment because of the ECU limitations and constraints. Other introduced IDSs require severe changes in the in-vehicle network, which is not preferred by vehicle manufacturers. In this research, we introduce a novel design of a framework to check the state of the vehicle and capture possible attacks by detecting any malicious data in the diagnostic parameters of the vehicle. The framework is divided into two phases: the specific-based detection phase and the anomaly-based detection phase. The proposed system employs the extreme gradient boosting (XGBoost) algorithm to detect anomalies in diagnostic data and it is optimized by a non-dominated sorting genetic algorithm II (NSGA-II). The model is verified against two datasets collected from real vehicles. To generate anomalies in datasets, an attack generation algorithm is introduced. The model is trained on a dataset that contains different attack types and verified blindly against various attacks that have not been seen before. The framework's experimental results show that it can detect abnormalities with accuracy 97.00% for the Seat Leon 2018 dataset and 97.49% for the KIA SOUL dataset.
Author Awaad, Tasneem A.
El-Kharashi, M. Watheq
Taher, Mohamed
Ammar, Khalid Ali
Author_xml – sequence: 1
  givenname: Tasneem A.
  orcidid: 0000-0003-4372-8600
  surname: Awaad
  fullname: Awaad, Tasneem A.
  organization: Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt
– sequence: 2
  givenname: M. Watheq
  orcidid: 0000-0002-6033-733X
  surname: El-Kharashi
  fullname: El-Kharashi, M. Watheq
  email: watheq@engr.uvic.ca
  organization: Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt
– sequence: 3
  givenname: Mohamed
  orcidid: 0000-0002-4808-4018
  surname: Taher
  fullname: Taher, Mohamed
  organization: Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt
– sequence: 4
  givenname: Khalid Ali
  orcidid: 0000-0003-0039-9018
  surname: Ammar
  fullname: Ammar, Khalid Ali
  organization: Department of Electrical Engineering, Ajman University, Ajman, United Arab Emirates
BookMark eNptUcFuGyEURFUqNXXyBblY6jXrAg922aPrJo2lSDk47RWx-K2LuwEXsKz8fXE3siqrCGnQiJl5DB_JhQ8eCblhdMYYbT_PF4u71WrGKecz4JRCI9-RS87qtgIJ9cU_5w_kOqUtLUsVSjaX5GHup0ufcRjcBn2-nT4fQrXKZoO3ha9-4E9nB5x-dWbjQ8rOVl9MwvV0hXYfC95H84KHEH9dkfe9GRJev-GEfL-_e148VI9P35aL-WNlRSNypWropUJF19AxaQo2tbDQdhZqJQrTKQPKYtlS8toKse4pt9j2KJW0AiZkOfqug9nqXXQvJr7qYJz-S4S40Sbm49Ca1wwUADfAlTCMdRwbyxQHIRFAdsVLjF57vzOvBzMMJ0NG9bFcbazFlPSxXP1WbpF9GmW7GH7vMWW9Dfvoy6s1b6iqBW9L7IS04y0bQ0oRe21dNtkFn6Nxwylh_L7zBDjTns_1f9XNqHKIeFK0pXIlAP4A8B2jqA
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s23187941
crossref_primary_10_1109_ACCESS_2024_3476177
Cites_doi 10.1109/CIT/IUCC/DASC/PICOM.2015.313
10.1109/ISNCC52172.2021.9615864
10.1109/PST.2017.00017
10.1109/COMPSAC48688.2020.00-56
10.1186/s13635-017-0062-7
10.1109/ACCESS.2019.2894183
10.23919/AEIT.2017.8240550
10.3390/jsan11010006
10.1109/ACCESS.2019.2937576
10.1016/j.vehcom.2022.100471
10.1109/ISIAS.2010.5604050
10.1587/transinf.2017ICI0001
10.4271/2017-01-1654
10.1109/ACCESS.2020.3028097
10.1007/978-3-642-01216-7_13
10.1371/journal.pone.0155781
10.3403/30268833u
10.1145/3133956.3138843
10.1145/2939672.2939785
10.1109/TITS.2014.2351612
10.1109/4235.996017
10.3403/30283524
10.1109/WCICSS.2015.7420322
10.1109/IVS.2008.4621263
10.1109/JIOT.2014.2302386
10.1109/ISNCC52172.2021.9615776
10.1109/WISES.2017.7986925
10.1109/ICOIN.2016.7427089
10.1049/ic.2008.0810
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2022.3200375
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 88919
ExternalDocumentID oai_doaj_org_article_26138332a3284a11b2e7c182345e335b
10.1109/access.2022.3200375
10_1109_ACCESS_2022_3200375
9863843
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-863f58e80d3b15a80d764c39bc368415ab8a38ce8ce5526c44df02ce9fe585c43
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:04 EDT 2025
Wed Oct 01 16:26:30 EDT 2025
Sun Jun 29 15:37:27 EDT 2025
Wed Oct 01 04:58:20 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Aug 27 02:29:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-863f58e80d3b15a80d764c39bc368415ab8a38ce8ce5526c44df02ce9fe585c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4372-8600
0000-0002-4808-4018
0000-0003-0039-9018
0000-0002-6033-733X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9863843
PQID 2708642983
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3200375
proquest_journals_2708642983
ieee_primary_9863843
unpaywall_primary_10_1109_access_2022_3200375
doaj_primary_oai_doaj_org_article_26138332a3284a11b2e7c182345e335b
crossref_primary_10_1109_ACCESS_2022_3200375
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
(ref33) 2022
ref37
ref14
ref31
Weber (ref34) 2019
ref11
ref32
Kwak (ref35) 2016
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Wolf (ref10)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Zhang (ref30)
ref29
ref8
ref7
Kang (ref36) 2021
ref9
ref4
Miller (ref6)
ref3
ref5
References_xml – ident: ref22
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.313
– ident: ref13
  doi: 10.1109/ISNCC52172.2021.9615864
– ident: ref37
  doi: 10.1109/PST.2017.00017
– ident: ref31
  doi: 10.1109/COMPSAC48688.2020.00-56
– ident: ref19
  doi: 10.1186/s13635-017-0062-7
– ident: ref18
  doi: 10.1109/ACCESS.2019.2894183
– start-page: 1
  volume-title: Proc. DEFCON Hacking Conf.
  ident: ref6
  article-title: Remote exploitation of an unaltered passenger vehicle
– ident: ref26
  doi: 10.23919/AEIT.2017.8240550
– volume-title: Driving Dataset
  year: 2016
  ident: ref35
– ident: ref21
  doi: 10.3390/jsan11010006
– year: 2021
  ident: ref36
  article-title: Car hacking: Attack & defense challenge 2020 dataset
– ident: ref25
  doi: 10.1109/ACCESS.2019.2937576
– volume-title: Proc. ESCRYPT
  ident: ref10
  article-title: Wanna Drive? Feasible attack paths and effective protection against ransomware in modern vehicles
– ident: ref20
  doi: 10.1016/j.vehcom.2022.100471
– start-page: 1
  volume-title: Proc. Ground Vehicle Syst. Eng. Technol. Symp.
  ident: ref30
  article-title: A two-stage deep learning approach for can intrusion detection
– ident: ref3
  doi: 10.1109/ISIAS.2010.5604050
– ident: ref5
  doi: 10.1587/transinf.2017ICI0001
– ident: ref27
  doi: 10.4271/2017-01-1654
– ident: ref7
  doi: 10.1109/ACCESS.2020.3028097
– ident: ref17
  doi: 10.1007/978-3-642-01216-7_13
– ident: ref29
  doi: 10.1371/journal.pone.0155781
– ident: ref16
  doi: 10.3403/30268833u
– ident: ref28
  doi: 10.1145/3133956.3138843
– ident: ref14
  doi: 10.1145/2939672.2939785
– ident: ref4
  doi: 10.1109/TITS.2014.2351612
– ident: ref15
  doi: 10.1109/4235.996017
– ident: ref12
  doi: 10.3403/30283524
– ident: ref23
  doi: 10.1109/WCICSS.2015.7420322
– volume-title: Zonal Architecture: The Foundation for Next Generation Vehicles
  year: 2022
  ident: ref33
– ident: ref2
  doi: 10.1109/IVS.2008.4621263
– ident: ref9
  doi: 10.1109/JIOT.2014.2302386
– ident: ref8
  doi: 10.1109/ISNCC52172.2021.9615776
– ident: ref11
  doi: 10.3403/30268833u
– ident: ref32
  doi: 10.1109/WISES.2017.7986925
– ident: ref24
  doi: 10.1109/ICOIN.2016.7427089
– ident: ref38
  doi: 10.3403/30268833u
– ident: ref1
  doi: 10.1049/ic.2008.0810
– volume-title: Automotive OBD-II Dataset
  year: 2019
  ident: ref34
SSID ssj0000816957
Score 2.265403
Snippet Recent research interests have been directed to study the security of vehicles due to the advancement of their technologies. Due to the rapid growth and...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88907
SubjectTerms Abnormalities
Algorithms
Anomalies
Anomaly detection
Boosting
Control equipment
cyber-physical security threats
Cyber-physical systems
Data models
Datasets
Diagnostic systems
diagnostics
Electronic control
genetic algorithm
Genetic algorithms
In vehicle
intrusion detection
Machine learning
Machine learning algorithms
NSGA-II
Security
Sorting algorithms
Vehicles
vehicular security
XGBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Si3oQtYr1xR48NnY3j01ybKulCnpS6S0kaVYPZStaEf-9k-x2aRH0IiwEskmYnZnNzCTDNwhdOMWLXImQiiPCNaOg2CpiMZ_KtBAFmGgTAsW7-3z8yG4nfLJS6ivkhFXwwBXjeuDhQxBFiaGwkZoss8QLB04xZdxTym3YfVOpVoKpuAfLLFdc1DBDWap6_eEQvggCQkIuKYmlX9dMUUTsr0usrHmbmx_lq_n6NLPZiuEZ7aKd2mNM-hWle2jDl_toewVHsI3G_TK5abA1F93k4XOOwY189l3ox0_-JUxNrqq0OlgHD8B4TZN42A7taJmhdYAeR9cPwzGuSyRgxwRbYJnTgksv0ym1GTfQipw5qqyjuQTbbKw0VDoPD-ckd4xNi5Q4rwoPcYJj9BC1ynnpj1BSeGuISokCl4d5KazKRcQHY8a4VNEOIktuaVfjh4cyFjMd44hU6YrFOrBY1yzuoG4z6bWCz_h9-CCIoRkasK9jB2iErjVC_6URHdQOQmwWUcAkyYD-06VQdf2fvmsiIKQDkyzhNW4E_YNUE4tXrpF6_B-knqCtsGZ1pHOKWou3D38GTs7Cnkd9_gZgOu8M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAODBho3QbKgWPdpv7tY1eoChIThxWNk2U7DqBV2cRSDfjreXbcaAUJCaRIjhzbcvSe895nv3wPoVde81poGUNxZDxmlBQ7TRzmlSprWYOJthEovj8TyxV7d8Ev8oZb-hcmhJCCz8I43qaz_K9h_V1OBInkaXoioD-AhEmpFegOAyhY1ffRnuDgiw_Q3ursw-xTzCg3FRrTdDZ5nIk1JzblIARQSMiYkpT-dcccJdb-nGZlx-N8sGmu7Y9bu17fMT6LfWS20-5iTi7Hm9aN_c_fGB3__70eo0fZLy1mnSI9QfdC8xQ9vMNWeICWs6Z42zN4tqPi_PYKg7P6OYygHn8MX2LX4nUXvAfj4FMwkVWRtvShXGzjwJ6h1eLN-XyJcyIG7JlkLYYJ1VwFVVbUTbmFUgrmqXaeCgUegHXKUuUDXJwT4Rmr6pL4oOsAaMQz-hwNmqsmHKKiDs4SXRINjhULSjotZGIhY9b6UtMhIlt5GJ9ZymOyjLVJaKXUZjafg2qaKESThThEo77TdUfS8ffmp1HQfdPIsJ0qQCgmL1gDyBLAOyWWggG306kjQXoAY5TxQCl3Q3QQBdkPkqU2RCdbtTH5a3BjiATgCIZfwWPcq9IfU-3Uc2eqR__Y_gQN2m-b8AIcpda9zKvhF3gZCMg
  priority: 102
  providerName: Unpaywall
Title An Intelligent, Two-Stage, In-Vehicle Diagnostic-Based Secured Framework
URI https://ieeexplore.ieee.org/document/9863843
https://www.proquest.com/docview/2708642983
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09863843.pdf
https://doaj.org/article/26138332a3284a11b2e7c182345e335b
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH_axgE4bMBAlI0qB451l_ojto9dR1WQNnFY0ThFtuOARJVOkGqCv55nx41WQAgpkiPHcey8Z70PP_8ewBunRV1oGUJxZNhmlIxYTS0RlcprWaOINsFQvLwqFkv-_kbc7MGoPwvjvY_BZ34cbuNefrV2m-AqO9MKuYWzfdiXqujOavX-lJBAQguZgIUmuT6bzmY4BzQBKR0zGpO97gifiNGfkqrs6JcPN82t-XFnVqt7omZ-BJfbQXYRJl_Hm9aO3c_f8Bv_dxZP4DDpnNm0Y5KnsOebZ_D4HhLhMSymTfauR-dsR9n13ZqgIvrZj7CefPRfwqvZRReYh_2QcxR_VRbd9VjOtzFez2E5f3s9W5CUZIE4LnlLcDC1UF7lFbMTYbCUBXdMW8cKhdLdWGWYch4vIWjhOK_qnDqva4-WhuPsBRw068a_hKz21lCdU41KE_dKWl3IiDDGjXG5ZgOg279fuoRAHhJhrMpoieS67EhWBpKViWQDGPUv3XYAHP9ufh7I2jcN6NmxAklQpsVYotWIhjmjhqFwNpOJpV46NLQYF54xYQdwHMjWd5IoNoDTLZOUaaV_L6lEoxCFusLHpGecP4ZqYvrLnaG--vtXTuARKmUhXoZQcQoH7beNf42KT2uH0WEwjHw_hAfLqw_TT78AK2f9OQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4zA4MGAgCgNy4Fh3qT_i-Nh1VB2sO3VoN8t2HJCo0glSTfDX8-y40QoIIUVy5NiOnfei9-Hn3wN455SoCyVDKI4M24ySEauoJaIq81rWKKJNMBQXl8X8in-4Ftd7MOzPwnjvY_CZH4XbuJdfrd0muMpOVIncwtk9uC8456I7rdV7VEIKCSVkghYa5-pkMp3iKtAIpHTEaEz3uiN-Ikp_Squyo2EebJob8-PWrFZ3hM3sEBbbaXYxJl9Hm9aO3M_fEBz_dx2P4VHSOrNJxyZPYM83T-HhHSzCI5hPmuy8x-dsh9nydk1QFf3sh1hPPvkvoWt21oXm4TjkFAVglUWHPZazbZTXM7iavV9O5ySlWSCOS94SnEwtSl_mFbNjYbCUBXdMWceKEuW7saVhpfN4CUELx3lV59R5VXu0NRxnz2G_WTf-BWS1t4aqnCpUm7gvpVWFjBhj3BiXKzYAuv362iUM8pAKY6WjLZIr3ZFMB5LpRLIBDPtONx0Ex7-bnway9k0DfnasQBLo9DtqtBvRNGfUMBTPZjy21EuHphbjwjMm7ACOAtn6QRLFBnC8ZRKd_vXvmko0C1Gsl_iY9Izzx1RNTIC5M9WXf3_LWziYLxcX-uL88uMreBB6dE6fY9hvv238a1SDWvsmcv8vqlv93A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAODBho3QbKgWPdpv7tY1eoChIThxWNk2U7DqBV2cRSDfjreXbcaAUJCaRIjhzbcvSe895nv3wPoVde81poGUNxZDxmlBQ7TRzmlSprWYOJthEovj8TyxV7d8Ev8oZb-hcmhJCCz8I43qaz_K9h_V1OBInkaXoioD-AhEmpFegOAyhY1ffRnuDgiw_Q3ursw-xTzCg3FRrTdDZ5nIk1JzblIARQSMiYkpT-dcccJdb-nGZlx-N8sGmu7Y9bu17fMT6LfWS20-5iTi7Hm9aN_c_fGB3__70eo0fZLy1mnSI9QfdC8xQ9vMNWeICWs6Z42zN4tqPi_PYKg7P6OYygHn8MX2LX4nUXvAfj4FMwkVWRtvShXGzjwJ6h1eLN-XyJcyIG7JlkLYYJ1VwFVVbUTbmFUgrmqXaeCgUegHXKUuUDXJwT4Rmr6pL4oOsAaMQz-hwNmqsmHKKiDs4SXRINjhULSjotZGIhY9b6UtMhIlt5GJ9ZymOyjLVJaKXUZjafg2qaKESThThEo77TdUfS8ffmp1HQfdPIsJ0qQCgmL1gDyBLAOyWWggG306kjQXoAY5TxQCl3Q3QQBdkPkqU2RCdbtTH5a3BjiATgCIZfwWPcq9IfU-3Uc2eqR__Y_gQN2m-b8AIcpda9zKvhF3gZCMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent%2C+Two-Stage%2C+In-Vehicle+Diagnostic-Based+Secured+Framework&rft.jtitle=IEEE+access&rft.au=Awaad%2C+Tasneem+A.&rft.au=El-Kharashi%2C+M.+Watheq&rft.au=Taher%2C+Mohamed&rft.au=Ammar%2C+Khalid+Ali&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=88907&rft.epage=88919&rft_id=info:doi/10.1109%2FACCESS.2022.3200375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3200375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon