Partial loss of MCU mitigates pathology in vivo across a diverse range of neurodegenerative disease models
Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondri...
Saved in:
Published in | Cell reports (Cambridge) Vol. 43; no. 2; p. 113681 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.02.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2024.113681 |
Cover
Abstract | Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson’s, Huntington’s, Alzheimer’s, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.
[Display omitted]
•Drosophila models of multiple neurodegenerative diseases have increased neuronal MERCs•Disease model mitochondria have elevated basal Ca2+ and reduced Ca2+ buffering capacity•Reducing mCa2+ uptake via MCU loss rescues phenotypes across a broad range of disease models•Increasing mCa2+ efflux via NCLX overexpression is also beneficial across disease models
Twyning et al. show using a single in vivo platform that reducing mitochondrial calcium uptake via MCU or increasing efflux via NCLX is beneficial across a variety of different disease models. These findings underscore the pathogenic role of mitochondrial calcium in neurodegeneration and highlight its potential as a therapeutic target. |
---|---|
AbstractList | Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson’s, Huntington’s, Alzheimer’s, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.
[Display omitted]
•Drosophila models of multiple neurodegenerative diseases have increased neuronal MERCs•Disease model mitochondria have elevated basal Ca2+ and reduced Ca2+ buffering capacity•Reducing mCa2+ uptake via MCU loss rescues phenotypes across a broad range of disease models•Increasing mCa2+ efflux via NCLX overexpression is also beneficial across disease models
Twyning et al. show using a single in vivo platform that reducing mitochondrial calcium uptake via MCU or increasing efflux via NCLX is beneficial across a variety of different disease models. These findings underscore the pathogenic role of mitochondrial calcium in neurodegeneration and highlight its potential as a therapeutic target. Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson’s, Huntington’s, Alzheimer’s, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention. Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention. Mitochondrial calcium (Ca ) uptake augments metabolic processes and buffers cytosolic Ca levels; however, excessive mitochondrial Ca can cause cell death. Disrupted mitochondrial function and Ca homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca levels, as well as reduced mitochondrial Ca buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention. |
ArticleNumber | 113681 |
Author | Collins, Lewis Giorgini, Flaviano Tufi, Roberta Terriente-Felix, Ana Whitworth, Alexander J. Twyning, Madeleine J. Gleeson, Thomas P. De Lazzari, Federica Campesan, Susanna Kolodziej, Kinga M. |
Author_xml | – sequence: 1 givenname: Madeleine J. surname: Twyning fullname: Twyning, Madeleine J. organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK – sequence: 2 givenname: Roberta surname: Tufi fullname: Tufi, Roberta organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK – sequence: 3 givenname: Thomas P. surname: Gleeson fullname: Gleeson, Thomas P. organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK – sequence: 4 givenname: Kinga M. surname: Kolodziej fullname: Kolodziej, Kinga M. organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK – sequence: 5 givenname: Susanna surname: Campesan fullname: Campesan, Susanna organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK – sequence: 6 givenname: Ana surname: Terriente-Felix fullname: Terriente-Felix, Ana organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK – sequence: 7 givenname: Lewis surname: Collins fullname: Collins, Lewis organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK – sequence: 8 givenname: Federica surname: De Lazzari fullname: De Lazzari, Federica organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK – sequence: 9 givenname: Flaviano surname: Giorgini fullname: Giorgini, Flaviano organization: Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK – sequence: 10 givenname: Alexander J. orcidid: 0000-0002-1154-6629 surname: Whitworth fullname: Whitworth, Alexander J. email: a.whitworth@mrc-mbu.cam.ac.uk organization: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38236772$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1UREvpHyCUJZsZ8uzYjlkgoVGBSkWwoGvrxXkJHjLxYGdG6t_wLXwZTtMixAK8sfV87rV871N2MoaRGHsO5RpKUK-2a0dDpP2al7xaAwhVwyN2xjnACnilT_44n7KLlLZlXqoEMNUTdipqLpTW_Ix9-4xx8jgUQ0ipCF3xcXNT7Pzke5woFXucvoYh9LeFH3_-OPpjKNDFGcWi9UeKiYqIY0-zdKRDDC31NFLEKd9mJBFmZJfHQ3rGHnc4JLq438_ZzbvLL5sPq-tP7682b69XrtLVtJIaNZimbQAUIGjZ8NZJ0wmuOy4N560iMq2oyIladDXqfC0dqZo0OmHEObtafNuAW7uPfofx1gb09m4QYm_nT7uBrFGlIKG4lnVXgVa1lpKEbDQClKZR2evl4rWP4fuB0mR3PuXsBxwpHJLlhptSaqNlRl_co4dmR-3vhx_CzsDrBbhLMFJnnZ9yUGGcIvrBQmnncu3WLuXauVy7lJvF1V_iB___yN4sspw_HT1Fm5yn0VHrI7kpJ-L_bfALVOa_vA |
CitedBy_id | crossref_primary_10_1042_BST20240261 crossref_primary_10_1080_27694127_2025_2464376 crossref_primary_10_1007_s00018_024_05286_0 crossref_primary_10_1038_s44324_025_00049_2 crossref_primary_10_3390_cells13070648 crossref_primary_10_1016_j_bbrc_2024_150010 |
Cites_doi | 10.1016/j.bbabio.2009.06.009 10.1038/s41418-017-0033-z 10.1038/cddis.2016.173 10.1242/jcs.259823 10.1186/s13024-020-00410-7 10.1016/j.molcel.2009.02.013 10.1016/j.celrep.2015.06.017 10.1038/s41467-020-16074-2 10.1038/nprot.2016.112 10.1038/ncb2868 10.3390/ijms18020248 10.1371/journal.pgen.1008844 10.1016/j.stemcr.2020.03.023 10.1074/jbc.M116.765578 10.1038/nature04788 10.1038/s41467-019-11813-6 10.1073/pnas.0737556100 10.1016/j.neuroscience.2004.12.025 10.1038/35099568 10.1534/g3.111.001586 10.1016/j.celrep.2019.04.033 10.1371/journal.pgen.1001087 10.1523/JNEUROSCI.3791-16.2017 10.1007/BF00215114 10.1016/j.celrep.2015.08.079 10.1371/journal.pone.0126795 10.1016/j.celrep.2015.06.002 10.3390/antiox11050801 10.1016/j.cophys.2022.100532 10.1073/pnas.1721136115 10.1126/science.1062382 10.1016/j.phrs.2015.05.007 10.1074/jbc.M310908200 10.1016/j.yjmcc.2015.05.022 10.1111/ejn.13473 10.1038/nprot.2008.73 10.1038/nn884 10.1074/jbc.M112.407726 10.1038/s41419-019-1469-5 10.1073/pnas.0908099107 10.26508/lsa.202201531 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2024.113681 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_9603e362758f41768755e35b7a1109b6 38236772 10_1016_j_celrep_2024_113681 S2211124724000093 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UU_00015/7 – fundername: NIH HHS grantid: P40 OD018537 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAXUO ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c474t-57a719bdb1161a175b2dc59f327f25922d6ee9d34ec383f8a7dc55ce68e7ac393 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 00:57:32 EDT 2025 Fri Jul 11 16:41:17 EDT 2025 Mon Jul 21 05:52:41 EDT 2025 Tue Jul 01 02:59:41 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Sat Aug 10 15:31:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Parkinson's disease NCLX CP: Neuroscience Drosophila neurodegeneration frontotemporal dementia Huntington's disease calcium overload Alzheimer's disease MCU mitochondrial calcium |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-57a719bdb1161a175b2dc59f327f25922d6ee9d34ec383f8a7dc55ce68e7ac393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1154-6629 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2024.113681 |
PMID | 38236772 |
PQID | 2929057975 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9603e362758f41768755e35b7a1109b6 proquest_miscellaneous_2929057975 pubmed_primary_38236772 crossref_citationtrail_10_1016_j_celrep_2024_113681 crossref_primary_10_1016_j_celrep_2024_113681 elsevier_sciencedirect_doi_10_1016_j_celrep_2024_113681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-27 |
PublicationDateYYYYMMDD | 2024-02-27 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Kostic, Ludtmann, Bading, Hershfinkel, Steer, Chu, Abramov, Sekler (bib15) 2015; 13 Schmittgen, Livak (bib41) 2008; 3 Matuz-Mares, González-Andrade, Araiza-Villanueva, Vilchis-Landeros, Vázquez-Meza (bib2) 2022; 11 Ludtmann, Kostic, Horne, Gandhi, Sekler, Abramov (bib16) 2019; 10 Devine, Szulc, Howden, López-Doménech, Ruiz, Kittler (bib31) 2022; 135 Vagnoni, Bullock (bib37) 2016; 11 Palty, Silverman, Hershfinkel, Caporale, Sensi, Parnis, Nolte, Fishman, Shoshan-Barmatz, Herrmann (bib4) 2010; 107 Gandhi, Wood-Kaczmar, Yao, Plun-Favreau, Deas, Klupsch, Downward, Latchman, Tabrizi, Wood (bib7) 2009; 33 Celardo, Costa, Lehmann, Jones, Wood, Mencacci, Mallucci, Loh, Martins (bib21) 2016; 7 Vetralla, Wischhof, Cadenelli, Scifo, Ehninger, Rizzuto, Bano, Stefani (bib25) 2023 Abeti, Abramov (bib6) 2015; 99 Choi, Quan, Bang, Yoo, Kim, Park, Park, Chung (bib23) 2017; 292 Park, Lee, Lee, Kim, Song, Kim, Bae, Kim, Shong, Kim, Chung (bib33) 2006; 441 Verma, Callio, Otero, Sekler, Wills, Chu (bib11) 2017; 37 Luongo, Lambert, Yuan, Zhang, Gross, Song, Shanmughapriya, Gao, Jain, Houser (bib30) 2015; 12 Liao, Dong, Cheng (bib3) 2017; 18 Wang, Chen, Wang, Wang, Wang, Cheng, Guo, Sun, Chen, Tang (bib18) 2013; 288 Greene, Whitworth, Kuo, Andrews, Feany, Pallanck (bib40) 2003; 100 Tufi, Gleeson, von Stockum, Hewitt, Lee, Terriente-Felix, Sanchez-Martinez, Ziviani, Whitworth (bib22) 2019; 27 Cai, Lytton (bib45) 2004; 279 Guha, Fischer, Johnson, Nehrke (bib43) 2020; 15 Jadiya, Kolmetzky, Tomar, Di Meco, Lombardi, Lambert, Luongo, Ludtmann, Praticò, Elrod (bib14) 2019; 10 Jadiya, Kolmetzky, Tomar, Thomas, Cohen, Khaledi, Garbincius, Hildebrand, Elrod (bib32) 2023 Holmström, Pan, Liu, Menazza, Liu, Nguyen, Pan, Parks, Anderson, Noguchi (bib27) 2015; 85 Chu (bib1) 2022; 26 Lemasters, Theruvath, Zhong, Nieminen (bib5) 2009; 1787 Lutas, Wahlmark, Acharjee, Kawasaki (bib17) 2012; 2 Terriente-Felix, Wilson, Whitworth (bib44) 2020; 16 Wittmann, Wszolek, Shulman, Salvaterra, Lewis, Hutton, Feany (bib36) 2001; 293 Stewart, Atwood, Renger, Wang, Wu (bib38) 1994; 175 Lee, Huh, Lee, Wu, Kim, Kang, Lu (bib12) 2018; 115 Calvo-Rodriguez, Hou, Snyder, Kharitonova, Russ, Das, Fan, Muzikansky, Garcia-Alloza, Serrano-Pozo (bib8) 2020; 11 Zhang, Reyes, Sun, Liu, Springer, Noguchi, Aponte, Munasinghe, Covian, Murphy, Glancy (bib26) 2023 Kang, Ryoo, Park, Yoon, Kang (bib39) 2015; 10 Kwong, Lu, Correll, Schwanekamp, Vagnozzi, Sargent, York, Zhang, Bers, Molkentin (bib29) 2015; 12 Steffan, Bodai, Pallos, Poelman, McCampbell, Apostol, Kazantsev, Schmidt, Zhu, Greenwald (bib34) 2001; 413 Garbincius, Salik, Cohen, Choya-Foces, Mangold, Makhoul, Schmidt, Khalil, Doolittle, Wilkinson (bib24) 2023 Soman, Keatinge, Moein, Da Costa, Mortiboys, Skupin, Sugunan, Bazala, Kuznicki, Bandmann (bib13) 2017; 45 Cieri, Vicario, Giacomello, Vallese, Filadi, Wagner, Pozzan, Pizzo, Scorrano, Brini, Calì (bib19) 2018; 25 Sofola, Kerr, Rogers, Killick, Augustin, Gandy, Allen, Hardy, Lovestone, Partridge (bib42) 2010; 6 Dafinca, Barbagallo, Farrimond, Candalija, Scaber, Ababneh, Sathyaprakash, Vowles, Cowley, Talbot (bib10) 2020; 14 Panov, Gutekunst, Leavitt, Hayden, Burke, Strittmatter, Greenamyre (bib9) 2002; 5 Crowther, Kinghorn, Miranda, Page, Curry, Duthie, Gubb, Lomas (bib35) 2005; 132 Hewitt, Miller-Fleming, Twyning, Andreazza, Mattedi, Prudent, Polleux, Vagnoni, Whitworth (bib20) 2022; 5 Pan, Liu, Nguyen, Liu, Sun, Teng, Fergusson, Rovira, Allen, Springer (bib28) 2013; 15 Dafinca (10.1016/j.celrep.2024.113681_bib10) 2020; 14 Pan (10.1016/j.celrep.2024.113681_bib28) 2013; 15 Garbincius (10.1016/j.celrep.2024.113681_bib24) 2023 Lemasters (10.1016/j.celrep.2024.113681_bib5) 2009; 1787 Soman (10.1016/j.celrep.2024.113681_bib13) 2017; 45 Luongo (10.1016/j.celrep.2024.113681_bib30) 2015; 12 Verma (10.1016/j.celrep.2024.113681_bib11) 2017; 37 Cai (10.1016/j.celrep.2024.113681_bib45) 2004; 279 Terriente-Felix (10.1016/j.celrep.2024.113681_bib44) 2020; 16 Lee (10.1016/j.celrep.2024.113681_bib12) 2018; 115 Vetralla (10.1016/j.celrep.2024.113681_bib25) 2023 Wittmann (10.1016/j.celrep.2024.113681_bib36) 2001; 293 Calvo-Rodriguez (10.1016/j.celrep.2024.113681_bib8) 2020; 11 Cieri (10.1016/j.celrep.2024.113681_bib19) 2018; 25 Crowther (10.1016/j.celrep.2024.113681_bib35) 2005; 132 Jadiya (10.1016/j.celrep.2024.113681_bib14) 2019; 10 Guha (10.1016/j.celrep.2024.113681_bib43) 2020; 15 Liao (10.1016/j.celrep.2024.113681_bib3) 2017; 18 Kwong (10.1016/j.celrep.2024.113681_bib29) 2015; 12 Zhang (10.1016/j.celrep.2024.113681_bib26) 2023 Park (10.1016/j.celrep.2024.113681_bib33) 2006; 441 Stewart (10.1016/j.celrep.2024.113681_bib38) 1994; 175 Palty (10.1016/j.celrep.2024.113681_bib4) 2010; 107 Lutas (10.1016/j.celrep.2024.113681_bib17) 2012; 2 Abeti (10.1016/j.celrep.2024.113681_bib6) 2015; 99 Vagnoni (10.1016/j.celrep.2024.113681_bib37) 2016; 11 Choi (10.1016/j.celrep.2024.113681_bib23) 2017; 292 Matuz-Mares (10.1016/j.celrep.2024.113681_bib2) 2022; 11 Tufi (10.1016/j.celrep.2024.113681_bib22) 2019; 27 Steffan (10.1016/j.celrep.2024.113681_bib34) 2001; 413 Greene (10.1016/j.celrep.2024.113681_bib40) 2003; 100 Schmittgen (10.1016/j.celrep.2024.113681_bib41) 2008; 3 Panov (10.1016/j.celrep.2024.113681_bib9) 2002; 5 Kang (10.1016/j.celrep.2024.113681_bib39) 2015; 10 Sofola (10.1016/j.celrep.2024.113681_bib42) 2010; 6 Chu (10.1016/j.celrep.2024.113681_bib1) 2022; 26 Celardo (10.1016/j.celrep.2024.113681_bib21) 2016; 7 Kostic (10.1016/j.celrep.2024.113681_bib15) 2015; 13 Hewitt (10.1016/j.celrep.2024.113681_bib20) 2022; 5 Wang (10.1016/j.celrep.2024.113681_bib18) 2013; 288 Jadiya (10.1016/j.celrep.2024.113681_bib32) 2023 Gandhi (10.1016/j.celrep.2024.113681_bib7) 2009; 33 Holmström (10.1016/j.celrep.2024.113681_bib27) 2015; 85 Ludtmann (10.1016/j.celrep.2024.113681_bib16) 2019; 10 Devine (10.1016/j.celrep.2024.113681_bib31) 2022; 135 |
References_xml | – volume: 7 start-page: e2271 year: 2016 ident: bib21 article-title: Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease publication-title: Cell Death Dis. – volume: 441 start-page: 1157 year: 2006 end-page: 1161 ident: bib33 article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin publication-title: Nature – volume: 100 start-page: 4078 year: 2003 end-page: 4083 ident: bib40 article-title: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 3885 year: 2019 ident: bib14 article-title: Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease publication-title: Nat. Commun. – volume: 10 start-page: 265 year: 2019 ident: bib16 article-title: LRRK2 deficiency induced mitochondrial Ca(2+) efflux inhibition can be rescued by Na(+)/Ca(2+)/Li(+) exchanger upregulation publication-title: Cell Death Dis. – year: 2023 ident: bib24 article-title: TMEM65 regulates NCLX-dependent mitochondrial calcium efflux publication-title: bioRxiv – volume: 16 start-page: e1008844 year: 2020 ident: bib44 article-title: Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes publication-title: PLoS Genet. – volume: 175 start-page: 179 year: 1994 end-page: 191 ident: bib38 article-title: Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions publication-title: J. Comp. Physiol. – volume: 33 start-page: 627 year: 2009 end-page: 638 ident: bib7 article-title: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death publication-title: Mol. Cell – volume: 1787 start-page: 1395 year: 2009 end-page: 1401 ident: bib5 article-title: Mitochondrial calcium and the permeability transition in cell death publication-title: Biochim. Biophys. Acta – year: 2023 ident: bib32 article-title: Genetic ablation of neuronal mitochondrial calcium uptake halts Alzheimer’s disease progression publication-title: bioRxiv – volume: 14 start-page: 892 year: 2020 end-page: 908 ident: bib10 article-title: Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD publication-title: Stem Cell Rep. – volume: 27 start-page: 1541 year: 2019 end-page: 1550.e5 ident: bib22 article-title: Comprehensive Genetic Characterization of Mitochondrial Ca(2+) Uniporter Components Reveals Their Different Physiological Requirements In Vivo publication-title: Cell Rep. – volume: 288 start-page: 3070 year: 2013 end-page: 3084 ident: bib18 article-title: Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease publication-title: J. Biol. Chem. – volume: 15 start-page: 1464 year: 2013 end-page: 1472 ident: bib28 article-title: The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter publication-title: Nat. Cell Biol. – volume: 115 start-page: E8844 year: 2018 end-page: E8853 ident: bib12 article-title: Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 100532 year: 2022 ident: bib1 article-title: Mitochondria in neurodegeneration publication-title: Curr. Opin. Physiol. – volume: 279 start-page: 5867 year: 2004 end-page: 5876 ident: bib45 article-title: Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6 publication-title: J. Biol. Chem. – volume: 11 start-page: 801 year: 2022 ident: bib2 article-title: Mitochondrial Calcium: Effects of Its Imbalance in Disease publication-title: Antioxidants – volume: 18 start-page: 248 year: 2017 ident: bib3 article-title: The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders publication-title: Int. J. Mol. Sci. – volume: 10 start-page: e0126795 year: 2015 ident: bib39 article-title: A Drosophila Reporter for the Translational Activation of ATF4 Marks Stressed Cells during Development publication-title: PLoS One – volume: 2 start-page: 59 year: 2012 end-page: 69 ident: bib17 article-title: Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission publication-title: G3 (Bethesda) – volume: 11 start-page: 2146 year: 2020 ident: bib8 article-title: Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease publication-title: Nat. Commun. – volume: 413 start-page: 739 year: 2001 end-page: 743 ident: bib34 article-title: Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila publication-title: Nature – volume: 45 start-page: 528 year: 2017 end-page: 535 ident: bib13 article-title: Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1(-/-) zebrafish publication-title: Eur. J. Neurosci. – volume: 85 start-page: 178 year: 2015 end-page: 182 ident: bib27 article-title: Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter publication-title: J. Mol. Cell. Cardiol. – volume: 15 start-page: 65 year: 2020 ident: bib43 article-title: Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model publication-title: Mol. Neurodegener. – volume: 132 start-page: 123 year: 2005 end-page: 135 ident: bib35 article-title: Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a publication-title: Neuroscience – volume: 25 start-page: 1131 year: 2018 end-page: 1145 ident: bib19 article-title: SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition publication-title: Cell Death Differ. – volume: 135 start-page: jcs259823 year: 2022 ident: bib31 article-title: Mitochondrial Ca2+ uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses publication-title: J. Cell Sci. – volume: 3 start-page: 1101 year: 2008 end-page: 1108 ident: bib41 article-title: Analyzing real-time PCR data by the comparative C(T) method publication-title: Nat. Protoc. – year: 2023 ident: bib25 article-title: TMEM65-dependent Ca publication-title: bioRxiv – volume: 12 start-page: 15 year: 2015 end-page: 22 ident: bib29 article-title: The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart publication-title: Cell Rep. – volume: 6 start-page: e1001087 year: 2010 ident: bib42 article-title: Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease publication-title: PLoS Genet. – volume: 292 start-page: 14473 year: 2017 end-page: 14485 ident: bib23 article-title: Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death publication-title: J. Biol. Chem. – volume: 5 start-page: e202201531 year: 2022 ident: bib20 article-title: Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Abeta42 toxicity publication-title: Life Sci. Alliance – volume: 37 start-page: 11151 year: 2017 end-page: 11165 ident: bib11 article-title: Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants publication-title: J. Neurosci. – year: 2023 ident: bib26 article-title: Loss of TMEM65 causes mitochondrial disease mediated by mitochondrial calcium publication-title: bioRxiv – volume: 12 start-page: 23 year: 2015 end-page: 34 ident: bib30 article-title: The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition publication-title: Cell Rep. – volume: 107 start-page: 436 year: 2010 end-page: 441 ident: bib4 article-title: NCLX is an essential component of mitochondrial Na+/Ca2+ exchange publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 1711 year: 2016 end-page: 1723 ident: bib37 article-title: A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing publication-title: Nat. Protoc. – volume: 99 start-page: 377 year: 2015 end-page: 381 ident: bib6 article-title: Mitochondrial Ca(2+) in neurodegenerative disorders publication-title: Pharmacol. Res. – volume: 5 start-page: 731 year: 2002 end-page: 736 ident: bib9 article-title: Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines publication-title: Nat. Neurosci. – volume: 13 start-page: 376 year: 2015 end-page: 386 ident: bib15 article-title: PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons publication-title: Cell Rep. – volume: 293 start-page: 711 year: 2001 end-page: 714 ident: bib36 article-title: Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles publication-title: Science (New York, N.Y – volume: 1787 start-page: 1395 year: 2009 ident: 10.1016/j.celrep.2024.113681_bib5 article-title: Mitochondrial calcium and the permeability transition in cell death publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2009.06.009 – volume: 25 start-page: 1131 year: 2018 ident: 10.1016/j.celrep.2024.113681_bib19 article-title: SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0033-z – volume: 7 start-page: e2271 year: 2016 ident: 10.1016/j.celrep.2024.113681_bib21 article-title: Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.173 – volume: 135 start-page: jcs259823 year: 2022 ident: 10.1016/j.celrep.2024.113681_bib31 article-title: Mitochondrial Ca2+ uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses publication-title: J. Cell Sci. doi: 10.1242/jcs.259823 – volume: 15 start-page: 65 year: 2020 ident: 10.1016/j.celrep.2024.113681_bib43 article-title: Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model publication-title: Mol. Neurodegener. doi: 10.1186/s13024-020-00410-7 – volume: 33 start-page: 627 year: 2009 ident: 10.1016/j.celrep.2024.113681_bib7 article-title: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.02.013 – volume: 12 start-page: 23 year: 2015 ident: 10.1016/j.celrep.2024.113681_bib30 article-title: The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.017 – volume: 11 start-page: 2146 year: 2020 ident: 10.1016/j.celrep.2024.113681_bib8 article-title: Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-020-16074-2 – volume: 11 start-page: 1711 year: 2016 ident: 10.1016/j.celrep.2024.113681_bib37 article-title: A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.112 – volume: 15 start-page: 1464 year: 2013 ident: 10.1016/j.celrep.2024.113681_bib28 article-title: The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter publication-title: Nat. Cell Biol. doi: 10.1038/ncb2868 – volume: 18 start-page: 248 year: 2017 ident: 10.1016/j.celrep.2024.113681_bib3 article-title: The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18020248 – volume: 16 start-page: e1008844 year: 2020 ident: 10.1016/j.celrep.2024.113681_bib44 article-title: Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008844 – volume: 14 start-page: 892 year: 2020 ident: 10.1016/j.celrep.2024.113681_bib10 article-title: Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.03.023 – volume: 292 start-page: 14473 year: 2017 ident: 10.1016/j.celrep.2024.113681_bib23 article-title: Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.765578 – volume: 441 start-page: 1157 year: 2006 ident: 10.1016/j.celrep.2024.113681_bib33 article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin publication-title: Nature doi: 10.1038/nature04788 – volume: 10 start-page: 3885 year: 2019 ident: 10.1016/j.celrep.2024.113681_bib14 article-title: Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-11813-6 – volume: 100 start-page: 4078 year: 2003 ident: 10.1016/j.celrep.2024.113681_bib40 article-title: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0737556100 – volume: 132 start-page: 123 year: 2005 ident: 10.1016/j.celrep.2024.113681_bib35 article-title: Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.12.025 – volume: 413 start-page: 739 year: 2001 ident: 10.1016/j.celrep.2024.113681_bib34 article-title: Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila publication-title: Nature doi: 10.1038/35099568 – volume: 2 start-page: 59 year: 2012 ident: 10.1016/j.celrep.2024.113681_bib17 article-title: Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission publication-title: G3 (Bethesda) doi: 10.1534/g3.111.001586 – volume: 27 start-page: 1541 year: 2019 ident: 10.1016/j.celrep.2024.113681_bib22 article-title: Comprehensive Genetic Characterization of Mitochondrial Ca(2+) Uniporter Components Reveals Their Different Physiological Requirements In Vivo publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.04.033 – volume: 6 start-page: e1001087 year: 2010 ident: 10.1016/j.celrep.2024.113681_bib42 article-title: Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001087 – volume: 37 start-page: 11151 year: 2017 ident: 10.1016/j.celrep.2024.113681_bib11 article-title: Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3791-16.2017 – volume: 175 start-page: 179 year: 1994 ident: 10.1016/j.celrep.2024.113681_bib38 article-title: Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions publication-title: J. Comp. Physiol. doi: 10.1007/BF00215114 – volume: 13 start-page: 376 year: 2015 ident: 10.1016/j.celrep.2024.113681_bib15 article-title: PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.08.079 – volume: 10 start-page: e0126795 year: 2015 ident: 10.1016/j.celrep.2024.113681_bib39 article-title: A Drosophila Reporter for the Translational Activation of ATF4 Marks Stressed Cells during Development publication-title: PLoS One doi: 10.1371/journal.pone.0126795 – year: 2023 ident: 10.1016/j.celrep.2024.113681_bib24 article-title: TMEM65 regulates NCLX-dependent mitochondrial calcium efflux publication-title: bioRxiv – volume: 12 start-page: 15 year: 2015 ident: 10.1016/j.celrep.2024.113681_bib29 article-title: The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.002 – volume: 11 start-page: 801 year: 2022 ident: 10.1016/j.celrep.2024.113681_bib2 article-title: Mitochondrial Calcium: Effects of Its Imbalance in Disease publication-title: Antioxidants doi: 10.3390/antiox11050801 – volume: 26 start-page: 100532 year: 2022 ident: 10.1016/j.celrep.2024.113681_bib1 article-title: Mitochondria in neurodegeneration publication-title: Curr. Opin. Physiol. doi: 10.1016/j.cophys.2022.100532 – year: 2023 ident: 10.1016/j.celrep.2024.113681_bib25 article-title: TMEM65-dependent Ca2+ extrusion safeguards mitochondrial homeostasis publication-title: bioRxiv – volume: 115 start-page: E8844 year: 2018 ident: 10.1016/j.celrep.2024.113681_bib12 article-title: Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1721136115 – volume: 293 start-page: 711 year: 2001 ident: 10.1016/j.celrep.2024.113681_bib36 article-title: Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles publication-title: Science (New York, N.Y doi: 10.1126/science.1062382 – volume: 99 start-page: 377 year: 2015 ident: 10.1016/j.celrep.2024.113681_bib6 article-title: Mitochondrial Ca(2+) in neurodegenerative disorders publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.05.007 – year: 2023 ident: 10.1016/j.celrep.2024.113681_bib32 article-title: Genetic ablation of neuronal mitochondrial calcium uptake halts Alzheimer’s disease progression publication-title: bioRxiv – volume: 279 start-page: 5867 year: 2004 ident: 10.1016/j.celrep.2024.113681_bib45 article-title: Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310908200 – year: 2023 ident: 10.1016/j.celrep.2024.113681_bib26 article-title: Loss of TMEM65 causes mitochondrial disease mediated by mitochondrial calcium publication-title: bioRxiv – volume: 85 start-page: 178 year: 2015 ident: 10.1016/j.celrep.2024.113681_bib27 article-title: Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.05.022 – volume: 45 start-page: 528 year: 2017 ident: 10.1016/j.celrep.2024.113681_bib13 article-title: Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1(-/-) zebrafish publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13473 – volume: 3 start-page: 1101 year: 2008 ident: 10.1016/j.celrep.2024.113681_bib41 article-title: Analyzing real-time PCR data by the comparative C(T) method publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.73 – volume: 5 start-page: 731 year: 2002 ident: 10.1016/j.celrep.2024.113681_bib9 article-title: Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines publication-title: Nat. Neurosci. doi: 10.1038/nn884 – volume: 288 start-page: 3070 year: 2013 ident: 10.1016/j.celrep.2024.113681_bib18 article-title: Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.407726 – volume: 10 start-page: 265 year: 2019 ident: 10.1016/j.celrep.2024.113681_bib16 article-title: LRRK2 deficiency induced mitochondrial Ca(2+) efflux inhibition can be rescued by Na(+)/Ca(2+)/Li(+) exchanger upregulation publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1469-5 – volume: 107 start-page: 436 year: 2010 ident: 10.1016/j.celrep.2024.113681_bib4 article-title: NCLX is an essential component of mitochondrial Na+/Ca2+ exchange publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908099107 – volume: 5 start-page: e202201531 year: 2022 ident: 10.1016/j.celrep.2024.113681_bib20 article-title: Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Abeta42 toxicity publication-title: Life Sci. Alliance doi: 10.26508/lsa.202201531 |
SSID | ssj0000601194 |
Score | 2.442555 |
Snippet | Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death.... Mitochondrial calcium (Ca ) uptake augments metabolic processes and buffers cytosolic Ca levels; however, excessive mitochondrial Ca can cause cell death.... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113681 |
SubjectTerms | Alzheimer's disease Animals Biological Transport Calcium calcium overload Cell Death CP: Neuroscience Drosophila frontotemporal dementia Huntington's disease MCU Mitochondria mitochondrial calcium NCLX neurodegeneration Neurodegenerative Diseases Parkinson's disease |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSiQxEA4yIOxFdnV_xl0lgtfGmU7S6RxVFFlY8eCAt5Ckq2V2Z3tk_mDfxmfxyaxKuofxIHPZa3fSqU5Vkq9I1VeMnaKSdelwpdVCmkz6ImSlcT6rjEM4gJuDTAGyt8XNSP58UA8bpb4oJizRA6eJO0OELUAQl25ZyyGCY60UCOW1I65MH8m2B2aw4UylPZi4zGSXKxcDugJMZkAUlbmMlUzK4ZuzKFL2vzmS3oOc8ei5_sj2WszIz5Osn9gONPtsN1WR_HfA_tzRX2CDCQ7CpzX_dTnif8eRPAPmnGoOx5Z83Lw8r8arKXdRHu54FaMygM8oxYC6RnrLCh4jGTXthLy9weGxZM78MxtdX91f3mRtDYUsSC0XmdJOD42v_BChnUOs4PMqKFOLXNfo-eR5VQCYSkgI6KvWpdP4WgUoStAuCCO-sF4zbeAb4yoEU0tENEEq4vEzA1G7vCwqHxA2wKDPRDebNrQE41TnYmK7SLLfNunAkg5s0kGfZeteT4lgY0v7C1LUui3RY8cHaDS2NRq7zWj6THdqti3SSAgCPzXeMvxJZxUWFyLdrrgGpsu5zRFoUmavVn32NZnLWki6bC3Qjzn8H8J_Zx9IoJhXr3-w3mK2hCNERgt_HBfBK8qvCMw priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS-QwEA4iCPci6t3penrk4F7L2iZpmkddFDm44-BuYd9Ckk6lurayuwr3b_wt_jJn0nZhHw7Bx-1OmrSTTL5pZr5h7DsqWRcOV1olpEmkz0NSGOeT0jiEA2gcZBcg-yu_nsofMzXbYpMhF4bCKnvb39n0aK37K-P-bY4f6nr8J0PfBXcnTVGQ5JijHaasUkrim12sv7MQ30ga6yGSfEINhgy6GOYVYL4AIq7MZKxvUqQbO1Qk8t_YqP4HROOGdLXHdnskyc-7we6zLWgO2E5XW_LfR3b3mx4DBebYCW8r_nMy5fd1pNSAJadKxFGS183L81P91HIXx8MdL2OsBvAFJR5Q00h6WcJNpKgm-8j7cx0eC-ksP7Hp1eXfyXXSV1ZIgtRylSjtdGp86VMEfA4RhM_KoEwlMl2hP5RlZQ5gSiEhoAdbFU7j3ypAXoB2QRjxmW03bQNHjKsQTCUR5wSpiN3PnInKZUVe-oBgAs5GTAxv04aedpyqX8ztEF92azsdWNKB7XQwYsm61UNHu_GG_AUpai1LpNnxQru4sf2sseisCRBEy1xUMkU_SysFQnntiHbV5yOmBzXbjTmIt6rf6P7bMCssLk86c3ENtI9LmyH8pHxfrUbssJsu60HSEWyO3s3xu_v9wj7Qr5hir0_Y9mrxCKcIklb-a1wFr0koDaM priority: 102 providerName: Elsevier |
Title | Partial loss of MCU mitigates pathology in vivo across a diverse range of neurodegenerative disease models |
URI | https://dx.doi.org/10.1016/j.celrep.2024.113681 https://www.ncbi.nlm.nih.gov/pubmed/38236772 https://www.proquest.com/docview/2929057975 https://doaj.org/article/9603e362758f41768755e35b7a1109b6 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhodBL6bvbNkGFXl2yeljWIZQmJKSFlh66sDchyeOwYWO33k1I_n1nJHtLICG9-GBLlvCMpG88M98w9hGFbCqPK62RyhYqlLGorA9FbT3CAdwcVA6Q_VGeztS3uZ5vsbFm6_ABV3eadlRPatYvP13_ufmMC_7gX6xWhGUPxD4pVCpSQrnYO8ljRMF8A-DPezNxnJGrWQiK5RLKjPl097zo1nmVaP1vHVv3wdJ0PJ08ZU8GXMm_ZEV4xragfc4e5UqTNy_Y-U9SEWywxEF41_DvRzN-sUgEG7DiVJc4teSLll8trjru03S453UK3ADeUxYC9UwMmDWcJb5q2iz54OThqarO6iWbnRz_OjothjILRVRGrQttvJnaUIcpoj-PcCKIOmrbSGEaNI6EqEsAW0sFEc3ZpvIGH-sIZQXGR2nlK7bddi28YVzHaBuFoCcqTVR_dl82XlRlHSIiC9ifMDl-TBcHDnIqhbF0Y7DZucsicCQCl0UwYcWm1-_MwfFA-0OS06YtMWinG11_5oYF6dBykyCJo7lq1BSNLqM1SB2MJw7WUE6YGaXsBjCSQQa-avHA8B9GpXC4VskB41voLldOIBal5F-jJ-x11pbNJMkfW6Kp8_Y_er9jj2m8lFlv3rPtdX8Ju4iN1mEv_VPA69f54V5S_b_a1wu4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB7SlNJeQv-7_VWhV7NrS7KsY7M0bNokFJqFvQlJloPTrR12N4G-TZ8lT9YZ2V7YQwn0akuW7BmNvrFmvgH4hEJWhcWVVnGhE-FynxTauqTUFuEAGgfRBcie5bO5-LqQiz2YDrkwFFbZ2_7Opkdr3V8Z919zfFXX4x8Z-i64OymKgiTH_B7cRzQwIdU-Xhxuf7QQ4UgaCyJSh4R6DCl0Mc7Lh-UqEHNlJmKBkyLd2aIik__OTvUvJBp3pKPHcNBDSfa5m-0T2AvNU3jQFZf8_Qx-fqf3wAZLHIS1FTudztmvOnJqhDWjUsSxJaub2z839U3LbJwPs6yMwRqBrSjzgLpG1ssyXESOajKQrD_YYbGSzvo5zI--nE9nSV9aIfFCiU0ilVWpdqVLEfFZhBAuK73UFc9UhQ5RlpV5CLrkInh0YavCKrwtfciLoKznmr-A_aZtwitg0ntdCQQ6Xkii99MTXtmsyEvnEU2EyQj48DWN73nHqfzF0gwBZpemk4EhGZhOBiNItr2uOt6NO9ofkqC2bYk1O15oVxemVxuD3hoPnHiZi0qk6GgpKQOXTlniXXX5CNQgZrOjhPio-o7hPw5aYXB90qGLbUJ7vTYZ4k9K-FVyBC87ddlOks5gc3RvXv_3uB_g4ez89MScHJ99ewOP6E7Mt1dvYX-zug7vEDFt3Pu4Iv4C4V4Qxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+loss+of+MCU+mitigates+pathology+in+vivo+across+a+diverse+range+of+neurodegenerative+disease+models&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Twyning%2C+Madeleine+J&rft.au=Tufi%2C+Roberta&rft.au=Gleeson%2C+Thomas+P&rft.au=Kolodziej%2C+Kinga+M&rft.date=2024-02-27&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=43&rft.issue=2&rft.spage=113681&rft_id=info:doi/10.1016%2Fj.celrep.2024.113681&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |