Fine-scale diversity of microbial communities due to satellite niches in boom and bust environments

Recent observations have revealed that closely related strains of the same microbial species can stably coexist in natural and laboratory settings subject to boom and bust dynamics and serial dilutions, respectively. However, the possible mechanisms enabling the coexistence of only a handful of stra...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 18; no. 12; p. e1010244
Main Authors Fridman, Yulia, Wang, Zihan, Maslov, Sergei, Goyal, Akshit
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1010244

Cover

More Information
Summary:Recent observations have revealed that closely related strains of the same microbial species can stably coexist in natural and laboratory settings subject to boom and bust dynamics and serial dilutions, respectively. However, the possible mechanisms enabling the coexistence of only a handful of strains, but not more, have thus far remained unknown. Here, using a consumer-resource model of microbial ecosystems, we propose that by differentiating along Monod parameters characterizing microbial growth rates in high and low nutrient conditions, strains can coexist in patterns similar to those observed. In our model, boom and bust environments create satellite niches due to resource concentrations varying in time. These satellite niches can be occupied by closely related strains, thereby enabling their coexistence. We demonstrate that this result is valid even in complex environments consisting of multiple resources and species. In these complex communities, each species partitions resources differently and creates separate sets of satellite niches for their own strains. While there is no theoretical limit to the number of coexisting strains, in our simulations, we always find between 1 and 3 strains coexisting, consistent with known experiments and observations.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1010244