Accelerating Discovery of Functional Mutant Alleles in Cancer

Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease...

Full description

Saved in:
Bibliographic Details
Published inCancer discovery Vol. 8; no. 2; pp. 174 - 183
Main Authors Chang, Matthew T., Bhattarai, Tripti Shrestha, Schram, Alison M., Bielski, Craig M., Donoghue, Mark T.A., Jonsson, Philip, Chakravarty, Debyani, Phillips, Sarah, Kandoth, Cyriac, Penson, Alexander, Gorelick, Alexander, Shamu, Tambudzai, Patel, Swati, Harris, Christopher, Gao, JianJiong, Sumer, Selcuk Onur, Kundra, Ritika, Razavi, Pedram, Li, Bob T., Reales, Dalicia N., Socci, Nicholas D., Jayakumaran, Gowtham, Zehir, Ahmet, Benayed, Ryma, Arcila, Maria E., Chandarlapaty, Sarat, Ladanyi, Marc, Schultz, Nikolaus, Baselga, José, Berger, Michael F., Rosen, Neal, Solit, David B., Hyman, David M., Taylor, Barry S.
Format Journal Article
LanguageEnglish
Published United States 01.02.2018
Subjects
Online AccessGet full text
ISSN2159-8274
2159-8290
2159-8290
DOI10.1158/2159-8290.CD-17-0321

Cover

Abstract Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete. Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174–83. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 127
AbstractList Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete.Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 127.Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete.Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 127.
Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in cancer patients. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete.
Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete. Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174–83. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 127
Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete. Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. .
Author Schultz, Nikolaus
Bielski, Craig M.
Jayakumaran, Gowtham
Razavi, Pedram
Penson, Alexander
Arcila, Maria E.
Kundra, Ritika
Donoghue, Mark T.A.
Rosen, Neal
Reales, Dalicia N.
Gao, JianJiong
Patel, Swati
Li, Bob T.
Zehir, Ahmet
Baselga, José
Harris, Christopher
Solit, David B.
Gorelick, Alexander
Phillips, Sarah
Benayed, Ryma
Ladanyi, Marc
Chang, Matthew T.
Bhattarai, Tripti Shrestha
Jonsson, Philip
Socci, Nicholas D.
Chakravarty, Debyani
Taylor, Barry S.
Schram, Alison M.
Sumer, Selcuk Onur
Kandoth, Cyriac
Hyman, David M.
Chandarlapaty, Sarat
Berger, Michael F.
Shamu, Tambudzai
AuthorAffiliation 7 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
8 Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
9 Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
5 Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
3 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
2 Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
4 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
1 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
6 Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY
AuthorAffiliation_xml – name: 6 Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY
– name: 9 Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
– name: 3 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
– name: 1 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
– name: 4 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
– name: 8 Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
– name: 7 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
– name: 5 Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
– name: 2 Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
Author_xml – sequence: 1
  givenname: Matthew T.
  surname: Chang
  fullname: Chang, Matthew T.
– sequence: 2
  givenname: Tripti Shrestha
  surname: Bhattarai
  fullname: Bhattarai, Tripti Shrestha
– sequence: 3
  givenname: Alison M.
  surname: Schram
  fullname: Schram, Alison M.
– sequence: 4
  givenname: Craig M.
  surname: Bielski
  fullname: Bielski, Craig M.
– sequence: 5
  givenname: Mark T.A.
  surname: Donoghue
  fullname: Donoghue, Mark T.A.
– sequence: 6
  givenname: Philip
  surname: Jonsson
  fullname: Jonsson, Philip
– sequence: 7
  givenname: Debyani
  surname: Chakravarty
  fullname: Chakravarty, Debyani
– sequence: 8
  givenname: Sarah
  surname: Phillips
  fullname: Phillips, Sarah
– sequence: 9
  givenname: Cyriac
  surname: Kandoth
  fullname: Kandoth, Cyriac
– sequence: 10
  givenname: Alexander
  surname: Penson
  fullname: Penson, Alexander
– sequence: 11
  givenname: Alexander
  surname: Gorelick
  fullname: Gorelick, Alexander
– sequence: 12
  givenname: Tambudzai
  surname: Shamu
  fullname: Shamu, Tambudzai
– sequence: 13
  givenname: Swati
  surname: Patel
  fullname: Patel, Swati
– sequence: 14
  givenname: Christopher
  surname: Harris
  fullname: Harris, Christopher
– sequence: 15
  givenname: JianJiong
  surname: Gao
  fullname: Gao, JianJiong
– sequence: 16
  givenname: Selcuk Onur
  surname: Sumer
  fullname: Sumer, Selcuk Onur
– sequence: 17
  givenname: Ritika
  surname: Kundra
  fullname: Kundra, Ritika
– sequence: 18
  givenname: Pedram
  surname: Razavi
  fullname: Razavi, Pedram
– sequence: 19
  givenname: Bob T.
  surname: Li
  fullname: Li, Bob T.
– sequence: 20
  givenname: Dalicia N.
  surname: Reales
  fullname: Reales, Dalicia N.
– sequence: 21
  givenname: Nicholas D.
  surname: Socci
  fullname: Socci, Nicholas D.
– sequence: 22
  givenname: Gowtham
  surname: Jayakumaran
  fullname: Jayakumaran, Gowtham
– sequence: 23
  givenname: Ahmet
  surname: Zehir
  fullname: Zehir, Ahmet
– sequence: 24
  givenname: Ryma
  surname: Benayed
  fullname: Benayed, Ryma
– sequence: 25
  givenname: Maria E.
  surname: Arcila
  fullname: Arcila, Maria E.
– sequence: 26
  givenname: Sarat
  surname: Chandarlapaty
  fullname: Chandarlapaty, Sarat
– sequence: 27
  givenname: Marc
  surname: Ladanyi
  fullname: Ladanyi, Marc
– sequence: 28
  givenname: Nikolaus
  surname: Schultz
  fullname: Schultz, Nikolaus
– sequence: 29
  givenname: José
  surname: Baselga
  fullname: Baselga, José
– sequence: 30
  givenname: Michael F.
  surname: Berger
  fullname: Berger, Michael F.
– sequence: 31
  givenname: Neal
  surname: Rosen
  fullname: Rosen, Neal
– sequence: 32
  givenname: David B.
  surname: Solit
  fullname: Solit, David B.
– sequence: 33
  givenname: David M.
  surname: Hyman
  fullname: Hyman, David M.
– sequence: 34
  givenname: Barry S.
  surname: Taylor
  fullname: Taylor, Barry S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29247016$$D View this record in MEDLINE/PubMed
BookMark eNp9UUlPxCAYJUbj_g-M6dFLFVpawESTScct0XjRM6H0QzEMKLST-O9to07Ug1zY3gLv7aB1HzwgdEDwMSEVPylIJXJeCHzczHPCclwWZA1tr47XV2tGt9B-Si94HFTQCrNNtFWIgjJM6m10NtMaHETVW_-UzW3SYQnxPQsmuxy87m3wymV3Q698n82cG7Epsz5rlNcQ99CGUS7B_te8ix4vLx6a6_z2_uqmmd3mmjLa5xy3RtTEYMpV0ZqihY5hVSrNeVWVXQutMQbqkisNrB63ilJdC9GVHMrO1OUuOv_UfR3aBXQafB-Vk6_RLlR8l0FZ-fvG22f5FJay4lgUTIwCR18CMbwNkHq5GL8KzikPYUiSCMYYJ7WYvA5_eq1MvjMbAfQToGNIKYJZQQiWUztyil5ONchmLgmTUzsj7fQPTdteTQGPL7buf_IH-lKVxw
CitedBy_id crossref_primary_10_1245_s10434_019_07201_5
crossref_primary_10_1002_gcc_22900
crossref_primary_10_1186_s13059_019_1659_6
crossref_primary_10_1016_j_jhep_2020_11_033
crossref_primary_10_17566_ciads_v8i4_572
crossref_primary_10_1111_his_13854
crossref_primary_10_1093_narcan_zcac004
crossref_primary_10_1093_bib_bbac584
crossref_primary_10_1172_jci_insight_176743
crossref_primary_10_1038_s41698_023_00458_w
crossref_primary_10_1038_s42255_023_00817_8
crossref_primary_10_1093_oncolo_oyae149
crossref_primary_10_1007_s40291_021_00540_8
crossref_primary_10_1038_s41467_019_11610_1
crossref_primary_10_1186_s40246_023_00511_6
crossref_primary_10_1016_j_modpat_2023_100354
crossref_primary_10_1200_PO_21_00055
crossref_primary_10_1038_s41586_022_05531_1
crossref_primary_10_1158_2326_6066_CIR_21_0804
crossref_primary_10_1016_j_modpat_2024_100616
crossref_primary_10_1038_s41525_021_00226_4
crossref_primary_10_1038_s41598_024_58094_8
crossref_primary_10_1002_humu_24152
crossref_primary_10_1016_j_esmoop_2022_100524
crossref_primary_10_1038_s41379_020_0514_3
crossref_primary_10_1021_acs_jmedchem_0c01013
crossref_primary_10_1038_s41467_022_29227_2
crossref_primary_10_3389_fonc_2023_1103797
crossref_primary_10_1038_s41379_021_01003_5
crossref_primary_10_1038_s41591_019_0652_7
crossref_primary_10_1038_s41379_020_00721_6
crossref_primary_10_1002_path_6022
crossref_primary_10_1038_s41467_022_29638_1
crossref_primary_10_1097_PAS_0000000000001677
crossref_primary_10_1016_j_molcel_2022_04_034
crossref_primary_10_1158_2159_8290_CD_23_0546
crossref_primary_10_1073_pnas_2202727119
crossref_primary_10_1002_ijc_32361
crossref_primary_10_1038_s41586_019_1382_1
crossref_primary_10_1016_j_ccell_2018_10_003
crossref_primary_10_1038_s41591_019_0542_z
crossref_primary_10_1158_1078_0432_CCR_20_3205
crossref_primary_10_3892_ol_2023_13910
crossref_primary_10_1186_s13073_020_00774_x
crossref_primary_10_1002_humu_23651
crossref_primary_10_1200_PO_20_00069
crossref_primary_10_1002_mgg3_910
crossref_primary_10_1007_s10549_021_06329_x
crossref_primary_10_1158_1078_0432_CCR_24_0085
crossref_primary_10_1038_s41571_023_00844_0
crossref_primary_10_1093_narcan_zcab008
crossref_primary_10_1111_his_14057
crossref_primary_10_1111_vco_12911
crossref_primary_10_1038_s41389_022_00425_3
crossref_primary_10_1038_s41598_022_20773_9
crossref_primary_10_1371_journal_pcbi_1006981
crossref_primary_10_3390_cancers13051151
crossref_primary_10_1186_s40246_024_00663_z
crossref_primary_10_1016_j_aca_2024_343603
crossref_primary_10_1002_humu_23640
crossref_primary_10_1016_j_urolonc_2022_07_007
crossref_primary_10_1016_j_bbagen_2018_10_009
crossref_primary_10_1016_j_ygeno_2020_10_032
crossref_primary_10_1038_s43018_021_00243_3
crossref_primary_10_1038_s41379_019_0313_x
crossref_primary_10_1039_D0MD00012D
crossref_primary_10_1002_1878_0261_13636
crossref_primary_10_1016_j_modpat_2023_100144
crossref_primary_10_1002_jso_27808
crossref_primary_10_1093_nar_gkae1090
crossref_primary_10_1038_s41467_021_22478_5
crossref_primary_10_1016_j_gde_2019_02_002
crossref_primary_10_1016_j_mrrev_2022_108412
crossref_primary_10_1158_1541_7786_MCR_23_0153
crossref_primary_10_1002_path_5881
crossref_primary_10_1016_j_jmoldx_2021_07_001
crossref_primary_10_1158_1078_0432_CCR_22_2581
crossref_primary_10_1200_JCO_21_02767
crossref_primary_10_1007_s11523_025_01136_6
crossref_primary_10_1038_s41467_020_15768_x
crossref_primary_10_1016_j_genrep_2020_100779
crossref_primary_10_1016_j_cell_2023_07_014
crossref_primary_10_1016_j_ijgc_2024_100051
crossref_primary_10_1016_j_clcc_2018_09_005
crossref_primary_10_1158_1078_0432_CCR_18_1001
crossref_primary_10_1038_s41698_024_00786_5
crossref_primary_10_1038_s41418_020_0502_7
crossref_primary_10_1111_bpa_12826
crossref_primary_10_1177_1066896919890401
crossref_primary_10_1172_JCI138315
crossref_primary_10_1038_nature25475
crossref_primary_10_1038_s41587_023_01945_y
crossref_primary_10_1038_s41591_024_02942_7
crossref_primary_10_1126_sciadv_adg2263
crossref_primary_10_1136_gutjnl_2020_321825
crossref_primary_10_1158_1078_0432_CCR_19_0032
crossref_primary_10_1101_gr_275437_121
crossref_primary_10_1038_s42256_022_00561_w
crossref_primary_10_1038_s41586_020_2315_8
crossref_primary_10_1038_s41586_019_1056_z
crossref_primary_10_1038_s41418_024_01323_4
crossref_primary_10_1126_science_adg7492
crossref_primary_10_1002_1878_0261_13154
crossref_primary_10_1158_1078_0432_CCR_22_1914
crossref_primary_10_3389_fmolb_2022_959956
crossref_primary_10_1093_jnci_djae102
crossref_primary_10_1038_s41467_019_11530_0
crossref_primary_10_1002_advs_202204211
crossref_primary_10_1158_2159_8290_CD_20_0706
crossref_primary_10_3390_cancers14112721
crossref_primary_10_1111_cge_14259
crossref_primary_10_1186_s13059_020_02035_x
crossref_primary_10_2139_ssrn_3501844
crossref_primary_10_1038_s41576_021_00338_8
crossref_primary_10_1158_2159_8290_CD_20_1809
crossref_primary_10_1093_narcan_zcae010
crossref_primary_10_1530_EC_21_0624
crossref_primary_10_3389_fgene_2022_956781
crossref_primary_10_1038_s41525_020_0133_4
crossref_primary_10_1093_bib_bbaa132
crossref_primary_10_1016_j_jid_2023_01_006
crossref_primary_10_1038_s41379_020_00726_1
crossref_primary_10_1016_j_gim_2022_01_001
crossref_primary_10_3390_cancers15030815
crossref_primary_10_1016_j_xgen_2023_100340
crossref_primary_10_1371_journal_pgen_1011540
crossref_primary_10_1186_s13023_024_03196_9
crossref_primary_10_1038_s41388_019_1001_5
crossref_primary_10_3389_fonc_2022_932337
crossref_primary_10_1016_j_jhep_2019_05_027
crossref_primary_10_3390_ijms21218021
crossref_primary_10_1158_1078_0432_CCR_20_2657
crossref_primary_10_1158_1078_0432_CCR_22_3753
crossref_primary_10_1186_s13045_021_01137_8
crossref_primary_10_3390_cancers12113140
crossref_primary_10_1038_s41568_019_0185_x
crossref_primary_10_1016_j_csbj_2020_11_020
crossref_primary_10_1093_bib_bbab524
crossref_primary_10_1038_s41467_022_32103_8
crossref_primary_10_1089_sysm_2020_0001
crossref_primary_10_1158_1078_0432_CCR_21_2027
crossref_primary_10_1158_1078_0432_CCR_18_0991
crossref_primary_10_1186_s40246_024_00714_5
crossref_primary_10_1038_s41467_019_13806_x
crossref_primary_10_7717_peerj_16033
crossref_primary_10_1158_1078_0432_CCR_20_4707
crossref_primary_10_1186_s13059_019_1919_5
crossref_primary_10_3390_biom9010029
crossref_primary_10_1038_s43018_022_00388_9
crossref_primary_10_1016_j_ccell_2023_12_016
crossref_primary_10_1007_s00428_023_03640_4
crossref_primary_10_1016_j_cancergen_2019_05_002
crossref_primary_10_1002_1878_0261_12962
crossref_primary_10_1126_science_aat7171
crossref_primary_10_1016_j_ygyno_2023_05_059
crossref_primary_10_1002_ijc_33749
crossref_primary_10_1016_j_csbj_2020_06_022
crossref_primary_10_1016_j_ygyno_2024_02_015
crossref_primary_10_1038_s41568_024_00784_6
crossref_primary_10_1038_s41588_020_0703_5
crossref_primary_10_1016_j_ygyno_2019_07_012
crossref_primary_10_1002_ijc_34277
crossref_primary_10_1038_s41523_021_00339_0
crossref_primary_10_1097_PAS_0000000000002118
crossref_primary_10_1038_s41591_020_1008_z
crossref_primary_10_1016_j_modpat_2023_100099
crossref_primary_10_1136_ijgc_2020_001241
crossref_primary_10_1002_1878_0261_12813
crossref_primary_10_1038_s43018_020_0100_0
crossref_primary_10_1002_advs_202402258
crossref_primary_10_1038_s41540_024_00475_w
crossref_primary_10_3390_cells9020442
crossref_primary_10_1001_jamanetworkopen_2020_7566
crossref_primary_10_1002_path_5910
crossref_primary_10_1158_1078_0432_CCR_24_1583
crossref_primary_10_3389_fimmu_2023_1179101
crossref_primary_10_1080_23808993_2019_1578171
crossref_primary_10_1038_s41698_024_00674_y
crossref_primary_10_1108_SC_04_2023_0014
crossref_primary_10_1172_JCI122095
crossref_primary_10_1016_j_jtho_2023_10_004
crossref_primary_10_1016_j_jncc_2022_10_004
crossref_primary_10_1158_2159_8290_CD_20_1050
crossref_primary_10_1158_0008_5472_CAN_20_3232
crossref_primary_10_1146_annurev_cancerbio_061421_012927
crossref_primary_10_3390_jcm13164815
crossref_primary_10_1016_j_ccell_2018_09_010
crossref_primary_10_3389_fonc_2022_1014592
crossref_primary_10_1038_s41467_019_11510_4
crossref_primary_10_1038_s41467_024_53163_y
crossref_primary_10_1038_s41587_023_01783_y
crossref_primary_10_1016_j_modpat_2025_100706
crossref_primary_10_1158_2159_8290_CD_19_0298
crossref_primary_10_1158_2159_8290_CD_20_0571
crossref_primary_10_1038_s41416_023_02300_3
crossref_primary_10_1038_s41591_019_0749_z
crossref_primary_10_1126_sciadv_abo6371
crossref_primary_10_1038_s41523_023_00566_7
crossref_primary_10_1093_database_baae034
crossref_primary_10_1158_0008_5472_CAN_23_0816
crossref_primary_10_1158_2159_8290_CD_23_0996
crossref_primary_10_17566_ciads_v8i3_571
crossref_primary_10_1002_hed_28127
crossref_primary_10_1038_s41586_020_2175_2
crossref_primary_10_1038_s41591_025_03575_0
crossref_primary_10_1016_j_modpat_2022_100030
crossref_primary_10_1093_annonc_mdz133
crossref_primary_10_1002_jcla_70008
crossref_primary_10_1038_s41467_022_30003_5
crossref_primary_10_1016_j_ygyno_2019_10_028
crossref_primary_10_3390_life14030297
crossref_primary_10_1158_2159_8290_CD_19_0966
crossref_primary_10_1016_j_ygyno_2021_02_028
crossref_primary_10_15252_emmm_202217094
crossref_primary_10_1158_2767_9764_CRC_22_0339
crossref_primary_10_1200_PO_18_00105
crossref_primary_10_1002_ajh_25469
crossref_primary_10_1016_j_ccell_2020_03_014
crossref_primary_10_1038_s41698_024_00673_z
crossref_primary_10_1111_his_14880
crossref_primary_10_1038_s42255_021_00378_8
crossref_primary_10_1038_s41588_021_00949_1
crossref_primary_10_3389_fonc_2022_953013
crossref_primary_10_1002_cam4_6729
crossref_primary_10_1016_j_ygyno_2021_02_015
crossref_primary_10_1038_s41523_021_00250_8
crossref_primary_10_1073_pnas_2025182118
crossref_primary_10_1200_CCI_21_00144
crossref_primary_10_1002_humu_23739
crossref_primary_10_3390_cancers12030687
crossref_primary_10_1182_blood_2020006868
crossref_primary_10_1038_s41379_021_00799_6
crossref_primary_10_1016_j_cell_2018_03_035
crossref_primary_10_1186_s13046_022_02591_z
crossref_primary_10_1038_s41421_023_00614_3
crossref_primary_10_3390_cancers11122030
crossref_primary_10_1101_mcs_a004739
crossref_primary_10_3390_cancers15133456
crossref_primary_10_1038_s41588_019_0572_y
crossref_primary_10_1038_s41588_022_01157_1
crossref_primary_10_1016_j_cmpb_2023_107697
crossref_primary_10_1038_s41379_019_0357_y
crossref_primary_10_1038_s41467_020_20847_0
crossref_primary_10_1200_PO_19_00221
crossref_primary_10_3389_fonc_2023_1086517
crossref_primary_10_1038_s43018_021_00273_x
crossref_primary_10_1200_PO_19_00103
crossref_primary_10_1158_0008_5472_CAN_20_0865
crossref_primary_10_1158_1078_0432_CCR_21_4016
crossref_primary_10_3390_cancers15102868
crossref_primary_10_1038_s41598_022_14675_z
crossref_primary_10_3390_cancers11121972
crossref_primary_10_1038_s41416_019_0686_0
crossref_primary_10_1097_PAS_0000000000001572
Cites_doi 10.1158/2159-8290.CD-17-1119
10.1016/j.cell.2013.03.002
10.1038/nature19057
10.1038/ng.3549
10.1158/1535-7163.TARG-15-B109
10.1182/blood-2004-11-4430
10.1056/NEJMoa1502309
10.1126/scitranslmed.3003161
10.1038/nbt.3391
10.1038/sj.onc.1203642
10.1016/j.gde.2013.11.014
10.1056/NEJMoa0909530
10.1056/NEJMoa020461
10.1158/2159-8290.CD-16-0160
10.1038/nm.3559
10.1016/j.ccell.2016.02.010
10.1038/nbt.2696
10.1186/s13073-016-0364-2
10.1158/0008-5472.CAN-10-2956
10.1038/ng.2822
10.1056/NEJMp1607591
10.1158/2159-8290.CD-12-0095
10.1016/j.jmoldx.2014.12.006
10.1038/nm.4333
10.1016/j.cell.2009.12.040
10.1093/nar/gkv1222
10.1158/1538-7445.AM2017-CT001
10.1016/j.cell.2015.05.001
10.1002/ijc.25893
10.1126/scisignal.2004088
10.1016/j.ccell.2016.06.022
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright_xml – notice: 2017 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/2159-8290.CD-17-0321
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2159-8290
EndPage 183
ExternalDocumentID PMC5809279
29247016
10_1158_2159_8290_CD_17_0321
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R25 CA020449
– fundername: NCI NIH HHS
  grantid: R01 CA204749
– fundername: NCI NIH HHS
  grantid: T32 CA009207
– fundername: NIH HHS
  grantid: U54 OD020355
– fundername: NCI NIH HHS
  grantid: R35 CA210085
– fundername: NCI NIH HHS
  grantid: R01 CA207244
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NIGMS NIH HHS
  grantid: T32 GM007175
GroupedDBID ---
53G
5VS
AAYXX
ADBBV
ADCOW
AENEX
AFHIN
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BR6
BTFSW
CITATION
EBS
EJD
H13
KQ8
OK1
RCR
RHI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c474t-80bf961f048a2bf2bed70a3ac88553dbebfffe638ace76beba44c699d38e3df63
ISSN 2159-8274
2159-8290
IngestDate Thu Aug 21 14:08:42 EDT 2025
Thu Sep 04 17:31:43 EDT 2025
Thu Apr 03 06:54:02 EDT 2025
Tue Jul 01 00:56:22 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License 2017 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-80bf961f048a2bf2bed70a3ac88553dbebfffe638ace76beba44c699d38e3df63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address for MT Chang: Genentech Inc., South San Francisco, California
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5809279
PMID 29247016
PQID 1977781696
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5809279
proquest_miscellaneous_1977781696
pubmed_primary_29247016
crossref_primary_10_1158_2159_8290_CD_17_0321
crossref_citationtrail_10_1158_2159_8290_CD_17_0321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer discovery
PublicationTitleAlternate Cancer Discov
PublicationYear 2018
References Kim (2022060701000553000_bib15) 2016; 6
Giannakakou (2022060701000553000_bib13) 2000; 19
Zehir (2022060701000553000_bib8) 2017; 23
Eisenhardt (2022060701000553000_bib18) 2011; 129
Toy (2022060701000553000_bib21) 2013; 45
Foster (2022060701000553000_bib19) 2016; 29
Grundler (2022060701000553000_bib22) 2005; 105
Chang (2022060701000553000_bib10) 2016; 34
Roychowdhury (2022060701000553000_bib3) 2011; 3
Sullivan (2022060701000553000_bib26) 2018; 8
Frampton (2022060701000553000_bib2) 2013; 31
Sasaki (2022060701000553000_bib12) 2010; 70
Van Allen (2022060701000553000_bib4) 2014; 20
Cerami (2022060701000553000_bib28) 2012; 2
Landrum (2022060701000553000_bib31) 2016; 44
Stockley (2022060701000553000_bib6) 2016; 8
Heidorn (2022060701000553000_bib23) 2010; 140
Berger (2022060701000553000_bib14) 2016; 30
Hyman (2022060701000553000_bib7) 2015; 373
Robinson (2022060701000553000_bib32) 2015; 161
Hyman (2022060701000553000_bib25) 2017; 77
Hyman (2022060701000553000_bib20) 2015
Cheng (2022060701000553000_bib1) 2015; 17
Demetri (2022060701000553000_bib16) 2002; 347
Lek (2022060701000553000_bib30) 2016; 536
Moore (2022060701000553000_bib11) 2016; 48
Maemondo (2022060701000553000_bib17) 2010; 362
Garraway (2022060701000553000_bib5) 2013; 153
Chakravarty (2022060701000553000_bib24) 2017; 2017
Grossman (2022060701000553000_bib27) 2016; 375
Gao (2022060701000553000_bib29) 2013; 6
Alexandrov (2022060701000553000_bib9) 2014; 24
References_xml – volume: 8
  start-page: 184
  year: 2018
  ident: 2022060701000553000_bib26
  article-title: First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose- escalation and expansion study
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1119
– volume: 153
  start-page: 17
  year: 2013
  ident: 2022060701000553000_bib5
  article-title: Lessons from the cancer genome
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.002
– volume: 536
  start-page: 285
  year: 2016
  ident: 2022060701000553000_bib30
  article-title: Analysis of protein-coding genetic variation in 60,706 humans
  publication-title: Nature
  doi: 10.1038/nature19057
– volume: 48
  start-page: 675
  year: 2016
  ident: 2022060701000553000_bib11
  article-title: Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma
  publication-title: Nat Genet
  doi: 10.1038/ng.3549
– year: 2015
  ident: 2022060701000553000_bib20
  article-title: AZD5363, a catalytical pan-Akt inhibitor, in Akt1 E17K mutation positive advanced solit tumors
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.TARG-15-B109
– volume: 105
  start-page: 4792
  year: 2005
  ident: 2022060701000553000_bib22
  article-title: FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model
  publication-title: Blood
  doi: 10.1182/blood-2004-11-4430
– volume: 373
  start-page: 726
  year: 2015
  ident: 2022060701000553000_bib7
  article-title: Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1502309
– volume: 3
  start-page: 111ra21
  year: 2011
  ident: 2022060701000553000_bib3
  article-title: Personalized oncology through integrative high-throughput sequencing: a pilot study
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003161
– volume: 34
  start-page: 155
  year: 2016
  ident: 2022060701000553000_bib10
  article-title: Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3391
– volume: 19
  start-page: 3078
  year: 2000
  ident: 2022060701000553000_bib13
  article-title: Paclitaxel selects for mutant or pseudo-null p53 in drug resistance associated with tubulin mutations in human cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203642
– volume: 24
  start-page: 52
  year: 2014
  ident: 2022060701000553000_bib9
  article-title: Mutational signatures: the patterns of somatic mutations hidden in cancer genomes
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2013.11.014
– volume: 362
  start-page: 2380
  year: 2010
  ident: 2022060701000553000_bib17
  article-title: Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0909530
– volume: 347
  start-page: 472
  year: 2002
  ident: 2022060701000553000_bib16
  article-title: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa020461
– volume: 6
  start-page: 714
  year: 2016
  ident: 2022060701000553000_bib15
  article-title: Systematic functional interrogation of rare cancer variants identifies oncogenic alleles
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-0160
– volume: 20
  start-page: 682
  year: 2014
  ident: 2022060701000553000_bib4
  article-title: Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine
  publication-title: Nat Med
  doi: 10.1038/nm.3559
– volume: 29
  start-page: 477
  year: 2016
  ident: 2022060701000553000_bib19
  article-title: Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.02.010
– volume: 31
  start-page: 1023
  year: 2013
  ident: 2022060701000553000_bib2
  article-title: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2696
– volume: 8
  start-page: 109
  year: 2016
  ident: 2022060701000553000_bib6
  article-title: Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0364-2
– volume: 70
  start-page: 10038
  year: 2010
  ident: 2022060701000553000_bib12
  article-title: The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-2956
– volume: 45
  start-page: 1439
  year: 2013
  ident: 2022060701000553000_bib21
  article-title: ESR1 ligand-binding domain mutations in hormone-resistant breast cancer
  publication-title: Nat Genet
  doi: 10.1038/ng.2822
– volume: 375
  start-page: 1109
  year: 2016
  ident: 2022060701000553000_bib27
  article-title: Toward a shared vision for cancer genomic data
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1607591
– volume: 2017
  year: 2017
  ident: 2022060701000553000_bib24
  article-title: OncoKB: a precision oncology knowledge base
  publication-title: JCO Precis Oncol
– volume: 2
  start-page: 401
  year: 2012
  ident: 2022060701000553000_bib28
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0095
– volume: 17
  start-page: 251
  year: 2015
  ident: 2022060701000553000_bib1
  article-title: Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology
  publication-title: J Mol Diagn
  doi: 10.1016/j.jmoldx.2014.12.006
– volume: 23
  start-page: 703
  year: 2017
  ident: 2022060701000553000_bib8
  article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
  publication-title: Nat Med
  doi: 10.1038/nm.4333
– volume: 140
  start-page: 209
  year: 2010
  ident: 2022060701000553000_bib23
  article-title: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.040
– volume: 44
  start-page: D862
  year: 2016
  ident: 2022060701000553000_bib31
  article-title: ClinVar: public archive of interpretations of clinically relevant variants
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1222
– volume: 77
  start-page: CT001
  year: 2017
  ident: 2022060701000553000_bib25
  article-title: Neratinib in HER2 or HER3 mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 basket study
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.AM2017-CT001
– volume: 161
  start-page: 1215
  year: 2015
  ident: 2022060701000553000_bib32
  article-title: Integrative clinical genomics of advanced prostate cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.001
– volume: 129
  start-page: 2297
  year: 2011
  ident: 2022060701000553000_bib18
  article-title: Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25893
– volume: 6
  start-page: pl1
  year: 2013
  ident: 2022060701000553000_bib29
  article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2004088
– volume: 30
  start-page: 214
  year: 2016
  ident: 2022060701000553000_bib14
  article-title: High-throughput phenotyping of lung cancer somatic mutations
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.022
SSID ssj0000494507
Score 2.62324
Snippet Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 174
SubjectTerms Alleles
Biomarkers, Tumor
Codon
Genetic Association Studies - methods
Genetic Predisposition to Disease
Humans
INDEL Mutation
Mutation
Neoplasms - genetics
Title Accelerating Discovery of Functional Mutant Alleles in Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/29247016
https://www.proquest.com/docview/1977781696
https://pubmed.ncbi.nlm.nih.gov/PMC5809279
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2159-8290
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000494507
  issn: 2159-8274
  databaseCode: KQ8
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2MvY9_LvvBg7KW4i21Zlh5Tp6FsTceoA3kTsizXgeB0afLSv753luI4a2DdXowtyxLozqc73cePkC-CCa6M4H6u48inGpOVc1b6huamwOoixmBy8vicnU7o92k83cbpNtklq_xI3-zNK_kfqkIb0BWzZP-Bsu2g0AD3QF-4AoXhei8aD7SGXQNpCPb-cHatMR6zcZmPYLtyp3zjNQIFHw7mc-jbRL-mSOllVy21LeitsUN0nP5WFjhY8G1I9XEFLWppwayzRvIcXlQI9FG1gv5CV0vLb4N5g3TYnvIcz2BLtoDZKYxx6d6404eAbwKWN0IKNAbhozPW7id72pyU5R1mCjsSM7AgPXcleYzZCe1QR-nQh_20H9l86t3C2ec_5Whydiazk2n29eq3j5hi6Ht3ACsPyaMwYQzxLX784u0JHFbGiZt8-nYWl1sJc3_bN_Ou7nLHIPkzrrajqGTPyFNnYXgDyy7PyQNTvyCPxy6G4iXZ4Rqv5RpvUXpbrvEs13iOa7xZ7VkeeUUmo5MsPfUdiIavaUJXoIHkpWBBCZJahXkZwi-Y9FWkNOdxHBW5ycuyNCCFlTYJg0dFqWZCFBE3UVGy6DU5qBe1eUs8wdB-DTWlSlNQVHOtRGj6plSB5kwXPRJtlkdqV2EegU7msrE0Yy5xUSUuqkyHMkgkLmqP-O1XV7bCyl_6f96svARRiP4tVZvF-loGYMskPGCC9cgbS4l2xFCENAHzpkeSHRq1HbDM-u6belY15dZj3hdhIt7dY9735Mn2J_lADlbLtfkISusq_9Tw3i11ipcS
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Discovery+of+Functional+Mutant+Alleles+in+Cancer&rft.jtitle=Cancer+discovery&rft.au=Chang%2C+Matthew+T&rft.au=Bhattarai%2C+Tripti+Shrestha&rft.au=Schram%2C+Alison+M&rft.au=Bielski%2C+Craig+M&rft.date=2018-02-01&rft.issn=2159-8290&rft.eissn=2159-8290&rft.volume=8&rft.issue=2&rft.spage=174&rft_id=info:doi/10.1158%2F2159-8290.CD-17-0321&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-8274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-8274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-8274&client=summon