Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification
The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a dedicated hardware-based HAR system for smart military wearables, which uses a multilayer perceptron (MLP) algorithm to perform activity classifica...
Saved in:
Published in | IEEE access Vol. 7; pp. 26696 - 26706 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2900084 |
Cover
Abstract | The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a dedicated hardware-based HAR system for smart military wearables, which uses a multilayer perceptron (MLP) algorithm to perform activity classification. To achieve the flexible and efficient hardware design, the inherent MLP architecture with parallel computation is implemented on FPGA. The system performance has been evaluated using the UCI human activity dataset with 7767 feature samples of 20 subjects. The three combinations of a dataset are trained, validated, and tested on ten different MLP models with distinct topologies. The MLP design with the 7-6-5 topology is finalized from the classification accuracy and cross entropy performance. The five versions of the final MLP design (7-6-5) with different data precision are implemented on FPGA. The analysis shows that the MLP designed with 16-bit fixed-point data precision is the most efficient MLP implementation in the context of classification accuracy, resource utilization, and power consumption. The proposed MLP design requires only 270 ns for classification and consumes 120 mW of power. The recognition accuracy and hardware results performance achieved are better than many of the recently reported works. |
---|---|
AbstractList | The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a dedicated hardware-based HAR system for smart military wearables, which uses a multilayer perceptron (MLP) algorithm to perform activity classification. To achieve the flexible and efficient hardware design, the inherent MLP architecture with parallel computation is implemented on FPGA. The system performance has been evaluated using the UCI human activity dataset with 7767 feature samples of 20 subjects. The three combinations of a dataset are trained, validated, and tested on ten different MLP models with distinct topologies. The MLP design with the 7-6-5 topology is finalized from the classification accuracy and cross entropy performance. The five versions of the final MLP design (7-6-5) with different data precision are implemented on FPGA. The analysis shows that the MLP designed with 16-bit fixed-point data precision is the most efficient MLP implementation in the context of classification accuracy, resource utilization, and power consumption. The proposed MLP design requires only 270 ns for classification and consumes 120 mW of power. The recognition accuracy and hardware results performance achieved are better than many of the recently reported works. |
Author | Keskar, Avinash Gaikwad, Nikhil B. Shivaprakash, N. C. Tiwari, Varun |
Author_xml | – sequence: 1 givenname: Nikhil B. orcidid: 0000-0002-6119-2099 surname: Gaikwad fullname: Gaikwad, Nikhil B. email: nikhilgaikwad9423@gmail.com organization: Visvesvaraya National Institute of Technology, Nagpur, India – sequence: 2 givenname: Varun orcidid: 0000-0001-5427-5091 surname: Tiwari fullname: Tiwari, Varun organization: Visvesvaraya National Institute of Technology, Nagpur, India – sequence: 3 givenname: Avinash surname: Keskar fullname: Keskar, Avinash organization: Visvesvaraya National Institute of Technology, Nagpur, India – sequence: 4 givenname: N. C. surname: Shivaprakash fullname: Shivaprakash, N. C. organization: Indian Institute of Science, Bengaluru, India |
BookMark | eNp9kU9rGzEQxUVIoWmaT5CLoOd19X-lo1mcxJDS0KRnIcujILO7crVywd--cjYJpYeeJI3e780w7xM6H9MICF1TsqCUmK_Lrls9Pi4YoWbBDCFEizN0wagyDZdcnf91_4iupmlHTppaku0F2qxCiD7CWPDNw-0Sr4d9D0N9uhLTiFPA3w59ib07QsYPkD3sS64fIWX8A1zfPMUB8N1hcCNe-hJ_x3LEXe-mKVbfF5PP6ENw_QRXr-cl-nmzeurumvvvt-tued940YrSKAKcbKimrVatlEwzR2DjgwMmvaOGiS0FQoG1RoqtDEw46gz3W8-CkgD8Eq1n321yO7vPcXD5aJOL9qWQ8rN1uUTfg_VeaSYFUM-cIIQbcF4xbXRtIGvX6vVl9trn9OsAU7G7dMhjHd8yIaUSXGlaVWZW-ZymKUOwPs6LK9nF3lJiTwnZOSF7Ssi-JlRZ_g_7NvH_qeuZigDwTmglqZAt_wN8xJ4F |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_microrel_2021_114269 crossref_primary_10_3390_electronics10161875 crossref_primary_10_3390_s22093401 crossref_primary_10_1016_j_vlsi_2024_102176 crossref_primary_10_1109_ACCESS_2020_3025938 crossref_primary_10_1109_ACCESS_2023_3316509 crossref_primary_10_1109_JSEN_2020_3004767 crossref_primary_10_1109_JSEN_2023_3327723 crossref_primary_10_1016_j_inffus_2023_101898 crossref_primary_10_1109_JSEN_2020_2980207 crossref_primary_10_1016_j_bspc_2023_105879 crossref_primary_10_7717_peerj_cs_1355 crossref_primary_10_1109_JSEN_2021_3118836 crossref_primary_10_1145_3623380 crossref_primary_10_3390_info15100593 crossref_primary_10_1109_JIOT_2020_2976702 crossref_primary_10_3390_app12052550 crossref_primary_10_1145_3373638 crossref_primary_10_1109_ACCESS_2022_3192452 crossref_primary_10_1109_TCSI_2024_3425613 crossref_primary_10_1109_JSEN_2023_3278748 crossref_primary_10_32604_jai_2024_054314 crossref_primary_10_1016_j_asoc_2022_109363 crossref_primary_10_1109_TCSII_2020_2999458 crossref_primary_10_1109_ACCESS_2019_2941473 crossref_primary_10_1016_j_micpro_2023_104844 crossref_primary_10_1186_s12859_022_05050_w crossref_primary_10_3390_s20051362 crossref_primary_10_1016_j_measurement_2023_113037 crossref_primary_10_1109_TC_2022_3186628 crossref_primary_10_32604_iasc_2022_025421 crossref_primary_10_1109_ACCESS_2020_2997380 crossref_primary_10_1016_j_ijleo_2020_165356 crossref_primary_10_1016_j_micpro_2023_104927 crossref_primary_10_3390_s24030999 crossref_primary_10_1007_s00542_024_05776_y crossref_primary_10_1016_j_micpro_2021_104371 crossref_primary_10_1109_TNS_2021_3085428 crossref_primary_10_1109_ACCESS_2024_3454636 crossref_primary_10_3390_s19092090 crossref_primary_10_1088_1757_899X_1176_1_012035 crossref_primary_10_29130_dubited_1024670 crossref_primary_10_3390_s22093556 crossref_primary_10_1007_s00034_023_02318_1 crossref_primary_10_1142_S021812662350038X crossref_primary_10_3390_info16030180 crossref_primary_10_1109_ACCESS_2023_3327517 crossref_primary_10_1109_TCSI_2020_3011984 crossref_primary_10_1016_j_neucom_2024_128013 crossref_primary_10_1016_j_chb_2024_108435 crossref_primary_10_3390_s20154222 crossref_primary_10_1109_ACCESS_2022_3203179 |
Cites_doi | 10.1016/j.renene.2016.01.036 10.1109/JSEN.2016.2628346 10.1109/ACCESS.2016.2619181 10.1109/DASIP.2014.7115600 10.1016/j.bbe.2017.04.004 10.1007/s10115-011-0423-3 10.1109/SURV.2012.110112.00192 10.1007/978-3-642-16355-5_42 10.3390/s130302967 10.3390/electronics5010008 10.1109/TLA.2017.7932704 10.1109/CSTIC.2018.8369338 10.1515/msr-2017-0008 10.1145/3102304.3105828 10.1016/j.neucom.2013.04.003 10.1007/978-3-662-57277-1_16 10.1016/j.neucom.2015.07.085 10.1109/ISCAS.2015.7168746 10.1109/FUZZY.2010.5584280 10.3390/s130405317 10.1515/1556-3758.2656 10.3390/s17030529 10.1016/j.micpro.2016.11.003 10.1016/j.neucom.2010.03.021 10.1109/JBHI.2013.2287400 10.1016/j.petrol.2014.04.013 10.1109/ICSENS.2017.8234222 10.1109/ACCESS.2017.2676168 10.1080/17538157.2016.1255214 10.1109/TII.2016.2555936 10.1007/s11063-015-9452-3 10.1007/0-387-28487-7 10.1145/1964897.1964918 10.3390/s16101644 10.1007/s00779-010-0331-7 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2900084 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 26706 |
ExternalDocumentID | oai_doaj_org_article_cc68254e1c2a40039eac62898e0150eb 10_1109_ACCESS_2019_2900084 8651457 |
Genre | orig-research |
GrantInformation_xml | – fundername: Centre of Excellence on Commbedded Systems: Hybridization of Communication and Embedded Systems, Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c474t-60e30b181786755282a0ebcfae25ca1924d1e01e27954d5f24a1a93cdc2f65ee3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:06:03 EDT 2025 Sun Sep 07 03:44:16 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 02:18:11 EDT 2025 Wed Aug 27 05:51:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-60e30b181786755282a0ebcfae25ca1924d1e01e27954d5f24a1a93cdc2f65ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6119-2099 0000-0001-5427-5091 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8651457 |
PQID | 2455643681 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | ieee_primary_8651457 doaj_primary_oai_doaj_org_article_cc68254e1c2a40039eac62898e0150eb crossref_citationtrail_10_1109_ACCESS_2019_2900084 crossref_primary_10_1109_ACCESS_2019_2900084 proquest_journals_2455643681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 lee (ref38) 2017 ref37 ref15 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref19 ref18 (ref26) 2018 (ref36) 2018 leonhardt (ref6) 2007; 13 ref24 ref23 ref25 ref20 ref41 ref22 (ref35) 2018 ref21 ref28 ref27 özdemir (ref11) 2011; 19 ref29 ref8 ref7 ref9 ref4 ref3 ref5 ref40 |
References_xml | – ident: ref15 doi: 10.1016/j.renene.2016.01.036 – ident: ref2 doi: 10.1109/JSEN.2016.2628346 – ident: ref20 doi: 10.1109/ACCESS.2016.2619181 – ident: ref22 doi: 10.1109/DASIP.2014.7115600 – ident: ref5 doi: 10.1016/j.bbe.2017.04.004 – ident: ref7 doi: 10.1007/s10115-011-0423-3 – ident: ref1 doi: 10.1109/SURV.2012.110112.00192 – ident: ref33 doi: 10.1007/978-3-642-16355-5_42 – ident: ref19 doi: 10.3390/s130302967 – ident: ref21 doi: 10.3390/electronics5010008 – ident: ref13 doi: 10.1109/TLA.2017.7932704 – ident: ref29 doi: 10.1109/CSTIC.2018.8369338 – ident: ref12 doi: 10.1515/msr-2017-0008 – ident: ref23 doi: 10.1145/3102304.3105828 – ident: ref39 doi: 10.1016/j.neucom.2013.04.003 – year: 2018 ident: ref35 publication-title: ARTY Power Demo Artix-7-1LI 35T Device – ident: ref28 doi: 10.1007/978-3-662-57277-1_16 – ident: ref27 doi: 10.1016/j.neucom.2015.07.085 – ident: ref30 doi: 10.1109/ISCAS.2015.7168746 – ident: ref8 doi: 10.1109/FUZZY.2010.5584280 – ident: ref4 doi: 10.3390/s130405317 – ident: ref40 doi: 10.1515/1556-3758.2656 – ident: ref31 doi: 10.3390/s17030529 – volume: 19 start-page: 667 year: 2011 ident: ref11 article-title: Fully parallel ANN-based arrhythmia classifier on a single-chip FPGA: FPAAC publication-title: Turkish J Elect Eng Comput Sci – volume: 13 year: 2007 ident: ref6 publication-title: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007) March 26-28 2007 RWTH Aachen University Germany – year: 2018 ident: ref36 publication-title: Smartphone-Based Recognition of Human Activities and Postural Transitions Data Set – ident: ref16 doi: 10.1016/j.micpro.2016.11.003 – ident: ref18 doi: 10.1016/j.neucom.2010.03.021 – ident: ref9 doi: 10.1109/JBHI.2013.2287400 – ident: ref41 doi: 10.1016/j.petrol.2014.04.013 – ident: ref24 doi: 10.1109/ICSENS.2017.8234222 – ident: ref32 doi: 10.1109/ACCESS.2017.2676168 – year: 2018 ident: ref26 publication-title: Lecture by Geoffrey Hinton – start-page: 131 year: 2017 ident: ref38 article-title: Human activity recognition from accelerometer data using convolutional neural network publication-title: Proc IEEE Int Conf Big Data Smart Comput (BigComp) – ident: ref37 doi: 10.1080/17538157.2016.1255214 – ident: ref25 doi: 10.1109/TII.2016.2555936 – ident: ref14 doi: 10.1007/s11063-015-9452-3 – ident: ref17 doi: 10.1007/0-387-28487-7 – ident: ref34 doi: 10.1145/1964897.1964918 – ident: ref10 doi: 10.3390/s16101644 – ident: ref3 doi: 10.1007/s00779-010-0331-7 |
SSID | ssj0000816957 |
Score | 2.4603336 |
Snippet | The smartphone-based human activity recognition (HAR) systems are not capable to deliver high-end performance for challenging applications. We propose a... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26696 |
SubjectTerms | Accuracy Activity recognition Algorithms Classification classifier hardware implementation Computer architecture Datasets Entropy (Information theory) field programmable gate array Field programmable gate arrays Hardware Human activity recognition Mathematical model Moving object recognition multilayer perceptron Multilayer perceptrons Parallel processing Performance evaluation Power consumption Real-time systems Resource utilization smart military wearables Smart phones Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkAdGQmPHduyxVC0VEgghkNgsx3Gm0qJS_j93jlsVIcHCmg8nfr6c3zm-d4RcGu5qXzGdVc6oTFSaZdr5kInSA33moskbTE6-f1CTF3H3Kl83Sn3hnrBWHrgFru-9wiAmMM-dwExS8BQKogQdMFYPFXrf3OQbwVT0wZopI8skM8Ry0x8Mh9Aj3MtlrjlWytTi21QUFftTiZUffjlONuM9sptYIh20b7dPtsLsgOxsaAcekmoUxR9gzqDjx9sBjTK_bymTaEbnDY25tVMHnJo-tttXFnACSCp9AnaYYfIHjWv4dODbGhI0lsjEzUOxkSPyMh49DydZKpiQeVGKZabyUOQAPCs1xAESoikHCPnGBS69w1CrZgBb4KWRopYNF445U_ja80bJEIpj0pnNZ-GE0Bow1w1wJ1cFoQpWFSXnphbKO4N_a7qEr7CzPqmJY1GLqY1RRW5sC7hFwG0CvEuu1je9t2Iav19-g4OyvhSVsOMBsA-b7MP-ZR9dcohDum5EK6CIsuyS3mqIbfpqPywXUiqU5Gen__HoM7KN3WkXbHqks1x8hnOgMMvqIlrrFzuj6dk priority: 102 providerName: Directory of Open Access Journals |
Title | Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification |
URI | https://ieeexplore.ieee.org/document/8651457 https://www.proquest.com/docview/2455643681 https://doaj.org/article/cc68254e1c2a40039eac62898e0150eb |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQSmnVLRT5wJEssWM78XG7YouQQKgqErfIdiaX0l1Edy_99Z1xvFFfqnqLEjty9I0zD898A3DqlO9ikE0RvLOFDo0sGh-x0HUk81npvuy5OPn6xl7e6at7c78DZ2MtDCKm5DOc8mU6y-9WccOhsvPGkno39S7skpgNtVpjPIUbSDhTZ2IhWbrz2XxO38DZW26quDdmo39RPomjPzdV-eNPnNTLYh-utwsbskq-TDfrMI3ff-Ns_N-Vv4QX2c4Us0EwDmAHl6_g-U_sg4cQLhJ9BE0Ui9uPM5GIgr_mWqSlWPUiVec-eLLKxe2QAPNED8jMFZ_Iviy4fESkUwAxi0MXCpGabHL6UXrJa7hbXHyeXxa55UIRda3XhS2xKgk6WTfkSRjyx3yJIfYelYmenbVOYilR1c7ozvRKe-ldFbuoemsQqzewt1wt8S2IjlzPpifrywfUtpKhqpVynbbROz7vmYDaYtHGzEfObTEe2uSXlK4dAGwZwDYDOIGzcdLjQMfx7-EfGORxKHNppxsETpu3ZhujZTcZZVRec60y6SJLfmiDHA3CMIFDBnR8ScZyAsdbkWnzvv_WKm2MZVJ_-e7vs47gGS9wCOIcw976aYPvyaxZh5MUDjhJUv0Do7L0tw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfBXEQgEfODbb2LGd-LhddVmgW1WolXqzbGdyod2tyu6FX4_H8UYUEOIWJXbk6NnxvPHMG4APRrg2eN4U3hldSN_wonEBC1mHaD4L2ZUdJScvTvX8Qn6-VJc7cDDkwiBiCj7DMV2ms_x2FTbkKjtsdNzeVX0P7qvIKpo-W2vwqFAJCaPqLC3ES3M4mU7jV1D8lhkLqo7ZyDvbT1Lpz2VV_vgXpw1m9gQW26H1cSXfxpu1H4cfv6k2_u_Yn8LjbGmyST81nsEOLp_Do1_0B_fAHycBidiRzc4-TliSCr7O2UhLtupYys-9ctEuZ2d9CMxtfBANXfY1WpgFJZCwdA7AJqGvQ8FSmU0KQEoveQEXs-Pz6bzIRReKIGu5LnSJVRnB43UTuYSKjMyV6EPnUKjgiK61HEuOojZKtqoT0nFnqtAG0WmFWL2E3eVqia-AtZF8Nl20v5xHqSvuq1oI00odnKETnxGILRY2ZEVyKoxxZRMzKY3tAbQEoM0AjuBg6HTTC3L8u_kRgTw0JTXtdCOCY_PitCFoIsrIg3CSspXjbqQjE22Q_EHoR7BHgA4vyViOYH87ZWxe-d-tkEppkvXnr__e6z08mJ8vTuzJp9Mvb-AhDbZ36ezD7vp2g2-jkbP279Lc_gnitfcV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+FPGA+Implementation+of+Multilayer+Perceptron+for+Real-Time+Human+Activity+Classification&rft.jtitle=IEEE+access&rft.au=Gaikwad%2C+Nikhil+B.&rft.au=Tiwari%2C+Varun&rft.au=Keskar%2C+Avinash&rft.au=Shivaprakash%2C+N.+C.&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=26696&rft.epage=26706&rft_id=info:doi/10.1109%2FACCESS.2019.2900084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2900084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |