AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data
The novel coronavirus (COVID-19) outbreak, which was identified in late 2019, requires special attention because of its future epidemics and possible global threats. Beside clinical procedures and treatments, since Artificial Intelligence (AI) promises a new paradigm for healthcare, several differen...
Saved in:
| Published in | Journal of medical systems Vol. 44; no. 5; p. 93 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0148-5598 1573-689X 1573-689X |
| DOI | 10.1007/s10916-020-01562-1 |
Cover
| Summary: | The novel coronavirus (COVID-19) outbreak, which was identified in late 2019, requires special attention because of its future epidemics and possible global threats. Beside clinical procedures and treatments, since Artificial Intelligence (AI) promises a new paradigm for healthcare, several different AI tools that are built upon Machine Learning (ML) algorithms are employed for analyzing data and decision-making processes. This means that AI-driven tools help identify COVID-19 outbreaks as well as forecast their nature of spread across the globe. However, unlike other healthcare issues, for COVID-19, to detect COVID-19, AI-driven tools are expected to have active learning-based cross-population train/test models that employs multitudinal and multimodal data, which is the primary purpose of the paper. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0148-5598 1573-689X 1573-689X |
| DOI: | 10.1007/s10916-020-01562-1 |