Partial loss of MCU mitigates pathology in vivo across a diverse range of neurodegenerative disease models

Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondri...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 43; no. 2; p. 113681
Main Authors Twyning, Madeleine J., Tufi, Roberta, Gleeson, Thomas P., Kolodziej, Kinga M., Campesan, Susanna, Terriente-Felix, Ana, Collins, Lewis, De Lazzari, Federica, Giorgini, Flaviano, Whitworth, Alexander J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.02.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2024.113681

Cover

Abstract Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson’s, Huntington’s, Alzheimer’s, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention. [Display omitted] •Drosophila models of multiple neurodegenerative diseases have increased neuronal MERCs•Disease model mitochondria have elevated basal Ca2+ and reduced Ca2+ buffering capacity•Reducing mCa2+ uptake via MCU loss rescues phenotypes across a broad range of disease models•Increasing mCa2+ efflux via NCLX overexpression is also beneficial across disease models Twyning et al. show using a single in vivo platform that reducing mitochondrial calcium uptake via MCU or increasing efflux via NCLX is beneficial across a variety of different disease models. These findings underscore the pathogenic role of mitochondrial calcium in neurodegeneration and highlight its potential as a therapeutic target.
AbstractList Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson’s, Huntington’s, Alzheimer’s, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention. [Display omitted] •Drosophila models of multiple neurodegenerative diseases have increased neuronal MERCs•Disease model mitochondria have elevated basal Ca2+ and reduced Ca2+ buffering capacity•Reducing mCa2+ uptake via MCU loss rescues phenotypes across a broad range of disease models•Increasing mCa2+ efflux via NCLX overexpression is also beneficial across disease models Twyning et al. show using a single in vivo platform that reducing mitochondrial calcium uptake via MCU or increasing efflux via NCLX is beneficial across a variety of different disease models. These findings underscore the pathogenic role of mitochondrial calcium in neurodegeneration and highlight its potential as a therapeutic target.
Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson’s, Huntington’s, Alzheimer’s, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.
Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.
Mitochondrial calcium (Ca ) uptake augments metabolic processes and buffers cytosolic Ca levels; however, excessive mitochondrial Ca can cause cell death. Disrupted mitochondrial function and Ca homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca levels, as well as reduced mitochondrial Ca buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.
ArticleNumber 113681
Author Collins, Lewis
Giorgini, Flaviano
Tufi, Roberta
Terriente-Felix, Ana
Whitworth, Alexander J.
Twyning, Madeleine J.
Gleeson, Thomas P.
De Lazzari, Federica
Campesan, Susanna
Kolodziej, Kinga M.
Author_xml – sequence: 1
  givenname: Madeleine J.
  surname: Twyning
  fullname: Twyning, Madeleine J.
  organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
– sequence: 2
  givenname: Roberta
  surname: Tufi
  fullname: Tufi, Roberta
  organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
– sequence: 3
  givenname: Thomas P.
  surname: Gleeson
  fullname: Gleeson, Thomas P.
  organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
– sequence: 4
  givenname: Kinga M.
  surname: Kolodziej
  fullname: Kolodziej, Kinga M.
  organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
– sequence: 5
  givenname: Susanna
  surname: Campesan
  fullname: Campesan, Susanna
  organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
– sequence: 6
  givenname: Ana
  surname: Terriente-Felix
  fullname: Terriente-Felix, Ana
  organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
– sequence: 7
  givenname: Lewis
  surname: Collins
  fullname: Collins, Lewis
  organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
– sequence: 8
  givenname: Federica
  surname: De Lazzari
  fullname: De Lazzari, Federica
  organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
– sequence: 9
  givenname: Flaviano
  surname: Giorgini
  fullname: Giorgini, Flaviano
  organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
– sequence: 10
  givenname: Alexander J.
  orcidid: 0000-0002-1154-6629
  surname: Whitworth
  fullname: Whitworth, Alexander J.
  email: a.whitworth@mrc-mbu.cam.ac.uk
  organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38236772$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1UREvpHyCUJZsZ8uzYjlkgoVGBSkWwoGvrxXkJHjLxYGdG6t_wLXwZTtMixAK8sfV87rV871N2MoaRGHsO5RpKUK-2a0dDpP2al7xaAwhVwyN2xjnACnilT_44n7KLlLZlXqoEMNUTdipqLpTW_Ix9-4xx8jgUQ0ipCF3xcXNT7Pzke5woFXucvoYh9LeFH3_-OPpjKNDFGcWi9UeKiYqIY0-zdKRDDC31NFLEKd9mJBFmZJfHQ3rGHnc4JLq438_ZzbvLL5sPq-tP7682b69XrtLVtJIaNZimbQAUIGjZ8NZJ0wmuOy4N560iMq2oyIladDXqfC0dqZo0OmHEObtafNuAW7uPfofx1gb09m4QYm_nT7uBrFGlIKG4lnVXgVa1lpKEbDQClKZR2evl4rWP4fuB0mR3PuXsBxwpHJLlhptSaqNlRl_co4dmR-3vhx_CzsDrBbhLMFJnnZ9yUGGcIvrBQmnncu3WLuXauVy7lJvF1V_iB___yN4sspw_HT1Fm5yn0VHrI7kpJ-L_bfALVOa_vA
CitedBy_id crossref_primary_10_1042_BST20240261
crossref_primary_10_1080_27694127_2025_2464376
crossref_primary_10_1007_s00018_024_05286_0
crossref_primary_10_1038_s44324_025_00049_2
crossref_primary_10_3390_cells13070648
crossref_primary_10_1016_j_bbrc_2024_150010
Cites_doi 10.1016/j.bbabio.2009.06.009
10.1038/s41418-017-0033-z
10.1038/cddis.2016.173
10.1242/jcs.259823
10.1186/s13024-020-00410-7
10.1016/j.molcel.2009.02.013
10.1016/j.celrep.2015.06.017
10.1038/s41467-020-16074-2
10.1038/nprot.2016.112
10.1038/ncb2868
10.3390/ijms18020248
10.1371/journal.pgen.1008844
10.1016/j.stemcr.2020.03.023
10.1074/jbc.M116.765578
10.1038/nature04788
10.1038/s41467-019-11813-6
10.1073/pnas.0737556100
10.1016/j.neuroscience.2004.12.025
10.1038/35099568
10.1534/g3.111.001586
10.1016/j.celrep.2019.04.033
10.1371/journal.pgen.1001087
10.1523/JNEUROSCI.3791-16.2017
10.1007/BF00215114
10.1016/j.celrep.2015.08.079
10.1371/journal.pone.0126795
10.1016/j.celrep.2015.06.002
10.3390/antiox11050801
10.1016/j.cophys.2022.100532
10.1073/pnas.1721136115
10.1126/science.1062382
10.1016/j.phrs.2015.05.007
10.1074/jbc.M310908200
10.1016/j.yjmcc.2015.05.022
10.1111/ejn.13473
10.1038/nprot.2008.73
10.1038/nn884
10.1074/jbc.M112.407726
10.1038/s41419-019-1469-5
10.1073/pnas.0908099107
10.26508/lsa.202201531
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2024.113681
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID oai_doaj_org_article_9603e362758f41768755e35b7a1109b6
38236772
10_1016_j_celrep_2024_113681
S2211124724000093
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_00015/7
– fundername: NIH HHS
  grantid: P40 OD018537
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAXUO
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-57a719bdb1161a175b2dc59f327f25922d6ee9d34ec383f8a7dc55ce68e7ac393
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 00:57:32 EDT 2025
Fri Jul 11 16:41:17 EDT 2025
Mon Jul 21 05:52:41 EDT 2025
Tue Jul 01 02:59:41 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
Sat Aug 10 15:31:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Parkinson's disease
NCLX
CP: Neuroscience
Drosophila
neurodegeneration
frontotemporal dementia
Huntington's disease
calcium overload
Alzheimer's disease
MCU
mitochondrial calcium
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-57a719bdb1161a175b2dc59f327f25922d6ee9d34ec383f8a7dc55ce68e7ac393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1154-6629
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2024.113681
PMID 38236772
PQID 2929057975
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9603e362758f41768755e35b7a1109b6
proquest_miscellaneous_2929057975
pubmed_primary_38236772
crossref_citationtrail_10_1016_j_celrep_2024_113681
crossref_primary_10_1016_j_celrep_2024_113681
elsevier_sciencedirect_doi_10_1016_j_celrep_2024_113681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-27
PublicationDateYYYYMMDD 2024-02-27
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kostic, Ludtmann, Bading, Hershfinkel, Steer, Chu, Abramov, Sekler (bib15) 2015; 13
Schmittgen, Livak (bib41) 2008; 3
Matuz-Mares, González-Andrade, Araiza-Villanueva, Vilchis-Landeros, Vázquez-Meza (bib2) 2022; 11
Ludtmann, Kostic, Horne, Gandhi, Sekler, Abramov (bib16) 2019; 10
Devine, Szulc, Howden, López-Doménech, Ruiz, Kittler (bib31) 2022; 135
Vagnoni, Bullock (bib37) 2016; 11
Palty, Silverman, Hershfinkel, Caporale, Sensi, Parnis, Nolte, Fishman, Shoshan-Barmatz, Herrmann (bib4) 2010; 107
Gandhi, Wood-Kaczmar, Yao, Plun-Favreau, Deas, Klupsch, Downward, Latchman, Tabrizi, Wood (bib7) 2009; 33
Celardo, Costa, Lehmann, Jones, Wood, Mencacci, Mallucci, Loh, Martins (bib21) 2016; 7
Vetralla, Wischhof, Cadenelli, Scifo, Ehninger, Rizzuto, Bano, Stefani (bib25) 2023
Abeti, Abramov (bib6) 2015; 99
Choi, Quan, Bang, Yoo, Kim, Park, Park, Chung (bib23) 2017; 292
Park, Lee, Lee, Kim, Song, Kim, Bae, Kim, Shong, Kim, Chung (bib33) 2006; 441
Verma, Callio, Otero, Sekler, Wills, Chu (bib11) 2017; 37
Luongo, Lambert, Yuan, Zhang, Gross, Song, Shanmughapriya, Gao, Jain, Houser (bib30) 2015; 12
Liao, Dong, Cheng (bib3) 2017; 18
Wang, Chen, Wang, Wang, Wang, Cheng, Guo, Sun, Chen, Tang (bib18) 2013; 288
Greene, Whitworth, Kuo, Andrews, Feany, Pallanck (bib40) 2003; 100
Tufi, Gleeson, von Stockum, Hewitt, Lee, Terriente-Felix, Sanchez-Martinez, Ziviani, Whitworth (bib22) 2019; 27
Cai, Lytton (bib45) 2004; 279
Guha, Fischer, Johnson, Nehrke (bib43) 2020; 15
Jadiya, Kolmetzky, Tomar, Di Meco, Lombardi, Lambert, Luongo, Ludtmann, Praticò, Elrod (bib14) 2019; 10
Jadiya, Kolmetzky, Tomar, Thomas, Cohen, Khaledi, Garbincius, Hildebrand, Elrod (bib32) 2023
Holmström, Pan, Liu, Menazza, Liu, Nguyen, Pan, Parks, Anderson, Noguchi (bib27) 2015; 85
Chu (bib1) 2022; 26
Lemasters, Theruvath, Zhong, Nieminen (bib5) 2009; 1787
Lutas, Wahlmark, Acharjee, Kawasaki (bib17) 2012; 2
Terriente-Felix, Wilson, Whitworth (bib44) 2020; 16
Wittmann, Wszolek, Shulman, Salvaterra, Lewis, Hutton, Feany (bib36) 2001; 293
Stewart, Atwood, Renger, Wang, Wu (bib38) 1994; 175
Lee, Huh, Lee, Wu, Kim, Kang, Lu (bib12) 2018; 115
Calvo-Rodriguez, Hou, Snyder, Kharitonova, Russ, Das, Fan, Muzikansky, Garcia-Alloza, Serrano-Pozo (bib8) 2020; 11
Zhang, Reyes, Sun, Liu, Springer, Noguchi, Aponte, Munasinghe, Covian, Murphy, Glancy (bib26) 2023
Kang, Ryoo, Park, Yoon, Kang (bib39) 2015; 10
Kwong, Lu, Correll, Schwanekamp, Vagnozzi, Sargent, York, Zhang, Bers, Molkentin (bib29) 2015; 12
Steffan, Bodai, Pallos, Poelman, McCampbell, Apostol, Kazantsev, Schmidt, Zhu, Greenwald (bib34) 2001; 413
Garbincius, Salik, Cohen, Choya-Foces, Mangold, Makhoul, Schmidt, Khalil, Doolittle, Wilkinson (bib24) 2023
Soman, Keatinge, Moein, Da Costa, Mortiboys, Skupin, Sugunan, Bazala, Kuznicki, Bandmann (bib13) 2017; 45
Cieri, Vicario, Giacomello, Vallese, Filadi, Wagner, Pozzan, Pizzo, Scorrano, Brini, Calì (bib19) 2018; 25
Sofola, Kerr, Rogers, Killick, Augustin, Gandy, Allen, Hardy, Lovestone, Partridge (bib42) 2010; 6
Dafinca, Barbagallo, Farrimond, Candalija, Scaber, Ababneh, Sathyaprakash, Vowles, Cowley, Talbot (bib10) 2020; 14
Panov, Gutekunst, Leavitt, Hayden, Burke, Strittmatter, Greenamyre (bib9) 2002; 5
Crowther, Kinghorn, Miranda, Page, Curry, Duthie, Gubb, Lomas (bib35) 2005; 132
Hewitt, Miller-Fleming, Twyning, Andreazza, Mattedi, Prudent, Polleux, Vagnoni, Whitworth (bib20) 2022; 5
Pan, Liu, Nguyen, Liu, Sun, Teng, Fergusson, Rovira, Allen, Springer (bib28) 2013; 15
Dafinca (10.1016/j.celrep.2024.113681_bib10) 2020; 14
Pan (10.1016/j.celrep.2024.113681_bib28) 2013; 15
Garbincius (10.1016/j.celrep.2024.113681_bib24) 2023
Lemasters (10.1016/j.celrep.2024.113681_bib5) 2009; 1787
Soman (10.1016/j.celrep.2024.113681_bib13) 2017; 45
Luongo (10.1016/j.celrep.2024.113681_bib30) 2015; 12
Verma (10.1016/j.celrep.2024.113681_bib11) 2017; 37
Cai (10.1016/j.celrep.2024.113681_bib45) 2004; 279
Terriente-Felix (10.1016/j.celrep.2024.113681_bib44) 2020; 16
Lee (10.1016/j.celrep.2024.113681_bib12) 2018; 115
Vetralla (10.1016/j.celrep.2024.113681_bib25) 2023
Wittmann (10.1016/j.celrep.2024.113681_bib36) 2001; 293
Calvo-Rodriguez (10.1016/j.celrep.2024.113681_bib8) 2020; 11
Cieri (10.1016/j.celrep.2024.113681_bib19) 2018; 25
Crowther (10.1016/j.celrep.2024.113681_bib35) 2005; 132
Jadiya (10.1016/j.celrep.2024.113681_bib14) 2019; 10
Guha (10.1016/j.celrep.2024.113681_bib43) 2020; 15
Liao (10.1016/j.celrep.2024.113681_bib3) 2017; 18
Kwong (10.1016/j.celrep.2024.113681_bib29) 2015; 12
Zhang (10.1016/j.celrep.2024.113681_bib26) 2023
Park (10.1016/j.celrep.2024.113681_bib33) 2006; 441
Stewart (10.1016/j.celrep.2024.113681_bib38) 1994; 175
Palty (10.1016/j.celrep.2024.113681_bib4) 2010; 107
Lutas (10.1016/j.celrep.2024.113681_bib17) 2012; 2
Abeti (10.1016/j.celrep.2024.113681_bib6) 2015; 99
Vagnoni (10.1016/j.celrep.2024.113681_bib37) 2016; 11
Choi (10.1016/j.celrep.2024.113681_bib23) 2017; 292
Matuz-Mares (10.1016/j.celrep.2024.113681_bib2) 2022; 11
Tufi (10.1016/j.celrep.2024.113681_bib22) 2019; 27
Steffan (10.1016/j.celrep.2024.113681_bib34) 2001; 413
Greene (10.1016/j.celrep.2024.113681_bib40) 2003; 100
Schmittgen (10.1016/j.celrep.2024.113681_bib41) 2008; 3
Panov (10.1016/j.celrep.2024.113681_bib9) 2002; 5
Kang (10.1016/j.celrep.2024.113681_bib39) 2015; 10
Sofola (10.1016/j.celrep.2024.113681_bib42) 2010; 6
Chu (10.1016/j.celrep.2024.113681_bib1) 2022; 26
Celardo (10.1016/j.celrep.2024.113681_bib21) 2016; 7
Kostic (10.1016/j.celrep.2024.113681_bib15) 2015; 13
Hewitt (10.1016/j.celrep.2024.113681_bib20) 2022; 5
Wang (10.1016/j.celrep.2024.113681_bib18) 2013; 288
Jadiya (10.1016/j.celrep.2024.113681_bib32) 2023
Gandhi (10.1016/j.celrep.2024.113681_bib7) 2009; 33
Holmström (10.1016/j.celrep.2024.113681_bib27) 2015; 85
Ludtmann (10.1016/j.celrep.2024.113681_bib16) 2019; 10
Devine (10.1016/j.celrep.2024.113681_bib31) 2022; 135
References_xml – volume: 7
  start-page: e2271
  year: 2016
  ident: bib21
  article-title: Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease
  publication-title: Cell Death Dis.
– volume: 441
  start-page: 1157
  year: 2006
  end-page: 1161
  ident: bib33
  article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
  publication-title: Nature
– volume: 100
  start-page: 4078
  year: 2003
  end-page: 4083
  ident: bib40
  article-title: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 3885
  year: 2019
  ident: bib14
  article-title: Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease
  publication-title: Nat. Commun.
– volume: 10
  start-page: 265
  year: 2019
  ident: bib16
  article-title: LRRK2 deficiency induced mitochondrial Ca(2+) efflux inhibition can be rescued by Na(+)/Ca(2+)/Li(+) exchanger upregulation
  publication-title: Cell Death Dis.
– year: 2023
  ident: bib24
  article-title: TMEM65 regulates NCLX-dependent mitochondrial calcium efflux
  publication-title: bioRxiv
– volume: 16
  start-page: e1008844
  year: 2020
  ident: bib44
  article-title: Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
  publication-title: PLoS Genet.
– volume: 175
  start-page: 179
  year: 1994
  end-page: 191
  ident: bib38
  article-title: Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions
  publication-title: J. Comp. Physiol.
– volume: 33
  start-page: 627
  year: 2009
  end-page: 638
  ident: bib7
  article-title: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death
  publication-title: Mol. Cell
– volume: 1787
  start-page: 1395
  year: 2009
  end-page: 1401
  ident: bib5
  article-title: Mitochondrial calcium and the permeability transition in cell death
  publication-title: Biochim. Biophys. Acta
– year: 2023
  ident: bib32
  article-title: Genetic ablation of neuronal mitochondrial calcium uptake halts Alzheimer’s disease progression
  publication-title: bioRxiv
– volume: 14
  start-page: 892
  year: 2020
  end-page: 908
  ident: bib10
  article-title: Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD
  publication-title: Stem Cell Rep.
– volume: 27
  start-page: 1541
  year: 2019
  end-page: 1550.e5
  ident: bib22
  article-title: Comprehensive Genetic Characterization of Mitochondrial Ca(2+) Uniporter Components Reveals Their Different Physiological Requirements In Vivo
  publication-title: Cell Rep.
– volume: 288
  start-page: 3070
  year: 2013
  end-page: 3084
  ident: bib18
  article-title: Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 1464
  year: 2013
  end-page: 1472
  ident: bib28
  article-title: The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter
  publication-title: Nat. Cell Biol.
– volume: 115
  start-page: E8844
  year: 2018
  end-page: E8853
  ident: bib12
  article-title: Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 100532
  year: 2022
  ident: bib1
  article-title: Mitochondria in neurodegeneration
  publication-title: Curr. Opin. Physiol.
– volume: 279
  start-page: 5867
  year: 2004
  end-page: 5876
  ident: bib45
  article-title: Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 801
  year: 2022
  ident: bib2
  article-title: Mitochondrial Calcium: Effects of Its Imbalance in Disease
  publication-title: Antioxidants
– volume: 18
  start-page: 248
  year: 2017
  ident: bib3
  article-title: The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders
  publication-title: Int. J. Mol. Sci.
– volume: 10
  start-page: e0126795
  year: 2015
  ident: bib39
  article-title: A Drosophila Reporter for the Translational Activation of ATF4 Marks Stressed Cells during Development
  publication-title: PLoS One
– volume: 2
  start-page: 59
  year: 2012
  end-page: 69
  ident: bib17
  article-title: Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission
  publication-title: G3 (Bethesda)
– volume: 11
  start-page: 2146
  year: 2020
  ident: bib8
  article-title: Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease
  publication-title: Nat. Commun.
– volume: 413
  start-page: 739
  year: 2001
  end-page: 743
  ident: bib34
  article-title: Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila
  publication-title: Nature
– volume: 45
  start-page: 528
  year: 2017
  end-page: 535
  ident: bib13
  article-title: Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1(-/-) zebrafish
  publication-title: Eur. J. Neurosci.
– volume: 85
  start-page: 178
  year: 2015
  end-page: 182
  ident: bib27
  article-title: Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter
  publication-title: J. Mol. Cell. Cardiol.
– volume: 15
  start-page: 65
  year: 2020
  ident: bib43
  article-title: Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model
  publication-title: Mol. Neurodegener.
– volume: 132
  start-page: 123
  year: 2005
  end-page: 135
  ident: bib35
  article-title: Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a
  publication-title: Neuroscience
– volume: 25
  start-page: 1131
  year: 2018
  end-page: 1145
  ident: bib19
  article-title: SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition
  publication-title: Cell Death Differ.
– volume: 135
  start-page: jcs259823
  year: 2022
  ident: bib31
  article-title: Mitochondrial Ca2+ uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses
  publication-title: J. Cell Sci.
– volume: 3
  start-page: 1101
  year: 2008
  end-page: 1108
  ident: bib41
  article-title: Analyzing real-time PCR data by the comparative C(T) method
  publication-title: Nat. Protoc.
– year: 2023
  ident: bib25
  article-title: TMEM65-dependent Ca
  publication-title: bioRxiv
– volume: 12
  start-page: 15
  year: 2015
  end-page: 22
  ident: bib29
  article-title: The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart
  publication-title: Cell Rep.
– volume: 6
  start-page: e1001087
  year: 2010
  ident: bib42
  article-title: Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease
  publication-title: PLoS Genet.
– volume: 292
  start-page: 14473
  year: 2017
  end-page: 14485
  ident: bib23
  article-title: Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: e202201531
  year: 2022
  ident: bib20
  article-title: Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Abeta42 toxicity
  publication-title: Life Sci. Alliance
– volume: 37
  start-page: 11151
  year: 2017
  end-page: 11165
  ident: bib11
  article-title: Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants
  publication-title: J. Neurosci.
– year: 2023
  ident: bib26
  article-title: Loss of TMEM65 causes mitochondrial disease mediated by mitochondrial calcium
  publication-title: bioRxiv
– volume: 12
  start-page: 23
  year: 2015
  end-page: 34
  ident: bib30
  article-title: The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition
  publication-title: Cell Rep.
– volume: 107
  start-page: 436
  year: 2010
  end-page: 441
  ident: bib4
  article-title: NCLX is an essential component of mitochondrial Na+/Ca2+ exchange
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 1711
  year: 2016
  end-page: 1723
  ident: bib37
  article-title: A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing
  publication-title: Nat. Protoc.
– volume: 99
  start-page: 377
  year: 2015
  end-page: 381
  ident: bib6
  article-title: Mitochondrial Ca(2+) in neurodegenerative disorders
  publication-title: Pharmacol. Res.
– volume: 5
  start-page: 731
  year: 2002
  end-page: 736
  ident: bib9
  article-title: Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines
  publication-title: Nat. Neurosci.
– volume: 13
  start-page: 376
  year: 2015
  end-page: 386
  ident: bib15
  article-title: PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons
  publication-title: Cell Rep.
– volume: 293
  start-page: 711
  year: 2001
  end-page: 714
  ident: bib36
  article-title: Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles
  publication-title: Science (New York, N.Y
– volume: 1787
  start-page: 1395
  year: 2009
  ident: 10.1016/j.celrep.2024.113681_bib5
  article-title: Mitochondrial calcium and the permeability transition in cell death
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2009.06.009
– volume: 25
  start-page: 1131
  year: 2018
  ident: 10.1016/j.celrep.2024.113681_bib19
  article-title: SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0033-z
– volume: 7
  start-page: e2271
  year: 2016
  ident: 10.1016/j.celrep.2024.113681_bib21
  article-title: Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.173
– volume: 135
  start-page: jcs259823
  year: 2022
  ident: 10.1016/j.celrep.2024.113681_bib31
  article-title: Mitochondrial Ca2+ uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.259823
– volume: 15
  start-page: 65
  year: 2020
  ident: 10.1016/j.celrep.2024.113681_bib43
  article-title: Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-020-00410-7
– volume: 33
  start-page: 627
  year: 2009
  ident: 10.1016/j.celrep.2024.113681_bib7
  article-title: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.02.013
– volume: 12
  start-page: 23
  year: 2015
  ident: 10.1016/j.celrep.2024.113681_bib30
  article-title: The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.06.017
– volume: 11
  start-page: 2146
  year: 2020
  ident: 10.1016/j.celrep.2024.113681_bib8
  article-title: Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16074-2
– volume: 11
  start-page: 1711
  year: 2016
  ident: 10.1016/j.celrep.2024.113681_bib37
  article-title: A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.112
– volume: 15
  start-page: 1464
  year: 2013
  ident: 10.1016/j.celrep.2024.113681_bib28
  article-title: The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2868
– volume: 18
  start-page: 248
  year: 2017
  ident: 10.1016/j.celrep.2024.113681_bib3
  article-title: The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18020248
– volume: 16
  start-page: e1008844
  year: 2020
  ident: 10.1016/j.celrep.2024.113681_bib44
  article-title: Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008844
– volume: 14
  start-page: 892
  year: 2020
  ident: 10.1016/j.celrep.2024.113681_bib10
  article-title: Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2020.03.023
– volume: 292
  start-page: 14473
  year: 2017
  ident: 10.1016/j.celrep.2024.113681_bib23
  article-title: Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.765578
– volume: 441
  start-page: 1157
  year: 2006
  ident: 10.1016/j.celrep.2024.113681_bib33
  article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
  publication-title: Nature
  doi: 10.1038/nature04788
– volume: 10
  start-page: 3885
  year: 2019
  ident: 10.1016/j.celrep.2024.113681_bib14
  article-title: Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11813-6
– volume: 100
  start-page: 4078
  year: 2003
  ident: 10.1016/j.celrep.2024.113681_bib40
  article-title: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0737556100
– volume: 132
  start-page: 123
  year: 2005
  ident: 10.1016/j.celrep.2024.113681_bib35
  article-title: Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.12.025
– volume: 413
  start-page: 739
  year: 2001
  ident: 10.1016/j.celrep.2024.113681_bib34
  article-title: Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila
  publication-title: Nature
  doi: 10.1038/35099568
– volume: 2
  start-page: 59
  year: 2012
  ident: 10.1016/j.celrep.2024.113681_bib17
  article-title: Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.111.001586
– volume: 27
  start-page: 1541
  year: 2019
  ident: 10.1016/j.celrep.2024.113681_bib22
  article-title: Comprehensive Genetic Characterization of Mitochondrial Ca(2+) Uniporter Components Reveals Their Different Physiological Requirements In Vivo
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.04.033
– volume: 6
  start-page: e1001087
  year: 2010
  ident: 10.1016/j.celrep.2024.113681_bib42
  article-title: Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001087
– volume: 37
  start-page: 11151
  year: 2017
  ident: 10.1016/j.celrep.2024.113681_bib11
  article-title: Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3791-16.2017
– volume: 175
  start-page: 179
  year: 1994
  ident: 10.1016/j.celrep.2024.113681_bib38
  article-title: Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions
  publication-title: J. Comp. Physiol.
  doi: 10.1007/BF00215114
– volume: 13
  start-page: 376
  year: 2015
  ident: 10.1016/j.celrep.2024.113681_bib15
  article-title: PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.08.079
– volume: 10
  start-page: e0126795
  year: 2015
  ident: 10.1016/j.celrep.2024.113681_bib39
  article-title: A Drosophila Reporter for the Translational Activation of ATF4 Marks Stressed Cells during Development
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126795
– year: 2023
  ident: 10.1016/j.celrep.2024.113681_bib24
  article-title: TMEM65 regulates NCLX-dependent mitochondrial calcium efflux
  publication-title: bioRxiv
– volume: 12
  start-page: 15
  year: 2015
  ident: 10.1016/j.celrep.2024.113681_bib29
  article-title: The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.06.002
– volume: 11
  start-page: 801
  year: 2022
  ident: 10.1016/j.celrep.2024.113681_bib2
  article-title: Mitochondrial Calcium: Effects of Its Imbalance in Disease
  publication-title: Antioxidants
  doi: 10.3390/antiox11050801
– volume: 26
  start-page: 100532
  year: 2022
  ident: 10.1016/j.celrep.2024.113681_bib1
  article-title: Mitochondria in neurodegeneration
  publication-title: Curr. Opin. Physiol.
  doi: 10.1016/j.cophys.2022.100532
– year: 2023
  ident: 10.1016/j.celrep.2024.113681_bib25
  article-title: TMEM65-dependent Ca2+ extrusion safeguards mitochondrial homeostasis
  publication-title: bioRxiv
– volume: 115
  start-page: E8844
  year: 2018
  ident: 10.1016/j.celrep.2024.113681_bib12
  article-title: Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1721136115
– volume: 293
  start-page: 711
  year: 2001
  ident: 10.1016/j.celrep.2024.113681_bib36
  article-title: Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles
  publication-title: Science (New York, N.Y
  doi: 10.1126/science.1062382
– volume: 99
  start-page: 377
  year: 2015
  ident: 10.1016/j.celrep.2024.113681_bib6
  article-title: Mitochondrial Ca(2+) in neurodegenerative disorders
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.05.007
– year: 2023
  ident: 10.1016/j.celrep.2024.113681_bib32
  article-title: Genetic ablation of neuronal mitochondrial calcium uptake halts Alzheimer’s disease progression
  publication-title: bioRxiv
– volume: 279
  start-page: 5867
  year: 2004
  ident: 10.1016/j.celrep.2024.113681_bib45
  article-title: Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M310908200
– year: 2023
  ident: 10.1016/j.celrep.2024.113681_bib26
  article-title: Loss of TMEM65 causes mitochondrial disease mediated by mitochondrial calcium
  publication-title: bioRxiv
– volume: 85
  start-page: 178
  year: 2015
  ident: 10.1016/j.celrep.2024.113681_bib27
  article-title: Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2015.05.022
– volume: 45
  start-page: 528
  year: 2017
  ident: 10.1016/j.celrep.2024.113681_bib13
  article-title: Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1(-/-) zebrafish
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13473
– volume: 3
  start-page: 1101
  year: 2008
  ident: 10.1016/j.celrep.2024.113681_bib41
  article-title: Analyzing real-time PCR data by the comparative C(T) method
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 5
  start-page: 731
  year: 2002
  ident: 10.1016/j.celrep.2024.113681_bib9
  article-title: Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn884
– volume: 288
  start-page: 3070
  year: 2013
  ident: 10.1016/j.celrep.2024.113681_bib18
  article-title: Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.407726
– volume: 10
  start-page: 265
  year: 2019
  ident: 10.1016/j.celrep.2024.113681_bib16
  article-title: LRRK2 deficiency induced mitochondrial Ca(2+) efflux inhibition can be rescued by Na(+)/Ca(2+)/Li(+) exchanger upregulation
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1469-5
– volume: 107
  start-page: 436
  year: 2010
  ident: 10.1016/j.celrep.2024.113681_bib4
  article-title: NCLX is an essential component of mitochondrial Na+/Ca2+ exchange
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0908099107
– volume: 5
  start-page: e202201531
  year: 2022
  ident: 10.1016/j.celrep.2024.113681_bib20
  article-title: Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Abeta42 toxicity
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.202201531
SSID ssj0000601194
Score 2.442555
Snippet Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death....
Mitochondrial calcium (Ca ) uptake augments metabolic processes and buffers cytosolic Ca levels; however, excessive mitochondrial Ca can cause cell death....
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113681
SubjectTerms Alzheimer's disease
Animals
Biological Transport
Calcium
calcium overload
Cell Death
CP: Neuroscience
Drosophila
frontotemporal dementia
Huntington's disease
MCU
Mitochondria
mitochondrial calcium
NCLX
neurodegeneration
Neurodegenerative Diseases
Parkinson's disease
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSiQxEA4yIOxFdnV_xl0lgtfGmU7S6RxVFFlY8eCAt5Ckq2V2Z3tk_mDfxmfxyaxKuofxIHPZa3fSqU5Vkq9I1VeMnaKSdelwpdVCmkz6ImSlcT6rjEM4gJuDTAGyt8XNSP58UA8bpb4oJizRA6eJO0OELUAQl25ZyyGCY60UCOW1I65MH8m2B2aw4UylPZi4zGSXKxcDugJMZkAUlbmMlUzK4ZuzKFL2vzmS3oOc8ei5_sj2WszIz5Osn9gONPtsN1WR_HfA_tzRX2CDCQ7CpzX_dTnif8eRPAPmnGoOx5Z83Lw8r8arKXdRHu54FaMygM8oxYC6RnrLCh4jGTXthLy9weGxZM78MxtdX91f3mRtDYUsSC0XmdJOD42v_BChnUOs4PMqKFOLXNfo-eR5VQCYSkgI6KvWpdP4WgUoStAuCCO-sF4zbeAb4yoEU0tENEEq4vEzA1G7vCwqHxA2wKDPRDebNrQE41TnYmK7SLLfNunAkg5s0kGfZeteT4lgY0v7C1LUui3RY8cHaDS2NRq7zWj6THdqti3SSAgCPzXeMvxJZxUWFyLdrrgGpsu5zRFoUmavVn32NZnLWki6bC3Qjzn8H8J_Zx9IoJhXr3-w3mK2hCNERgt_HBfBK8qvCMw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS-QwEA4iCPci6t3penrk4F7L2iZpmkddFDm44-BuYd9Ckk6lurayuwr3b_wt_jJn0nZhHw7Bx-1OmrSTTL5pZr5h7DsqWRcOV1olpEmkz0NSGOeT0jiEA2gcZBcg-yu_nsofMzXbYpMhF4bCKnvb39n0aK37K-P-bY4f6nr8J0PfBXcnTVGQ5JijHaasUkrim12sv7MQ30ga6yGSfEINhgy6GOYVYL4AIq7MZKxvUqQbO1Qk8t_YqP4HROOGdLXHdnskyc-7we6zLWgO2E5XW_LfR3b3mx4DBebYCW8r_nMy5fd1pNSAJadKxFGS183L81P91HIXx8MdL2OsBvAFJR5Q00h6WcJNpKgm-8j7cx0eC-ksP7Hp1eXfyXXSV1ZIgtRylSjtdGp86VMEfA4RhM_KoEwlMl2hP5RlZQ5gSiEhoAdbFU7j3ypAXoB2QRjxmW03bQNHjKsQTCUR5wSpiN3PnInKZUVe-oBgAs5GTAxv04aedpyqX8ztEF92azsdWNKB7XQwYsm61UNHu_GG_AUpai1LpNnxQru4sf2sseisCRBEy1xUMkU_SysFQnntiHbV5yOmBzXbjTmIt6rf6P7bMCssLk86c3ENtI9LmyH8pHxfrUbssJsu60HSEWyO3s3xu_v9wj7Qr5hir0_Y9mrxCKcIklb-a1wFr0koDaM
  priority: 102
  providerName: Elsevier
Title Partial loss of MCU mitigates pathology in vivo across a diverse range of neurodegenerative disease models
URI https://dx.doi.org/10.1016/j.celrep.2024.113681
https://www.ncbi.nlm.nih.gov/pubmed/38236772
https://www.proquest.com/docview/2929057975
https://doaj.org/article/9603e362758f41768755e35b7a1109b6
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhodBL6bvbNkGFXl2yeljWIZQmJKSFlh66sDchyeOwYWO33k1I_n1nJHtLICG9-GBLlvCMpG88M98w9hGFbCqPK62RyhYqlLGorA9FbT3CAdwcVA6Q_VGeztS3uZ5vsbFm6_ABV3eadlRPatYvP13_ufmMC_7gX6xWhGUPxD4pVCpSQrnYO8ljRMF8A-DPezNxnJGrWQiK5RLKjPl097zo1nmVaP1vHVv3wdJ0PJ08ZU8GXMm_ZEV4xragfc4e5UqTNy_Y-U9SEWywxEF41_DvRzN-sUgEG7DiVJc4teSLll8trjru03S453UK3ADeUxYC9UwMmDWcJb5q2iz54OThqarO6iWbnRz_OjothjILRVRGrQttvJnaUIcpoj-PcCKIOmrbSGEaNI6EqEsAW0sFEc3ZpvIGH-sIZQXGR2nlK7bddi28YVzHaBuFoCcqTVR_dl82XlRlHSIiC9ifMDl-TBcHDnIqhbF0Y7DZucsicCQCl0UwYcWm1-_MwfFA-0OS06YtMWinG11_5oYF6dBykyCJo7lq1BSNLqM1SB2MJw7WUE6YGaXsBjCSQQa-avHA8B9GpXC4VskB41voLldOIBal5F-jJ-x11pbNJMkfW6Kp8_Y_er9jj2m8lFlv3rPtdX8Ju4iN1mEv_VPA69f54V5S_b_a1wu4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB7SlNJeQv-7_VWhV7NrS7KsY7M0bNokFJqFvQlJloPTrR12N4G-TZ8lT9YZ2V7YQwn0akuW7BmNvrFmvgH4hEJWhcWVVnGhE-FynxTauqTUFuEAGgfRBcie5bO5-LqQiz2YDrkwFFbZ2_7Opkdr3V8Z919zfFXX4x8Z-i64OymKgiTH_B7cRzQwIdU-Xhxuf7QQ4UgaCyJSh4R6DCl0Mc7Lh-UqEHNlJmKBkyLd2aIik__OTvUvJBp3pKPHcNBDSfa5m-0T2AvNU3jQFZf8_Qx-fqf3wAZLHIS1FTudztmvOnJqhDWjUsSxJaub2z839U3LbJwPs6yMwRqBrSjzgLpG1ssyXESOajKQrD_YYbGSzvo5zI--nE9nSV9aIfFCiU0ilVWpdqVLEfFZhBAuK73UFc9UhQ5RlpV5CLrkInh0YavCKrwtfciLoKznmr-A_aZtwitg0ntdCQQ6Xkii99MTXtmsyEvnEU2EyQj48DWN73nHqfzF0gwBZpemk4EhGZhOBiNItr2uOt6NO9ofkqC2bYk1O15oVxemVxuD3hoPnHiZi0qk6GgpKQOXTlniXXX5CNQgZrOjhPio-o7hPw5aYXB90qGLbUJ7vTYZ4k9K-FVyBC87ddlOks5gc3RvXv_3uB_g4ez89MScHJ99ewOP6E7Mt1dvYX-zug7vEDFt3Pu4Iv4C4V4Qxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+loss+of+MCU+mitigates+pathology+in+vivo+across+a+diverse+range+of+neurodegenerative+disease+models&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Twyning%2C+Madeleine+J&rft.au=Tufi%2C+Roberta&rft.au=Gleeson%2C+Thomas+P&rft.au=Kolodziej%2C+Kinga+M&rft.date=2024-02-27&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=43&rft.issue=2&rft.spage=113681&rft_id=info:doi/10.1016%2Fj.celrep.2024.113681&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon