Deep Fake Video Detection Using Transfer Learning Approach

The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos also called deep fakes that create great intimidation in society in an assortment of social and political behaviour. It can also be utilized f...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering Vol. 48; no. 8; pp. 9727 - 9737
Main Authors Suratkar, Shraddha, Kazi, Faruk
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
2191-4281
DOI10.1007/s13369-022-07321-3

Cover

Abstract The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos also called deep fakes that create great intimidation in society in an assortment of social and political behaviour. It can also be utilized for malevolent intentions. Owing to the availability of deep fake generation algorithms at cheap computation power in cloud platforms, realistic fake videos or images are created. However, it is more critical to detect fake content because of the increased complexity of leveraging various approaches to smudge the tampering. Therefore, this work proposes a novel framework to detect fake videos through the utilization of transfer learning in autoencoders and a hybrid model of convolutional neural networks (CNN) and Recurrent neural networks (RNN). Unseen test input data are investigated to check the generalizability of the model. Also, the effect of residual image input on accuracy of the model is analyzed. Results are presented for both, with and without transfer learning to validate the effectiveness of transfer learning.
AbstractList The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos also called deep fakes that create great intimidation in society in an assortment of social and political behaviour. It can also be utilized for malevolent intentions. Owing to the availability of deep fake generation algorithms at cheap computation power in cloud platforms, realistic fake videos or images are created. However, it is more critical to detect fake content because of the increased complexity of leveraging various approaches to smudge the tampering. Therefore, this work proposes a novel framework to detect fake videos through the utilization of transfer learning in autoencoders and a hybrid model of convolutional neural networks (CNN) and Recurrent neural networks (RNN). Unseen test input data are investigated to check the generalizability of the model. Also, the effect of residual image input on accuracy of the model is analyzed. Results are presented for both, with and without transfer learning to validate the effectiveness of transfer learning.
Author Suratkar, Shraddha
Kazi, Faruk
Author_xml – sequence: 1
  givenname: Shraddha
  orcidid: 0000-0002-5983-0098
  surname: Suratkar
  fullname: Suratkar, Shraddha
  email: sssuratkar@ce.vjti.ac.in
  organization: Department of Electrical Engineering, Veermata Jijabai Technological Institute, An Autonomous Institute, affiliated with Mumbai University
– sequence: 2
  givenname: Faruk
  surname: Kazi
  fullname: Kazi, Faruk
  organization: Department of Electrical Engineering, Veermata Jijabai Technological Institute, An Autonomous Institute, affiliated with Mumbai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36248771$$D View this record in MEDLINE/PubMed
BookMark eNqNkUlPBCEQhYnRuP8BD6YTz61sDbQHE-OeTOJFjTfCdBcjOkILPRr_vYwzrgfjiQpV36vHYw0t-uABoS2CdwnGci8RxkRdYkpLLBklJVtAq5TUpORUkcX3mpWVkLcraDMlN8RcsboihC2jFSYoV1KSVbR_DNAVp-YBihvXQiiOoYemd8EX18n5UXEVjU8WYjEAE_305rDrYjDN3QZasmacYHN-rqPr05Oro_NycHl2cXQ4KBsueZ_t1ERxUQ1ZS7NxbGuMcyFAisooy1pCayqHdStaDJUlVinbMKFANNIyTtg6YjPdie_M64sZj3UX3aOJr5pgPQ1Dz8LQOQz9HoZmmTqYUd1k-AhtA76P5osMxumfHe_u9Cg867qqaLaUBXbmAjE8TSD1-j5Mos8v1VRxhqUUnOap7e9rPvU_Es4DdDbQxJBSBPs_8-oX1LjeTH8lW3Xjv9F5Winv8SOIX7b_oN4AkH2uOQ
CitedBy_id crossref_primary_10_3390_nursrep14040203
crossref_primary_10_7759_cureus_77593
crossref_primary_10_1002_ett_70083
crossref_primary_10_1007_s00371_024_03613_x
crossref_primary_10_1007_s41870_023_01494_2
crossref_primary_10_3390_app14219754
crossref_primary_10_1007_s11042_024_19642_6
crossref_primary_10_58496_MJCS_2024_025
crossref_primary_10_1016_j_engappai_2023_107443
crossref_primary_10_1016_j_jisa_2024_103935
crossref_primary_10_47810_PIBL_XXXVII_24_07
crossref_primary_10_1007_s13042_025_02558_4
crossref_primary_10_1007_s11760_023_02895_3
crossref_primary_10_1007_s41060_025_00727_w
crossref_primary_10_5772_acrt_20240042
crossref_primary_10_1186_s40537_024_00884_y
crossref_primary_10_1016_j_eswa_2024_126150
crossref_primary_10_1007_s13369_024_09352_4
crossref_primary_10_1007_s13369_024_09354_2
crossref_primary_10_1109_ACCESS_2024_3435497
Cites_doi 10.1109/BTAS46853.2019.9185974
10.3390/app10010370
10.1109/WIFS.2018.8630787
10.23919/APSIPA.2018.8659461
10.1109/ACCESS.2020.2998330
10.1186/s13635-020-00109-8
10.1109/ICCV.2019.00009
10.1109/ACCESS.2017.2761539
10.1109/34.982900
10.1109/ICCVW.2019.00152
10.1007/s12652-020-02845-8
10.1016/j.eswa.2019.04.005
10.1109/CVPRW50498.2020.00342
10.1109/CVPRW50498.2020.00338
10.1109/WACVW.2019.00020
10.1007/s11042-020-09147-3
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
King Fahd University of Petroleum & Minerals 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2023
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: King Fahd University of Petroleum & Minerals 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2023
DBID AAYXX
CITATION
NPM
5PM
ADTOC
UNPAY
DOI 10.1007/s13369-022-07321-3
DatabaseName CrossRef
PubMed
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
DatabaseTitleList
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 9737
ExternalDocumentID 10.1007/s13369-022-07321-3
PMC9552129
36248771
10_1007_s13369_022_07321_3
Genre Journal Article
GroupedDBID 0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AAPKM
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACSTC
ACUHS
ACZOJ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
ATHPR
AXYYD
AYFIA
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
~8M
AAYXX
CITATION
NPM
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-42918465b3d20070f9002006e765a8f3d12927b9d6d0e5f1f88fc368e6c7f3413
IEDL.DBID UNPAY
ISSN 2193-567X
1319-8025
2191-4281
IngestDate Sun Oct 26 03:44:44 EDT 2025
Thu Aug 21 18:39:46 EDT 2025
Mon Jun 30 09:04:07 EDT 2025
Thu Jan 02 22:37:46 EST 2025
Thu Apr 24 22:58:49 EDT 2025
Wed Oct 01 06:35:08 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep fake detection
Recurrent neural networks (RNN)
Convolutional neural networks (CNN)
Transfer learning
Autoencoders
Residual images
Language English
License King Fahd University of Petroleum & Minerals 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-42918465b3d20070f9002006e765a8f3d12927b9d6d0e5f1f88fc368e6c7f3413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5983-0098
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s13369-022-07321-3.pdf
PMID 36248771
PQID 2843077642
PQPubID 2044268
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s13369_022_07321_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9552129
proquest_journals_2843077642
pubmed_primary_36248771
crossref_primary_10_1007_s13369_022_07321_3
crossref_citationtrail_10_1007_s13369_022_07321_3
springer_journals_10_1007_s13369_022_07321_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering
PublicationTitleAbbrev Arab J Sci Eng
PublicationTitleAlternate Arab J Sci Eng
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 7321_CR19
7321_CR18
7321_CR15
7321_CR14
7321_CR13
7321_CR11
7321_CR2
7321_CR1
A Torfi (7321_CR16) 2017; 5
MF Hashmi (7321_CR8) 2020; 8
C-C Hsu (7321_CR7) 2020; 10
E Sabir (7321_CR12) 2019; 3
7321_CR9
7321_CR25
7321_CR23
7321_CR6
7321_CR22
S Umer (7321_CR26) 2021
7321_CR21
7321_CR4
TF Matthews (7321_CR17) 2002; 24
7321_CR20
A Rössler (7321_CR3) 2019
L Minh Dang (7321_CR10) 2019; 129
Haodong Li (7321_CR5) 2020
J Fei (7321_CR24) 2020; 80
References_xml – ident: 7321_CR22
– ident: 7321_CR20
  doi: 10.1109/BTAS46853.2019.9185974
– volume: 10
  start-page: 370
  issue: 1
  year: 2020
  ident: 7321_CR7
  publication-title: Applied Sciences
  doi: 10.3390/app10010370
– ident: 7321_CR1
– ident: 7321_CR14
  doi: 10.1109/WIFS.2018.8630787
– ident: 7321_CR18
  doi: 10.23919/APSIPA.2018.8659461
– volume: 8
  start-page: 101293
  year: 2020
  ident: 7321_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998330
– ident: 7321_CR13
– volume: 3
  start-page: 80
  year: 2019
  ident: 7321_CR12
  publication-title: IEEE Conf. Comput. Vision Pattern Recogn.
– ident: 7321_CR6
  doi: 10.1186/s13635-020-00109-8
– ident: 7321_CR15
– ident: 7321_CR21
– volume-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
  year: 2019
  ident: 7321_CR3
  doi: 10.1109/ICCV.2019.00009
– ident: 7321_CR19
– volume: 5
  start-page: 22081
  year: 2017
  ident: 7321_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2761539
– ident: 7321_CR4
– ident: 7321_CR2
– volume: 24
  start-page: 198
  issue: 2
  year: 2002
  ident: 7321_CR17
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.982900
– ident: 7321_CR23
  doi: 10.1109/ICCVW.2019.00152
– year: 2021
  ident: 7321_CR26
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-020-02845-8
– year: 2020
  ident: 7321_CR5
  publication-title: Signal Process.
  doi: 10.1186/s13635-020-00109-8
– volume: 129
  start-page: 156
  year: 2019
  ident: 7321_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.04.005
– ident: 7321_CR25
  doi: 10.1109/CVPRW50498.2020.00342
– ident: 7321_CR9
  doi: 10.1109/CVPRW50498.2020.00338
– ident: 7321_CR11
  doi: 10.1109/WACVW.2019.00020
– volume: 80
  start-page: 30789
  issue: 20
  year: 2020
  ident: 7321_CR24
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09147-3
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.5272684
Snippet The usage of the internet as a fast medium for spreading fake news reinforces the requirement of computational utensils in order to fight for it. Fake videos...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9727
SubjectTerms Algorithms
Artificial neural networks
Computer Engineering and Computer Science
Deception
Engineering
Humanities and Social Sciences
Image manipulation
Learning
Model accuracy
multidisciplinary
Neural networks
Recurrent neural networks
Research Article-Computer Engineering and Computer Science
Science
Video
Title Deep Fake Video Detection Using Transfer Learning Approach
URI https://link.springer.com/article/10.1007/s13369-022-07321-3
https://www.ncbi.nlm.nih.gov/pubmed/36248771
https://www.proquest.com/docview/2843077642
https://pubmed.ncbi.nlm.nih.gov/PMC9552129
https://link.springer.com/content/pdf/10.1007/s13369-022-07321-3.pdf
UnpaywallVersion publishedVersion
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2191-4281
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001916267
  issn: 2191-4281
  databaseCode: ABDBF
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2191-4281
  databaseCode: AFBBN
  dateStart: 20110101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: U2A
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9B-wA8sE0bEMYqP-xtGJo4duy9lXUdmkTFw4q6pyiJ7Q1RhQpSIfjrOeer65jQpr1EkeJ8-O6s-1189zuA9zK1KuI6o74xgoYJT6nSIaMp920iAhWmZReFs7E4nYRfp3y6BsOmFqbMdm-2JKuaBsfSlBfHc22Pl4VvjAlFXSY6mmjgUwwItV2HruCIyDvQnYzPB99dXzkMRygibL86Z5SLaFrXzvz5Qav-6QnofJo72W6gbsHGIp8n93fJbPaLjxq9ANPMrkpNuTpaFOlR9vAb8eP_Tv8lbNcglgwqq3sFayZ_DR-HxszJKLky5OJSm2syNEWZ55WTMi-BlG7RmhtSc7r-IIOa0PwNTEafv306pXVnBpqFUVigRBVGhoKnTLt_nX2rHOzsCxMJnkjLNKKIIEqVFrpvuPWtlDZjQhqRRdb5zR3o5Ne52QMiWD-wmWVWGum4CiXiF4mozdHMcBZmHviNPuKspi133TNm8ZJw2UkjRmnEpTRi5sGH9p55Rdrx7OiDRs1xvYBvY_TazDEdhYEHu5XG20ehz8cwL_I9iFZsoR3gKLtXr-SXP0vqbsVdrbTy4LBR8vKVz33hYWtZfzGh_X8b_hY2A0RuVVbjAXSKm4V5h0irSHvQHYxOTsY9WP8y9fE4Pj_r1YvrET1OHY4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIADD_EqL-XADQJr06QJt4kxISQQB4bGqWqbBCamMkEnBL-epK8xQAjErVLTtLEd-XNjfwbY47EWAZUJdpVi2I9ojIX0CY6pqyPmCT_OuyhcXLKzrn_eo70paFe1MHm2e3UkWdQ0WJamNDsaSn00LnwjhAlsM9GNiXouNgGh1NMww6hB5A2Y6V5etW5tXzkTjmCDsN3immDKgl5ZO_P9RJP-6Qvo_Jo7WR-gzsPsKB1Gry_RYPDBR3UWQVWrK1JTHg5HWXyYvH0ifvzv8pdgoQSxqFVY3TJMqXQFjttKDVEnelDopi_VI2qrLM_zSlGel4Byt6jVEyo5Xe9QqyQ0X4Vu5_T65AyXnRlw4gd-ZiQqTGTIaEyk_dfZ1MLCziZTAaMR10QaFOEFsZBMNhXVruZcJ4RxxZJAW7-5Bo30MVUbgBhpejrRRHPFLVchN_iFG9RmaWYo8RMH3EofYVLSltvuGYNwTLhspREaaYS5NELiwH79zLAg7fhx9Hal5rDcwM-h8drEMh35ngPrhcbrqYzPN2Fe4DoQTNhCPcBSdk_eSfv3OXW3oLZWWjhwUCl5_MqfvvCgtqxfLGjzb8O3YM4zyK3IatyGRvY0UjsGaWXxbrmR3gEX_hoV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Fake+Video+Detection+Using+Transfer+Learning+Approach&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Suratkar%2C+Shraddha&rft.au=Kazi%2C+Faruk&rft.date=2023-08-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=48&rft.issue=8&rft.spage=9727&rft.epage=9737&rft_id=info:doi/10.1007%2Fs13369-022-07321-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_022_07321_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon