Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification

The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a dedicated hardware-based HAR system for smart military wearables, which uses a multilayer perceptron (MLP) algorithm to perform activity classifica...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 26696 - 26706
Main Authors Gaikwad, Nikhil B., Tiwari, Varun, Keskar, Avinash, Shivaprakash, N. C.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2900084

Cover

Abstract The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a dedicated hardware-based HAR system for smart military wearables, which uses a multilayer perceptron (MLP) algorithm to perform activity classification. To achieve the flexible and efficient hardware design, the inherent MLP architecture with parallel computation is implemented on FPGA. The system performance has been evaluated using the UCI human activity dataset with 7767 feature samples of 20 subjects. The three combinations of a dataset are trained, validated, and tested on ten different MLP models with distinct topologies. The MLP design with the 7-6-5 topology is finalized from the classification accuracy and cross entropy performance. The five versions of the final MLP design (7-6-5) with different data precision are implemented on FPGA. The analysis shows that the MLP designed with 16-bit fixed-point data precision is the most efficient MLP implementation in the context of classification accuracy, resource utilization, and power consumption. The proposed MLP design requires only 270 ns for classification and consumes 120 mW of power. The recognition accuracy and hardware results performance achieved are better than many of the recently reported works.
AbstractList The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a dedicated hardware-based HAR system for smart military wearables, which uses a multilayer perceptron (MLP) algorithm to perform activity classification. To achieve the flexible and efficient hardware design, the inherent MLP architecture with parallel computation is implemented on FPGA. The system performance has been evaluated using the UCI human activity dataset with 7767 feature samples of 20 subjects. The three combinations of a dataset are trained, validated, and tested on ten different MLP models with distinct topologies. The MLP design with the 7-6-5 topology is finalized from the classification accuracy and cross entropy performance. The five versions of the final MLP design (7-6-5) with different data precision are implemented on FPGA. The analysis shows that the MLP designed with 16-bit fixed-point data precision is the most efficient MLP implementation in the context of classification accuracy, resource utilization, and power consumption. The proposed MLP design requires only 270 ns for classification and consumes 120 mW of power. The recognition accuracy and hardware results performance achieved are better than many of the recently reported works.
Author Keskar, Avinash
Gaikwad, Nikhil B.
Shivaprakash, N. C.
Tiwari, Varun
Author_xml – sequence: 1
  givenname: Nikhil B.
  orcidid: 0000-0002-6119-2099
  surname: Gaikwad
  fullname: Gaikwad, Nikhil B.
  email: nikhilgaikwad9423@gmail.com
  organization: Visvesvaraya National Institute of Technology, Nagpur, India
– sequence: 2
  givenname: Varun
  orcidid: 0000-0001-5427-5091
  surname: Tiwari
  fullname: Tiwari, Varun
  organization: Visvesvaraya National Institute of Technology, Nagpur, India
– sequence: 3
  givenname: Avinash
  surname: Keskar
  fullname: Keskar, Avinash
  organization: Visvesvaraya National Institute of Technology, Nagpur, India
– sequence: 4
  givenname: N. C.
  surname: Shivaprakash
  fullname: Shivaprakash, N. C.
  organization: Indian Institute of Science, Bengaluru, India
BookMark eNp9kU9rGzEQxUVIoWmaT5CLoOd19X-lo1mcxJDS0KRnIcujILO7crVywd--cjYJpYeeJI3e780w7xM6H9MICF1TsqCUmK_Lrls9Pi4YoWbBDCFEizN0wagyDZdcnf91_4iupmlHTppaku0F2qxCiD7CWPDNw-0Sr4d9D0N9uhLTiFPA3w59ib07QsYPkD3sS64fIWX8A1zfPMUB8N1hcCNe-hJ_x3LEXe-mKVbfF5PP6ENw_QRXr-cl-nmzeurumvvvt-tued940YrSKAKcbKimrVatlEwzR2DjgwMmvaOGiS0FQoG1RoqtDEw46gz3W8-CkgD8Eq1n321yO7vPcXD5aJOL9qWQ8rN1uUTfg_VeaSYFUM-cIIQbcF4xbXRtIGvX6vVl9trn9OsAU7G7dMhjHd8yIaUSXGlaVWZW-ZymKUOwPs6LK9nF3lJiTwnZOSF7Ssi-JlRZ_g_7NvH_qeuZigDwTmglqZAt_wN8xJ4F
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_microrel_2021_114269
crossref_primary_10_3390_electronics10161875
crossref_primary_10_3390_s22093401
crossref_primary_10_1016_j_vlsi_2024_102176
crossref_primary_10_1109_ACCESS_2020_3025938
crossref_primary_10_1109_ACCESS_2023_3316509
crossref_primary_10_1109_JSEN_2020_3004767
crossref_primary_10_1109_JSEN_2023_3327723
crossref_primary_10_1016_j_inffus_2023_101898
crossref_primary_10_1109_JSEN_2020_2980207
crossref_primary_10_1016_j_bspc_2023_105879
crossref_primary_10_7717_peerj_cs_1355
crossref_primary_10_1109_JSEN_2021_3118836
crossref_primary_10_1145_3623380
crossref_primary_10_3390_info15100593
crossref_primary_10_1109_JIOT_2020_2976702
crossref_primary_10_3390_app12052550
crossref_primary_10_1145_3373638
crossref_primary_10_1109_ACCESS_2022_3192452
crossref_primary_10_1109_TCSI_2024_3425613
crossref_primary_10_1109_JSEN_2023_3278748
crossref_primary_10_32604_jai_2024_054314
crossref_primary_10_1016_j_asoc_2022_109363
crossref_primary_10_1109_TCSII_2020_2999458
crossref_primary_10_1109_ACCESS_2019_2941473
crossref_primary_10_1016_j_micpro_2023_104844
crossref_primary_10_1186_s12859_022_05050_w
crossref_primary_10_3390_s20051362
crossref_primary_10_1016_j_measurement_2023_113037
crossref_primary_10_1109_TC_2022_3186628
crossref_primary_10_32604_iasc_2022_025421
crossref_primary_10_1109_ACCESS_2020_2997380
crossref_primary_10_1016_j_ijleo_2020_165356
crossref_primary_10_1016_j_micpro_2023_104927
crossref_primary_10_3390_s24030999
crossref_primary_10_1007_s00542_024_05776_y
crossref_primary_10_1016_j_micpro_2021_104371
crossref_primary_10_1109_TNS_2021_3085428
crossref_primary_10_1109_ACCESS_2024_3454636
crossref_primary_10_3390_s19092090
crossref_primary_10_1088_1757_899X_1176_1_012035
crossref_primary_10_29130_dubited_1024670
crossref_primary_10_3390_s22093556
crossref_primary_10_1007_s00034_023_02318_1
crossref_primary_10_1142_S021812662350038X
crossref_primary_10_3390_info16030180
crossref_primary_10_1109_ACCESS_2023_3327517
crossref_primary_10_1109_TCSI_2020_3011984
crossref_primary_10_1016_j_neucom_2024_128013
crossref_primary_10_1016_j_chb_2024_108435
crossref_primary_10_3390_s20154222
crossref_primary_10_1109_ACCESS_2022_3203179
Cites_doi 10.1016/j.renene.2016.01.036
10.1109/JSEN.2016.2628346
10.1109/ACCESS.2016.2619181
10.1109/DASIP.2014.7115600
10.1016/j.bbe.2017.04.004
10.1007/s10115-011-0423-3
10.1109/SURV.2012.110112.00192
10.1007/978-3-642-16355-5_42
10.3390/s130302967
10.3390/electronics5010008
10.1109/TLA.2017.7932704
10.1109/CSTIC.2018.8369338
10.1515/msr-2017-0008
10.1145/3102304.3105828
10.1016/j.neucom.2013.04.003
10.1007/978-3-662-57277-1_16
10.1016/j.neucom.2015.07.085
10.1109/ISCAS.2015.7168746
10.1109/FUZZY.2010.5584280
10.3390/s130405317
10.1515/1556-3758.2656
10.3390/s17030529
10.1016/j.micpro.2016.11.003
10.1016/j.neucom.2010.03.021
10.1109/JBHI.2013.2287400
10.1016/j.petrol.2014.04.013
10.1109/ICSENS.2017.8234222
10.1109/ACCESS.2017.2676168
10.1080/17538157.2016.1255214
10.1109/TII.2016.2555936
10.1007/s11063-015-9452-3
10.1007/0-387-28487-7
10.1145/1964897.1964918
10.3390/s16101644
10.1007/s00779-010-0331-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2900084
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 26706
ExternalDocumentID oai_doaj_org_article_cc68254e1c2a40039eac62898e0150eb
10_1109_ACCESS_2019_2900084
8651457
Genre orig-research
GrantInformation_xml – fundername: Centre of Excellence on Commbedded Systems: Hybridization of Communication and Embedded Systems, Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-60e30b181786755282a0ebcfae25ca1924d1e01e27954d5f24a1a93cdc2f65ee3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:06:03 EDT 2025
Sun Sep 07 03:44:16 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 02:18:11 EDT 2025
Wed Aug 27 05:51:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-60e30b181786755282a0ebcfae25ca1924d1e01e27954d5f24a1a93cdc2f65ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6119-2099
0000-0001-5427-5091
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8651457
PQID 2455643681
PQPubID 4845423
PageCount 11
ParticipantIDs ieee_primary_8651457
doaj_primary_oai_doaj_org_article_cc68254e1c2a40039eac62898e0150eb
crossref_citationtrail_10_1109_ACCESS_2019_2900084
crossref_primary_10_1109_ACCESS_2019_2900084
proquest_journals_2455643681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
lee (ref38) 2017
ref37
ref15
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref39
ref17
ref16
ref19
ref18
(ref26) 2018
(ref36) 2018
leonhardt (ref6) 2007; 13
ref24
ref23
ref25
ref20
ref41
ref22
(ref35) 2018
ref21
ref28
ref27
özdemir (ref11) 2011; 19
ref29
ref8
ref7
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref15
  doi: 10.1016/j.renene.2016.01.036
– ident: ref2
  doi: 10.1109/JSEN.2016.2628346
– ident: ref20
  doi: 10.1109/ACCESS.2016.2619181
– ident: ref22
  doi: 10.1109/DASIP.2014.7115600
– ident: ref5
  doi: 10.1016/j.bbe.2017.04.004
– ident: ref7
  doi: 10.1007/s10115-011-0423-3
– ident: ref1
  doi: 10.1109/SURV.2012.110112.00192
– ident: ref33
  doi: 10.1007/978-3-642-16355-5_42
– ident: ref19
  doi: 10.3390/s130302967
– ident: ref21
  doi: 10.3390/electronics5010008
– ident: ref13
  doi: 10.1109/TLA.2017.7932704
– ident: ref29
  doi: 10.1109/CSTIC.2018.8369338
– ident: ref12
  doi: 10.1515/msr-2017-0008
– ident: ref23
  doi: 10.1145/3102304.3105828
– ident: ref39
  doi: 10.1016/j.neucom.2013.04.003
– year: 2018
  ident: ref35
  publication-title: ARTY Power Demo Artix-7-1LI 35T Device
– ident: ref28
  doi: 10.1007/978-3-662-57277-1_16
– ident: ref27
  doi: 10.1016/j.neucom.2015.07.085
– ident: ref30
  doi: 10.1109/ISCAS.2015.7168746
– ident: ref8
  doi: 10.1109/FUZZY.2010.5584280
– ident: ref4
  doi: 10.3390/s130405317
– ident: ref40
  doi: 10.1515/1556-3758.2656
– ident: ref31
  doi: 10.3390/s17030529
– volume: 19
  start-page: 667
  year: 2011
  ident: ref11
  article-title: Fully parallel ANN-based arrhythmia classifier on a single-chip FPGA: FPAAC
  publication-title: Turkish J Elect Eng Comput Sci
– volume: 13
  year: 2007
  ident: ref6
  publication-title: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007) March 26-28 2007 RWTH Aachen University Germany
– year: 2018
  ident: ref36
  publication-title: Smartphone-Based Recognition of Human Activities and Postural Transitions Data Set
– ident: ref16
  doi: 10.1016/j.micpro.2016.11.003
– ident: ref18
  doi: 10.1016/j.neucom.2010.03.021
– ident: ref9
  doi: 10.1109/JBHI.2013.2287400
– ident: ref41
  doi: 10.1016/j.petrol.2014.04.013
– ident: ref24
  doi: 10.1109/ICSENS.2017.8234222
– ident: ref32
  doi: 10.1109/ACCESS.2017.2676168
– year: 2018
  ident: ref26
  publication-title: Lecture by Geoffrey Hinton
– start-page: 131
  year: 2017
  ident: ref38
  article-title: Human activity recognition from accelerometer data using convolutional neural network
  publication-title: Proc IEEE Int Conf Big Data Smart Comput (BigComp)
– ident: ref37
  doi: 10.1080/17538157.2016.1255214
– ident: ref25
  doi: 10.1109/TII.2016.2555936
– ident: ref14
  doi: 10.1007/s11063-015-9452-3
– ident: ref17
  doi: 10.1007/0-387-28487-7
– ident: ref34
  doi: 10.1145/1964897.1964918
– ident: ref10
  doi: 10.3390/s16101644
– ident: ref3
  doi: 10.1007/s00779-010-0331-7
SSID ssj0000816957
Score 2.4603336
Snippet The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26696
SubjectTerms Accuracy
Activity recognition
Algorithms
Classification
classifier hardware implementation
Computer architecture
Datasets
Entropy (Information theory)
field programmable gate array
Field programmable gate arrays
Hardware
Human activity recognition
Mathematical model
Moving object recognition
multilayer perceptron
Multilayer perceptrons
Parallel processing
Performance evaluation
Power consumption
Real-time systems
Resource utilization
smart military wearables
Smart phones
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkAdGQmPHduyxVC0VEgghkNgsx3Gm0qJS_j93jlsVIcHCmg8nfr6c3zm-d4RcGu5qXzGdVc6oTFSaZdr5kInSA33moskbTE6-f1CTF3H3Kl83Sn3hnrBWHrgFru-9wiAmMM-dwExS8BQKogQdMFYPFXrf3OQbwVT0wZopI8skM8Ry0x8Mh9Aj3MtlrjlWytTi21QUFftTiZUffjlONuM9sptYIh20b7dPtsLsgOxsaAcekmoUxR9gzqDjx9sBjTK_bymTaEbnDY25tVMHnJo-tttXFnACSCp9AnaYYfIHjWv4dODbGhI0lsjEzUOxkSPyMh49DydZKpiQeVGKZabyUOQAPCs1xAESoikHCPnGBS69w1CrZgBb4KWRopYNF445U_ja80bJEIpj0pnNZ-GE0Bow1w1wJ1cFoQpWFSXnphbKO4N_a7qEr7CzPqmJY1GLqY1RRW5sC7hFwG0CvEuu1je9t2Iav19-g4OyvhSVsOMBsA-b7MP-ZR9dcohDum5EK6CIsuyS3mqIbfpqPywXUiqU5Gen__HoM7KN3WkXbHqks1x8hnOgMMvqIlrrFzuj6dk
  priority: 102
  providerName: Directory of Open Access Journals
Title Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification
URI https://ieeexplore.ieee.org/document/8651457
https://www.proquest.com/docview/2455643681
https://doaj.org/article/cc68254e1c2a40039eac62898e0150eb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQSmnVLRT5wJEssWM78XG7YouQQKgqErfIdiaX0l1Edy_99Z1xvFFfqnqLEjty9I0zD898A3DqlO9ikE0RvLOFDo0sGh-x0HUk81npvuy5OPn6xl7e6at7c78DZ2MtDCKm5DOc8mU6y-9WccOhsvPGkno39S7skpgNtVpjPIUbSDhTZ2IhWbrz2XxO38DZW26quDdmo39RPomjPzdV-eNPnNTLYh-utwsbskq-TDfrMI3ff-Ns_N-Vv4QX2c4Us0EwDmAHl6_g-U_sg4cQLhJ9BE0Ui9uPM5GIgr_mWqSlWPUiVec-eLLKxe2QAPNED8jMFZ_Iviy4fESkUwAxi0MXCpGabHL6UXrJa7hbXHyeXxa55UIRda3XhS2xKgk6WTfkSRjyx3yJIfYelYmenbVOYilR1c7ozvRKe-ldFbuoemsQqzewt1wt8S2IjlzPpifrywfUtpKhqpVynbbROz7vmYDaYtHGzEfObTEe2uSXlK4dAGwZwDYDOIGzcdLjQMfx7-EfGORxKHNppxsETpu3ZhujZTcZZVRec60y6SJLfmiDHA3CMIFDBnR8ScZyAsdbkWnzvv_WKm2MZVJ_-e7vs47gGS9wCOIcw976aYPvyaxZh5MUDjhJUv0Do7L0tw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfBXEQgEfODbb2LGd-LhddVmgW1WolXqzbGdyod2tyu6FX4_H8UYUEOIWJXbk6NnxvPHMG4APRrg2eN4U3hldSN_wonEBC1mHaD4L2ZUdJScvTvX8Qn6-VJc7cDDkwiBiCj7DMV2ms_x2FTbkKjtsdNzeVX0P7qvIKpo-W2vwqFAJCaPqLC3ES3M4mU7jV1D8lhkLqo7ZyDvbT1Lpz2VV_vgXpw1m9gQW26H1cSXfxpu1H4cfv6k2_u_Yn8LjbGmyST81nsEOLp_Do1_0B_fAHycBidiRzc4-TliSCr7O2UhLtupYys-9ctEuZ2d9CMxtfBANXfY1WpgFJZCwdA7AJqGvQ8FSmU0KQEoveQEXs-Pz6bzIRReKIGu5LnSJVRnB43UTuYSKjMyV6EPnUKjgiK61HEuOojZKtqoT0nFnqtAG0WmFWL2E3eVqia-AtZF8Nl20v5xHqSvuq1oI00odnKETnxGILRY2ZEVyKoxxZRMzKY3tAbQEoM0AjuBg6HTTC3L8u_kRgTw0JTXtdCOCY_PitCFoIsrIg3CSspXjbqQjE22Q_EHoR7BHgA4vyViOYH87ZWxe-d-tkEppkvXnr__e6z08mJ8vTuzJp9Mvb-AhDbZ36ezD7vp2g2-jkbP279Lc_gnitfcV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+FPGA+Implementation+of+Multilayer+Perceptron+for+Real-Time+Human+Activity+Classification&rft.jtitle=IEEE+access&rft.au=Gaikwad%2C+Nikhil+B.&rft.au=Tiwari%2C+Varun&rft.au=Keskar%2C+Avinash&rft.au=Shivaprakash%2C+N.+C.&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=26696&rft.epage=26706&rft_id=info:doi/10.1109%2FACCESS.2019.2900084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2900084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon