Deep Fake Video Detection Using Transfer Learning Approach
The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos also called deep fakes that create great intimidation in society in an assortment of social and political behaviour. It can also be utilized f...
Saved in:
| Published in | Arabian journal for science and engineering Vol. 48; no. 8; pp. 9727 - 9737 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2193-567X 1319-8025 2191-4281 2191-4281 |
| DOI | 10.1007/s13369-022-07321-3 |
Cover
| Abstract | The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos also called deep fakes that create great intimidation in society in an assortment of social and political behaviour. It can also be utilized for malevolent intentions. Owing to the availability of deep fake generation algorithms at cheap computation power in cloud platforms, realistic fake videos or images are created. However, it is more critical to detect fake content because of the increased complexity of leveraging various approaches to smudge the tampering. Therefore, this work proposes a novel framework to detect fake videos through the utilization of transfer learning in autoencoders and a hybrid model of convolutional neural networks (CNN) and Recurrent neural networks (RNN). Unseen test input data are investigated to check the generalizability of the model. Also, the effect of residual image input on accuracy of the model is analyzed. Results are presented for both, with and without transfer learning to validate the effectiveness of transfer learning. |
|---|---|
| AbstractList | The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos also called deep fakes that create great intimidation in society in an assortment of social and political behaviour. It can also be utilized for malevolent intentions. Owing to the availability of deep fake generation algorithms at cheap computation power in cloud platforms, realistic fake videos or images are created. However, it is more critical to detect fake content because of the increased complexity of leveraging various approaches to smudge the tampering. Therefore, this work proposes a novel framework to detect fake videos through the utilization of transfer learning in autoencoders and a hybrid model of convolutional neural networks (CNN) and Recurrent neural networks (RNN). Unseen test input data are investigated to check the generalizability of the model. Also, the effect of residual image input on accuracy of the model is analyzed. Results are presented for both, with and without transfer learning to validate the effectiveness of transfer learning. |
| Author | Suratkar, Shraddha Kazi, Faruk |
| Author_xml | – sequence: 1 givenname: Shraddha orcidid: 0000-0002-5983-0098 surname: Suratkar fullname: Suratkar, Shraddha email: sssuratkar@ce.vjti.ac.in organization: Department of Electrical Engineering, Veermata Jijabai Technological Institute, An Autonomous Institute, affiliated with Mumbai University – sequence: 2 givenname: Faruk surname: Kazi fullname: Kazi, Faruk organization: Department of Electrical Engineering, Veermata Jijabai Technological Institute, An Autonomous Institute, affiliated with Mumbai University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36248771$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUlPBCEQhYnRuP8BD6YTz61sDbQHE-OeTOJFjTfCdBcjOkILPRr_vYwzrgfjiQpV36vHYw0t-uABoS2CdwnGci8RxkRdYkpLLBklJVtAq5TUpORUkcX3mpWVkLcraDMlN8RcsboihC2jFSYoV1KSVbR_DNAVp-YBihvXQiiOoYemd8EX18n5UXEVjU8WYjEAE_305rDrYjDN3QZasmacYHN-rqPr05Oro_NycHl2cXQ4KBsueZ_t1ERxUQ1ZS7NxbGuMcyFAisooy1pCayqHdStaDJUlVinbMKFANNIyTtg6YjPdie_M64sZj3UX3aOJr5pgPQ1Dz8LQOQz9HoZmmTqYUd1k-AhtA76P5osMxumfHe_u9Cg867qqaLaUBXbmAjE8TSD1-j5Mos8v1VRxhqUUnOap7e9rPvU_Es4DdDbQxJBSBPs_8-oX1LjeTH8lW3Xjv9F5Winv8SOIX7b_oN4AkH2uOQ |
| CitedBy_id | crossref_primary_10_3390_nursrep14040203 crossref_primary_10_7759_cureus_77593 crossref_primary_10_1002_ett_70083 crossref_primary_10_1007_s00371_024_03613_x crossref_primary_10_1007_s41870_023_01494_2 crossref_primary_10_3390_app14219754 crossref_primary_10_1007_s11042_024_19642_6 crossref_primary_10_58496_MJCS_2024_025 crossref_primary_10_1016_j_engappai_2023_107443 crossref_primary_10_1016_j_jisa_2024_103935 crossref_primary_10_47810_PIBL_XXXVII_24_07 crossref_primary_10_1007_s13042_025_02558_4 crossref_primary_10_1007_s11760_023_02895_3 crossref_primary_10_1007_s41060_025_00727_w crossref_primary_10_5772_acrt_20240042 crossref_primary_10_1186_s40537_024_00884_y crossref_primary_10_1016_j_eswa_2024_126150 crossref_primary_10_1007_s13369_024_09352_4 crossref_primary_10_1007_s13369_024_09354_2 crossref_primary_10_1109_ACCESS_2024_3435497 |
| Cites_doi | 10.1109/BTAS46853.2019.9185974 10.3390/app10010370 10.1109/WIFS.2018.8630787 10.23919/APSIPA.2018.8659461 10.1109/ACCESS.2020.2998330 10.1186/s13635-020-00109-8 10.1109/ICCV.2019.00009 10.1109/ACCESS.2017.2761539 10.1109/34.982900 10.1109/ICCVW.2019.00152 10.1007/s12652-020-02845-8 10.1016/j.eswa.2019.04.005 10.1109/CVPRW50498.2020.00342 10.1109/CVPRW50498.2020.00338 10.1109/WACVW.2019.00020 10.1007/s11042-020-09147-3 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. King Fahd University of Petroleum & Minerals 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2023 |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: King Fahd University of Petroleum & Minerals 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2023 |
| DBID | AAYXX CITATION NPM 5PM ADTOC UNPAY |
| DOI | 10.1007/s13369-022-07321-3 |
| DatabaseName | CrossRef PubMed PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 9737 |
| ExternalDocumentID | 10.1007/s13369-022-07321-3 PMC9552129 36248771 10_1007_s13369_022_07321_3 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AAPKM AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACSTC ACUHS ACZOJ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHPBZ AHSBF AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG ATHPR AXYYD AYFIA BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW ZMTXR ~8M AAYXX CITATION NPM 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-42918465b3d20070f9002006e765a8f3d12927b9d6d0e5f1f88fc368e6c7f3413 |
| IEDL.DBID | UNPAY |
| ISSN | 2193-567X 1319-8025 2191-4281 |
| IngestDate | Sun Oct 26 03:44:44 EDT 2025 Thu Aug 21 18:39:46 EDT 2025 Mon Jun 30 09:04:07 EDT 2025 Thu Jan 02 22:37:46 EST 2025 Thu Apr 24 22:58:49 EDT 2025 Wed Oct 01 06:35:08 EDT 2025 Mon Jul 21 06:07:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Deep fake detection Recurrent neural networks (RNN) Convolutional neural networks (CNN) Transfer learning Autoencoders Residual images |
| Language | English |
| License | King Fahd University of Petroleum & Minerals 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-42918465b3d20070f9002006e765a8f3d12927b9d6d0e5f1f88fc368e6c7f3413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5983-0098 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s13369-022-07321-3.pdf |
| PMID | 36248771 |
| PQID | 2843077642 |
| PQPubID | 2044268 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1007_s13369_022_07321_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9552129 proquest_journals_2843077642 pubmed_primary_36248771 crossref_primary_10_1007_s13369_022_07321_3 crossref_citationtrail_10_1007_s13369_022_07321_3 springer_journals_10_1007_s13369_022_07321_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationTitleAlternate | Arab J Sci Eng |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | 7321_CR19 7321_CR18 7321_CR15 7321_CR14 7321_CR13 7321_CR11 7321_CR2 7321_CR1 A Torfi (7321_CR16) 2017; 5 MF Hashmi (7321_CR8) 2020; 8 C-C Hsu (7321_CR7) 2020; 10 E Sabir (7321_CR12) 2019; 3 7321_CR9 7321_CR25 7321_CR23 7321_CR6 7321_CR22 S Umer (7321_CR26) 2021 7321_CR21 7321_CR4 TF Matthews (7321_CR17) 2002; 24 7321_CR20 A Rössler (7321_CR3) 2019 L Minh Dang (7321_CR10) 2019; 129 Haodong Li (7321_CR5) 2020 J Fei (7321_CR24) 2020; 80 |
| References_xml | – ident: 7321_CR22 – ident: 7321_CR20 doi: 10.1109/BTAS46853.2019.9185974 – volume: 10 start-page: 370 issue: 1 year: 2020 ident: 7321_CR7 publication-title: Applied Sciences doi: 10.3390/app10010370 – ident: 7321_CR1 – ident: 7321_CR14 doi: 10.1109/WIFS.2018.8630787 – ident: 7321_CR18 doi: 10.23919/APSIPA.2018.8659461 – volume: 8 start-page: 101293 year: 2020 ident: 7321_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998330 – ident: 7321_CR13 – volume: 3 start-page: 80 year: 2019 ident: 7321_CR12 publication-title: IEEE Conf. Comput. Vision Pattern Recogn. – ident: 7321_CR6 doi: 10.1186/s13635-020-00109-8 – ident: 7321_CR15 – ident: 7321_CR21 – volume-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) year: 2019 ident: 7321_CR3 doi: 10.1109/ICCV.2019.00009 – ident: 7321_CR19 – volume: 5 start-page: 22081 year: 2017 ident: 7321_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2761539 – ident: 7321_CR4 – ident: 7321_CR2 – volume: 24 start-page: 198 issue: 2 year: 2002 ident: 7321_CR17 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.982900 – ident: 7321_CR23 doi: 10.1109/ICCVW.2019.00152 – year: 2021 ident: 7321_CR26 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-020-02845-8 – year: 2020 ident: 7321_CR5 publication-title: Signal Process. doi: 10.1186/s13635-020-00109-8 – volume: 129 start-page: 156 year: 2019 ident: 7321_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.04.005 – ident: 7321_CR25 doi: 10.1109/CVPRW50498.2020.00342 – ident: 7321_CR9 doi: 10.1109/CVPRW50498.2020.00338 – ident: 7321_CR11 doi: 10.1109/WACVW.2019.00020 – volume: 80 start-page: 30789 issue: 20 year: 2020 ident: 7321_CR24 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09147-3 |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.5272684 |
| Snippet | The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9727 |
| SubjectTerms | Algorithms Artificial neural networks Computer Engineering and Computer Science Deception Engineering Humanities and Social Sciences Image manipulation Learning Model accuracy multidisciplinary Neural networks Recurrent neural networks Research Article-Computer Engineering and Computer Science Science Video |
| Title | Deep Fake Video Detection Using Transfer Learning Approach |
| URI | https://link.springer.com/article/10.1007/s13369-022-07321-3 https://www.ncbi.nlm.nih.gov/pubmed/36248771 https://www.proquest.com/docview/2843077642 https://pubmed.ncbi.nlm.nih.gov/PMC9552129 https://link.springer.com/content/pdf/10.1007/s13369-022-07321-3.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2191-4281 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001916267 issn: 2191-4281 databaseCode: ABDBF dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2191-4281 databaseCode: AFBBN dateStart: 20110101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: U2A dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9B-wA8sE0bEMYqP-xtGJo4duy9lXUdmkTFw4q6pyiJ7Q1RhQpSIfjrOeer65jQpr1EkeJ8-O6s-1189zuA9zK1KuI6o74xgoYJT6nSIaMp920iAhWmZReFs7E4nYRfp3y6BsOmFqbMdm-2JKuaBsfSlBfHc22Pl4VvjAlFXSY6mmjgUwwItV2HruCIyDvQnYzPB99dXzkMRygibL86Z5SLaFrXzvz5Qav-6QnofJo72W6gbsHGIp8n93fJbPaLjxq9ANPMrkpNuTpaFOlR9vAb8eP_Tv8lbNcglgwqq3sFayZ_DR-HxszJKLky5OJSm2syNEWZ55WTMi-BlG7RmhtSc7r-IIOa0PwNTEafv306pXVnBpqFUVigRBVGhoKnTLt_nX2rHOzsCxMJnkjLNKKIIEqVFrpvuPWtlDZjQhqRRdb5zR3o5Ne52QMiWD-wmWVWGum4CiXiF4mozdHMcBZmHviNPuKspi133TNm8ZJw2UkjRmnEpTRi5sGH9p55Rdrx7OiDRs1xvYBvY_TazDEdhYEHu5XG20ehz8cwL_I9iFZsoR3gKLtXr-SXP0vqbsVdrbTy4LBR8vKVz33hYWtZfzGh_X8b_hY2A0RuVVbjAXSKm4V5h0irSHvQHYxOTsY9WP8y9fE4Pj_r1YvrET1OHY4 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIADD_EqL-XADQJr06QJt4kxISQQB4bGqWqbBCamMkEnBL-epK8xQAjErVLTtLEd-XNjfwbY47EWAZUJdpVi2I9ojIX0CY6pqyPmCT_OuyhcXLKzrn_eo70paFe1MHm2e3UkWdQ0WJamNDsaSn00LnwjhAlsM9GNiXouNgGh1NMww6hB5A2Y6V5etW5tXzkTjmCDsN3immDKgl5ZO_P9RJP-6Qvo_Jo7WR-gzsPsKB1Gry_RYPDBR3UWQVWrK1JTHg5HWXyYvH0ifvzv8pdgoQSxqFVY3TJMqXQFjttKDVEnelDopi_VI2qrLM_zSlGel4Byt6jVEyo5Xe9QqyQ0X4Vu5_T65AyXnRlw4gd-ZiQqTGTIaEyk_dfZ1MLCziZTAaMR10QaFOEFsZBMNhXVruZcJ4RxxZJAW7-5Bo30MVUbgBhpejrRRHPFLVchN_iFG9RmaWYo8RMH3EofYVLSltvuGYNwTLhspREaaYS5NELiwH79zLAg7fhx9Hal5rDcwM-h8drEMh35ngPrhcbrqYzPN2Fe4DoQTNhCPcBSdk_eSfv3OXW3oLZWWjhwUCl5_MqfvvCgtqxfLGjzb8O3YM4zyK3IatyGRvY0UjsGaWXxbrmR3gEX_hoV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Fake+Video+Detection+Using+Transfer+Learning+Approach&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Suratkar%2C+Shraddha&rft.au=Kazi%2C+Faruk&rft.date=2023-08-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=48&rft.issue=8&rft.spage=9727&rft.epage=9737&rft_id=info:doi/10.1007%2Fs13369-022-07321-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_022_07321_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |