Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression

Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 22; no. 11; pp. 3006 - 3020
Main Authors Cortesi, Filippo, Delfanti, Gloria, Grilli, Andrea, Calcinotto, Arianna, Gorini, Francesca, Pucci, Ferdinando, Lucianò, Roberta, Grioni, Matteo, Recchia, Alessandra, Benigni, Fabio, Briganti, Alberto, Salonia, Andrea, De Palma, Michele, Bicciato, Silvio, Doglioni, Claudio, Bellone, Matteo, Casorati, Giulia, Dellabona, Paolo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.03.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2018.02.058

Cover

Abstract Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. [Display omitted] •iNKT cells remodel the tumor microenvironment of mouse prostate cancer•iNKT cells restrict pro-angiogenic TEMs and sustain pro-inflammatory TAMs•iNKT cells differentially modulate TAMs by cooperative CD1d, CD40, and Fas engagement•Aggressive human prostate cancers contain high TEMs and low iNKT cells Cortesi et al. provide evidence that iNKT cells contribute to cancer immune surveillance. Due to differential tuning of tumor-associated macrophage populations, iNKT cells remodel the microenvironment of prostate cancer, enforcing a tumor-opposing state that controls tumor progression.
AbstractList Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. : Cortesi et al. provide evidence that iNKT cells contribute to cancer immune surveillance. Due to differential tuning of tumor-associated macrophage populations, iNKT cells remodel the microenvironment of prostate cancer, enforcing a tumor-opposing state that controls tumor progression. Keywords: iNKT cells, CD1d, macrophage, tumor microenvironment, prostate cancer, immunotherapy, CD40, Fas, angiogenesis
Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. [Display omitted] •iNKT cells remodel the tumor microenvironment of mouse prostate cancer•iNKT cells restrict pro-angiogenic TEMs and sustain pro-inflammatory TAMs•iNKT cells differentially modulate TAMs by cooperative CD1d, CD40, and Fas engagement•Aggressive human prostate cancers contain high TEMs and low iNKT cells Cortesi et al. provide evidence that iNKT cells contribute to cancer immune surveillance. Due to differential tuning of tumor-associated macrophage populations, iNKT cells remodel the microenvironment of prostate cancer, enforcing a tumor-opposing state that controls tumor progression.
Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME.Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME.
Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2 , M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME.
Author Recchia, Alessandra
Bellone, Matteo
Briganti, Alberto
Lucianò, Roberta
Doglioni, Claudio
Pucci, Ferdinando
Bicciato, Silvio
Salonia, Andrea
Grioni, Matteo
Grilli, Andrea
Benigni, Fabio
Calcinotto, Arianna
De Palma, Michele
Gorini, Francesca
Dellabona, Paolo
Casorati, Giulia
Delfanti, Gloria
Cortesi, Filippo
Author_xml – sequence: 1
  givenname: Filippo
  surname: Cortesi
  fullname: Cortesi, Filippo
  organization: Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 2
  givenname: Gloria
  surname: Delfanti
  fullname: Delfanti, Gloria
  organization: Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 3
  givenname: Andrea
  surname: Grilli
  fullname: Grilli, Andrea
  organization: Center for Genome Research Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 4
  givenname: Arianna
  surname: Calcinotto
  fullname: Calcinotto, Arianna
  organization: Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 5
  givenname: Francesca
  surname: Gorini
  fullname: Gorini, Francesca
  organization: Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 6
  givenname: Ferdinando
  surname: Pucci
  fullname: Pucci, Ferdinando
  organization: Torque Therapeutics Inc., Cambridge, MA 02142, USA
– sequence: 7
  givenname: Roberta
  surname: Lucianò
  fullname: Lucianò, Roberta
  organization: Division of Pathology, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 8
  givenname: Matteo
  surname: Grioni
  fullname: Grioni, Matteo
  organization: Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 9
  givenname: Alessandra
  surname: Recchia
  fullname: Recchia, Alessandra
  organization: Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 10
  givenname: Fabio
  surname: Benigni
  fullname: Benigni, Fabio
  organization: Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan 20123, Italy
– sequence: 11
  givenname: Alberto
  surname: Briganti
  fullname: Briganti, Alberto
  organization: Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan 20123, Italy
– sequence: 12
  givenname: Andrea
  surname: Salonia
  fullname: Salonia, Andrea
  organization: Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan 20123, Italy
– sequence: 13
  givenname: Michele
  surname: De Palma
  fullname: De Palma, Michele
  organization: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
– sequence: 14
  givenname: Silvio
  surname: Bicciato
  fullname: Bicciato, Silvio
  organization: Center for Genome Research Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 15
  givenname: Claudio
  surname: Doglioni
  fullname: Doglioni, Claudio
  organization: Division of Pathology, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 16
  givenname: Matteo
  surname: Bellone
  fullname: Bellone, Matteo
  email: bellone.matteo@hsr.it
  organization: Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 17
  givenname: Giulia
  surname: Casorati
  fullname: Casorati, Giulia
  email: casorati.giulia@hsr.it
  organization: Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
– sequence: 18
  givenname: Paolo
  surname: Dellabona
  fullname: Dellabona, Paolo
  email: dellabona.paolo@hsr.it
  organization: Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan 20123, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29539427$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_0HyDkJZuktuNkHBZIJW1hRHkshrV141wPHpI42BkQEj8eDykVYgHe-HXOZ_mcU3I0-hEJecJZzhmvLna5wT7glAvGVc5Ezkr1gJwIwXnGhVwd_bE-Jucx7lgaFeO8lo_IsajLopZidUJ-vHSD76CnzZVkFzcQsyuccOxwnGkTfIwz9J9pi_M3xJG6d282tMG-jxTGjm72gw_ZZYzeOJixo2_BBD99gi1Guh4mcCHSD4kyp1vawGgwHPbbgDE6Pz4mDy30Ec_v5jPy8eZ607zObt-_WjeXt5mRKzlnkpdVxS1WZSuKwhbpy0qiNIbZVrXYciukNJYJtVKrriqx5krUbV2VplRlK4szsl64nYednoIbIHzXHpz-deDDVkOYnelRW8C2A2VLUYAU0CrOmKqM5VwqqKxKrGcLawr-yx7jrAcXUxk9jOj3UadCJJelEFWSPr2T7tsBu_uHf6efBHIRmEPSAe29hDN96Fnv9NLzAas0Ezr1nGzP_7IZlxJOgc4BXP8_84vFjCnwrw6DjsZhaqZzAc2cEnH_BvwEFljE2A
CitedBy_id crossref_primary_10_3389_fimmu_2022_999549
crossref_primary_10_1002_cpz1_838
crossref_primary_10_1016_j_canlet_2021_10_027
crossref_primary_10_1155_2022_5500416
crossref_primary_10_3390_cancers15245737
crossref_primary_10_1155_2022_8580043
crossref_primary_10_1002_path_5403
crossref_primary_10_1038_s41467_024_45208_z
crossref_primary_10_1016_j_biopha_2025_117897
crossref_primary_10_3389_fimmu_2019_01563
crossref_primary_10_3389_fimmu_2021_641307
crossref_primary_10_3389_fimmu_2024_1378739
crossref_primary_10_1038_s41591_020_1074_2
crossref_primary_10_1186_s12964_023_01424_6
crossref_primary_10_1073_pnas_2403917121
crossref_primary_10_1186_s12943_023_01885_w
crossref_primary_10_1093_ecco_jcc_jjac049
crossref_primary_10_1016_j_bone_2024_117328
crossref_primary_10_1016_j_stem_2019_08_004
crossref_primary_10_1016_j_jri_2020_103178
crossref_primary_10_1016_j_molimm_2020_12_015
crossref_primary_10_1158_0008_5472_CAN_20_2990
crossref_primary_10_3389_frtra_2024_1353803
crossref_primary_10_1016_j_omto_2023_04_007
crossref_primary_10_1038_s41698_022_00272_w
crossref_primary_10_1186_s40425_019_0697_7
crossref_primary_10_1158_2326_6066_CIR_21_0445
crossref_primary_10_3389_fonc_2022_909066
crossref_primary_10_3390_ijms21113909
crossref_primary_10_1016_j_isci_2022_104859
crossref_primary_10_1038_s41591_023_02363_y
crossref_primary_10_1186_s12943_024_02137_1
crossref_primary_10_3389_fcell_2024_1389012
crossref_primary_10_3390_ijms23031640
crossref_primary_10_1016_j_stemcr_2021_04_010
crossref_primary_10_1038_s41577_018_0056_9
crossref_primary_10_1002_smll_201903462
crossref_primary_10_1016_j_clim_2024_110402
crossref_primary_10_1016_j_ejcb_2021_151153
crossref_primary_10_3389_fimmu_2020_01314
crossref_primary_10_3389_fmed_2022_897750
crossref_primary_10_1021_acsnano_8b07660
crossref_primary_10_1038_s43018_024_00830_0
crossref_primary_10_1126_sciimmunol_abn6563
crossref_primary_10_3389_fimmu_2023_1333549
crossref_primary_10_3389_fimmu_2018_02375
crossref_primary_10_1080_07853890_2024_2398195
crossref_primary_10_1002_1878_0261_13104
crossref_primary_10_3389_fgene_2020_595657
crossref_primary_10_1007_s00018_018_2997_3
crossref_primary_10_1111_imm_13799
crossref_primary_10_21769_BioProtoc_4707
crossref_primary_10_3389_fimmu_2024_1436968
crossref_primary_10_1158_2326_6066_CIR_22_0333
crossref_primary_10_1016_j_biopha_2024_117002
crossref_primary_10_3390_cells10061329
crossref_primary_10_3389_fimmu_2024_1440044
crossref_primary_10_2174_0113892010265228231116073012
crossref_primary_10_3390_biomedicines10071723
crossref_primary_10_3390_biom13020348
crossref_primary_10_1016_j_molimm_2018_11_013
crossref_primary_10_1182_blood_2022016201
crossref_primary_10_1016_j_canep_2019_101578
crossref_primary_10_1080_2162402X_2023_2173422
crossref_primary_10_3390_cancers13205174
crossref_primary_10_3389_fonc_2020_517637
crossref_primary_10_1186_s12943_024_02064_1
crossref_primary_10_1038_s41467_024_44905_z
crossref_primary_10_26508_lsa_202101316
Cites_doi 10.1084/jem.189.7.1121
10.1016/j.immuni.2012.06.016
10.1084/jem.20020092
10.2183/pjab.91.292
10.4049/jimmunol.1001018
10.1038/nri3175
10.1016/j.smim.2009.10.004
10.1016/j.immuni.2014.06.008
10.1126/science.1252510
10.1111/j.1464-410X.2010.09804.x
10.1182/blood-2009-01-200931
10.1038/ncb3371
10.1158/2326-6066.CIR-13-0104
10.1016/S1471-4906(02)02302-5
10.1016/j.celrep.2011.12.005
10.1016/j.cell.2015.10.025
10.4049/jimmunol.171.10.5140
10.1172/JCI37869
10.1182/blood-2007-05-092866
10.1158/1078-0432.CCR-05-0877
10.4049/jimmunol.167.7.4046
10.1038/bjc.1990.87
10.1038/nri3369
10.1002/1521-4141(200106)31:6<1720::AID-IMMU1720>3.0.CO;2-U
10.1038/nrc.2017.51
10.1126/sciimmunol.aah4081
10.4049/jimmunol.1003748
10.1016/j.immuni.2014.08.017
10.1016/j.cell.2011.02.013
10.1016/j.ccr.2012.02.022
10.1038/srep15651
10.1016/j.immuni.2014.06.010
10.1038/mi.2017.34
10.1016/j.ccell.2016.05.017
10.1038/onc.2013.191
10.1158/1078-0432.CCR-10-2547
10.1073/pnas.92.8.3439
10.1182/blood-2016-11-751065
10.1084/jem.20031462
10.1073/pnas.1113744109
10.1172/JCI36264
10.1038/ni.3047
10.1371/journal.pone.0008646
10.1182/blood-2009-01-198564
10.1084/jem.20021650
10.4049/jimmunol.166.11.6578
10.1371/journal.pone.0011311
10.1200/JCO.2011.38.8819
10.1038/ni.1942
10.1158/1078-0432.CCR-16-0600
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2018.02.058
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 3020
ExternalDocumentID oai_doaj_org_article_faebda8f523a42ab810086cf1148a6f8
29539427
10_1016_j_celrep_2018_02_058
S2211124718302523
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-415661fe65b233f301884e4cc0fb8beb1f244cf028787d65e91829b965c585b43
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:14:52 EDT 2025
Thu Sep 04 16:46:22 EDT 2025
Mon Jul 21 06:00:02 EDT 2025
Tue Jul 01 02:58:54 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Wed May 17 01:19:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords prostate cancer
CD40
iNKT cells
angiogenesis
immunotherapy
macrophage
Fas
CD1d
tumor microenvironment
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-415661fe65b233f301884e4cc0fb8beb1f244cf028787d65e91829b965c585b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2018.02.058
PMID 29539427
PQID 2014145226
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_faebda8f523a42ab810086cf1148a6f8
proquest_miscellaneous_2014145226
pubmed_primary_29539427
crossref_primary_10_1016_j_celrep_2018_02_058
crossref_citationtrail_10_1016_j_celrep_2018_02_058
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_02_058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-13
PublicationDateYYYYMMDD 2018-03-13
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Comito, Giannoni, Segura, Barcellos-de-Souza, Raspollini, Baroni, Lanciotti, Serni, Chiarugi (bib6) 2014; 33
Hermans, Silk, Gileadi, Salio, Mathew, Ritter, Schmidt, Harris, Old, Cerundolo (bib24) 2003; 171
Murray, Allen, Biswas, Fisher, Gilroy, Goerdt, Gordon, Hamilton, Ivashkiv, Lawrence (bib35) 2014; 41
Lynch, Michelet, Zhang, Brennan, Moseman, Lester, Besra, Vomhof-Dekrey, Tighe, Koay (bib31) 2015; 16
Mantovani, Sozzani, Locati, Allavena, Sica (bib32) 2002; 23
McClinton, Miller, Eremin (bib33) 1990; 61
Metelitsa, Wu, Wang, Yang, Warsi, Asgharzadeh, Groshen, Wilson, Seeger (bib34) 2004; 199
Bellone, Ceccon, Grioni, Jachetti, Calcinotto, Napolitano, Freschi, Casorati, Dellabona (bib4) 2010; 5
Lewis, Harney, Pollard (bib27) 2016; 30
Wingender, Krebs, Beutler, Kronenberg (bib53) 2010; 185
De Palma, Biziato, Petrova (bib10) 2017; 17
Smith, Croca, Waddington, Sofat, Griffin, Nicolaides, Isenberg, Torra, Rahman, Jury (bib45) 2016; 1
Lynch, Nowak, Varghese, Clark, Hogan, Toxavidis, Balk, O’Shea, O’Farrelly, Exley (bib30) 2012; 37
Taniguchi, Harada, Dashtsoodol, Kojo (bib51) 2015; 91
Wang, Sedimbi, Löfbom, Singh, Porcelli, Cardell (bib52) 2018; 11
Noy, Pollard (bib39) 2014; 41
Franklin, Liao, Sarkar, Kim, Bivona, Liu, Pamer, Li (bib15) 2014; 344
Nakagawa, Nagafune, Tazunoki, Ehara, Tomura, Iijima, Motoki, Kamishohara, Seki (bib36) 2001; 166
Dhodapkar, Geller, Chang, Shimizu, Fujii, Dhodapkar, Krasovsky (bib13) 2003; 197
Hayakawa, Takeda, Yagita, Kakuta, Iwakura, Van Kaer, Saiki, Okumura (bib22) 2001; 31
Nonomura, Takayama, Nakayama, Nakai, Kawashima, Mukai, Nagahara, Aozasa, Tsujimura (bib37) 2011; 107
Greenberg, DeMayo, Finegold, Medina, Tilley, Aspinall, Cunha, Donjacour, Matusik, Rosen (bib19) 1995; 92
Cortez-Retamozo, Etzrodt, Newton, Rauch, Chudnovskiy, Berger, Ryan, Iwamoto, Marinelli, Gorbatov (bib7) 2012; 109
Tachibana, Onodera, Tsuruyama, Mori, Nagayama, Hiai, Imamura (bib49) 2005; 11
Lissbrant, Stattin, Wikstrom, Damber, Egevad, Bergh (bib28) 2000; 17
Godfrey, Pellicci, Patel, Kjer-Nielsen, McCluskey, Rossjohn (bib17) 2010; 22
de Lalla, Rinaldi, Montagna, Azzimonti, Bernardo, Sangalli, Paganoni, Maccario, Di Cesare-Merlone, Zecca (bib9) 2011; 186
Lundholm, Hägglöf, Wikberg, Stattin, Egevad, Bergh, Wikström, Palmqvist, Edin (bib29) 2015; 5
Kain, Webb, Anderson, Deng, Holt, Costanzo, Zhao, Self, Teyton, Everett (bib25) 2014; 41
De Santo, Salio, Masri, Lee, Dong, Speak, Porubsky, Booth, Veerapen, Besra (bib11) 2008; 118
Pucci, Venneri, Biziato, Nonis, Moi, Sica, Di Serio, Naldini, De Palma (bib40) 2009; 114
Hanahan, Coussens (bib20) 2012; 21
Squadrito, Pucci, Magri, Moi, Gilfillan, Ranghetti, Casazza, Mazzone, Lyle, Naldini, De Palma (bib47) 2012; 1
Brennan, Brigl, Brenner (bib5) 2013; 13
Shimura, Yang, Ebara, Wheeler, Frolov, Thompson (bib44) 2000; 60
Baer, Squadrito, Laoui, Thompson, Hansen, Kiialainen, Hoves, Ries, Ooi, De Palma (bib2) 2016; 18
Renukaradhya, Khan, Vieira, Du, Gervay-Hague, Brutkiewicz (bib41) 2008; 111
Kitamura, Iwakabe, Yahata, Nishimura, Ohta, Ohmi, Sato, Takeda, Okumura, Van Kaer (bib26) 1999; 189
Tahir, Cheng, Shaulov, Koezuka, Bubley, Wilson, Balk, Exley (bib50) 2001; 167
De Santo, Arscott, Booth, Karydis, Jones, Asher, Salio, Middleton, Cerundolo (bib12) 2010; 11
Exley, Friedlander, Alatrakchi, Vriend, Yue, Sasada, Zeng, Mizukami, Clark, Nemer (bib14) 2017; 23
Nowak, Arredouani, Tun-Kyi, Schmidt-Wolf, Sanda, Balk, Exley (bib38) 2010; 5
Swann, Uldrich, van Dommelen, Sharkey, Murray, Godfrey, Smyth (bib48) 2009; 113
Hayakawa, Takeda, Yagita, Smyth, Van Kaer, Okumura, Saiki (bib23) 2002; 100
Schneiders, de Bruin, van den Eertwegh, Scheper, Leemans, Brakenhoff, Langendijk, Verheul, de Gruijl, Molling, van der Vliet (bib43) 2012; 30
Song, Asgharzadeh, Salo, Engell, Wu, Sposto, Ara, Silverman, DeClerck, Seeger, Metelitsa (bib46) 2009; 119
Hanahan, Weinberg (bib21) 2011; 144
Rigamonti, Capuano, Ricupito, Jachetti, Grioni, Generoso, Freschi, Bellone (bib42) 2011; 17
Crowe, Smyth, Godfrey (bib8) 2002; 196
Abeshouse, Ahn, Akbani, Ally, Amin, Andry, Annala, Aprikian, Armenia, Arora (bib1) 2015; 163
Gorini, Azzimonti, Delfanti, Scarfò, Scielzo, Bertilaccio, Ranghetti, Gulino, Doglioni, Di Napoli (bib18) 2017; 129
Bassiri, Das, Guan, Barrett, Brennan, Banerjee, Wiener, Orange, Brenner, Grupp, Nichols (bib3) 2014; 2
Gabrilovich, Ostrand-Rosenberg, Bronte (bib16) 2012; 12
Wingender (10.1016/j.celrep.2018.02.058_bib53) 2010; 185
Metelitsa (10.1016/j.celrep.2018.02.058_bib34) 2004; 199
Hermans (10.1016/j.celrep.2018.02.058_bib24) 2003; 171
Lynch (10.1016/j.celrep.2018.02.058_bib30) 2012; 37
Lynch (10.1016/j.celrep.2018.02.058_bib31) 2015; 16
Smith (10.1016/j.celrep.2018.02.058_bib45) 2016; 1
Dhodapkar (10.1016/j.celrep.2018.02.058_bib13) 2003; 197
Godfrey (10.1016/j.celrep.2018.02.058_bib17) 2010; 22
Kitamura (10.1016/j.celrep.2018.02.058_bib26) 1999; 189
Gabrilovich (10.1016/j.celrep.2018.02.058_bib16) 2012; 12
Franklin (10.1016/j.celrep.2018.02.058_bib15) 2014; 344
Murray (10.1016/j.celrep.2018.02.058_bib35) 2014; 41
Noy (10.1016/j.celrep.2018.02.058_bib39) 2014; 41
de Lalla (10.1016/j.celrep.2018.02.058_bib9) 2011; 186
Nonomura (10.1016/j.celrep.2018.02.058_bib37) 2011; 107
Brennan (10.1016/j.celrep.2018.02.058_bib5) 2013; 13
Hayakawa (10.1016/j.celrep.2018.02.058_bib23) 2002; 100
Kain (10.1016/j.celrep.2018.02.058_bib25) 2014; 41
Lissbrant (10.1016/j.celrep.2018.02.058_bib28) 2000; 17
Rigamonti (10.1016/j.celrep.2018.02.058_bib42) 2011; 17
McClinton (10.1016/j.celrep.2018.02.058_bib33) 1990; 61
Bassiri (10.1016/j.celrep.2018.02.058_bib3) 2014; 2
Renukaradhya (10.1016/j.celrep.2018.02.058_bib41) 2008; 111
De Santo (10.1016/j.celrep.2018.02.058_bib12) 2010; 11
Cortez-Retamozo (10.1016/j.celrep.2018.02.058_bib7) 2012; 109
Tachibana (10.1016/j.celrep.2018.02.058_bib49) 2005; 11
Hayakawa (10.1016/j.celrep.2018.02.058_bib22) 2001; 31
Hanahan (10.1016/j.celrep.2018.02.058_bib21) 2011; 144
Greenberg (10.1016/j.celrep.2018.02.058_bib19) 1995; 92
Comito (10.1016/j.celrep.2018.02.058_bib6) 2014; 33
Hanahan (10.1016/j.celrep.2018.02.058_bib20) 2012; 21
Gorini (10.1016/j.celrep.2018.02.058_bib18) 2017; 129
Abeshouse (10.1016/j.celrep.2018.02.058_bib1) 2015; 163
Exley (10.1016/j.celrep.2018.02.058_bib14) 2017; 23
Lewis (10.1016/j.celrep.2018.02.058_bib27) 2016; 30
Nowak (10.1016/j.celrep.2018.02.058_bib38) 2010; 5
Baer (10.1016/j.celrep.2018.02.058_bib2) 2016; 18
Mantovani (10.1016/j.celrep.2018.02.058_bib32) 2002; 23
Schneiders (10.1016/j.celrep.2018.02.058_bib43) 2012; 30
De Palma (10.1016/j.celrep.2018.02.058_bib10) 2017; 17
Tahir (10.1016/j.celrep.2018.02.058_bib50) 2001; 167
Shimura (10.1016/j.celrep.2018.02.058_bib44) 2000; 60
Bellone (10.1016/j.celrep.2018.02.058_bib4) 2010; 5
De Santo (10.1016/j.celrep.2018.02.058_bib11) 2008; 118
Song (10.1016/j.celrep.2018.02.058_bib46) 2009; 119
Lundholm (10.1016/j.celrep.2018.02.058_bib29) 2015; 5
Pucci (10.1016/j.celrep.2018.02.058_bib40) 2009; 114
Taniguchi (10.1016/j.celrep.2018.02.058_bib51) 2015; 91
Crowe (10.1016/j.celrep.2018.02.058_bib8) 2002; 196
Wang (10.1016/j.celrep.2018.02.058_bib52) 2018; 11
Nakagawa (10.1016/j.celrep.2018.02.058_bib36) 2001; 166
Squadrito (10.1016/j.celrep.2018.02.058_bib47) 2012; 1
Swann (10.1016/j.celrep.2018.02.058_bib48) 2009; 113
References_xml – volume: 16
  start-page: 85
  year: 2015
  end-page: 95
  ident: bib31
  article-title: Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue
  publication-title: Nat. Immunol.
– volume: 30
  start-page: 18
  year: 2016
  end-page: 25
  ident: bib27
  article-title: The multifaceted role of perivascular macrophages in tumors
  publication-title: Cancer Cell
– volume: 1
  start-page: eaah4081
  year: 2016
  ident: bib45
  article-title: Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque
  publication-title: Sci. Immunol.
– volume: 17
  start-page: 457
  year: 2017
  end-page: 474
  ident: bib10
  article-title: Microenvironmental regulation of tumour angiogenesis
  publication-title: Nat. Rev. Cancer
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib21
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 171
  start-page: 5140
  year: 2003
  end-page: 5147
  ident: bib24
  article-title: NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells
  publication-title: J. Immunol.
– volume: 11
  start-page: 1039
  year: 2010
  end-page: 1046
  ident: bib12
  article-title: Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A
  publication-title: Nat. Immunol.
– volume: 5
  start-page: e8646
  year: 2010
  ident: bib4
  article-title: iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells
  publication-title: PLoS ONE
– volume: 41
  start-page: 543
  year: 2014
  end-page: 554
  ident: bib25
  article-title: The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian α-linked glycosylceramides
  publication-title: Immunity
– volume: 119
  start-page: 1524
  year: 2009
  end-page: 1536
  ident: bib46
  article-title: Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages
  publication-title: J. Clin. Invest.
– volume: 111
  start-page: 5637
  year: 2008
  end-page: 5645
  ident: bib41
  article-title: Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma
  publication-title: Blood
– volume: 41
  start-page: 49
  year: 2014
  end-page: 61
  ident: bib39
  article-title: Tumor-associated macrophages: from mechanisms to therapy
  publication-title: Immunity
– volume: 37
  start-page: 574
  year: 2012
  end-page: 587
  ident: bib30
  article-title: Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production
  publication-title: Immunity
– volume: 107
  start-page: 1918
  year: 2011
  end-page: 1922
  ident: bib37
  article-title: Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer
  publication-title: BJU Int.
– volume: 18
  start-page: 790
  year: 2016
  end-page: 802
  ident: bib2
  article-title: Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity
  publication-title: Nat. Cell Biol.
– volume: 118
  start-page: 4036
  year: 2008
  end-page: 4048
  ident: bib11
  article-title: Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans
  publication-title: J. Clin. Invest.
– volume: 186
  start-page: 4490
  year: 2011
  end-page: 4499
  ident: bib9
  article-title: Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state
  publication-title: J. Immunol.
– volume: 17
  start-page: 1012
  year: 2011
  end-page: 1023
  ident: bib42
  article-title: Modulators of arginine metabolism do not impact on peripheral T-cell tolerance and disease progression in a model of spontaneous prostate cancer
  publication-title: Clin. Cancer Res.
– volume: 166
  start-page: 6578
  year: 2001
  end-page: 6584
  ident: bib36
  article-title: Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by alpha-galactosylceramide in mice
  publication-title: J. Immunol.
– volume: 13
  start-page: 101
  year: 2013
  end-page: 117
  ident: bib5
  article-title: Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions
  publication-title: Nat. Rev. Immunol.
– volume: 60
  start-page: 5857
  year: 2000
  end-page: 5861
  ident: bib44
  article-title: Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression
  publication-title: Cancer Res.
– volume: 197
  start-page: 1667
  year: 2003
  end-page: 1676
  ident: bib13
  article-title: A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma
  publication-title: J. Exp. Med.
– volume: 5
  start-page: e11311
  year: 2010
  ident: bib38
  article-title: Defective NKT cell activation by CD1d+ TRAMP prostate tumor cells is corrected by interleukin-12 with α-galactosylceramide
  publication-title: PLoS ONE
– volume: 12
  start-page: 253
  year: 2012
  end-page: 268
  ident: bib16
  article-title: Coordinated regulation of myeloid cells by tumours
  publication-title: Nat. Rev. Immunol.
– volume: 23
  start-page: 549
  year: 2002
  end-page: 555
  ident: bib32
  article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
  publication-title: Trends Immunol.
– volume: 2
  start-page: 59
  year: 2014
  end-page: 69
  ident: bib3
  article-title: iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo
  publication-title: Cancer Immunol. Res.
– volume: 109
  start-page: 2491
  year: 2012
  end-page: 2496
  ident: bib7
  article-title: Origins of tumor-associated macrophages and neutrophils
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 309
  year: 2012
  end-page: 322
  ident: bib20
  article-title: Accessories to the crime: functions of cells recruited to the tumor microenvironment
  publication-title: Cancer Cell
– volume: 189
  start-page: 1121
  year: 1999
  end-page: 1128
  ident: bib26
  article-title: The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells
  publication-title: J. Exp. Med.
– volume: 41
  start-page: 14
  year: 2014
  end-page: 20
  ident: bib35
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity
– volume: 91
  start-page: 292
  year: 2015
  end-page: 304
  ident: bib51
  article-title: Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy
  publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.
– volume: 1
  start-page: 141
  year: 2012
  end-page: 154
  ident: bib47
  article-title: miR-511-3p modulates genetic programs of tumor-associated macrophages
  publication-title: Cell Rep.
– volume: 11
  start-page: 7322
  year: 2005
  end-page: 7327
  ident: bib49
  article-title: Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas
  publication-title: Clin. Cancer Res.
– volume: 33
  start-page: 2423
  year: 2014
  end-page: 2431
  ident: bib6
  article-title: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression
  publication-title: Oncogene
– volume: 17
  start-page: 445
  year: 2000
  end-page: 451
  ident: bib28
  article-title: Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival
  publication-title: Int. J. Oncol.
– volume: 185
  start-page: 2721
  year: 2010
  end-page: 2729
  ident: bib53
  article-title: Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency
  publication-title: J. Immunol.
– volume: 100
  start-page: 1728
  year: 2002
  end-page: 1733
  ident: bib23
  article-title: IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide
  publication-title: Blood
– volume: 22
  start-page: 61
  year: 2010
  end-page: 67
  ident: bib17
  article-title: Antigen recognition by CD1d-restricted NKT T cell receptors
  publication-title: Semin. Immunol.
– volume: 113
  start-page: 6382
  year: 2009
  end-page: 6385
  ident: bib48
  article-title: Type I natural killer T cells suppress tumors caused by p53 loss in mice
  publication-title: Blood
– volume: 92
  start-page: 3439
  year: 1995
  end-page: 3443
  ident: bib19
  article-title: Prostate cancer in a transgenic mouse
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 131
  year: 2018
  end-page: 143
  ident: bib52
  article-title: Unique invariant natural killer T cells promote intestinal polyps by suppressing TH1 immunity and promoting regulatory T cells
  publication-title: Mucosal Immunol.
– volume: 167
  start-page: 4046
  year: 2001
  end-page: 4050
  ident: bib50
  article-title: Loss of IFN-gamma production by invariant NK T cells in advanced cancer
  publication-title: J. Immunol.
– volume: 344
  start-page: 921
  year: 2014
  end-page: 925
  ident: bib15
  article-title: The cellular and molecular origin of tumor-associated macrophages
  publication-title: Science
– volume: 61
  start-page: 400
  year: 1990
  end-page: 403
  ident: bib33
  article-title: An immunohistochemical characterisation of the inflammatory cell infiltrate in benign and malignant prostatic disease
  publication-title: Br. J. Cancer
– volume: 5
  start-page: 15651
  year: 2015
  ident: bib29
  article-title: Secreted factors from colorectal and prostate cancer cells skew the immune response in opposite directions
  publication-title: Sci. Rep.
– volume: 23
  start-page: 3510
  year: 2017
  end-page: 3519
  ident: bib14
  article-title: Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase I clinical trial
  publication-title: Clin. Cancer Res.
– volume: 129
  start-page: 3440
  year: 2017
  end-page: 3451
  ident: bib18
  article-title: Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis
  publication-title: Blood
– volume: 114
  start-page: 901
  year: 2009
  end-page: 914
  ident: bib40
  article-title: A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships
  publication-title: Blood
– volume: 30
  start-page: 567
  year: 2012
  end-page: 570
  ident: bib43
  article-title: Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up
  publication-title: J. Clin. Oncol.
– volume: 199
  start-page: 1213
  year: 2004
  end-page: 1221
  ident: bib34
  article-title: Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2
  publication-title: J. Exp. Med.
– volume: 163
  start-page: 1011
  year: 2015
  end-page: 1025
  ident: bib1
  article-title: The molecular taxonomy of primary prostate cancer
  publication-title: Cell
– volume: 196
  start-page: 119
  year: 2002
  end-page: 127
  ident: bib8
  article-title: A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas
  publication-title: J. Exp. Med.
– volume: 31
  start-page: 1720
  year: 2001
  end-page: 1727
  ident: bib22
  article-title: Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide
  publication-title: Eur. J. Immunol.
– volume: 189
  start-page: 1121
  year: 1999
  ident: 10.1016/j.celrep.2018.02.058_bib26
  article-title: The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.189.7.1121
– volume: 37
  start-page: 574
  year: 2012
  ident: 10.1016/j.celrep.2018.02.058_bib30
  article-title: Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.06.016
– volume: 196
  start-page: 119
  year: 2002
  ident: 10.1016/j.celrep.2018.02.058_bib8
  article-title: A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20020092
– volume: 91
  start-page: 292
  year: 2015
  ident: 10.1016/j.celrep.2018.02.058_bib51
  article-title: Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy
  publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.
  doi: 10.2183/pjab.91.292
– volume: 185
  start-page: 2721
  year: 2010
  ident: 10.1016/j.celrep.2018.02.058_bib53
  article-title: Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1001018
– volume: 12
  start-page: 253
  year: 2012
  ident: 10.1016/j.celrep.2018.02.058_bib16
  article-title: Coordinated regulation of myeloid cells by tumours
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3175
– volume: 22
  start-page: 61
  year: 2010
  ident: 10.1016/j.celrep.2018.02.058_bib17
  article-title: Antigen recognition by CD1d-restricted NKT T cell receptors
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2009.10.004
– volume: 41
  start-page: 14
  year: 2014
  ident: 10.1016/j.celrep.2018.02.058_bib35
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.008
– volume: 344
  start-page: 921
  year: 2014
  ident: 10.1016/j.celrep.2018.02.058_bib15
  article-title: The cellular and molecular origin of tumor-associated macrophages
  publication-title: Science
  doi: 10.1126/science.1252510
– volume: 107
  start-page: 1918
  year: 2011
  ident: 10.1016/j.celrep.2018.02.058_bib37
  article-title: Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2010.09804.x
– volume: 114
  start-page: 901
  year: 2009
  ident: 10.1016/j.celrep.2018.02.058_bib40
  article-title: A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships
  publication-title: Blood
  doi: 10.1182/blood-2009-01-200931
– volume: 18
  start-page: 790
  year: 2016
  ident: 10.1016/j.celrep.2018.02.058_bib2
  article-title: Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3371
– volume: 2
  start-page: 59
  year: 2014
  ident: 10.1016/j.celrep.2018.02.058_bib3
  article-title: iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0104
– volume: 23
  start-page: 549
  year: 2002
  ident: 10.1016/j.celrep.2018.02.058_bib32
  article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
  publication-title: Trends Immunol.
  doi: 10.1016/S1471-4906(02)02302-5
– volume: 1
  start-page: 141
  year: 2012
  ident: 10.1016/j.celrep.2018.02.058_bib47
  article-title: miR-511-3p modulates genetic programs of tumor-associated macrophages
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2011.12.005
– volume: 163
  start-page: 1011
  year: 2015
  ident: 10.1016/j.celrep.2018.02.058_bib1
  article-title: The molecular taxonomy of primary prostate cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.025
– volume: 171
  start-page: 5140
  year: 2003
  ident: 10.1016/j.celrep.2018.02.058_bib24
  article-title: NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.171.10.5140
– volume: 119
  start-page: 1524
  year: 2009
  ident: 10.1016/j.celrep.2018.02.058_bib46
  article-title: Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI37869
– volume: 111
  start-page: 5637
  year: 2008
  ident: 10.1016/j.celrep.2018.02.058_bib41
  article-title: Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma
  publication-title: Blood
  doi: 10.1182/blood-2007-05-092866
– volume: 11
  start-page: 7322
  year: 2005
  ident: 10.1016/j.celrep.2018.02.058_bib49
  article-title: Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-0877
– volume: 167
  start-page: 4046
  year: 2001
  ident: 10.1016/j.celrep.2018.02.058_bib50
  article-title: Loss of IFN-gamma production by invariant NK T cells in advanced cancer
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.7.4046
– volume: 61
  start-page: 400
  year: 1990
  ident: 10.1016/j.celrep.2018.02.058_bib33
  article-title: An immunohistochemical characterisation of the inflammatory cell infiltrate in benign and malignant prostatic disease
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1990.87
– volume: 13
  start-page: 101
  year: 2013
  ident: 10.1016/j.celrep.2018.02.058_bib5
  article-title: Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3369
– volume: 17
  start-page: 445
  year: 2000
  ident: 10.1016/j.celrep.2018.02.058_bib28
  article-title: Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival
  publication-title: Int. J. Oncol.
– volume: 31
  start-page: 1720
  year: 2001
  ident: 10.1016/j.celrep.2018.02.058_bib22
  article-title: Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide
  publication-title: Eur. J. Immunol.
  doi: 10.1002/1521-4141(200106)31:6<1720::AID-IMMU1720>3.0.CO;2-U
– volume: 17
  start-page: 457
  year: 2017
  ident: 10.1016/j.celrep.2018.02.058_bib10
  article-title: Microenvironmental regulation of tumour angiogenesis
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.51
– volume: 1
  start-page: eaah4081
  year: 2016
  ident: 10.1016/j.celrep.2018.02.058_bib45
  article-title: Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aah4081
– volume: 186
  start-page: 4490
  year: 2011
  ident: 10.1016/j.celrep.2018.02.058_bib9
  article-title: Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003748
– volume: 41
  start-page: 543
  year: 2014
  ident: 10.1016/j.celrep.2018.02.058_bib25
  article-title: The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian α-linked glycosylceramides
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.08.017
– volume: 100
  start-page: 1728
  year: 2002
  ident: 10.1016/j.celrep.2018.02.058_bib23
  article-title: IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide
  publication-title: Blood
– volume: 60
  start-page: 5857
  year: 2000
  ident: 10.1016/j.celrep.2018.02.058_bib44
  article-title: Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression
  publication-title: Cancer Res.
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.celrep.2018.02.058_bib21
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 21
  start-page: 309
  year: 2012
  ident: 10.1016/j.celrep.2018.02.058_bib20
  article-title: Accessories to the crime: functions of cells recruited to the tumor microenvironment
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.022
– volume: 5
  start-page: 15651
  year: 2015
  ident: 10.1016/j.celrep.2018.02.058_bib29
  article-title: Secreted factors from colorectal and prostate cancer cells skew the immune response in opposite directions
  publication-title: Sci. Rep.
  doi: 10.1038/srep15651
– volume: 41
  start-page: 49
  year: 2014
  ident: 10.1016/j.celrep.2018.02.058_bib39
  article-title: Tumor-associated macrophages: from mechanisms to therapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.010
– volume: 11
  start-page: 131
  year: 2018
  ident: 10.1016/j.celrep.2018.02.058_bib52
  article-title: Unique invariant natural killer T cells promote intestinal polyps by suppressing TH1 immunity and promoting regulatory T cells
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2017.34
– volume: 30
  start-page: 18
  year: 2016
  ident: 10.1016/j.celrep.2018.02.058_bib27
  article-title: The multifaceted role of perivascular macrophages in tumors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.05.017
– volume: 33
  start-page: 2423
  year: 2014
  ident: 10.1016/j.celrep.2018.02.058_bib6
  article-title: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression
  publication-title: Oncogene
  doi: 10.1038/onc.2013.191
– volume: 17
  start-page: 1012
  year: 2011
  ident: 10.1016/j.celrep.2018.02.058_bib42
  article-title: Modulators of arginine metabolism do not impact on peripheral T-cell tolerance and disease progression in a model of spontaneous prostate cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-2547
– volume: 92
  start-page: 3439
  year: 1995
  ident: 10.1016/j.celrep.2018.02.058_bib19
  article-title: Prostate cancer in a transgenic mouse
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.8.3439
– volume: 129
  start-page: 3440
  year: 2017
  ident: 10.1016/j.celrep.2018.02.058_bib18
  article-title: Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis
  publication-title: Blood
  doi: 10.1182/blood-2016-11-751065
– volume: 199
  start-page: 1213
  year: 2004
  ident: 10.1016/j.celrep.2018.02.058_bib34
  article-title: Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20031462
– volume: 109
  start-page: 2491
  year: 2012
  ident: 10.1016/j.celrep.2018.02.058_bib7
  article-title: Origins of tumor-associated macrophages and neutrophils
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1113744109
– volume: 118
  start-page: 4036
  year: 2008
  ident: 10.1016/j.celrep.2018.02.058_bib11
  article-title: Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI36264
– volume: 16
  start-page: 85
  year: 2015
  ident: 10.1016/j.celrep.2018.02.058_bib31
  article-title: Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3047
– volume: 5
  start-page: e8646
  year: 2010
  ident: 10.1016/j.celrep.2018.02.058_bib4
  article-title: iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008646
– volume: 113
  start-page: 6382
  year: 2009
  ident: 10.1016/j.celrep.2018.02.058_bib48
  article-title: Type I natural killer T cells suppress tumors caused by p53 loss in mice
  publication-title: Blood
  doi: 10.1182/blood-2009-01-198564
– volume: 197
  start-page: 1667
  year: 2003
  ident: 10.1016/j.celrep.2018.02.058_bib13
  article-title: A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20021650
– volume: 166
  start-page: 6578
  year: 2001
  ident: 10.1016/j.celrep.2018.02.058_bib36
  article-title: Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by alpha-galactosylceramide in mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.166.11.6578
– volume: 5
  start-page: e11311
  year: 2010
  ident: 10.1016/j.celrep.2018.02.058_bib38
  article-title: Defective NKT cell activation by CD1d+ TRAMP prostate tumor cells is corrected by interleukin-12 with α-galactosylceramide
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011311
– volume: 30
  start-page: 567
  year: 2012
  ident: 10.1016/j.celrep.2018.02.058_bib43
  article-title: Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2011.38.8819
– volume: 11
  start-page: 1039
  year: 2010
  ident: 10.1016/j.celrep.2018.02.058_bib12
  article-title: Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1942
– volume: 23
  start-page: 3510
  year: 2017
  ident: 10.1016/j.celrep.2018.02.058_bib14
  article-title: Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase I clinical trial
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-0600
SSID ssj0000601194
Score 2.4808624
Snippet Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3006
SubjectTerms angiogenesis
Animals
CD1d
CD40
CD40 Antigens - metabolism
Disease Progression
Fas
Humans
immunotherapy
iNKT cells
macrophage
Macrophages - metabolism
Male
Mice
Natural Killer T-Cells - immunology
prostate cancer
Prostatic Neoplasms - genetics
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
tumor microenvironment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPJcCpWRuFpNHMeJjzTtqoBacdhKvVl2bMPCNouS3QMSP54ZO1ktB7QXjkmcxPK8vpHH3xDy3rscgG4VWCFkxkTlwOa8KhnnytYBQmIduzdc38irW_Hprrzba_WFNWGJHjgt3Fkw3jpTB0iYjODG1shGI9uAON7IEI_5ZirbS6aSD0YuM9xS5hxrtriopnNzsbir9aveI11lXkfKTuz4vheXIn3_X-HpX_AzhqH5E_J4xI_0Q5r3MXngu6fkYeoo-esZ-X0Oa-9gQHMhsrO5GdjF2OV2Qxv8MWDtH3QszqLLm88L2vjVaqCmc3SxvV_3bBKYd_TaYIOvb-ByBvoR_MayH-gXPCYCT2mD-tLj9ddUS9s9J7fzy0VzxcYGC6wVldiwmLzlwcvS8qIIYOt1Lbxo2yzY2oIXDxD82wAQBMzaydIryEaUVbJsIcuwonhBjrp1518Rap0Dd9EqbrwSErwCl6FygUufA8AqyhkppuXV7cg-jk0wVnoqM_uuk1A0CkVnXINQZoTt3vqZ2DcOjD9Hye3GInd2vAEapUeN0oc0akaqSe56hCEJXsCnlgd-_25SEw1WilsvpvPr7YCDRI7k9XJGXib92U2Sq7JQglev_8fkT8gjnBBWyeXFG3K06bf-LcCmjT2NFvIHfCkSBA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBelUNhlbN1XtnVosKtILMuyfWzchW6jZbAUchOSJXVeM6fYyaGwP77vyXJYD6Owo-1nS_h92-_9HiGfnE0g0M09S4WcMZFb0DlXZozz0hQeXGIRpjdcXMrzK_F1la0OSDX2wmBZZbT9g00P1jqemca3Ob1tmukPDrkLeCcwrik4bo6In9hVik18q_n-OwvijSRhHiLSM7xh7KALZV61W3cOgSuTIoB34uz3vzxUAPJ_4Kj-FYgGh7R4Rp7GSJKeDpt9Tg5ce0yOhtmSdy_InzlwwQJBdSZm04Xu2Vmcd7ulFS4MUfcNjWVatLn8tqSVW697qltLl7vfm46NrHOWXmgc9fUTjE9Pv4AFabqefseGEbhKK5ScDo-vh6ra9iW5WnxeVucsjlpgtcjFloU0LvFOZoanqQetLwrhRF3PvCkM2HMPYUDtIRgBBbcycyXkJaUpZVZDvmFE-ooctpvWvSHUWAuGoy65dqWQYB-49Ln1XLoEQq00m5B0fL2qjjjkOA5jrcaCs19qYIpCpqgZV8CUCWH7u24HHI5H6OfIuT0tomiHE5vuWkUxUl47Y3XhQXi04NoUiHQka485opYeHpKPfFcPhBIe1Tyy_MdRTBToK_6E0a3b7HokEgnC2MsJeT3Iz36TvMzSUvD87X-v-448wSMskkvS9-Rw2-3cCURNW_MhqMU9UH4ScA
  priority: 102
  providerName: Elsevier
Title Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression
URI https://dx.doi.org/10.1016/j.celrep.2018.02.058
https://www.ncbi.nlm.nih.gov/pubmed/29539427
https://www.proquest.com/docview/2014145226
https://doaj.org/article/faebda8f523a42ab810086cf1148a6f8
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpSqGX0He2j6BCr27XsizLhxK6TpekJaGHXdibkCwp3cbxtvYuNNAfnxnZ3hJoyKUXg21Zkj2a0TfW6BtC3jkbA9DNfJRwMY54ZkHnXJ5GjOVGepgSZcjecHomjuf8yyJd7JAhZ2v_Adt_unaYT2reVO9__7o6BIX_-DdWq3RV45B9MpaBgTOV98j9sGKEwXw94O9sM3Kc4VIzYxjLxXg27Ke7paIb81Wg9b8xbd0GS8P0NH1E9npcST91A-Ex2XH1E_KgyzR59ZT8mYBMLBQojvj4w1S30VGf_XZNC2wYXv-C9kFbdHn2dUYLV1Ut1bWls83lqokGQTpLTzUm_voOpqilJ2BPlk1Lv-H2EbhLCxxHDZ6fdzG29TMyn36eFcdRn3ghKnnG11Fw6mLvRGpYkniwAVJyx8ty7I00YN09gILSAzQBdbcidTl4KbnJRVqC92F48pzs1qva7RNqrAUzUuZMu5wLsBZM-Mx6JlwMwCtJRyQZPq8qe1ZyTI5RqSH87IfqhKJQKGrMFAhlRKLtUz87Vo47yk9QctuyyKkdLqyac9WrqPLaGaulB9dcc6aNRN4jUXr0GLXwUEk2yF318KSDHVDV8o7m3w7DRIH24pKMrt1q02IhHiOpvRiRF9342XaS5WmSc5a9_B-df0UeYocwei5OXpPddbNxbwBOrc1B-A0Bx5PF5CBoyzUXuhzd
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELe6TtP6Mu272acn7dUK2MbA40IXJWsTTVoq5c0yYLdsGakgeZi0P353BqL1Yaq0R8DGiLv73e_gfEfIR1uGQHRjx4RUAZNxCTZn04hxnuaJA5eY-O4Ni6WaXcov62h9RLJhLwymVfbY32G6R-v-zLh_m-Obqhp_4xC7gHcCcBXguLm4R-4DGwhQtefryeFDCxYcCX1DRJzAcMawhc7neRV201isXBkmvnonNn__y0X5Sv63PNW_mKj3SNPH5FFPJemn7mmfkCNbPyUPuuaSv56R3xMQQwkDsjMZjKemZWd9w9sdzXBhoN0_aJ-nRavl-YpmdrNpqalLutr_3DZskJ0t6cJgr69rQJ-WzgFCqqalX3HHCFylGapOg8dXXVpt_ZxcTj-vshnrey2wQsZyx3wcFzqropwL4cDsk0RaWRSBy5McAN0BDygcsBGw8FJFNoXAJM1TFRUQcORSvCDH9ba2p4TmZQnIUaTc2FQqAAiuXFw6rmwIXEtEIyKG16uLvhA59sPY6CHj7LvuhKJRKDrgGoQyIuww66YrxHHH-AlK7jAWy2j7E9vmSvd6pJ2xeWkSB9pjJDd5gqWOVOEwSDTKwU3iQe76llbCrao7lv8wqIkGg8W_MKa2232Lg2SIdezViLzs9OfwkDyNRCp5_Oq_131PHs5Wiwt9MV-evyYneAUz5kLxhhzvmr19CxRql7_zJvIHJbUVkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimodal+CD40%2FFas-Dependent+Crosstalk+between+iNKT+Cells+and+Tumor-Associated+Macrophages+Impairs+Prostate+Cancer+Progression&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Filippo+Cortesi&rft.au=Gloria+Delfanti&rft.au=Andrea+Grilli&rft.au=Arianna+Calcinotto&rft.date=2018-03-13&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=22&rft.issue=11&rft.spage=3006&rft.epage=3020&rft_id=info:doi/10.1016%2Fj.celrep.2018.02.058&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_faebda8f523a42ab810086cf1148a6f8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon