Silicon 3D Microdosimeters for Advanced Quality Assurance in Particle Therapy

The Centre for Medical Radiation Physics introduced the concept of Silicon On Insulator (SOI) microdosimeters with 3-Dimensional (3D) cylindrical sensitive volumes (SVs) mimicking the dimensions of cells in an array. Several designs of high-definition 3D SVs fabricated using 3D MEMS technology were...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 1; p. 328
Main Authors Tran, Linh T., Bolst, David, James, Benjamin, Pan, Vladimir, Vohradsky, James, Peracchi, Stefania, Chartier, Lachlan, Debrot, Emily, Guatelli, Susana, Petasecca, Marco, Lerch, Michael, Prokopovich, Dale, Pastuović, Željko, Povoli, Marco, Kok, Angela, Inaniwa, Taku, Lee, Sung Hyun, Matsufuji, Naruhiro, Rosenfeld, Anatoly B.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app12010328

Cover

Abstract The Centre for Medical Radiation Physics introduced the concept of Silicon On Insulator (SOI) microdosimeters with 3-Dimensional (3D) cylindrical sensitive volumes (SVs) mimicking the dimensions of cells in an array. Several designs of high-definition 3D SVs fabricated using 3D MEMS technology were implemented. 3D SVs were fabricated in different sizes and configurations with diameters between 18 and 30 µm, thicknesses of 2–50 µm and at a pitch of 50 µm in matrices with volumes of 20 × 20 and 50 × 50. SVs were segmented into sub-arrays to reduce capacitance and avoid pile up in high-dose rate pencil beam scanning applications. Detailed TCAD simulations and charge collection studies in individual SVs have been performed. The microdosimetry probe (MicroPlus) is composed of the silicon microdosimeter and low-noise front–end readout electronics housed in a PMMA waterproof sheath that allows measurements of lineal energies as low as 0.4 keV/µm in water or PMMA. Microdosimetric quantities measured with SOI microdosimeters and the MicroPlus probe were used to evaluate the relative biological effectiveness (RBE) of heavy ions and protons delivered by pencil-beam scanning and passive scattering systems in different particle therapy centres. The 3D detectors and MicroPlus probe developed for microdosimetry have the potential to provide confidence in the delivery of RBE optimized particle therapy when introduced into routine clinical practice.
AbstractList The Centre for Medical Radiation Physics introduced the concept of Silicon On Insulator (SOI) microdosimeters with 3-Dimensional (3D) cylindrical sensitive volumes (SVs) mimicking the dimensions of cells in an array. Several designs of high-definition 3D SVs fabricated using 3D MEMS technology were implemented. 3D SVs were fabricated in different sizes and configurations with diameters between 18 and 30 µm, thicknesses of 2–50 µm and at a pitch of 50 µm in matrices with volumes of 20 × 20 and 50 × 50. SVs were segmented into sub-arrays to reduce capacitance and avoid pile up in high-dose rate pencil beam scanning applications. Detailed TCAD simulations and charge collection studies in individual SVs have been performed. The microdosimetry probe (MicroPlus) is composed of the silicon microdosimeter and low-noise front–end readout electronics housed in a PMMA waterproof sheath that allows measurements of lineal energies as low as 0.4 keV/µm in water or PMMA. Microdosimetric quantities measured with SOI microdosimeters and the MicroPlus probe were used to evaluate the relative biological effectiveness (RBE) of heavy ions and protons delivered by pencil-beam scanning and passive scattering systems in different particle therapy centres. The 3D detectors and MicroPlus probe developed for microdosimetry have the potential to provide confidence in the delivery of RBE optimized particle therapy when introduced into routine clinical practice.
Author Prokopovich, Dale
Matsufuji, Naruhiro
Debrot, Emily
Peracchi, Stefania
Lee, Sung Hyun
Pan, Vladimir
Vohradsky, James
Chartier, Lachlan
Pastuović, Željko
Rosenfeld, Anatoly B.
Povoli, Marco
Kok, Angela
Inaniwa, Taku
Lerch, Michael
Bolst, David
James, Benjamin
Petasecca, Marco
Tran, Linh T.
Guatelli, Susana
Author_xml – sequence: 1
  givenname: Linh T.
  orcidid: 0000-0002-3321-2611
  surname: Tran
  fullname: Tran, Linh T.
– sequence: 2
  givenname: David
  surname: Bolst
  fullname: Bolst, David
– sequence: 3
  givenname: Benjamin
  surname: James
  fullname: James, Benjamin
– sequence: 4
  givenname: Vladimir
  surname: Pan
  fullname: Pan, Vladimir
– sequence: 5
  givenname: James
  surname: Vohradsky
  fullname: Vohradsky, James
– sequence: 6
  givenname: Stefania
  surname: Peracchi
  fullname: Peracchi, Stefania
– sequence: 7
  givenname: Lachlan
  surname: Chartier
  fullname: Chartier, Lachlan
– sequence: 8
  givenname: Emily
  surname: Debrot
  fullname: Debrot, Emily
– sequence: 9
  givenname: Susana
  surname: Guatelli
  fullname: Guatelli, Susana
– sequence: 10
  givenname: Marco
  surname: Petasecca
  fullname: Petasecca, Marco
– sequence: 11
  givenname: Michael
  orcidid: 0000-0002-2406-9972
  surname: Lerch
  fullname: Lerch, Michael
– sequence: 12
  givenname: Dale
  surname: Prokopovich
  fullname: Prokopovich, Dale
– sequence: 13
  givenname: Željko
  surname: Pastuović
  fullname: Pastuović, Željko
– sequence: 14
  givenname: Marco
  surname: Povoli
  fullname: Povoli, Marco
– sequence: 15
  givenname: Angela
  surname: Kok
  fullname: Kok, Angela
– sequence: 16
  givenname: Taku
  surname: Inaniwa
  fullname: Inaniwa, Taku
– sequence: 17
  givenname: Sung Hyun
  surname: Lee
  fullname: Lee, Sung Hyun
– sequence: 18
  givenname: Naruhiro
  surname: Matsufuji
  fullname: Matsufuji, Naruhiro
– sequence: 19
  givenname: Anatoly B.
  surname: Rosenfeld
  fullname: Rosenfeld, Anatoly B.
BookMark eNptUU1LAzEQDaJgrT35BwIepZqP3WT3WOpXoUXFeg6z2aymbDdrsiv035vaCkWcywyPN28eb87QceMag9AFJdec5-QG2pYyQgln2REaMCLFmCdUHh_Mp2gUworEyinPKBmgxautrXYN5rd4YbV3pQt2bTrjA66cx5PyCxptSvzSQ227DZ6E0PsthG2Dn8F3VtcGLz-Mh3Zzjk4qqIMZ7fsQvd3fLaeP4_nTw2w6mY91IpNunBIqpUxolopSF0RUJM-1MBUrpDSZYNrkpdTcAOFlHFgq8yKtKGe5JEAywYdottMtHaxU6-0a_EY5sOoHcP5d7Z0pKSRUNM1MUkACUGQ5M0THExyKyhQQtS53Wq13n70JnVq53jfRvmKCZoyKGGhk0R0rRhSCN5XStoPOuqbzYGtFido-QR08Ie5c_dn5dfof-xtGH4kJ
CitedBy_id crossref_primary_10_1140_epjp_s13360_024_05318_5
crossref_primary_10_1088_1361_6560_adb199
crossref_primary_10_1088_1361_6560_ad9f1c
crossref_primary_10_1109_TNS_2024_3359249
crossref_primary_10_1088_1361_6560_ac8968
crossref_primary_10_1109_TNS_2023_3242267
crossref_primary_10_1088_1361_6560_adaace
crossref_primary_10_1109_TNS_2024_3372135
crossref_primary_10_1002_mp_17678
crossref_primary_10_1088_1748_0221_19_01_P01028
crossref_primary_10_3389_fphy_2022_927690
crossref_primary_10_3390_coatings14070808
crossref_primary_10_1016_j_ejmp_2023_102529
crossref_primary_10_1016_j_ijrobp_2023_12_036
crossref_primary_10_1088_1361_6560_ad8fec
crossref_primary_10_1016_j_radmeas_2024_107252
crossref_primary_10_1063_5_0235400
crossref_primary_10_1002_pssa_202300987
crossref_primary_10_1088_1361_6560_ac5fdf
crossref_primary_10_1038_s41598_023_44035_4
crossref_primary_10_3390_radiation5010002
Cites_doi 10.1667/RR0536.1
10.1088/1361-6560/abd66f
10.1088/1361-6560/aaec2f
10.1109/TNS.2009.2015317
10.1109/TNS.2009.2013467
10.1667/RR1510.1
10.1109/TNS.2006.869826
10.1109/TNS.2018.2885996
10.1093/jrr/rrs110
10.2307/3579114
10.1088/0031-9155/59/22/R419
10.1016/j.ejmp.2019.06.011
10.1109/TNS.2012.2219069
10.1016/j.nima.2015.08.059
10.1109/23.736518
10.1088/1742-6596/1154/1/012012
10.1016/j.nimb.2017.01.059
10.1016/S0168-9002(97)00694-3
10.1118/1.3077490
10.1016/j.nimb.2019.08.003
10.1088/1361-6560/ab6eba
10.1088/1748-0221/4/03/P03010
10.1109/TNS.2008.2004464
10.1002/mp.14226
10.1002/mp.12874
10.1269/jrr.48.A15
10.1667/RR3010
10.1088/1361-6560/aa5de5
10.1109/TNS.2017.2768062
10.1016/S0168-9002(03)01368-8
10.1016/S0168-583X(01)01316-7
10.1016/j.radonc.2018.05.018
10.14338/IJPT-18-00011.1
10.1269/jrr.10062
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12010328
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_767af158e4ba4aab892e0c2ce3abfeba
10_3390_app12010328
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c474t-50177741856dcb06f099c6ef2b77e862ce9d7c3ea03dd7c2579b5f132970a0863
IEDL.DBID 8FG
ISSN 2076-3417
IngestDate Wed Aug 27 01:31:38 EDT 2025
Mon Jun 30 07:29:20 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Tue Jul 01 00:51:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-50177741856dcb06f099c6ef2b77e862ce9d7c3ea03dd7c2579b5f132970a0863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3321-2611
0000-0002-2406-9972
OpenAccessLink https://www.proquest.com/docview/2618216328?pq-origsite=%requestingapplication%
PQID 2618216328
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_767af158e4ba4aab892e0c2ce3abfeba
proquest_journals_2618216328
crossref_citationtrail_10_3390_app12010328
crossref_primary_10_3390_app12010328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Agostinelli (ref_29) 2003; 506
Bradley (ref_6) 1998; 45
Ziebell (ref_8) 2008; 55
Allison (ref_28) 2006; 53
Tran (ref_32) 2018; 45
Sato (ref_17) 2009; 171
Pastuovic (ref_23) 2017; 404
Hansen (ref_13) 2009; 4
Kase (ref_16) 2006; 166
Arce (ref_31) 2021; 48
James (ref_25) 2019; 1154
Conte (ref_4) 2019; 64
Lee (ref_27) 2021; 66
Rosenfeld (ref_5) 2016; 809
James (ref_22) 2019; 66
Hawkins (ref_14) 1994; 140
Kase (ref_33) 2011; 52
Livingstone (ref_11) 2012; 59
Paganetti (ref_1) 2018; 5
Pawelke (ref_2) 2018; 128
Lim (ref_9) 2009; 56
Lai (ref_10) 2009; 56
Inaniwa (ref_26) 2020; 65
Torikoshi (ref_30) 2007; 48
Pastuovic (ref_24) 2019; 458
Tran (ref_21) 2018; 65
Paganetti (ref_3) 2014; 59
Parker (ref_12) 1997; 395
Debrot (ref_34) 2018; 63
Nose (ref_18) 2009; 36
Bolst (ref_19) 2017; 62
Cornelius (ref_7) 2002; 190
Hawkins (ref_15) 2003; 160
Kase (ref_20) 2013; 54
References_xml – volume: 166
  start-page: 629
  year: 2006
  ident: ref_16
  article-title: Microdosimetric measurements and estimation of human cell survival for heavy-ion beams
  publication-title: Radiat Res.
  doi: 10.1667/RR0536.1
– volume: 66
  start-page: 045017
  year: 2021
  ident: ref_27
  article-title: Estimating the biological effects of helium, carbon, oxygen, and neon ion beams using 3D silicon microdosimeters
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abd66f
– volume: 63
  start-page: 235007
  year: 2018
  ident: ref_34
  article-title: SOI microdosimetry and modified MKM for evaluation of relative biological effectiveness for a passive proton therapy radiation field
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aaec2f
– volume: 56
  start-page: 1637
  year: 2009
  ident: ref_10
  article-title: Development and Fabrication of Cylindrical Silicon-on-Insulator Microdosimeter Arrays
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2009.2015317
– volume: 56
  start-page: 424
  year: 2009
  ident: ref_9
  article-title: Cylindrical Silicon-on-Insulator Microdosimeter: Design, Fabrication and TCAD Modeling
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2009.2013467
– volume: 171
  start-page: 107
  year: 2009
  ident: ref_17
  article-title: Biological Dose Estimation for Charged-Particle Therapy Using an Improved PHITS Code Coupled with a Microdosimetric Kinetic Model
  publication-title: Radiat Res.
  doi: 10.1667/RR1510.1
– volume: 53
  start-page: 270
  year: 2006
  ident: ref_28
  article-title: Geant4 developments and applications
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2006.869826
– volume: 66
  start-page: 320
  year: 2019
  ident: ref_22
  article-title: SOI Thin Microdosimeter Detectors for Low Energy Ions and Radiation Damage Studies
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2018.2885996
– volume: 54
  start-page: 485
  year: 2013
  ident: ref_20
  article-title: Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams
  publication-title: J. Radiat Res.
  doi: 10.1093/jrr/rrs110
– volume: 140
  start-page: 366
  year: 1994
  ident: ref_14
  article-title: A Statistical Theory of Cell Killing by Radiation of Varying Linear Energy Transfer
  publication-title: Radiat Res.
  doi: 10.2307/3579114
– volume: 59
  start-page: R419
  year: 2014
  ident: ref_3
  article-title: Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/22/R419
– volume: 64
  start-page: 114
  year: 2019
  ident: ref_4
  article-title: Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2019.06.011
– volume: 59
  start-page: 3126
  year: 2012
  ident: ref_11
  article-title: Large Area Silicon Microdosimeter for Dosimetry in High LET Space Radiation Fields: Charge Collection Study
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2012.2219069
– volume: 809
  start-page: 156
  year: 2016
  ident: ref_5
  article-title: Novel detectors for silicon based microdosimetry, their concepts and applications
  publication-title: NIM A
  doi: 10.1016/j.nima.2015.08.059
– volume: 45
  start-page: 2700
  year: 1998
  ident: ref_6
  article-title: Charge collection and radiation hardness of a SOI microdosimeter for medical and space applications
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.736518
– volume: 1154
  start-page: 012012
  year: 2019
  ident: ref_25
  article-title: 3D sensitive volume microdosimeter with improved tissue equivalency: Charge collection study and its application in 12C ion therapy
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1154/1/012012
– volume: 404
  start-page: 1
  year: 2017
  ident: ref_23
  article-title: The new confocal heavy ion microprobe beamline at ANSTO: The first microprobe resolution tests and applications for elemental imaging and analysis
  publication-title: Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At.
  doi: 10.1016/j.nimb.2017.01.059
– volume: 395
  start-page: 328
  year: 1997
  ident: ref_12
  article-title: 3D—A proposed new architecture for solid-state radiation detectors
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/S0168-9002(97)00694-3
– volume: 36
  start-page: 870
  year: 2009
  ident: ref_18
  article-title: Field size effect of radiation quality in carbon therapy using passive method
  publication-title: Med. Phys.
  doi: 10.1118/1.3077490
– volume: 458
  start-page: 90
  year: 2019
  ident: ref_24
  article-title: IBIC microscopy—The powerful tool for testing micron—Sized sensitive volumes in segmented radiation detectors used in synchrotron microbeam radiation and hadron therapies
  publication-title: Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At.
  doi: 10.1016/j.nimb.2019.08.003
– volume: 65
  start-page: 045005
  year: 2020
  ident: ref_26
  article-title: Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neon-ion beams
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab6eba
– volume: 4
  start-page: P03010
  year: 2009
  ident: ref_13
  article-title: First fabrication of full 3D-detectors at SINTEF
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/4/03/P03010
– volume: 55
  start-page: 3414
  year: 2008
  ident: ref_8
  article-title: A Cylindrical Silicon-on-Insulator Microdosimeter: Charge Collection Characteristics
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2008.2004464
– volume: 48
  start-page: 19
  year: 2021
  ident: ref_31
  article-title: Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group
  publication-title: Med. Phys.
  doi: 10.1002/mp.14226
– volume: 45
  start-page: 2299
  year: 2018
  ident: ref_32
  article-title: The relative biological effectiveness for carbon, nitrogen and oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters
  publication-title: Med. Phys.
  doi: 10.1002/mp.12874
– volume: 48
  start-page: A15
  year: 2007
  ident: ref_30
  article-title: Irradiation System for HIMAC
  publication-title: J. Radiat Res.
  doi: 10.1269/jrr.48.A15
– volume: 160
  start-page: 61
  year: 2003
  ident: ref_15
  article-title: A Microdosimetric-Kinetic Model for the Effect of Non-Poisson Distribution of Lethal Lesions on the Variation of RBE with LET
  publication-title: Radiat Res.
  doi: 10.1667/RR3010
– volume: 62
  start-page: 2055
  year: 2017
  ident: ref_19
  article-title: Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5de5
– volume: 65
  start-page: 467
  year: 2018
  ident: ref_21
  article-title: Thin silicon microdosimeter utilizing 3-D MEMS fabrication technology: Charge collection study and its application in mixed radiation fields
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2017.2768062
– volume: 506
  start-page: 250
  year: 2003
  ident: ref_29
  article-title: Geant4 -a simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/S0168-9002(03)01368-8
– volume: 190
  start-page: 335
  year: 2002
  ident: ref_7
  article-title: Ion beam induced charge characterisation of a silicon microdosimeter using a heavy ion microprobe
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. At.
  doi: 10.1016/S0168-583X(01)01316-7
– volume: 128
  start-page: 56
  year: 2018
  ident: ref_2
  article-title: “Radiobiology of Proton Therapy”: Results of an international expert workshop
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2018.05.018
– volume: 5
  start-page: 2
  year: 2018
  ident: ref_1
  article-title: Proton Relative Biological Effectiveness—Uncertainties and Opportunities
  publication-title: Int. J. Part. Ther.
  doi: 10.14338/IJPT-18-00011.1
– volume: 52
  start-page: 59
  year: 2011
  ident: ref_33
  article-title: Microdosimetric approach to NIRS-defined biological dose measurement for carbon-ion treatment beam
  publication-title: J. Radiat. Res.
  doi: 10.1269/jrr.10062
SSID ssj0000913810
Score 2.3478792
SecondaryResourceType review_article
Snippet The Centre for Medical Radiation Physics introduced the concept of Silicon On Insulator (SOI) microdosimeters with 3-Dimensional (3D) cylindrical sensitive...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 328
SubjectTerms 3D detector
Boron
Energy
Exocrine glands
Ion beams
Ion implantation
microdosimetry
particle therapy
proton therapy
Quality control
Radiation
RBE
Sensors
Silicon
silicon on insulator
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7ETcXplBx2UKHYJl2SHuePMYSJ4Aa7lSRNYDA7sdvB_96XNBsFBS_eSgm0fT_yvq9JvodQXyaJl4GLNCFAUJJCQc5ZG8kC4LHSglMvpjN5YeNZ-jwfzButvtyesFoeuDbcHWdc2mQgTKpkKqUSGTGxJtpQqaxRHhrFWdwgU34OzhInXVUfyKPA6916cOJWfqnru94oQV6p_8dE7KvL6AgdBliIh_XrtNGeKTvooCEW2EHtkIYVvg5a0TfHaPK2WIIvS0wf8cTtrStW1eLdbXGpMMBRPAxL_LjWyvjC4I6N66Vh8KLEr-Hz8bTWFjhBs9HT9GEchQ4JkU55uo4GkE_c68-wQquYWcB7mhlLFOcGuIo2WcE1NTKmBVxAemZqYF1veR5LIDP0FLXKVWnOEIY6ZYRlTIHjUplZURTasSkiWaqlYF10uzVaroN8uOtiscyBRjgL5w0Ld1F_N_ijVs34fdi9s_5uiJO69jcgAPJggfyvAOii3tZ3eci_KgdeKAhATSLO_-MZF2ifuGMP_tdLD7XWnxtzCWBkra583H0D1hLdsg
  priority: 102
  providerName: Directory of Open Access Journals
Title Silicon 3D Microdosimeters for Advanced Quality Assurance in Particle Therapy
URI https://www.proquest.com/docview/2618216328
https://doaj.org/article/767af158e4ba4aab892e0c2ce3abfeba
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGkPiFfV5bHygUOLFDVxsrb3hICyoEqLEAWJW-QnWolmKVkO_HtmHO92JSpuUeJL5uGZb8b-BuBAF0Wkgcss5whQCmfQ50LItMP02Fgly0imM74UF7fVr7vBXSq4telY5XxPjBu1m1qqkf_ATF9xTB64Onr8m9HUKOquphEaH2G14Bhr6ab46HxRYyHOS1Xk3bW8EtE9dYUL6v-WNH19KRBFvv4323GMMaN1WEvJITvutLkBH3yzCZ-XKAM3YSM5Y8u-Jcbo71sw_j15QI02rPzJxnTCzk3byR866NIyTErZcWr0s44x44WhUp5pooZnk4ZdJethNx3DwDbcjs5uTi-yNCchs5WsZtkAvUpGFhrhrMlFwKzPCh-4kdIjYrF-6KQtvc5Lhw_opEMzCDRhXuYaIU35BVaaaeO_AsNo5VUQwqD6Kj0MyjlLmIprUVmtRA8O50KrbSIRp1kWDzWCCZJwvSThHhwsFj923Bn_X3ZC0l8sIcLr-GL6dF8nCdRSSB2KgfKV0ZXWRg25zy3-WqlN8Eb3YG-uuzp5YVv_s5md9z_vwidO1xpiaWUPVmZPz34fk42Z6UeL6sPqydnl1XU_QvZXl3XVeg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiBYQWwr4UCRAikjsbOwcECqUZUu7FRJbqbfUn2ilkm2brVD_FL-RmcRZVgJx6y1KrEiZPNtv7PF7ADs6y1oZuMRyjglK5gz2uRAS7ZAeG6ukaMV0JkfF-Dj_cjI8WYNf_VkYKqvsx8R2oHZzS2vkb5HpK47kgav35xcJuUbR7mpvodHB4sBf_8SUrXm3v4f_9yXno0_Tj-MkugokNpf5IhkiBmWr2VI4a9IiIEeyhQ_cSOmR31tfOmmF16lweIGQLs0wkB-7TDUmAALfewtu50IIKiFUo8_LNR3S2FRZ2h0DFKJMaRc6o_1mQW7vKxNf6w_w1_DfzmmjB3A_klG226FnA9Z8vQn3ViQKN2Ejdv6GvYoK1a8fwuTb7AwRVDOxxyZU0efmzewHFdY0DEkw242FBaxT6LhmCIIrcvDwbFazrxGtbNopGjyC4xuJ4GNYr-e1fwIMZ0evQlEYhEuuy6Ccs5TDcV3kVqtiAG_6oFU2ipaTd8ZZhckLRbhaifAAdpaNzzutjn83-0DRXzYhge32xvzyexUjUMlC6pANlc-NzrU2quQ-tfhpQpvgjR7Adv_vqtjrm-oPRrf-__gF3BlPJ4fV4f7RwVO4y-lIRbussw3ri8sr_wyJzsI8b9HF4PSm4fwblqMOsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9RAEB5qBdEHaaviaav7UEGF0GQ3t5s8FKmeZ2u9UrCFvsXdza4c1Fxtrkj_Wn-dM5vNeaD41reQLIHMfpn9ZnfmG4BtnWVBBi6xnGOAktUG_znvE10jPTa2UCKI6UyO5P5p_vlseLYCN30tDKVV9j4xOOp6ZmmPfAeZfsGRPPBix8e0iOPR-N3Fz4Q6SNFJa99Oo4PIobv-heFbu3swwrl-xfn448mH_SR2GEhsrvJ5MkQ8qqDfImtrUumRL1npPDdKOeT61pW1ssLpVNR4gfAuzdBTb3aVagwGBL73DtxVAv8TqlIff1rs75DeZpGlXUmgEGVKJ9IZnT0L6vy-tAiGXgF_LQVhfRuvwcNITNleh6R1WHHNBjxYkivcgPXoCFr2OqpVv3kEk6_Tc0RTw8SITSi7r5610x-UZNMyJMRsLyYZsE6t45ohIK6om4dj04YdR-Syk07d4DGc3ooFn8BqM2vcU2C4UrrCS2kQOrkufVHXluI5rmVudSEH8LY3WmWjgDn10TivMJAhC1dLFh7A9mLwRafb8e9h78n6iyEkth1uzC6_V9EClZJK-2xYuNzoXGtTlNylFj9NaOOd0QPY7Oeuih6grf7g9dn_H7-Eewjk6svB0eFzuM-puiLs8GzC6vzyym0h55mbFwFcDL7dNpp_A_86EuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silicon+3D+Microdosimeters+for+Advanced+Quality+Assurance+in+Particle+Therapy&rft.jtitle=Applied+sciences&rft.au=Tran%2C+Linh+T&rft.au=Bolst%2C+David&rft.au=Benjamin%2C+James&rft.au=Pan%2C+Vladimir&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=1&rft.spage=328&rft_id=info:doi/10.3390%2Fapp12010328&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon