Accelerating Discovery of Functional Mutant Alleles in Cancer
Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease...
Saved in:
Published in | Cancer discovery Vol. 8; no. 2; pp. 174 - 183 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2159-8274 2159-8290 2159-8290 |
DOI | 10.1158/2159-8290.CD-17-0321 |
Cover
Abstract | Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete.
Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174–83. ©2017 AACR.
This article is highlighted in the In This Issue feature, p. 127 |
---|---|
AbstractList | Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete.Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 127.Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete.Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 127. Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in cancer patients. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete. Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete. Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174–83. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 127 Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete. Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. . |
Author | Schultz, Nikolaus Bielski, Craig M. Jayakumaran, Gowtham Razavi, Pedram Penson, Alexander Arcila, Maria E. Kundra, Ritika Donoghue, Mark T.A. Rosen, Neal Reales, Dalicia N. Gao, JianJiong Patel, Swati Li, Bob T. Zehir, Ahmet Baselga, José Harris, Christopher Solit, David B. Gorelick, Alexander Phillips, Sarah Benayed, Ryma Ladanyi, Marc Chang, Matthew T. Bhattarai, Tripti Shrestha Jonsson, Philip Socci, Nicholas D. Chakravarty, Debyani Taylor, Barry S. Schram, Alison M. Sumer, Selcuk Onur Kandoth, Cyriac Hyman, David M. Chandarlapaty, Sarat Berger, Michael F. Shamu, Tambudzai |
AuthorAffiliation | 7 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 8 Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 9 Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 5 Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 3 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco 2 Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 4 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 1 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 6 Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY |
AuthorAffiliation_xml | – name: 6 Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY – name: 9 Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY – name: 3 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco – name: 1 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY – name: 4 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY – name: 8 Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY – name: 7 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY – name: 5 Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY – name: 2 Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY |
Author_xml | – sequence: 1 givenname: Matthew T. surname: Chang fullname: Chang, Matthew T. – sequence: 2 givenname: Tripti Shrestha surname: Bhattarai fullname: Bhattarai, Tripti Shrestha – sequence: 3 givenname: Alison M. surname: Schram fullname: Schram, Alison M. – sequence: 4 givenname: Craig M. surname: Bielski fullname: Bielski, Craig M. – sequence: 5 givenname: Mark T.A. surname: Donoghue fullname: Donoghue, Mark T.A. – sequence: 6 givenname: Philip surname: Jonsson fullname: Jonsson, Philip – sequence: 7 givenname: Debyani surname: Chakravarty fullname: Chakravarty, Debyani – sequence: 8 givenname: Sarah surname: Phillips fullname: Phillips, Sarah – sequence: 9 givenname: Cyriac surname: Kandoth fullname: Kandoth, Cyriac – sequence: 10 givenname: Alexander surname: Penson fullname: Penson, Alexander – sequence: 11 givenname: Alexander surname: Gorelick fullname: Gorelick, Alexander – sequence: 12 givenname: Tambudzai surname: Shamu fullname: Shamu, Tambudzai – sequence: 13 givenname: Swati surname: Patel fullname: Patel, Swati – sequence: 14 givenname: Christopher surname: Harris fullname: Harris, Christopher – sequence: 15 givenname: JianJiong surname: Gao fullname: Gao, JianJiong – sequence: 16 givenname: Selcuk Onur surname: Sumer fullname: Sumer, Selcuk Onur – sequence: 17 givenname: Ritika surname: Kundra fullname: Kundra, Ritika – sequence: 18 givenname: Pedram surname: Razavi fullname: Razavi, Pedram – sequence: 19 givenname: Bob T. surname: Li fullname: Li, Bob T. – sequence: 20 givenname: Dalicia N. surname: Reales fullname: Reales, Dalicia N. – sequence: 21 givenname: Nicholas D. surname: Socci fullname: Socci, Nicholas D. – sequence: 22 givenname: Gowtham surname: Jayakumaran fullname: Jayakumaran, Gowtham – sequence: 23 givenname: Ahmet surname: Zehir fullname: Zehir, Ahmet – sequence: 24 givenname: Ryma surname: Benayed fullname: Benayed, Ryma – sequence: 25 givenname: Maria E. surname: Arcila fullname: Arcila, Maria E. – sequence: 26 givenname: Sarat surname: Chandarlapaty fullname: Chandarlapaty, Sarat – sequence: 27 givenname: Marc surname: Ladanyi fullname: Ladanyi, Marc – sequence: 28 givenname: Nikolaus surname: Schultz fullname: Schultz, Nikolaus – sequence: 29 givenname: José surname: Baselga fullname: Baselga, José – sequence: 30 givenname: Michael F. surname: Berger fullname: Berger, Michael F. – sequence: 31 givenname: Neal surname: Rosen fullname: Rosen, Neal – sequence: 32 givenname: David B. surname: Solit fullname: Solit, David B. – sequence: 33 givenname: David M. surname: Hyman fullname: Hyman, David M. – sequence: 34 givenname: Barry S. surname: Taylor fullname: Taylor, Barry S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29247016$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUlPxCAYJUbj_g-M6dFLFVpawESTScct0XjRM6H0QzEMKLST-O9to07Ug1zY3gLv7aB1HzwgdEDwMSEVPylIJXJeCHzczHPCclwWZA1tr47XV2tGt9B-Si94HFTQCrNNtFWIgjJM6m10NtMaHETVW_-UzW3SYQnxPQsmuxy87m3wymV3Q698n82cG7Epsz5rlNcQ99CGUS7B_te8ix4vLx6a6_z2_uqmmd3mmjLa5xy3RtTEYMpV0ZqihY5hVSrNeVWVXQutMQbqkisNrB63ilJdC9GVHMrO1OUuOv_UfR3aBXQafB-Vk6_RLlR8l0FZ-fvG22f5FJay4lgUTIwCR18CMbwNkHq5GL8KzikPYUiSCMYYJ7WYvA5_eq1MvjMbAfQToGNIKYJZQQiWUztyil5ONchmLgmTUzsj7fQPTdteTQGPL7buf_IH-lKVxw |
CitedBy_id | crossref_primary_10_1245_s10434_019_07201_5 crossref_primary_10_1002_gcc_22900 crossref_primary_10_1186_s13059_019_1659_6 crossref_primary_10_1016_j_jhep_2020_11_033 crossref_primary_10_17566_ciads_v8i4_572 crossref_primary_10_1111_his_13854 crossref_primary_10_1093_narcan_zcac004 crossref_primary_10_1093_bib_bbac584 crossref_primary_10_1172_jci_insight_176743 crossref_primary_10_1038_s41698_023_00458_w crossref_primary_10_1038_s42255_023_00817_8 crossref_primary_10_1093_oncolo_oyae149 crossref_primary_10_1007_s40291_021_00540_8 crossref_primary_10_1038_s41467_019_11610_1 crossref_primary_10_1186_s40246_023_00511_6 crossref_primary_10_1016_j_modpat_2023_100354 crossref_primary_10_1200_PO_21_00055 crossref_primary_10_1038_s41586_022_05531_1 crossref_primary_10_1158_2326_6066_CIR_21_0804 crossref_primary_10_1016_j_modpat_2024_100616 crossref_primary_10_1038_s41525_021_00226_4 crossref_primary_10_1038_s41598_024_58094_8 crossref_primary_10_1002_humu_24152 crossref_primary_10_1016_j_esmoop_2022_100524 crossref_primary_10_1038_s41379_020_0514_3 crossref_primary_10_1021_acs_jmedchem_0c01013 crossref_primary_10_1038_s41467_022_29227_2 crossref_primary_10_3389_fonc_2023_1103797 crossref_primary_10_1038_s41379_021_01003_5 crossref_primary_10_1038_s41591_019_0652_7 crossref_primary_10_1038_s41379_020_00721_6 crossref_primary_10_1002_path_6022 crossref_primary_10_1038_s41467_022_29638_1 crossref_primary_10_1097_PAS_0000000000001677 crossref_primary_10_1016_j_molcel_2022_04_034 crossref_primary_10_1158_2159_8290_CD_23_0546 crossref_primary_10_1073_pnas_2202727119 crossref_primary_10_1002_ijc_32361 crossref_primary_10_1038_s41586_019_1382_1 crossref_primary_10_1016_j_ccell_2018_10_003 crossref_primary_10_1038_s41591_019_0542_z crossref_primary_10_1158_1078_0432_CCR_20_3205 crossref_primary_10_3892_ol_2023_13910 crossref_primary_10_1186_s13073_020_00774_x crossref_primary_10_1002_humu_23651 crossref_primary_10_1200_PO_20_00069 crossref_primary_10_1002_mgg3_910 crossref_primary_10_1007_s10549_021_06329_x crossref_primary_10_1158_1078_0432_CCR_24_0085 crossref_primary_10_1038_s41571_023_00844_0 crossref_primary_10_1093_narcan_zcab008 crossref_primary_10_1111_his_14057 crossref_primary_10_1111_vco_12911 crossref_primary_10_1038_s41389_022_00425_3 crossref_primary_10_1038_s41598_022_20773_9 crossref_primary_10_1371_journal_pcbi_1006981 crossref_primary_10_3390_cancers13051151 crossref_primary_10_1186_s40246_024_00663_z crossref_primary_10_1016_j_aca_2024_343603 crossref_primary_10_1002_humu_23640 crossref_primary_10_1016_j_urolonc_2022_07_007 crossref_primary_10_1016_j_bbagen_2018_10_009 crossref_primary_10_1016_j_ygeno_2020_10_032 crossref_primary_10_1038_s43018_021_00243_3 crossref_primary_10_1038_s41379_019_0313_x crossref_primary_10_1039_D0MD00012D crossref_primary_10_1002_1878_0261_13636 crossref_primary_10_1016_j_modpat_2023_100144 crossref_primary_10_1002_jso_27808 crossref_primary_10_1093_nar_gkae1090 crossref_primary_10_1038_s41467_021_22478_5 crossref_primary_10_1016_j_gde_2019_02_002 crossref_primary_10_1016_j_mrrev_2022_108412 crossref_primary_10_1158_1541_7786_MCR_23_0153 crossref_primary_10_1002_path_5881 crossref_primary_10_1016_j_jmoldx_2021_07_001 crossref_primary_10_1158_1078_0432_CCR_22_2581 crossref_primary_10_1200_JCO_21_02767 crossref_primary_10_1007_s11523_025_01136_6 crossref_primary_10_1038_s41467_020_15768_x crossref_primary_10_1016_j_genrep_2020_100779 crossref_primary_10_1016_j_cell_2023_07_014 crossref_primary_10_1016_j_ijgc_2024_100051 crossref_primary_10_1016_j_clcc_2018_09_005 crossref_primary_10_1158_1078_0432_CCR_18_1001 crossref_primary_10_1038_s41698_024_00786_5 crossref_primary_10_1038_s41418_020_0502_7 crossref_primary_10_1111_bpa_12826 crossref_primary_10_1177_1066896919890401 crossref_primary_10_1172_JCI138315 crossref_primary_10_1038_nature25475 crossref_primary_10_1038_s41587_023_01945_y crossref_primary_10_1038_s41591_024_02942_7 crossref_primary_10_1126_sciadv_adg2263 crossref_primary_10_1136_gutjnl_2020_321825 crossref_primary_10_1158_1078_0432_CCR_19_0032 crossref_primary_10_1101_gr_275437_121 crossref_primary_10_1038_s42256_022_00561_w crossref_primary_10_1038_s41586_020_2315_8 crossref_primary_10_1038_s41586_019_1056_z crossref_primary_10_1038_s41418_024_01323_4 crossref_primary_10_1126_science_adg7492 crossref_primary_10_1002_1878_0261_13154 crossref_primary_10_1158_1078_0432_CCR_22_1914 crossref_primary_10_3389_fmolb_2022_959956 crossref_primary_10_1093_jnci_djae102 crossref_primary_10_1038_s41467_019_11530_0 crossref_primary_10_1002_advs_202204211 crossref_primary_10_1158_2159_8290_CD_20_0706 crossref_primary_10_3390_cancers14112721 crossref_primary_10_1111_cge_14259 crossref_primary_10_1186_s13059_020_02035_x crossref_primary_10_2139_ssrn_3501844 crossref_primary_10_1038_s41576_021_00338_8 crossref_primary_10_1158_2159_8290_CD_20_1809 crossref_primary_10_1093_narcan_zcae010 crossref_primary_10_1530_EC_21_0624 crossref_primary_10_3389_fgene_2022_956781 crossref_primary_10_1038_s41525_020_0133_4 crossref_primary_10_1093_bib_bbaa132 crossref_primary_10_1016_j_jid_2023_01_006 crossref_primary_10_1038_s41379_020_00726_1 crossref_primary_10_1016_j_gim_2022_01_001 crossref_primary_10_3390_cancers15030815 crossref_primary_10_1016_j_xgen_2023_100340 crossref_primary_10_1371_journal_pgen_1011540 crossref_primary_10_1186_s13023_024_03196_9 crossref_primary_10_1038_s41388_019_1001_5 crossref_primary_10_3389_fonc_2022_932337 crossref_primary_10_1016_j_jhep_2019_05_027 crossref_primary_10_3390_ijms21218021 crossref_primary_10_1158_1078_0432_CCR_20_2657 crossref_primary_10_1158_1078_0432_CCR_22_3753 crossref_primary_10_1186_s13045_021_01137_8 crossref_primary_10_3390_cancers12113140 crossref_primary_10_1038_s41568_019_0185_x crossref_primary_10_1016_j_csbj_2020_11_020 crossref_primary_10_1093_bib_bbab524 crossref_primary_10_1038_s41467_022_32103_8 crossref_primary_10_1089_sysm_2020_0001 crossref_primary_10_1158_1078_0432_CCR_21_2027 crossref_primary_10_1158_1078_0432_CCR_18_0991 crossref_primary_10_1186_s40246_024_00714_5 crossref_primary_10_1038_s41467_019_13806_x crossref_primary_10_7717_peerj_16033 crossref_primary_10_1158_1078_0432_CCR_20_4707 crossref_primary_10_1186_s13059_019_1919_5 crossref_primary_10_3390_biom9010029 crossref_primary_10_1038_s43018_022_00388_9 crossref_primary_10_1016_j_ccell_2023_12_016 crossref_primary_10_1007_s00428_023_03640_4 crossref_primary_10_1016_j_cancergen_2019_05_002 crossref_primary_10_1002_1878_0261_12962 crossref_primary_10_1126_science_aat7171 crossref_primary_10_1016_j_ygyno_2023_05_059 crossref_primary_10_1002_ijc_33749 crossref_primary_10_1016_j_csbj_2020_06_022 crossref_primary_10_1016_j_ygyno_2024_02_015 crossref_primary_10_1038_s41568_024_00784_6 crossref_primary_10_1038_s41588_020_0703_5 crossref_primary_10_1016_j_ygyno_2019_07_012 crossref_primary_10_1002_ijc_34277 crossref_primary_10_1038_s41523_021_00339_0 crossref_primary_10_1097_PAS_0000000000002118 crossref_primary_10_1038_s41591_020_1008_z crossref_primary_10_1016_j_modpat_2023_100099 crossref_primary_10_1136_ijgc_2020_001241 crossref_primary_10_1002_1878_0261_12813 crossref_primary_10_1038_s43018_020_0100_0 crossref_primary_10_1002_advs_202402258 crossref_primary_10_1038_s41540_024_00475_w crossref_primary_10_3390_cells9020442 crossref_primary_10_1001_jamanetworkopen_2020_7566 crossref_primary_10_1002_path_5910 crossref_primary_10_1158_1078_0432_CCR_24_1583 crossref_primary_10_3389_fimmu_2023_1179101 crossref_primary_10_1080_23808993_2019_1578171 crossref_primary_10_1038_s41698_024_00674_y crossref_primary_10_1108_SC_04_2023_0014 crossref_primary_10_1172_JCI122095 crossref_primary_10_1016_j_jtho_2023_10_004 crossref_primary_10_1016_j_jncc_2022_10_004 crossref_primary_10_1158_2159_8290_CD_20_1050 crossref_primary_10_1158_0008_5472_CAN_20_3232 crossref_primary_10_1146_annurev_cancerbio_061421_012927 crossref_primary_10_3390_jcm13164815 crossref_primary_10_1016_j_ccell_2018_09_010 crossref_primary_10_3389_fonc_2022_1014592 crossref_primary_10_1038_s41467_019_11510_4 crossref_primary_10_1038_s41467_024_53163_y crossref_primary_10_1038_s41587_023_01783_y crossref_primary_10_1016_j_modpat_2025_100706 crossref_primary_10_1158_2159_8290_CD_19_0298 crossref_primary_10_1158_2159_8290_CD_20_0571 crossref_primary_10_1038_s41416_023_02300_3 crossref_primary_10_1038_s41591_019_0749_z crossref_primary_10_1126_sciadv_abo6371 crossref_primary_10_1038_s41523_023_00566_7 crossref_primary_10_1093_database_baae034 crossref_primary_10_1158_0008_5472_CAN_23_0816 crossref_primary_10_1158_2159_8290_CD_23_0996 crossref_primary_10_17566_ciads_v8i3_571 crossref_primary_10_1002_hed_28127 crossref_primary_10_1038_s41586_020_2175_2 crossref_primary_10_1038_s41591_025_03575_0 crossref_primary_10_1016_j_modpat_2022_100030 crossref_primary_10_1093_annonc_mdz133 crossref_primary_10_1002_jcla_70008 crossref_primary_10_1038_s41467_022_30003_5 crossref_primary_10_1016_j_ygyno_2019_10_028 crossref_primary_10_3390_life14030297 crossref_primary_10_1158_2159_8290_CD_19_0966 crossref_primary_10_1016_j_ygyno_2021_02_028 crossref_primary_10_15252_emmm_202217094 crossref_primary_10_1158_2767_9764_CRC_22_0339 crossref_primary_10_1200_PO_18_00105 crossref_primary_10_1002_ajh_25469 crossref_primary_10_1016_j_ccell_2020_03_014 crossref_primary_10_1038_s41698_024_00673_z crossref_primary_10_1111_his_14880 crossref_primary_10_1038_s42255_021_00378_8 crossref_primary_10_1038_s41588_021_00949_1 crossref_primary_10_3389_fonc_2022_953013 crossref_primary_10_1002_cam4_6729 crossref_primary_10_1016_j_ygyno_2021_02_015 crossref_primary_10_1038_s41523_021_00250_8 crossref_primary_10_1073_pnas_2025182118 crossref_primary_10_1200_CCI_21_00144 crossref_primary_10_1002_humu_23739 crossref_primary_10_3390_cancers12030687 crossref_primary_10_1182_blood_2020006868 crossref_primary_10_1038_s41379_021_00799_6 crossref_primary_10_1016_j_cell_2018_03_035 crossref_primary_10_1186_s13046_022_02591_z crossref_primary_10_1038_s41421_023_00614_3 crossref_primary_10_3390_cancers11122030 crossref_primary_10_1101_mcs_a004739 crossref_primary_10_3390_cancers15133456 crossref_primary_10_1038_s41588_019_0572_y crossref_primary_10_1038_s41588_022_01157_1 crossref_primary_10_1016_j_cmpb_2023_107697 crossref_primary_10_1038_s41379_019_0357_y crossref_primary_10_1038_s41467_020_20847_0 crossref_primary_10_1200_PO_19_00221 crossref_primary_10_3389_fonc_2023_1086517 crossref_primary_10_1038_s43018_021_00273_x crossref_primary_10_1200_PO_19_00103 crossref_primary_10_1158_0008_5472_CAN_20_0865 crossref_primary_10_1158_1078_0432_CCR_21_4016 crossref_primary_10_3390_cancers15102868 crossref_primary_10_1038_s41598_022_14675_z crossref_primary_10_3390_cancers11121972 crossref_primary_10_1038_s41416_019_0686_0 crossref_primary_10_1097_PAS_0000000000001572 |
Cites_doi | 10.1158/2159-8290.CD-17-1119 10.1016/j.cell.2013.03.002 10.1038/nature19057 10.1038/ng.3549 10.1158/1535-7163.TARG-15-B109 10.1182/blood-2004-11-4430 10.1056/NEJMoa1502309 10.1126/scitranslmed.3003161 10.1038/nbt.3391 10.1038/sj.onc.1203642 10.1016/j.gde.2013.11.014 10.1056/NEJMoa0909530 10.1056/NEJMoa020461 10.1158/2159-8290.CD-16-0160 10.1038/nm.3559 10.1016/j.ccell.2016.02.010 10.1038/nbt.2696 10.1186/s13073-016-0364-2 10.1158/0008-5472.CAN-10-2956 10.1038/ng.2822 10.1056/NEJMp1607591 10.1158/2159-8290.CD-12-0095 10.1016/j.jmoldx.2014.12.006 10.1038/nm.4333 10.1016/j.cell.2009.12.040 10.1093/nar/gkv1222 10.1158/1538-7445.AM2017-CT001 10.1016/j.cell.2015.05.001 10.1002/ijc.25893 10.1126/scisignal.2004088 10.1016/j.ccell.2016.06.022 |
ContentType | Journal Article |
Copyright | 2017 American Association for Cancer Research. |
Copyright_xml | – notice: 2017 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/2159-8290.CD-17-0321 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2159-8290 |
EndPage | 183 |
ExternalDocumentID | PMC5809279 29247016 10_1158_2159_8290_CD_17_0321 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R25 CA020449 – fundername: NCI NIH HHS grantid: R01 CA204749 – fundername: NCI NIH HHS grantid: T32 CA009207 – fundername: NIH HHS grantid: U54 OD020355 – fundername: NCI NIH HHS grantid: R35 CA210085 – fundername: NCI NIH HHS grantid: R01 CA207244 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIGMS NIH HHS grantid: T32 GM007175 |
GroupedDBID | --- 53G 5VS AAYXX ADBBV ADCOW AENEX AFHIN AFUMD ALMA_UNASSIGNED_HOLDINGS BR6 BTFSW CITATION EBS EJD H13 KQ8 OK1 RCR RHI CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c474t-80bf961f048a2bf2bed70a3ac88553dbebfffe638ace76beba44c699d38e3df63 |
ISSN | 2159-8274 2159-8290 |
IngestDate | Thu Aug 21 14:08:42 EDT 2025 Thu Sep 04 17:31:43 EDT 2025 Thu Apr 03 06:54:02 EDT 2025 Tue Jul 01 00:56:22 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2017 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-80bf961f048a2bf2bed70a3ac88553dbebfffe638ace76beba44c699d38e3df63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address for MT Chang: Genentech Inc., South San Francisco, California |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5809279 |
PMID | 29247016 |
PQID | 1977781696 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5809279 proquest_miscellaneous_1977781696 pubmed_primary_29247016 crossref_primary_10_1158_2159_8290_CD_17_0321 crossref_citationtrail_10_1158_2159_8290_CD_17_0321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer discovery |
PublicationTitleAlternate | Cancer Discov |
PublicationYear | 2018 |
References | Kim (2022060701000553000_bib15) 2016; 6 Giannakakou (2022060701000553000_bib13) 2000; 19 Zehir (2022060701000553000_bib8) 2017; 23 Eisenhardt (2022060701000553000_bib18) 2011; 129 Toy (2022060701000553000_bib21) 2013; 45 Foster (2022060701000553000_bib19) 2016; 29 Grundler (2022060701000553000_bib22) 2005; 105 Chang (2022060701000553000_bib10) 2016; 34 Roychowdhury (2022060701000553000_bib3) 2011; 3 Sullivan (2022060701000553000_bib26) 2018; 8 Frampton (2022060701000553000_bib2) 2013; 31 Sasaki (2022060701000553000_bib12) 2010; 70 Van Allen (2022060701000553000_bib4) 2014; 20 Cerami (2022060701000553000_bib28) 2012; 2 Landrum (2022060701000553000_bib31) 2016; 44 Stockley (2022060701000553000_bib6) 2016; 8 Heidorn (2022060701000553000_bib23) 2010; 140 Berger (2022060701000553000_bib14) 2016; 30 Hyman (2022060701000553000_bib7) 2015; 373 Robinson (2022060701000553000_bib32) 2015; 161 Hyman (2022060701000553000_bib25) 2017; 77 Hyman (2022060701000553000_bib20) 2015 Cheng (2022060701000553000_bib1) 2015; 17 Demetri (2022060701000553000_bib16) 2002; 347 Lek (2022060701000553000_bib30) 2016; 536 Moore (2022060701000553000_bib11) 2016; 48 Maemondo (2022060701000553000_bib17) 2010; 362 Garraway (2022060701000553000_bib5) 2013; 153 Chakravarty (2022060701000553000_bib24) 2017; 2017 Grossman (2022060701000553000_bib27) 2016; 375 Gao (2022060701000553000_bib29) 2013; 6 Alexandrov (2022060701000553000_bib9) 2014; 24 |
References_xml | – volume: 8 start-page: 184 year: 2018 ident: 2022060701000553000_bib26 article-title: First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose- escalation and expansion study publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-1119 – volume: 153 start-page: 17 year: 2013 ident: 2022060701000553000_bib5 article-title: Lessons from the cancer genome publication-title: Cell doi: 10.1016/j.cell.2013.03.002 – volume: 536 start-page: 285 year: 2016 ident: 2022060701000553000_bib30 article-title: Analysis of protein-coding genetic variation in 60,706 humans publication-title: Nature doi: 10.1038/nature19057 – volume: 48 start-page: 675 year: 2016 ident: 2022060701000553000_bib11 article-title: Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma publication-title: Nat Genet doi: 10.1038/ng.3549 – year: 2015 ident: 2022060701000553000_bib20 article-title: AZD5363, a catalytical pan-Akt inhibitor, in Akt1 E17K mutation positive advanced solit tumors publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.TARG-15-B109 – volume: 105 start-page: 4792 year: 2005 ident: 2022060701000553000_bib22 article-title: FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model publication-title: Blood doi: 10.1182/blood-2004-11-4430 – volume: 373 start-page: 726 year: 2015 ident: 2022060701000553000_bib7 article-title: Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations publication-title: N Engl J Med doi: 10.1056/NEJMoa1502309 – volume: 3 start-page: 111ra21 year: 2011 ident: 2022060701000553000_bib3 article-title: Personalized oncology through integrative high-throughput sequencing: a pilot study publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003161 – volume: 34 start-page: 155 year: 2016 ident: 2022060701000553000_bib10 article-title: Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity publication-title: Nat Biotechnol doi: 10.1038/nbt.3391 – volume: 19 start-page: 3078 year: 2000 ident: 2022060701000553000_bib13 article-title: Paclitaxel selects for mutant or pseudo-null p53 in drug resistance associated with tubulin mutations in human cancer publication-title: Oncogene doi: 10.1038/sj.onc.1203642 – volume: 24 start-page: 52 year: 2014 ident: 2022060701000553000_bib9 article-title: Mutational signatures: the patterns of somatic mutations hidden in cancer genomes publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2013.11.014 – volume: 362 start-page: 2380 year: 2010 ident: 2022060701000553000_bib17 article-title: Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR publication-title: N Engl J Med doi: 10.1056/NEJMoa0909530 – volume: 347 start-page: 472 year: 2002 ident: 2022060701000553000_bib16 article-title: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors publication-title: N Engl J Med doi: 10.1056/NEJMoa020461 – volume: 6 start-page: 714 year: 2016 ident: 2022060701000553000_bib15 article-title: Systematic functional interrogation of rare cancer variants identifies oncogenic alleles publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0160 – volume: 20 start-page: 682 year: 2014 ident: 2022060701000553000_bib4 article-title: Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine publication-title: Nat Med doi: 10.1038/nm.3559 – volume: 29 start-page: 477 year: 2016 ident: 2022060701000553000_bib19 article-title: Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.02.010 – volume: 31 start-page: 1023 year: 2013 ident: 2022060701000553000_bib2 article-title: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing publication-title: Nat Biotechnol doi: 10.1038/nbt.2696 – volume: 8 start-page: 109 year: 2016 ident: 2022060701000553000_bib6 article-title: Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial publication-title: Genome Med doi: 10.1186/s13073-016-0364-2 – volume: 70 start-page: 10038 year: 2010 ident: 2022060701000553000_bib12 article-title: The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-2956 – volume: 45 start-page: 1439 year: 2013 ident: 2022060701000553000_bib21 article-title: ESR1 ligand-binding domain mutations in hormone-resistant breast cancer publication-title: Nat Genet doi: 10.1038/ng.2822 – volume: 375 start-page: 1109 year: 2016 ident: 2022060701000553000_bib27 article-title: Toward a shared vision for cancer genomic data publication-title: N Engl J Med doi: 10.1056/NEJMp1607591 – volume: 2017 year: 2017 ident: 2022060701000553000_bib24 article-title: OncoKB: a precision oncology knowledge base publication-title: JCO Precis Oncol – volume: 2 start-page: 401 year: 2012 ident: 2022060701000553000_bib28 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 – volume: 17 start-page: 251 year: 2015 ident: 2022060701000553000_bib1 article-title: Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology publication-title: J Mol Diagn doi: 10.1016/j.jmoldx.2014.12.006 – volume: 23 start-page: 703 year: 2017 ident: 2022060701000553000_bib8 article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients publication-title: Nat Med doi: 10.1038/nm.4333 – volume: 140 start-page: 209 year: 2010 ident: 2022060701000553000_bib23 article-title: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF publication-title: Cell doi: 10.1016/j.cell.2009.12.040 – volume: 44 start-page: D862 year: 2016 ident: 2022060701000553000_bib31 article-title: ClinVar: public archive of interpretations of clinically relevant variants publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1222 – volume: 77 start-page: CT001 year: 2017 ident: 2022060701000553000_bib25 article-title: Neratinib in HER2 or HER3 mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 basket study publication-title: Cancer Res doi: 10.1158/1538-7445.AM2017-CT001 – volume: 161 start-page: 1215 year: 2015 ident: 2022060701000553000_bib32 article-title: Integrative clinical genomics of advanced prostate cancer publication-title: Cell doi: 10.1016/j.cell.2015.05.001 – volume: 129 start-page: 2297 year: 2011 ident: 2022060701000553000_bib18 article-title: Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma publication-title: Int J Cancer doi: 10.1002/ijc.25893 – volume: 6 start-page: pl1 year: 2013 ident: 2022060701000553000_bib29 article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal publication-title: Sci Signal doi: 10.1126/scisignal.2004088 – volume: 30 start-page: 214 year: 2016 ident: 2022060701000553000_bib14 article-title: High-throughput phenotyping of lung cancer somatic mutations publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.022 |
SSID | ssj0000494507 |
Score | 2.62324 |
Snippet | Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 174 |
SubjectTerms | Alleles Biomarkers, Tumor Codon Genetic Association Studies - methods Genetic Predisposition to Disease Humans INDEL Mutation Mutation Neoplasms - genetics |
Title | Accelerating Discovery of Functional Mutant Alleles in Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29247016 https://www.proquest.com/docview/1977781696 https://pubmed.ncbi.nlm.nih.gov/PMC5809279 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2159-8290 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000494507 issn: 2159-8274 databaseCode: KQ8 dateStart: 20110601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2MvY9_LvvBg7KW4i21Zlh5Tp6FsTceoA3kTsizXgeB0afLSv753luI4a2DdXowtyxLozqc73cePkC-CCa6M4H6u48inGpOVc1b6huamwOoixmBy8vicnU7o92k83cbpNtklq_xI3-zNK_kfqkIb0BWzZP-Bsu2g0AD3QF-4AoXhei8aD7SGXQNpCPb-cHatMR6zcZmPYLtyp3zjNQIFHw7mc-jbRL-mSOllVy21LeitsUN0nP5WFjhY8G1I9XEFLWppwayzRvIcXlQI9FG1gv5CV0vLb4N5g3TYnvIcz2BLtoDZKYxx6d6404eAbwKWN0IKNAbhozPW7id72pyU5R1mCjsSM7AgPXcleYzZCe1QR-nQh_20H9l86t3C2ec_5Whydiazk2n29eq3j5hi6Ht3ACsPyaMwYQzxLX784u0JHFbGiZt8-nYWl1sJc3_bN_Ou7nLHIPkzrrajqGTPyFNnYXgDyy7PyQNTvyCPxy6G4iXZ4Rqv5RpvUXpbrvEs13iOa7xZ7VkeeUUmo5MsPfUdiIavaUJXoIHkpWBBCZJahXkZwi-Y9FWkNOdxHBW5ycuyNCCFlTYJg0dFqWZCFBE3UVGy6DU5qBe1eUs8wdB-DTWlSlNQVHOtRGj6plSB5kwXPRJtlkdqV2EegU7msrE0Yy5xUSUuqkyHMkgkLmqP-O1XV7bCyl_6f96svARRiP4tVZvF-loGYMskPGCC9cgbS4l2xFCENAHzpkeSHRq1HbDM-u6belY15dZj3hdhIt7dY9735Mn2J_lADlbLtfkISusq_9Tw3i11ipcS |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Discovery+of+Functional+Mutant+Alleles+in+Cancer&rft.jtitle=Cancer+discovery&rft.au=Chang%2C+Matthew+T&rft.au=Bhattarai%2C+Tripti+Shrestha&rft.au=Schram%2C+Alison+M&rft.au=Bielski%2C+Craig+M&rft.date=2018-02-01&rft.issn=2159-8290&rft.eissn=2159-8290&rft.volume=8&rft.issue=2&rft.spage=174&rft_id=info:doi/10.1158%2F2159-8290.CD-17-0321&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-8274&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-8274&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-8274&client=summon |